U. S. GEOLOGICAL SURVEY

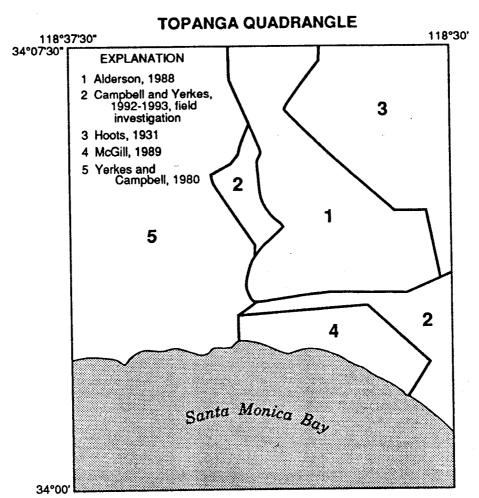
Preliminary Geologic Map of the Topanga Quadrangle Southern California

by

R. F. Yerkes 1 and R. H. Campbell 2

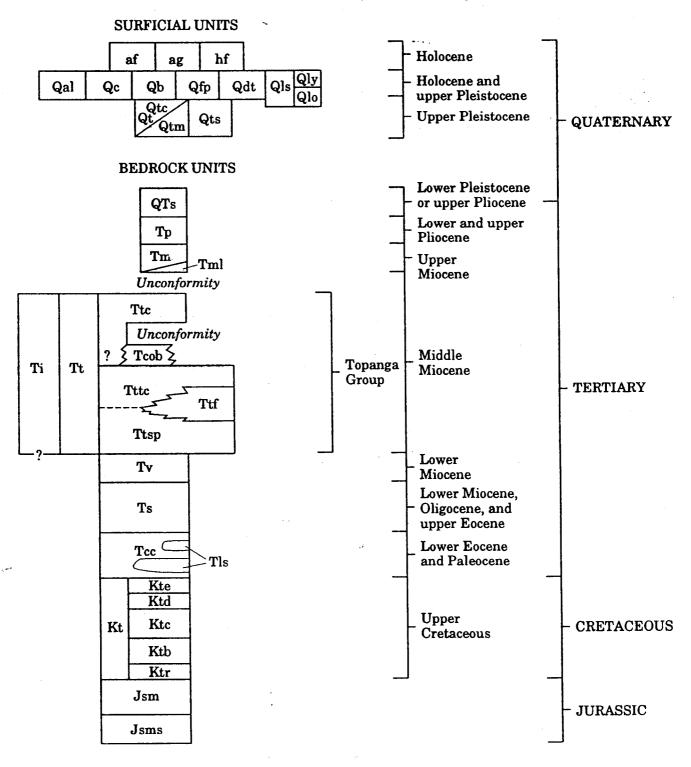
Open File Report 94-266

This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards or with the North American Stratigraphic code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government.


INTRODUCTION

This map is a preliminary product of the digital 1:100,000 Geologic Map Series (Morton and Kennedy, 1989). The 1:24,000 compilation was scanned and processed digitally using the U.S. Geological Survey Alacarte menu-driven adaptation (Wentworth and Fitzgibbon, 1991) of the Arc/Info Geographic Information System. Minor adjustments have been made in geologic boundaries to conform to the metric base, which was enlarged from 1:100,000.

This 1:24:000 quadrangle is one of 16 that form the west half of the Los Angeles 1:100,000 quadrangle; the 1:24,000-scale maps are intended to form the basic data supporting the regional-scale quadrangles, and thus contain data on known exploratory wells and fossil collections.


Stratigraphic nomenclature is largely that of the source materials, modified where possible to reflect that of Yerkes and Campbell (1979), particularly in regard to units of the Topanga Group; nomenclature is subject to further modification as compilation progresses.

The map for this report consists of two plates: the 1:24,000 quadrangle (plate 1), and a 1:12,000 enlargement of the Pacific Palisades area (plate 2), originally mapped at 1:4800 (McGill, 1989).

INDEX MAP SHOWING SOURCES OF GEOLOGIC MAPPING

CORRELATION OF MAP UNITS, TOPANGA QUADRANGLE

EXPLANATION, PRELIMINARY GEOLOGIC MAP, TOPANGA QUADRANGLE

DESCRIPTION OF MAP UNITS

SURFICIAL DEPOSITS

- af Artificial fill, in roadways and building sites
- ag Artificially graded land (in Pacific Palisades)-both cut and fill, geology concealed by construction or plant cover
- hf Hydraulic fill (in lower Santa Ynez Canyon, Pacific Palisades)-placed in 1926-28, thickness as great as 9m
- Qal Alluvium (late Holocene)-sand, gravel, and silt; locally includes some colluvium and residual soil; in active stream channels and beneath adjoining flood plains; locally incised to 5 m
- Colluvium-(Holocene and upper Pleistocene)-silt, clay, and sand, locally with abundant rock fragments; chiefly material that has moved downslope by gravity; commonly mantles slopes mapped as bedrock to depths of 1 m, but locally as thick as 12 m along coastal slopes; principal parent material of debris flows
- Qb Beach deposits (Holocene) Fine- to medium-grained sand, rounded pebble gravel locally present; thickness less than 5 m
- Qfp Floodplain deposits (Holocene and upper Pleistocene)-undifferentiated stream, floodplain, and mudflow deposits, chiefly at mouths of ravines; coalesced to form aprons below steep slopes
- Qdt Debris trains(Holocene and upper Pleistocene) Angular fragments and blocks of bedrock; chiefly from debris avalanches
- Qls/Qls? Landslide deposits-Chiefly deposits of bedrock and surficial materials resulting from mass wasting by slides, slumps, falls, and flows; may locally include some scar areas; queried where origin doubtful; in Pacific Palisades divided into:
 - Younger landslide deposits (Holocene)-Pacific Palisadesderived largely from Modelo and Topanga Formations, and from older landslide, terrace cover, and marine terrace deposits; thickness as great as 37 m, but most are less than 15 m thick; all predate 6/30/1969 (McGill, 1989)

- Qlo Older landslide deposits (chiefly Holocene; Pacific Palisades)-some larger deposits may date from 10,000-20,000 yr B.P. when sea level was much lower than now
- Qt/Qtc Coastal terrace deposits (Upper Pleistocene) nonmarine gravel, sand, silt and clay, locally includes debris flow fans and aprons; overlies marine terrace deposits or wave-cut platform
- Marine terrace deposits (Upper Pleistocene)-Sand, silty sand, and gravel; clean, loose, to weakly cemented; overlies three emergent erosional platforms between 22 and 76 m above present sea level; intertongues with nonmarine terrace deposits; locally fossiliferous (see table 2)

BEDROCK UNITS

- Sedimentary rocks (lower Pleistocene or upper Pliocene; in southeast corner of map)-massive marine siltstone and very fine grained sandstone, locally very fossiliferous; maximum exposed thickness about 90 m
- stone, sandstone, and breccia; maximum exposed thickness about 230 m; locally contains angular clasts of Modelo limestone bored by pholads; locally contains late Pliocene macro- and microfossils (see table 2); macrofossils referred to late Pliocene San Diego Formation (Hoots, 1931)
- Tmo Modelo Formation (upper Miocene)-dominantly interbedded marine sandstone (lithic-arkose wacke) and hemipelagic shaly mudstone, pebble conglomerate locally at base; microfauna in section along north Topanga Canyon Road referred to lower part of Kleinpell's (1938) type Mohnian Stage; Tml, coarse-grained sdandstone and pebble-cobble conglomerate
- Ti Intrusive igneous rocks (middle Miocene)-Basaltic and/or diabasic dikes, sills, and irregular bodies, commonly emplaced along faults; intrude all units older than Calabasas Formation; generally less than 5 m thick, but locally as thick as 330 m
- Tt Topanga Group, undivided (middle Miocene)-siltstone, sandstone, volcanics, and tuff-bearing conglomerate; divided into:
 - Ttc Calabasas Formation-marine sandstone, siltstone, and shale; locally abundant foramififera in northwest part of map referred to Luisian Stage (late middle Miocene) of Kleinpell (1938); thickness as much as 850 m

- Tcob Volcanic breccia-chiefly basaltic pillow breccia
- Tttc Topanga Canyon Formation-marine sandstone, siltstone, and pebbly sandstone; east of Topanga Canyon includes a prominent medial zone of nonmarine sandstone, pebbly sandstone, and mudstone; marine sequence is divided into three members:
 - Ttcc Cold Creek Member-marine sandstone, siltstone, and pebbly sandstone; up to 210 m thick; locally abundant molluscan fauna in northeast part of Malibu Beach quadrangle referred to "Temblor Stage" of Weaver and others (1944), including type locality for Topanga Canyon fauna of Arnold (1907); foraminifera referred to Luisian or Relizian Stages of Kleinpell (1938)
 - Ttf Fernwood Member-nonmarine sandstone, pebbly sandstone (paralic and fluvial), with minor tuff (tuff-bearing pebble conglomerate in Pacific Palisades area), and limestone; as thick as 240 m; on ridge west of Fernwood locally contains shallow-water gastropod Melongena sp. (middle Miocene)
 - Ttsp Saddle Peak Member-marine sandstone, pebbly sandstone, and siltstone; up to 240 m thick; pebble-cobble conglomerate at base locally contains abundant molluscan fossils, including Vertipecten nevadanus, referred to early or middle Miocene
- Vaqueros Formation (lower Miocene)-chiefly marine sandstone, minor pebbly sandstone, and interbedded nonmarine(?) mudstone; as thick as 75 m; present only in southwest part of quadrangle; elsewhere this stratigraphic position is occupied by nonmarine strata in upper part of Sespe Formation; locally contains molluscan fossils, including Turritella inezana, referred to lower Miocene "Vaqueros Stage" of Weaver and others (1944);
- Ts Sespe Formation (upper Eocene, Oligocene, and lower Miocene)-nonmarine sandstone, pebbly sandstone, mudstone, and conglomerate; characteristically a fluvial redbed sequence, but red color locally absent; thickness probably more than 300 m; base not exposed in map area

- Coal Canyon Formation (Paleocene and lower-middle Eocene) -TCC marine sandstone, siltstone, pebbly sandstone, and conglomerate; thickness may exceed 1000 m; commonly contains molluscan fauna, including Turritella pachecoensis, referred to "Domengine Stage" of Weaver and others Strathearn and others (1988) describe a section of the Coal Canyon Formation just east of Santa Ynez Canyon (locality fTC, table 2) and, on the basis of microfossils, place the Paleocene/Eocene contact just below a 10 meter-thick algal limestone (T1s). Colburn and others (1988), on the basis of seven reference sections along the length of the mountains, recognize three principal Paleocene lithosomes and stratigraphic units that are correlated with the "nearly identical" sequence in the Simi Hills.
- Tuna Canyon Formation (Upper Cretaceous) Sandstone (tur-Kt bidites) with slate chips, siltstone, and locally thick, structureless pebble-cobble conglomerate; molluscan fauna includes Campanian ammonite Metaplacenticeras sp.; locally contains foraminifera referred to D-2, E, and F-1 zones (Upper Cretaceous) of Goudkoff (1945); east of Topanga Canvon subdivided by Alderson (1988, unpub. map): Ktb, sandstone with minor conglomerate and black shale with Turonian and Coniacian ammonites (first report of Coniacian in Santa Monica Mountains), intruded by dike of trachyte, Ktt, at north border of quadrangle (Hoots, 1931); Ktc, pebble-cobble conglomerate and minor sandstone; Ktd, sandstone, fine grained, thick-bedded, fossiliferous; Kte, greenish-gray shale, interbedded coarsegrained sandstone in upper part; thickness 2080 m
- Ktr Trabuco Formation (Upper Cretaceous; of Durrell, 1954)-cobble-pebble conglomerate and soft, red clayey arkosic sandstone; well-rounded to polished clasts of varicolored quartzite, porphyry, granite, basalt, and numerous chips of black slate; thickness about 225 m
- Jsm Santa Monica Slate (Jurassic)-fine-grained, gray to black, intensely jointed, well-developed slaty cleavage; thickness perhaps 1800 m; yields late Oxfordian to early Kimmeridgian pelecypods (Imlay, 1963)
- Jsms Spotted slate-with abundant well-developed, spindle-shaped crystals of cordierite, inferred to be a metamorphosed facies of Santa Monica Slate (Hoots, 1931)

MAP SYMBOLS

, K	Mill DIMDOLD
	Contact or mapped horizon—Long-dashed where approximately located; short-dashed where inferred; dotted where concealed; queried where doubtful
20	Fault— Showing dip. Long-dashed where approximately located; short-dashed where inferred; dotted where concealed
	Thrust fault— Approximately located. Sawteeth on upper plate
	Detachment fault—Approximately located. Sawteeth on upper plate
	Potrero Canyon fault
4	Anticline- Approximately located. Showing crestline
	Syncline— Approximately located. Showing troughline
xx	Thin dike or sill
70 ——	Strike and dip of inclined beds
♦ 443	Exploratory well— Number refers to Table 1 below
* f175 * FH30	Fossil locality— F, macrofossil collection; f, micro- fossil collection; number refers to Table 2 below

Table 1--DATA ON EXPLORATORY WELLS, TOPANGA QUADRANGLE1

MAP	<u>T</u>	RW	SEC ²	OPERATOR NAME/NUMBER	ELEV- ATION (ft.)	TOTAL DEPTH (ft.)	BOT- TOM ³
495	1S	16	5	Monarch Sylvia Park 1		1823	M
496	1S	16	*36	Occidental Marquez EH 1		9721	Mu

Data from Yerkes and Showalter, 1990.

Asterisk (*) indicates projected section.

M, Miocene; u, upper.

Table 2--DATA ON FOSSIL LOCALITIES, TOPANGA QUADRANGLE

MAP NO.1	T	<u>RW</u>	SEC2	COLL- ECTOR ³	AGE ⁴	MAP <u>UNIT</u>	SOURCE
FC3067	1S	16	*25	CSULA	кі	Ktc?	I. P. Colburn, unpub.
FH17	1S	16	*10	USGS	Kl	Ktc?	Hoots, 1931
FH22	1N	16	33	USGS	Kl?	Ktc	(do.)
FH23	15	16	* 4	USGS	Kl	Ktc	(do.)
FH26	1S	16	* 4	USGS	P	TCC	(do.)
FH27	1S	16	* 4	USGS	P	TCC	(do.)
FH31	1S	16	*36	USGS	Pl/Q	Qp	(do.)
FH41	1s	16	*21	USGS ·	K?	Ktc?	(do.)
FH46	1S	16	*10	USGS	K?	Ktc?	(do.)
FH47	1S	16	*10	USGS	Kl?	Ktc?	(do.)
FH48	1S	16	*10	USGS	Kl	Ktc	(do.)
FH49	1S	16	*25	USGS	K1	Ktc	(do.)
FH54	1S	16	*21	USGS	Κl	Ktc	(do.)
FH55	1S	16	*35	USGS	Pl.	Tp	(do.)
FH59	1S	16	*22	USGS	P	Tcc?	(do.)
FH61	15	16	*35	USGS	Ql	Qsp	(do.)(Buried by af)
FH311	1S	16	*35	USGS	Pl./Q		(do.)
FM1	1S	16	*32	USGS	Ql	Qtm	McGill, 1989
FM2	1S	16	*28	USGS	Mem	Tttc	(do.) Yerkes & Campbell, 1980
FY300C	1S	16	31	USGS	Kl	Ktc	(do.)
FY300E	1S	16	31	USGS	Mm	Tttc	(do.)
F Y300G	1S	16	31	USGS	Mm	Tttc	(do.)
FY301B	15	17	24	USGS	P?	Tcc Ktc	(do.)
FY301C	1S	16	31	USGS	K	(3)	RFY, unpub.
FY301F	15	16	*15	USGS	P	Ktc?	(do.)
FY301G	1S	16	*15	USGS	Kl	TCC	(do.)
FY301H	1S	16	*15	USGS	P Kl	Ktc	Yerkes & Campbell, 1980
FY303G	1S	16	30	USGS USGS	Kl	Ktc	(do.)
FY304E	1S	16	32 *20	USGS	P	TCC	(do.)
FY305A	1S	16 16	19	USGS	Mem	Ttsp	(do.)
FY305B	1S	16	*20	USGS	Mem	Tttc	(do.)
FY307E	1S 1S	16	18	USGS	Mm	Tttc	(do.)
FY308F FY308G	1S	16	2	USGS	Mm	Ttcc	(do.)
	1S	17	13	USGS	Mm	Ttf	(do.)
FY310E FY311A	15	17	24	USGS	Mem	Ttsp	(do.)
FY341B	15	17	25	USGS	Em	Tcc?	(do.)
FY341C	15	16	*16	USGS	Eem	(?)	(do.)
FY361E	15	17	13	USGS	Mem	Tttc	(do.)
FY363C	1S	17	12	USGS	Mem	Tttc	(do.)
FY364C	1S	17	12	USGS	Mem	Tttc	(do.)
FY364E	15	17	12	USGS	Mem	Tttc	(do.)
FY311A FY341B FY341C FY361E FY363C FY364C FY364E FY367B FY367E	15	17	1	USGS	Mem	Tttc	(do.)
FY367E	15	17	2	USGS	Mem	Tttc	(do.)
	15	17	1	USGŚ	Mem	Tttc	(do.)
FY373B FY375E FY382F FY383E	15	17	12	USGS	Mem	Ttcc	(do.)
FY382F	15	16	*8	USGS	Mm	Tt.cc	(do.)
FY383E	15	16	5	USGS	Mnı	Ttf	(do.)
FY390C	1s	17	32	USGS	Mem	Ttcc	(do.)
FY397D	15	17	25	USGS	Ь5	Tcc	(do.)

Table 2--DATA ON FOSSIL LOCALITIES, TOPANGA QUADRANGLE

fM3 1S 16 *35 USGS Pl Tp McGill, 1989 fM4 1S 16 *3 USGS Pl Tp (do.)	
fM5 1S 16 *28 USGS Mml Tttc (do.) fM6 1S 16 *33 USGS Mm Tttc (do.) fM7 1S 16 *33 USGS Mm Tttc (do.) fM8 1S 16 *33 USGS Mml Tttc (do.) fM9 1S 16 *33 USGS Mm Tttc (do.)	
fM10 1S 16 *35 USGS Pl Tp (do.) fTC 1S 16 *16 LACM Pl-Ee Tcc Strathearn, Griffi Ingram, 1988	
fY363B 1S 17 12 USGS Mem Tttc Yerkes & Campbell, fY375D 1S 17 1 USGS Ml? Ttc (do.) fY393D 1S 16 6 USGS Mem Ttc (do.) fY390B 1S 16 5 USGS Mem Ttcc (do.) fY370C 1S 17 12 USGS Mm Ttcc (do.) fY375B 1S 16 7 USGS Ml? Ttc (do.) fY375C 1S 16 6 USGS Ml? Ttc (do.) fY376C 1S 16 1 USGS Ml? Tmo (do.) fY382C 1N 16 *8 USGS Mem Ttcc (do.) fY383D 1S 16 *5 USGS Mem Ttcc (do.)	1980

TF, macrofossil collection; f, microfossil collection.

2 asterisk (*) indicates projected section.

³CSULA, California State Univ., Los Angeles; LACM, Los Angeles County Museum of Natural History; USGS, U. S. Geol. Survey.

⁴E, Eocene; K, Cretaceous; M, Miocene; P, Paleocene; Pl., Pliocene; Q, Pleistocene; e, early; l, late; m, middle. Example: Mem, Miocene, early to middle.

References

- Alderson, J. M., 1988, New age assignments for the lower part of the Cretaceous Tuna Canyon Formation, Santa Monica Mountains, California (abs.): Geol. Soc. America Abstracts with Programs, vol. 20, no. 3, p. 139.
- Arnold, Ralph, 1907, New and characteristic species of fossil mollusks from the oil-bearing Tertiary formations of southern California: U. S. National Museum Proc., vol. 32, p. 525-546.
- Colburn, I. P., Jakobsen, C. M., and Novak, G. A., 1988, The Paleocene stratigraphy of the Santa Monica Mountains, Los Angeles County, California: in Filewicz, M. V., and Squires, R. L., eds., Paleogene Stratigraphy, West Coast of North America, Pac. Sec. Soc. Econ. Paleont. Mineral., West Coast Symp. vol. 58, p. 59-72.
- Durrell, C., 1954, Geology of the Santa Monica Mountains, Los Angeles and Ventura Counties: Calif. Div. Mines Bull. 170, map sheet 8.
- Fritsche, A. E., comp., 1973, Map of Cretaceous sedimentary exposures in the eastern Santa Monica Mountains, California in Cretaceous Stratigraphy of the Santa Monica Mountains and the Simi Hills: Soc. Econ. Paleont. Mineral., Pac. Sec. Guidebk., p. 3-13.
- Goudkoff, P. P., 1945, Stratigraphic relations of Upper Cretaceous in Great Valley of California: Amer. Assoc. Petrol. Geol. Bull. vol. 29, no. 7, p. 956-1007.
- Hoots, H. W., 1931, Geology of the eastern part of the Santa Monica Mountains, Los Angeles County, California: U. S. Geol. Survey Prof. Paper 165, p. 83-134, pl. 16 at scale 1:24,000.
- Imlay, R. W., 1963, Jurassic fossils from southern California: Jour.
 Paleont., vol. 37, no. 1, p. 97-107.
- Kleinpell, R. M., 1938, Miocene stratigraphy of California: Amer. Assoc. Petrol. Geol., Tulsa, OK., 450 p., 27 pls.
- McGill, J. T., 1989, Geologic maps of the Pacific Palisades area, Los Angeles, California: U. S. Geol. Survey Map I-1828, scale 1:4800.
- Morton, D. M., and Kennedy, M. P., 1989, A southern California digital 100,000-scale geologic map series: the Santa Ana quadrangle, the first release (abs.): Geol. Soc. America Abs. with Progs., vol. 21, no. 6, p. A107-A108.
- Strathearn, G. E., Griffis, K., and Ingram, B. L., 1988, Palynomorphs and benthic foraminifera from a portion of the Coal Canyon Formation (Paleocene-Eocene) in Filewicz, M. V., and Squires, R. L., eds., Paleogene Stratigraphy, West Coast of North America: Soc. Econ. Paleont. Mineral., Pac. Sec. West Coast Paleogene Symp., vol. 58, p. 73-82.

13.

- Weaver, C. E., chm., and others, 1944, Correlation of the marine Cenozoic formations of western North America: Geol. Soc. America Bull., vol. 55, no. 6, p. 569-598.
- Weber, F. H. Jr., and Frasse, J. A., 1984, Inventory of recent damaging slope failures, prehistoric landslides, and geologic relationships within the Topanga and Canoga Park quadrangles, Los Angeles County, California: Calif. Div. Mines and Geol. unpub. report to U. S. Geol. Survey, 32 p., 2 pls. at scale 1:24,000.
- Wentworth, C. M., and Fitzgibbon, T. T., 1991, Alacarte User Manual-(Ver. 1.0): U. S. Geol. Survey Open File Rpt. 91-587C, 267 p.
- Yerkes, R. F., and Campbell, R. H., 1980, Geologic map of the east-central Santa Monica Mountains, Los Angeles County, California: U. S. Geol. Survey Map I-1146, scale 1:24,000.
- Yerkes, R. F., and Showalter, P. K., 1990, Exploratory wells drilled in the Los Angeles, California 1:100,000 quadrangle: U. S. Geol. Survey Open File Rpt. 90-627, 1 map at scale 1:100,000.