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CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To obtain
foot (ft) 0.3048 meter (m)
gram (g) 0.03527 ounce (0z)
kilometer (km) 0.6214 mile (mi)
meter (m) 3.281 feet (ft)
millimeter (mm) 0.03937 inch (in)

Degree Celsius (°C) may be converted to degree Fahrenheit (°F) by using the following equation:

°F=9/5(°C) + 32.

Sealevel: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from
a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.
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spectrum of K-Ar zeolite ages may be reflecting sus-
ceptibility of the rock mass to low-temperature modifi-
cation long after the main episode of alteration.

An understanding of the isotopic and chemical
changes that occurred during diagenesis could be use-
ful for predicting possible future changes that may
occur in the near field of the potential repository if pore
or perched water is mobilized during heating of the
rock mass by the nuclear waste. Rock intervals that are
rich in zeolites, such as the Calico Hills Formation,
may function as important natural barriers to the migra-
tion of certain radionuclides between the potential
repository level and the water table (Herbst and
Canepa, 1989). However, the presence of zeolites also
may complicate the performance of the natural system
which is the final barrier to the release of radionuclides
to the environment. The zeolitized rocks contain sub-
stantial amounts of water that can be released at tem-
peratures greater than 80°C (Bish, 1990). During
loading of the potential repository and heating of the
surrounding rocks, water could be released from the
Calico Hills Formation and from zeolitized zones in the
Topopah Spring Tuff. This dehydration would be
accompanied by a volume decrease of a given mass of
rock which could potentially lead to increased perme-
ability (Bish, 1990). If the heated water resulting from
dehydration were to move into the previously unaltered
Topopah Spring Tuff in the near field of the potential
repository, secondary minerals could form. Presum-
ably, the lower vitrophyre of the Topopah Spring Tuff
would be especially vulnerable to such alteration (Levy
and O’Neil, 1989; Peterman and others, 1991). This
process could be important to the performance of the
potential repository because the increase in specific
rock volume associated with the formation of lower
density secondary minerals would tend to seal fractures
and decrease permeability. Furthermore, zeolites
formed within this alteration halo could be an addi-
tional barrier to the migration of radionuclides, partic-
ularly %Sr and ¥’Cs.
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DATA COLLECTION

At the Raven Canyon reference section (fig. 1)
samples were collected along three traverses that col-
lectively intercepted a stratigraphic thickness of
approximately 1,100 ft of the Tram, Bullfrog, Prow
Pass, Wahmonie, and Topopah Spring Tuffs. The
lower part of the reference section (bedded tuff and
Tram Tuff) was measured using a Jacob’s staff and was
designated traverse A. The middle part of the reference
section (bedded tuff and Bullfrog Tuff), in Raven
Canyon proper, was measured by tape and compass
traverse and was designated traverse B. The upper part
of the reference section (bedded tuff, Prow Pass, Wah-
monie, and Topopah Spring Tuff) was measured using
a Jacob’s staff and by tape and compass and was desig-
nated traverse C. Coordinates of the starting points
(lowest stratigraphic positions) of the Raven Canyon
traverses were estimated from the Big Dune 7.5 minute
quadrangle relative to the 1927 North American -
Datum: traverse A, 38°41.2' N and 116°32.7' W;
traverse B, 38°41.1' N and 116°32.3' W; and traverse C,
38°41.4' N and 116°32.1' W. At the Paintbrush Canyon
reference section, samples of the Calico Hills Forma-
tion were collected along a single traverse that inter-
cepted approximately 600 ft of section. Coordinates of
the starting point (base) of the Paintbrush Canyon sec-
tion were estimated from the Topopah Spring NW
7.5 minute quadrangle: 116°24.8' W and 36°54.7' N.
The Paintbrush Canyon section was measured using a
Jacob’s staff.

Soil and bedrock surfaces and near-surface frac-
tures in this region are permeated by pedogenic calcite
that contains both Ca and Sr. To remove the calcite,
samples were coarsely crushed to fragments approxi-
mately 5 mm or smaller, treated with 0.1N hydrochlo-
ric acid until reaction with calcite ceased, repeatedly
rinsed with deionized water, and then dried before pul-
verization to approximately 200 mesh in a Spex shat-
terbox mill. This mild acid leaching removes the
calcite but does not have an appreciable effect on the
silicate minerals. Major and trace elements were deter-
mined by energy-dispersive, X-ray fluorescence on
3- to 5-gram splits of the 200-mesh bulk-rock samples.
Multiple secondary targets and USGS rock standards
were used to analyze for K, Ca, Ti, Rb, Sr, Y, Zr, Nb,
Ba, La, and Ce concentrations in the samples (tables 1
and 2). Replicate analyses of USGS rock standard
GSP-1 yield the following coefficients of variation:

K, 1.2 percent; Ca, 33.7 percent; Ti, +2.4 percent;
Rb, +1.4 percent; Sr, 1.3 percent; Y, £8.3 percent;
Zr, 3.6 percent; Nb, +3.7 percent; Ba, 2.9 percent;
La, 7.1 percent; and Ce, 13.9 percent.
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Strontium-isotope compositions were deter-
mined by thermal ionization mass spectrometry on rep-
resentative samples from the Raven Canyon and
Paintbrush Canyon reference sections (table 3) using
conventional dissolution and mass spectrometric pro-
cedures described previously (Peterman and others,
1985). All ¥Sr/%Sr values were adjusted to a scale on
which the value for modern sea water is 0.70920 as
determined by analyses of standard EN-1 which was
prepared from the shell of a modern tridacna collected
from Enewetok Atoll in the western Pacific Ocean.
Relative to the standard, the 8S1/%Sr values are accu-
rate to better than £0.01 percent (95-percent confidence
level) of the value reported.

GEOCHEMISTRY OF OUTCROP
SAMPLES

The geochemical data (table 1) for samples from
the Raven Canyon reference section are presented in
graphs showing element concentrations and ratios as a
function of stratigraphic position of the samples.
Geochemical data for samples from the Calico Hills
Formation (table 2) are presented in tabular form only,
and isotopic data for samples from both sections
(table 3) are presented as a composite section.

Geochemical variations within the Topopah
Spring Tuff reflect the first-order lithologic variations
described by Lipman and others (1966). The lower
two-thirds to three-quarters of the unit is devitrified,
densely welded, crystal-poor, high-silica rhyolite

Table 3. Strontium-isotope data for samples from the Raven Canyon and Paintbrush Canyon

reference sections

[The Calico Hills Formation of the Paintbrush Canyon section is shown in its appropriate stratigraphic position (strat. pos.)

relative to the Raven Canyon section)

Sample Unit! s"‘(‘;t)'”" 87RI/SSy 87g,/86g, IR(ST)
H95C-18-7 Tpt-nw-v 118 25.05 0.71649 0.71194
DH-9 Tac-vit 125 38.87 0.71764 0.71052
DH-8 Tac-vit 171 35.29 0.71782 0.71136
DH-5 Tac-vit 584 19.99 0.71493 0.71127
DH-4 Tac-vit 814 29.59 0.71689 0.71147
DH-3 Tac-breccia 869 33.46 0.71686 0.71073
H95C-1446  Tcp-nw-v 1,014 7.85 0.71199 0.71054
H95C-10-16  Tcp-pw-vp 1,089 843 0.71207 0.71051
H95C-7+10  Tcp-nw-vp 1,148 8.68 0.71218 0.71058
H95C-4+4 Tep-nw-vp 1,211 8.19 0.71214 0.71063
H95C-1+0 Tep-nw-v 1,273 9.27 0.71116 0.70945
H95C-0-10  Tcp-nw-v 1,289 10.40 0.71208 0.71016
H95C-0-1 AF-v 1,293 4.30 0.71134 0.71055
H95B-24+40  Tcb-nw-v 1,322 2.69 0.70924 0.70874
H95B-18-0  Tcb-pw-vp 1,404 2.70 0.70920 0.70870
H95B-14-35  Tcb-dw-d 1,467 2.66 0.70909 0.70860
H95B-11-5 Tcb-dw-v 1,532 1.90 0.70872 0.70837
H95B-4+26  Tcb-v 1,631 1.12 0.70828 0.70807
H95B-0C+0  Tcb-nw-v 1,667 322 0.70933 0.70873
H95-2240 Bt-v-m 1,706 1.63 0.70942 0.70911
H95-18+0 Bt-v-m 1,745 2.26 0.71270 0.71227
H95-16+5 lith tuff 1,759 2.80 0.71013 0.70959
H95-10+6 Bt-v 1,818 3.47 0.70993 0.70926
H95-5+7 Bt-v 1,867 3.35 0.71025 0.70961

TUnit abbreviations are the same as in table 1.
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consisting largely of microcrystalline quartz and feld-
spar. The high-silica rhyolite is overlain by quartz
latite separated by an interval that is transitional in
composition upward due to mixing of high-silica rhyo-
lite and quartz latite (Schuraytz and Vogel, 1989). The
upper three samples of the Topopah Spring Tuff at the
Raven Canyon reference section are from the quartz
latitic caprock and vitrophyre (table 1). The increase in
Zr and Ti (fig. 2), Ca, Sr, and Ba (fig. 3), La and Ce
(fig. 4), and decrease in Rb and Nb (fig. 5) upward in
the unit are characteristic features of the quartz latite
(Peterman and others, 1991). In contrast, the subjacent
high-silica rhyolite is remarkably uniform in composi-
tion. These internal geochemical features are charac-
teristic of the Topopah Spring Tuff throughout its
extent at Yucca Mountain. The younger Tiva Canyon
Tuff has a similar internal compositional zonation
(Peterman and Futa, in press). These first-order
geochemical and lithologic features of the Topopah
Spring and Tiva Canyon Tuffs are the inverse reflection
of compositional gradients in their source magmas.
Locally, the Topopah Spring Tuff has been altered to
zeolites and clay in a zone at the top of the lower vitro-
phyre (Levy and O’Neil, 1989; Peterman and others,
1991). In drill hole UE-25a #1, this altered zone is
marked by substantial increases in Sr and Ca contents.
Corresponding increases in Ti and Zr in this zone indi-
cate that these elements can be mobilized during
intense alteration of glassy rock where they are not
securely sequestered in discrete minerals (Peterman
and others, 1991). This localized alteration in the
Topopah Spring Tuff is not present at the Raven
Canyon reference section (figs. 2 and 3).

The Wahmonie Formation in the Raven Canyon
reference section is represented by nonwelded to par-
tially welded bedded tuffs, and the three samples col-
lected show large variations in the concentrations of Zr,
Ti, Ca, Sr, and Ba, (figs. 2 and 3). Detailed sampling
and analyses are needed to characterize this unit.

The Prow Pass Tuff at Raven Canyon consists of
a central zone of partially welded tuffs displaying
vapor-phase mineralization overlain and underlain by
nonwelded vitric zones. The concentrations of Ca, Sr,
and Ba (fig. 3) are remarkably uniform throughout the
unit irrespective of the zonal variations. For example,
the total range in Ba of 277 to 291 ppm (micrograms of
element/gram of sample) throughout the unit is well
within analytical error. The minor variations in Sr
(50 to 66 ppm) and Ca (0.52 to 0.68 percent) are correl-
ative (figs. 3 and 6). Zirconium ranges from 149 to
194 ppm with the highest value in a nonwelded vitric
sample at the base, and Ti, ranging from 614 to
713 ppm, may increase slightly with depth. A step
increase in K upward is accompanied by a step
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decrease in Rb between samples to 406 and 428 ft
(fig. 5) resulting in a step increase upward in K/Rb
ratios (fig. 6).

The Bullfrog Tuff consists of nonwelded vitric
tuffs that are underlain by partially to moderately
welded tuffs containing vapor-phase mineralization
and by densely welded, devitrified tuffs. The lower
part of the unit consists of vitrophyre underlain by non-
welded vitric tuff. These zonal variations in welding
and crystallization are accompanied by systematic
downward increases in Ti, Zr, Ca, Sr, Ba, La, and Ce
followed by marked decreases in these elements in the
nonwelded, vitric tuffs at the base (figs. 2, 3, and 4). In
contrast, K, Nb, Rb, and Y are relatively uniform
throughout the unit (figs. 4 and 5). These variations
may be primary or may indicate incipient alteration of
the vitrophyre perhaps similar to that which occurs in
the lower part of the Topopah Spring Tuff (Peterman
and others, 1991).

The relatively thin Tram Tuff at Raven Canyon
consists of densely welded, devitrified tuff underlain
by lithic-rich tuff. The densely welded, devitrified tuff
has much smaller concentrations of Zr, Ti, K, Rb, Nb,
Y, La, and Ce (figs. 2, 4, and 5) than the underlying
lithic-rich tuff. The densely welded and lithic-rich
tuffs are similar in alkaline-earth element concentra-
tions (fig. 3). Most of the element concentrations scat-
ter considerably in the bedded vitric tuffs that overlie
and underlie the Tram Tuff (figs. 2-5).

The Calico Hills Formation, although not present
at Raven Canyon, is extensive beneath most of Yucca
Mountain where it has been zeolitized (Broxton and
others, 1987). However, vitric tuffs of the Calico Hills
Formation occur in an area between Yucca Wash and
Fortymile Wash (Dickerson and Hunter, 1994), and a
well-exposed sequence in Paintbrush Canyon was
selected as a geochemical reference section (fig. 1). In
this area, the Calico Hills Formation is composed of an
alternating tuff breccia, bedded tuff, and vitrophyric
rhyolite.

Nine samples of the Calico Hills Formation were
collected from a stratigraphic interval of approximately
300 ft; these samples are limited in their compositional
range (table 2). Peterman and others (1993) compared
these vitric tuffs with samples of the zeolitized tuffs
of the Calico Hills Formation penetrated by drill
holes UE-25a #1 and UE-25b #1. Zeolitization was
accompanied by large-scale open-system behavior in
Ca and Sr whereas Zr and Ti were relatively immobile.
The composition of the vitric Calico Hills Formation is
similar in many respects to that of the high-silica rhyo-
lite of the Topopah Spring Tuff at Raven Canyon and to
the high-silica rhyolite of the Tiva Canyon Tuff in drill
hole UE-NRG#3 (Peterman and Futa, in press). The
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most important difference is in the much lower Zr con-
centration (56 to 79 ppm) of the Calico Hills Formation
(table 2) compared with the high-silica rhyolites of the
younger units (approximately 130 ppm for the Topopah
Spring Tuff and 200 ppm for the Tiva Canyon Tuff).

Strontium isotope measurements were com-
pleted on selected samples from the Raven Canyon and
Paintbrush Canyon reference sections. Data for the
Calico Hills Formation have been integrated with data
for samples from Raven Canyon to form a composite
section for illustrative purposes (fig. 7). The non-
welded vitric zones near the contacts of the Prow Pass
and Bullfrog Tuffs show considerable isotopic varia-
tion (fig. 7) which may indicate alteration related to
localized fluid flow along these more conductive zones.

The general decrease down section in measured
present-day and calculated initial #Sr/%Sr values
(fig. 7) is consistent with results obtained on composite
samples prepared from USW G-1 core (Spengler and
Peterman, 1991). The high initial 3S1/%Sr ratio, desig-
nated IR(Sr), for the sample of high-silica rhyolite from
the Topopah Spring Tuff is characteristic of this unit
where it is relatively unaltered. For example, 16 sam-
ples of the Topopah Spring high-silica rhyolite from
drill hole USW G-4 have a narrow range in IR(Sr)
values and a mean and standard deviation of
0.7128440.00019 (Z.E. Peterman, unpub. data, 1994).
The range in St contents and mean IR(Sr) values (10)
for the units in the Raven Canyon and Paintbrush
Canyon reference sections are: Calico Hills Forma-
tion, 15 to 31 ppm, 0.7110740.00037; Prow Pass Tuff,
54 to 59 ppm, 0.710311+0.00044; and Bullfrog Tuff,
156 to 476 ppm, 0.70853+0.00024. These systematic
geochemical and isotopic variations are features that
relate to the origin and crustal contamination of the
source magmas. The IR(Sr) values for all samples are
plotted against the reciprocal of the Sr concentrations
in figure 8. Disregarding the point in the upper left-
hand corner of the graph, which represents a bedded
tuff, the data clearly indicate two trends. Linear arrays
of data on a plot of this type commonly indicate mixing
of two end members. Samples that have 1/Sr values of
less than 0.01 (Sr concentrations greater than 100 ppm)
plot close to a steep line that is labeled “Mixing
(Assimilation).” This array probably indicates mixing
(through assimilation) of primitive, mantle-derived
magma (high Sr concentrations and low 87Sr/%Sr) with
Precambrian crustal material (lower Sr concentrations
with higher 87Sr/26Sr). The data to the right of the steep
mixing line in figure 8 are largely data for samples of
the Prow Pass Tuff and the Calico Hills Formation.
Fractional crystallization without assimilation would
result in migration of the liquid composition away from
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a point on the steep curve to lower Sr concentration val-
ues with no change in the IR(Sr) values. The horizontal
line labeled “Differentiation” is the locus of one possi-
ble path that could result from fractional crystallization
involving plagioclase or sanidine removal, or both, and
concomitant depletion of the residual liquid in Sr.

CONCLUSIONS

* Samples of densely welded, devitrified tuff from rel-
atively unaltered intervals of the Raven Canyon
and Paintbrush Canyon reference sections have
trace element concentrations and Sr isotope
ratios showing only slight variability or reflect-
ing internal lithologic variations that are primary
features inherited from compositionally and iso-
topically zoned magmas.

 Atthe Raven Canyon reference section, the greatest
degree of element variability is within non-
welded tuffs between the major units. This vari-
ability probably indicates water-rock interaction
along these more transmissive units.

* The thick lower vitrophyre of the Bullfrog Tuff at
Raven Canyon displays systematic increases in
Ti, Zr, Ca, Sr, Ba, La, and Ce concentrations
downward compared with concentrations in the
overlying densely welded, devitrified portion of
the unit. These variations may be primary or
may indicate incipient alteration of the vitro-
phyre perhaps similar to the localized alteration
in the lower part of the Topopah Spring Tuff.

* Data in this report for unaltered tuffs at reference
sections at Raven Canyon and Paintbrush
Canyon can be used as baseline information for
geochemical and isotopic studies of the rock
mass at Yucca Mountain. Such data can be of
value in correlating zonal features within the vol-
canic units in drill holes and in the Experimental
Studies Facility (ESF). This baseline data can
also contribute significantly to developing an
understanding of the degree and extent of ele-
ment mobility in the past. By analogy, this infor-
mation can be useful in assessing possible future
alteration in the Topopah Spring Tuff that might
be induced by heating and mobilization of water
liberated from nearby zeolitized zones.
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