A Selected Bibliography Of References On Geology, Hydrology, And Geochemistry Of The Midwestern Basins And Arches Region—Ohio, Indiana, Michigan, And Illinois

By Anthony Robinson and E.F. Bugliosi

United States Geological Survey
Open-File Report 94-473

Columbus, Ohio
1994
CONTENTS

Abstract ... 1
Introduction ... 1
 Purpose and scope .. 1
 Acknowledgments .. 1
Bibliographic format ... 3
Selected bibliography ... 4
Ohio ... 4
 Geology .. 4
 Hydrology ... 12
 Geochemistry .. 18
 Miscellaneous .. 20
Indiana .. 21
 Geology .. 21
 Hydrology ... 29
 Geochemistry .. 36
 Miscellaneous .. 36
Michigan ... 37
 Geology .. 37
 Hydrology ... 37
Illinois ... 37
 Geology .. 37
 Hydrology ... 38

FIGURE
1. Map showing area of data collection in the Midwestern Basins and Arches Region ... 2

CONVERSION FACTORS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer</td>
</tr>
</tbody>
</table>
A Selected Bibliography of References on Geology, Hydrology, and Geochemistry of the Midwestern Basins and Arches Region—Ohio, Indiana, Michigan, and Illinois

By Anthony Robinson and E. F. Bugliosi

Abstract

This report contains selected references used for the Midwestern Basins and Arches Regional Aquifer System Analysis project of the U.S. Geological Survey. The project was begun in 1988 to study the geologic framework, hydrology, and geochemistry of the surficial and the Silurian and Devonian carbonate-rock aquifers in the Midwestern Basins and Arches Region. The area of data collection is 90,000 square miles and includes parts of Ohio, Indiana, Michigan, and Illinois. Geologic, hydrologic, and geochemical references that apply to the hydrogeology and geochemistry of the region were collected and are presented in this bibliography by State and by geologic, hydrologic, and geochemical categories for each State.

INTRODUCTION

The need for regional ground-water information for the United States became critical during the 1970's after a period of severe drought. In response to this need, the U.S. Geological Survey Regional Aquifer System Analysis (RASA) program was created by Congress in 1977 and began operation in 1978. Twenty-eight regional aquifer systems were identified for study under the RASA program. The purpose of the Midwestern Basins and Arches RASA study (fig. 1), which began in 1988 and was scheduled for completion in September 1994, is to investigate the geologic framework, hydrology, and geochemistry of the regional aquifer system that consists of carbonate rocks of Silurian and Devonian age and glacial deposits of Pleistocene age within a 90,000-square-mile area (fig. 1) that encompasses parts of Ohio, Indiana, Michigan, and Illinois.

Purpose and Scope

This report is provided to help promote a comprehensive understanding of the literature that pertains to the Midwestern Basins and Arches region and to present a systematic overview of this literature. The information provided in this report, which should be of value in literature searches on the geology, hydrology, and water chemistry of the Midwest, includes many of the sources of information that were compiled and used in the analysis of the Midwestern Basins and Arches RASA study. This report does not include all the literature used for this study; instead, only the major publications are included. For example, a number of consultants' reports were used as data sources but were not listed in the bibliography because of copyright and privacy issues.

Acknowledgments

The authors wish to thank the personnel of the Ohio and Indiana Geological Surveys, and the major universities within each State, for their cooperation.
Figure 1. Location of area of data collection for the Midwestern Basins and Arches Regional Aquifer Systems Analysis (RASA) project.
BIBLIOGRAPHIC FORMAT

The compilation of references that follows is arranged first by State (the largest number of references pertain to Indiana and Ohio) and second by geology, hydrology, and geochemistry. Some references may be duplicated in different sections of this bibliography if a substantial part of the reference pertains to more than one topic (geology, hydrology, or geochemistry) or if the reference pertains to areas within several States. References that could not be classified in those above-mentioned categories (for example, census data) were categorized as miscellaneous.

Basic streamflow and ground-water-level data were used extensively for the Midwestern Basins and Arches RASA study. However, sources of basic data are not referenced individually. Instead, the reader is directed to local U.S. Geological Survey offices for copies of annual water-resources data reports or customized data retrievals. Copies of the annual data reports can also be found in many university libraries.

In addition to the references listed in this report, a number of reports dealing with aquifer tests were examined for the study. Many of these reports were obtained from private consulting firms and were released for a specific publication only. A listing of these consultants and the city in which they are located is given below:

Aqua-Ran Water Supplies, Inc., Columbus, Ohio
Burgess & Niple, Limited, Columbus, Ohio
Groundwater Management of Kansas City, Kansas City, Mo.
Groundwater Management, Inc., Columbus, Ohio
Groundwater Management and Layne-Northern Company, Indianapolis, Ind.
Layne Northern Company, Indianapolis, Ind.
Layne-Ohio Company, Columbus, Ohio
Peerless-Midwest, Inc., Granger, Ind.
Reynolds Supply, Inc., Indianapolis, Ind.
Sargent and Lundy Engineers, Chicago, Ill.
Sieco, Inc., Columbus, Ind.
Smith, R.C., and Associates, Hamilton, Ohio
Stone and Webster Engineering Corporation, Indianapolis, Ind.
Stremmel and Hill, Inc., La Fontaine, Ind.
Toledo Testing Laboratories, Toledo, Ohio

Introduction
SELECTED BIBLIOGRAPHY

Ohio

Geology

1992c, Bedrock topography of the Jamestown Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1992e, Bedrock topography of the Memphis Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1992f, Bedrock topography of the Midway Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1992g, Bedrock topography of the Milledgeville Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1992h, Bedrock topography of the Mount Sterling Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1992j, Bedrock topography of the New Martinsburg Quadrangle, Fayette County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1975, Preliminary report on potential hydrocarbon reserves underlying the Ohio portion of Lake Erie: Ohio Department of Natural Resources, Geological Survey Geological Notes 1, 9 p.

Couchot, M.L., 1975, Sand and gravel resources of Madison County, Ohio: Ohio Department of Natural Resources, Geological Survey Geological Notes 2, scale 1 inch = about 1 mile.

Cummins, J.W., 1959, Buried river valleys in Ohio: Ohio Department of Natural Resources, Division of Water Ohio Water Plan Inventory Report 10, 2 sheets.

1975, Catalog of oil and gas wells in “Newburg” (Silurian) of Ohio: Ohio Department of Natural Resources, Geological Survey Information Circular 42, 19 p.

Johnson, G.H., and Keller, S.J., 1972, Geologic map of the 1° X 2° Fort Wayne quadrangle, Indiana, Michigan, and Ohio, showing bedrock and unconsolidated deposits: Indiana Department of Natural Resources, Geological Survey Regional Geologic Map 8, Fort Wayne sheet, part A, scale 1:500,000.

King, Mary, 1988, Application of a two-dimensional finite difference model for evaluating the confined carbonate aquifer in Hancock County: Toledo, University of Toledo, M.S. thesis, 186 p.

_____ 1973, Areas of shallow bedrock in part of northwestern Ohio: Ohio Department of Natural Resources, Geological Survey Information Circular 38, scale 1 inch = about 2 miles.

_____ 1943, Generalized geologic section of rocks in Ohio: Ohio Geological Survey Information Circular 4, folded chart.

_____ 1987b, Sand and gravel resources of Clark County, Ohio: Ohio Department of Natural Resources, Geological Survey Report of Investigations 137, scale 1 inch = about 1 mile.

_____ 1990b, Bedrock topography of the Hilliard Quadrangle, Franklin County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

_____ 1990c, Bedrock topography of the Northwest Columbus Quadrangle, Franklin County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

_____ 1990d, Bedrock topography of the Shawnee Hills Quadrangle, Franklin County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

_____ 1992b, Bedrock topography of the New Carlisle Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

_____ 1992c, Bedrock topography of the Tipp City Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990e, Bedrock topography of the Walnut Run Quadrangle, Madison County, Ohio: Ohio Department of Natural Resources, Geological Survey Open-File Report BT-B4G4, scale 1:24,000.

1990g, Bedrock topography of the Bellefontaine Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991c, Bedrock topography of the Kingscreek Quadrangle, Champaign County, Ohio: Department of Natural Resources, Geological Survey Open-File Report BT-C4B6, scale 1:24,000.

1991e, Bedrock topography of the Kingscreek Quadrangle, Champaign County, Ohio: Department of Natural Resources, Geological Survey Open-File Report BT-C4B6, scale 1:24,000.

1991f, Bedrock topography of the Northville Quadrangle, Champaign County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991g, Bedrock topography of the Mt. Victory Quadrangle, Hardin County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991h, Bedrock topography of the Plain City Quadrangle, Madison County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991i, Bedrock topography of the Osgood Quadrangle, Shelby County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991j, Bedrock topography of the Plumwood Quadrangle, Madison County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991k, Bedrock topography of the Port Jefferson Quadrangle, Shelby County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991o, Bedrock topography of the Russels Point Quadrangle, Logan County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1991q, Bedrock topography of the Zanesfield Quadrangle, Logan County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990b, Bedrock topography of the Fletcher Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990c, Bedrock topography of the Gettysburg Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990d, Bedrock topography of the Piqua East Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990e, Bedrock topography of the Troy Quadrangle, Miami County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

1990f, Bedrock topography of the Versailles Quadrangle, Darke County, Ohio: Unpublished map on file at offices of Ohio Department of Natural Resources, Geological Survey, scale 1:24,000.

Hydrology

Bain, R.C., 1979, Ground-water resources of Pickaway County, Ohio: Columbus, Ohio, The Ohio State University, M.S. thesis, 147 p.

_____1965, Low-flow frequency and storage-requirement indices for Ohio streams: Ohio Department of Natural Resources, Division of Water Bulletin 40, 47 p.

Crowell, K.S., 1979, Ground-water resources of Marion County: Ohio Department of Natural Resources, Division of Water, 1 sheet.

Eberts, S.M., 1987, Potential effects of chemical spills or cessation of quarry dewatering on a municipal ground-water supply, southern Franklin County, Ohio: Columbus, Ohio, The Ohio State University, Master’s thesis, 104 p.

Kaser, Paul, 1962, Report to Ohio Water Commission on the investigation of ground-water levels in the vicinity of Eagle City, Clark County, Ohio: Ohio Department of Natural Resources, Division of Water, 82 p.

—1959a, Buried topography and its relation to an important aquifer in Franklin County, Ohio: Ohio Journal of Science, v. 59, no. 6, p. 341-343.

—1950, The water resources of Greene County, Ohio: Ohio Department of Natural Resources, Division of Water Bulletin 19, 52 p.

Selected Bibliography 15
1966b, Use of type curves developed from electric analog studies of unconfined flow to determine the vertical permeability of an aquifer at Piketon, Ohio: Ground Water, v. 4, no. 3, 6 p.

Ohio Department of Natural Resources, Division of Water, 1950, The water resources of Greene County, Ohio: Bulletin 19, 23 p.

Plummer, P.M., 1971, Ground-water resources near Grayson, Miami County, Ohio: Dayton, Ohio, Miami Conservancy District, 42 p.

Price, Susan, 1987, Utilization of 87Sr/86Sr ratios to trace the groundwater flowpath into Cedar Bog Memorial Swamp, Champaign County, Ohio: Dayton, Ohio, Wright State University, Master's thesis, 51 p.

Schmidt, J.J., 1978, Ground-water resources of Union County: Ohio Department of Natural Resources, Division of Water, scale 1:63,360.

Walker, A.C., 1960a, Underground water resources of Miami River Basin (Loramie and Mosquito Creek area): Ohio Department of Natural Resources, Division of Water, Water Plan Inventory Map H-2.

____ 1960b, Underground water resources of Miami River Basin (lower part of middle portion): Ohio Department of Natural Resources, Division of Water, Water Plan Inventory Map H-9.

____ 1960c, Underground water resources of Miami River Basin (part of middle) and lower Mad River Basin: Ohio Department of Natural Resources, Division of Water, Water Plan Inventory Map H-4-5.

____ 1960d, Underground water resources of Stillwater River Basin: Ohio Department of Natural Resources, Division of Water, Water Plan Inventory Map H-6-7.

____ 1960e, Underground water resources of Twin Creek Basin (and Ohio portion of East Fork Whitewater River Basin): Ohio Department of Natural Resources, Division of Water, Water Plan Inventory Map H-8 and -11A.

Youngquist, C.V., 1951, Ohio's water situation: Columbus, Ohio, The Ohio State University, Engineering Experiment Station News, v. 23, no.1, p. 8-9, 34-36

Geochemistry

Eastin, Rene, 1967, Geochemical aspects of the Scioto and Olentangy Rivers at Columbus: Columbus, Ohio, The Ohio State University, Master's thesis, 105 p.

Eastin, Rene, and Faure, Gunter, 1970, Seasonal variation of the solute content and the \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio of the Olentangy and Scioto Rivers at Columbus, Ohio: Ohio Journal of Science, v. 70, no. 3, p. 170-179.

Eberts, S.M., 1987, Potential effects of chemical spills or cessation of quarry dewatering on a municipal ground-water supply, southern Franklin County, Ohio: Columbus, Ohio, The Ohio State University, Master's thesis, 104 p.

Feth, J.H., and others, 1965, Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids: U.S. Geological Survey Hydrologic Investigations Atlas HA-199, 2 sheets.

— 1975, Water quality investigations at the Bobmeyer Road landfill at Fairfield, Ohio, 1974: Dayton, Ohio, Miami Conservancy District, 9 p.

Price, Susan, 1987, Utilization of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios to trace the groundwater flowpath into Cedar Bog Memorial Swamp, Champaign County, Ohio: Dayton, Ohio, Wright State University, Master’s thesis, 51 p.

Steele, J.D., and Pushkar, P., 1973, Strontium isotope geochemistry of the Scioto River Basin and the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the underlying lithologies: Ohio Journal of Science, v. 73, no. 6, p. 331-338.

U.S. Environmental Protection Agency, 1986, Quality criteria for water: EPA 440/5-86-001 [variously paginated].

Miscellaneous

Indiana

Geology

Bassett, J.L., and Hasenmueller, N.R, 1979a, Map showing structure on base of New Albany Shale (Devonian and Mississippian) and equivalent strata in Indiana: Indiana Department of Natural Resources, Geological Survey, EGSP Series 800, scale 1:500,000.

_____1979b, Map showing structure on top of New Albany Shale (Devonian and Mississippian) and equivalent strata in Indiana: Indiana Department of Natural Resources, Geological Survey, EGSP Series 801, scale 1:500,000.

_____1980, Map of Indiana showing structure on top of the Maquoketa Group (Ordovician): Indiana Department of Natural Resources, Geological Survey, METC/EGSP Series 812, scale 1:500,000.

Busch, D.A., 1939, The stratigraphy and paleontology of the Niagaran strata of west-central Ohio and adjacent northern Indiana: Columbus, Ohio, The Ohio State University, Ph.D. dissertation, 234 p., 15 pl.

Cumings, E.R., 1922, Nomenclature and description of the geological formations of Indiana: Indiana Department of Conservation Publication 21, part 4, p. 403-570.

Dawson, T.A., 1952, Map showing generalized structure of Trenton Limestone in Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 3, scale 1:500,000.

_____1982, Map of Indiana showing topography of the bedrock surface: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 36, scale 1:500,000.

_____1983, Map of Indiana showing thickness of unconsolidated deposits: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 37, scale 1:500,000.

_____1989, Quaternary geologic map of Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 49, scale 1:500,000.

1976, Geology of the Kentland structural anomaly, northwestern Indiana: Kalamazoo, Mich., Western Michigan University, unpublished field guide of the North Central Section of the Geological Society of America, 60 p.

Harrison, P.W., 1958, Marginal zones of vanished glaciers reconstructed from the reconsolidation-pressure values of overridden silts: Journal of Geology, v. 66, no. 1, p. 72-95.

1980b, Map of Indiana showing structure on top of the Trenton Limestone (Ordovician): Indiana Department of Natural Resources, Geological Survey, METC/EGSP Series 813.

1980c Map of Indiana showing thickness of New Albany Shale (Devonian and Mississippian) and equivalent strata: Indiana Department of Natural Resources, Geological Survey, METC/EGSP Series 805.

1970, Map of Indiana showing bedrock geology: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 16, scale 1 inch = approx. 28 miles.

Keller, S.J., 1973, Map of Indiana showing oil, gas, and products pipelines: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 18, scale 1:500,000.

1976, Map showing oil, gas, and gas storage fields in Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 21, scale 1:500,000.

1963b, Location of aggregate operation in Indiana: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 9, scale 1:750,000.

Moore, M.C., 1971, Location of sand and gravel operations in Indiana: Indiana Department of Natural Resources, Geological Survey State Base Map 101, scale 1:1,000,000.

Moran, W.H., 1952, Map of Indiana showing county boundaries and township and range lines: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 10, scale 1:1,000,000.

Patton, J.B., and Smith, N.M., 1952, Map showing location of sand and gravel pits in Indiana: Indiana Department of Natural Resources, Geological Survey Atlas of Mineral Resources of Indiana, Map 2, scale 1:1,000,000.

Perry, T.G., and Horowitz, A.S., 1963, Bryozoans from the Glen Dean Limestone (Middle Chester) of southern Indiana and Kentucky: Indiana Department of Natural Resources, Geological Survey Bulletin 26, 51 p.

Phinney, A.J., 1883, Geology of Randolph County: Indiana Department of Geology and Natural History Annual Report 12, p. 177-195.

Utgaard, John, and Perry, T.G., 1960, Fenestrate bryozoans from the Glen Dean Limestone (Middle Chester) of southern Indiana: Indiana Department of Natural Resources, Geological Survey Bulletin 19, 32 p.

Wayne, W.J., 1952, Map of Tippecanoe County, Indiana, showing thickness of glacial drift: Indiana Department of Natural Resources, Geological Survey Miscellaneous Map 2, scale 1:63,360.

———1958, Glacial geology of Indiana: Indiana Department of Natural Resources, Geological Survey Atlas of Mineral Resources of Indiana, Map 10, scale 1:1,000,000.

Hydrology

Bruns, T.M., and Uhl, J.E., 1976, Water resources of Shelby County, Indiana, with emphasis on ground-water availability: Indiana Department of Natural Resources, Division of Water, pl. 1.

Fleming, T., 1989, Description and results of the pumping test at the Julietta Landfill: Indiana Geological Survey (for the Marion County Health Department), 11 p.

1982, Hydrogeologic atlas of Indiana: Bloomington, Ind., 31 pl.

1984, Determination of TDS content of deep aquifers by geophysical well log analysis: Bloomington, Ind., 46 p.

Governor’s Water Resources Study Commission, State of Indiana, 1980, The Indiana water resource—availability, uses, and needs: Indiana Department of Natural Resources, 508 p.

Harrell, M., 1935, Ground water in Indiana: Indiana Department of Public Works, Conservation Department, Division of Geology, Publication 133, 504 p.

Heckard, J.M., 1965, Water resources of Morgan County with emphasis on ground-water availability: Indiana Division of Water [folder consisting of 19-inch x 22-inch map and text].

1968, Water resources of Grant County, Indiana, with emphasis on ground-water availability: Indiana Department of Natural Resources, Division of Water Resources, Ground Water Atlas 5.

Herring, W.C., 1969, Reconnaissance of the ground-water resources of the Maumee River Basin, Indiana: Indiana Department of Natural Resources, Division of Water Resources, Division of Water Report 17, 30 p.

1971, Water resources of Hamilton County, with emphasis on ground-water availability: Indiana Division of Water, scale 1:63,360.

1974, Water resources of Marion County, with emphasis on ground-water availability: Indiana Division of Water, scale 1:63,360.
1976, Technical atlas of the ground-water resources of Marion County, Indiana: Indiana Department of Natural Resources, Division of Water, 53 p.

Hoggatt, R.E., 1975, Drainage areas of Indiana streams: Indiana Department of Natural Resources, Division of Water, 231 p.

Hunn, J.D., and Reussow, J.P., 1968, Preliminary evaluation of the ground-water resources in the Calumet-Kankakee hydrologic area—appendix to the State Water Plan: Indiana Department of Natural Resources, Division of Water, 39 p.

Indiana Department of Conservation, Division of Water, 1951, Preliminary report on the ground water resources of the Blue River Valley above New Castle: 14 p.

Jordan, D.G., 1956, The feasibility of maintaining a higher water level in Bass Lake by pumping water from a well or wells: Indiana Department of Conservation, Division of Water Resources, 18 p.

Rosenshein, J.S., 1958, Ground-water resources of Tippecanoe County: Indiana Department of Conservation, Division of Water Resources Bulletin 8, 38 p.

Rosenshein, J.S., and Cosner, O.J., 1956, Ground-water resources of Tippecanoe County, Indiana, appendix—basic data: Indiana Department of Conservation, Division of Water Resources Bulletin 8, 65 p.

--- 1964d, Ground-water resources of northwestern Indiana, preliminary report—Newton County: Indiana Department of Conservation, Division of Water Resources Bulletin 26, 64 p.

--- 1964e, Ground-water resources of northwestern Indiana, preliminary report—Pulaski County: Indiana Department of Conservation, Division of Water Resources Bulletin 24, 71 p.

--- 1964f, Ground-water resources of northwestern Indiana, preliminary report—Starke County: Indiana Department of Conservation, Division of Water Resources Bulletin 22, 87 p.

--- 1968a, Geohydrology and ground-water potential of Lake County, Indiana: Indiana Department of Natural Resources, Division of Water Bulletin 31, 35 p.

Simpson, J.N., 1988, Profile—Maumee River, tributary to Lake Erie: Indiana Department of Natural Resources, Division of Water, 3 sheets.

Steen, W.J., 1970, Water resources of Madison County with emphasis on ground-water availability: Indiana Department of Natural Resources, Division of Water, Ground Water Atlas 7, 1 sheet.

Steen, W.J., Bruns, T.M., and Perry, A.O., 1977, Water resources of Boone County, Indiana, with emphasis on ground-water availability: Indiana Division of Water (folder consisting of 17-inch x 23 1/2-inch map and text).

Uhl, J.E., 1966, Water resources of Johnson County with emphasis on ground-water availability: Indiana Natural Resources, Division of Water, Ground Water Atlas 2.

_____, 1969, Water Resources of Randolph County with emphasis on ground-water availability: Indiana Department of Natural Resources, Division of Water, Ground Water Atlas 6.

_____, 1973, Water resources of Henry County with emphasis on ground-water availability: Indiana Department of Natural Resources, Division of Water, Ground Water Atlas 9.

Geochemistry

Fullerton, D.S., 1980, Preliminary correlation of post-Erie interstadial events (16,000-10,000 radiocarbon years before present), central and eastern Great Lakes region, and Hudson, Champlain, and St. Lawrence Lowlands, United States and Canada: U.S. Geological Survey Professional Paper 1089, 52 p.

Miscellaneous

Collett, J., 1883, Geological survey of Newton County: Indiana Department of Geology and Natural History, 12th Annual Report, p. 48-64.

Michigan

Geology

Hydrology

Illinois

Geology

Hydrology

