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Introduction

Prediction of peak acceleration for engineering uses continues to be of interest, particularly for
the design of ordinary structures, for the purpose of producing probabilistic hazard maps, and for
assessing the ground-failure hazard (liquefaction, slumping) induced by earthquake shaking. The
most common procedures for predicting peak accelerations are based on equations derived from
regression analysis of large data sets or from stochastic modeling. Although both of these
techniques produce results of practical merit and wide application, assumptions that underlie both
methods may result in biased predictions. Regression results, for example, can be biased by the
choice of functional form. Different functional forms produce different predictions, particularly in
the very near and very far field, where the functional forms extrapolate into areas not well
controlled by data. Stochastic modeling of peak acceleration is commonly based on point-rupture
models, so that properties, which ought to depend on the finite extent of the source, are not
represented for these models.

Other more rigorous methods have been used in the prediction of peak accelerations. In some
of these studies, finite-fault models were subdivided into patches and the ground motion was
synthesized by summing Green's functions contributions from each patch (i.e., Joyner, Campbell,
and Harmsen, 1988; Saikia, 1994; Silva, Roblee, and Abrahamson, 1995; Somerville, Sen, and
Cohee, 1991). Our approach is similar to these studies with additional simplifications as noted
below. The fundamentally different aspect of this study is that we demonstrate that peak
acceleration scaling with magnitude can be produced by the characteristics of extreme values and
does not depend on the random addition of high-frequency energy alone.

The goal of this study was to evaluate the magnitude- and distance-dependent peak-acceleration
scaling using a physical model of the earthquake source. In an earlier study (Perkins, Rogers, and
Campbell, in prep.), using a data set without magnitude or distance preselection, we observed
smoothed peak accelerations that increased with magnitude in a manner that was distance
dependent and also featured near-field reduction in the magnitude dependence with increasing
magnitude. In the present study, we evaluate a fault ground-motion model that has the potential to
fit these smoothed data across broad distance and magnitude ranges. This model includes statistical
effects likely to affect the peak-acceleration mean in a large data set. The use of a finite fault with
statistical properties permitted us to determine the form of peak-acceleration attenuation curves
without a priori assumptions about their shape or scaling properties, such as commonly required in
fitting parametric functional forms with regression analysis.

Definitions and Conventions

First, we define terms used in the discussion. Magnitude scaling (or simply scaling) of peak
acceleration refers to the increase in peak acceleration with increasing magnitude at a given distance

(da,/dM). Peak-acceleration curves may have constant magnitude scaling ( da,/dM = constant),
such that the increase in peak acceleration for a unit increase in magnitude is independent of
magnitude. For many regression studies, da,/dM = constant is assumed for all distances.

Magnitude saturation refers to the case when da,/dM < 0. This effect could be constant at all

distances, or it too could be a function of distance. We refer to the latter case as distance-dependent
magnitude saturation.

Given a real peak acceleration sample, triggering bias is an increase of the mean peak
acceleration at a given distance and magnitude produced by the fact that lower acceleration values
for earthquakes having the same magnitude and distance are not recorded below some preset
instrument threshold (McLaughlin, 1991). Hence, at some distances only the upper part of the
peak-acceleration distribution may be observed. This effect biases the mean peak acceleration at
these distances to larger values in a manner that is dependent on both distance and magnitude. As
described below, we simulate this effect in our statistical model.

Most of our model results and actual data are plotted in terms of the variable “Z”, which is the
mean (for 100 realizations) of the log(ap) with a first-order geometric correction applied



(0.853log(closest distance to the fault) is added to the ap) Z is plotted at the closest distance to

the fault because the data with which we wish to compare is plotted in this manner. The size of this
correction is arbitrary, but the value chosen represents the first-order attenuation observed in the
data set. This transformation, produces curves in which differences in scaling show more clearly
than when simply plotting log(ap) vs. log(R) for which increases in geometric or anelastic
attenuation produce curves apparently closer together even if magnitude scaling is constant.

A Smoothed Peak-Acceleration Data Set

Our data are from 180 earthquakes with magnitudes ranging from about 3 to 8 and 1241
recordings world wide at source-station distances ranging from a few kilometers to about 400 km
(Campbell, written communication, 1990). These data have not been preselected on any basis. Our
purpose in fitting unpreselected data sets is that preselection of data to minimize fitting difficulties,
such as sampling bias, significantly reduces the data available in a data set that is already sparse.
Furthermore, data selection reduces the capacity to distinguish the effect of fitting alternative
function forms. That i is, either of two functional forms may fit the selected data equally well, even
though predictions into non-data portions of M-log R space may be very different.

In a previous paper (Perkins, Rogers, and Campbell, in prep.) we adopted an objective
smoothing procedure to reduce the dispersion in the data. The data were smoothed in several stages
that can essentially be described as follows. First, the peak acceleration values were binned in
narrow distance ranges to eliminate distance dependence. Next, a non-parametric least-squares
smoothing technique (locally-weighted least squares, (i.e., McLain, 1974)) was applied to the data
in a given bin with magnitude as the independent variable. This process produces smoothed peak
acceleration curves for each bin as a function of magnitude. We interpolate these curves to obtain
values at unit magnitudes and plot these values at the midpoint of the bin. Finally, the interpolated
values are connected for a given magnitude unit to form smoothed peak acceleration attenuation
curves as a function of distance with magnitude as a parameter, as shown in figure la.. This
representation of the data is perhaps the most complete view of the characteristics of peak-
acceleration attenuation yet presented because it is based on a very large data set that has not been
preselected with respect to magnitude or distance ranges. Our smoothed peak-acceleration curves
demonstrate: (1) magnitude scaling; (2) magnitude saturation for distance slices less than about 30
km; (3) magnitude- and distance-dependent bias produced by instrument triggering thresholds; (4)
an increase in scaling for M6-8 for distance slices beyond 30 km; and (5) a convergence of all the
curves beyond 80 km.

Note that these data have not been smoothed in a way that would remove the triggering bias.
The data as presented include triggering bias. When fitting the model to these data, we include a
term that produces bias in the model results. Our plan in this case would be to obtain a fit to the
data with a biased model, but to remove the bias term when predicting unbiased accelerations.

Perkins and others. (in prep.) attempted a subjective alternate fit to the data which was intended
to compensate triggering bias. This data fit was termed the paradigm fit because it utilized a
magnitude scaling "shape" adopted from the characteristics of the data itself in the close-in distance
slices (figure 1c). This shape was assumed to be representative of peak accelerations unaffected by
sampling bias at all distances and was fit to each distance-slice data set. Attenuation curves (figure
1b) were then obtained from these fitted curves at unit magnitude intervals as described above.
(Note that the paradigm shape assumed variable magnitude saturation in all distance slices). When
fitting the model in the present study to the paradigm data, the model bias is arbitrarily set 3 to 4
times lower than the bias determined to fit the original data. The purpose in attempting a fit to the
paradigm data set is to determine whether this interpretation reasonably represents something
physical or is a simplistic over interpretation. Ideally the same model parameters (except for bias)
would produce a good fit to both data sets.



A Geometric-Stochastic Fault Model and Extremal Peak-Acceleration
Characteristics

In this study, we evaluate peak-acceleration magnitude and distance scaling using a statistical
finite-fanlt earthquake source model. We term the peak-acceleration characteristics in this model
extremal scaling because the peak-acceleration dependence on distance and magnitude is strongly
influenced by extreme value statistics, as explained below. We explore the model in two steps.
First, we vary the parameters to understand their effects. Second, in a trial and error procedure, we
vary the model parameters to fit the smoothed data.

This model is not intended to be a complete representation of the earthquake source. Our intent
is only to explore the model's statistical effects without including other source effects, such as
isochrone pulse addition. (An isochrone is a locus on a fault with propagating rupture, such that
the radiated energy from all points along the locus arrives at a given station at the same time
(Bernard and Madariaga, 1984; i.e., Spudich and Frazer, 1984). Preliminary model studies with
combined isochrone-extremal effects, however, suggest that the model parameters required to fit
the data suppress isochrone-produced scaling relative to extremal-produced scaling. In this case,
short pulse durations are the reason for the weak isochrone-produced scaling (Rogers and Perkins,
1994). The isochrone model results will be described in a future paper.

Figure 2 shows the geometric aspects of the two-dimensional fault model. The fault rupture
consists of n rectangular patches, each producing one peak-acceleration value drawn from a log-
normal random distribution with constant mean and standard deviation. This acceleration is
attenuated to a randomly chosen station location on the locus of constant closest distance to the

fault (e.g., Campbell, 1985). Both anelastic (¢*) and geometric (1/r) attenuation are applied,
where r is the distance between the patch and the station (r, in figure 1). The fault has random dip,

as explained below. Note that, for dipping faults, the locus of constant closest distance is a more
complicated figure than that shown. Patch properties are chosen to be magnitude independent in
order to accommodate near-field magnitude saturation observed in peak accelerations for
magnitudes greater than 6 (Perkins, Rogers, and Campbell, in prep.). The question is whether
such a model can also produce scaling in the far field. This paper confirms that such scaling is, in
fact, possible. The patches can be viewed as zones of randomly variable stress drop, slip velocity,
rupture velocity, or fault strength as has been assumed in a number of past studies, (Andrews,
1980; Andrews, 1981; Boatwright, 1982; Boatwright and Quin, 1986; Frankel, 1991; Spudich and
Cranswick, 1984; Spudich and Frazer, 1984). The assumption that each patch radiates one peak
value is related to earlier work suggesting that most of the high-frequency energy is released from a
compact zone near the rupture front (Heaton, 1990; Madariaga, 1977). Because we are attempting
to explain a peak acceleration data set rather than the data from a single earthquake, we assume that
radiation pattern effects can be ignored. We further assume that variations in slip velocity or slip
direction on the fault plane and or changes in rupture velocity are statistically simulated by the
randomization of peak patch accelerations. As we are only interested in the scaling properties of
peak acceleration, we consider the peak-acceleration distribution mean to be an artificial construct
representing a peak particle acceleration at 1 km from the patch. These assumptions also allow us
to set the free surface and component partition effects to unity. Because of our simplfying
assumptions, we draw no conclusions about the actual particle-motion properties at the patch from
the model parameters required to fit the data. Although the assumptions of this model are
somewhat limiting, we suggest that it is more realistic than a point-source stochastic model or that
implied by regression models based on distance and magnitude alone.

At a particular site, at a given distance from the fault rupture, each of the patches contributes a
peak acceleration that has been attenuated according to the patch-to-site distance. The largest of all
the attenuated peak accelerations is adopted as the peak acceleration observed at the site. Neither
pulse width, pulse arrival times, nor rupture duration are included in the model. Because we do not
model destructive or constructive interference of the pulses, we implicitly assume that no pulses
arrive at exactly the same time. This assumption is only approximately valid and may lead to
underestimates of the peak values particularly at more distant sites where pulse widths may have



broadened due to anelastic attenuation. Nevertheless, the capacity of this model to replicate data
properties suggests that much of the basic physics governing peak-acceleration attenuation can be
represented by our simplifying assumptions.

How The Model Produces Peak-Acceleration Scaling

The basic method by which the model produces magnitude scaling of peak acceleration can be
explained by reference to extreme statistics theory. Suppose that all the patches are equidistant to
some site. In this case, the attenuation would be identical for the contribution of each patch, and the
peak acceleration at the site would be the extreme of n identical distributions. Figure 3
demonstrates the characteristics of extremes sampled from an underlying normal distribution. The
fundamental characteristics of our model demonstrate asymptotically the properties of a Gumbel
Type I distribution, such as that shown in this figure. Several underlying distributions, including
the normal distribution, generate extreme values that follow Gumbel Type I statistics (Bury, 1975).
Thus, our assumption that the logarithm of peak patch acceleration is drawn from the normal
distribution is not critical. As shown in this figure, as the number of samples, n, from the
underlying distribution increases, the distribution of the maximum values selected from the sample
shifts to a larger value and the distribution of the maxima narrows. Small earthquakes have few
patches and large earthquakes have many patches. Thus, we expect that large earthquakes provide
the opportunity to sample a larger peak-acceleration extreme. It is this basic premise that produces
extremal-related scaling in the model.

The effect is more complicated, however, than this simple illustration shows. First, the effect is
distance-dependent because the effective number of patches is controlled by attenuation. The
effective number of patches is a subjective term referring to the number of patches that have some
practical likelihood of contributing the largest peak acceleration at a given station. For stations near
the fault, accelerations arriving from relatively distant patches are attenuated more than those from
close patches and, thus, are less likely to be the highest at the station. For stations far from the
fault, however, especially those perpendicular to the fault trace ("flank” stations), all patches are at
about the same distance from the station. Thus, these distant stations have relatively greater
likelihood of sampling farther into the attenuated-acceleration distribution extremes compared to
close stations. Stations located off the fault ends ("endcap" stations), however, again “see”
primarily the closest patches, and the likelihood of observing increasing ground motions as a
function of increasing fault length is again low. Hence, complexity involving distance-dependent
and aspect-dependent scaling comes into play. These factors and the narrowing of the extreme
distributions as the number of patches increases control peak-acceleration magnitude- and distance-
dependent scaling, including magnitude saturation.

The distribution of patch-to-station distance is an indicator of the complexity of the model
process. Figure 4 demonstrates the characteristics of the distribution of patch-to-station distances
for two values of closest distance to the fault (2.5 and 250 km) and two station azimuths (endcap
and flank). The first and second panels show, for instance, that the patch distances for the close
station positions vary over a wide range in log R, and the distributions are skewed to the distant
side of their range. Only the closest patches have significant likelihood of contributing the largest
peak acceleration; here, we expect little magnitude dependent scaling. The patch distances for the
distant stations, however, have a narrow range in log R and tend to be skewed to the close end of
their range. In this case, most patches have the opportunity to contribute the largest peak
acceleration; here, we expect significant magnitude dependent scaling. These properties lead to
complex changes in the number of effective patches as a function of azimuth and distance and,
hence, complexity in the extreme sample distributions, as described above.

Other Model Properties

Some subtle features of the station sampling process are also included in the model, although
these features do not strongly affect the model results. Our assumption is that the data set we wish
to model has stations that are randomly uniformly distributed on the earth’s surface around the
fault. We require these stations to be located at the same constant-closest distance to the finite fault.



For a vertical fault, this assumption leads to a constant mean station density on any section of the
locus of closest distance; whereas, for a dipping fault, the mean station density at downdip locus
sections is greater than for updip locus sections. Thus, uniform-area station sampling for a dipping
fault leads to variable station density on a locus of constant-closest distance as a function of
azimuth from the fault. The details of this sampling process are not significant enough to include
here.

The model includes other parameters to simulate effects that we believe are present in the data
(Perkins, Rogers, and Campbell, in prep.). For example, we include a detection threshold limit
below which a station does not trigger. The detection threshold produces a sampling-bias effect
that is simulated in the model by recomputing the station acceleration until a value above the
threshold is obtained. The number of times that resampling is permitted before assuming no value
at that distance is also a model parameter.

We also include an upper limit on the allowable patch peak acceleration. This limit simulates the
strength-of-rock limit on peak acceleration that has been suggested by others (i.e., Brune, 1970).
In a later section of this paper, we evaluate the effect of assuming that the patch peak-acceleration
mean varies with depth to simulate the effects of varying crustal strength versus depth. For all
other sections of this paper, we assume that the distribution mean is a constant and independent of
depth. A flow chart describing the basic properties of the calculation procedure is shown in
Appendix A.

As noted earlier, destructive or constructive interference of the pulses is not included. The
model assumptions implicitly require that either no pulses arrive at exactly the same time or that, if
pulses do arrive at the same time, a single patch produces the peak acceleration observed. The
contributions along an isochrone are differentially attenuated to a given site because different
positions along an isochrone are at different distances from the station. For stations close to the
fault, only sections of the isochrone closest to the station may contribute significantly. This fact is a
partial justification of our assumptions.

The assumption of minimal interference is also apparently supported by the work of Spudich
and Frazer (1984) and Spudich and Cranswick (1984). In figure 11 of Spudich and Fraser, for
example, the largest peak acceleration originates from the region between the 1.95 and 2.0
isochrones, which can easily be visualized as a single patch. Figures 21 and 22 in Spudich and
Cranswick show a similar result, although the origin of the largest peak on the north-south
component in their figure 22 may originate from one or two patches.

Next, we infer the results that might be expected using our basic model modified to
accommodate addition of patches along an isochrone. Again, we assume that each patch generates
one log-peak value drawn from identical log-normal distributions. In this model, we assume that
the largest recorded peak is the sum of n peak values, each of which has been attenuated by its
distance to the station. In fact, in this model, all recorded peaks are the sum of one or more
attenuated patch values for a succession of isochrones. The largest peak, then, is still a sample
drawn from an extreme value distribution because the sum of n log-normal distributions is another
log-normal distribution with modified mean and standard deviation. Our simplifying assumptions
may be partially justified on this basis.

Parameter Study

In this parameter study, the following are variable: patch size, magnitude, site-to-fault distance,
mean and standard deviation of the patch log-peak acceleration, site-threshold peak acceleration,
resampling limit, and the patch peak-acceleration maximum. For a given set of parameters, we first
fix patch size, select a magnitude from a set of standard integer magnitudes, obtain a fault length
from a fault-length vs. magnitude distribution, obtain a fault width, and tile the fault rupture with
patches. We then choose one of a given set of standard distances. A station is randomly selected
from the locus of sites having that distance as constant closest distance to the rupture. For each
patch, a ground motion is obtained from the patch distribution and attenuated to the station. The
largest attenuated peak acceleration at the station from all patches is the selected peak acceleration
for this trial. If no value above the threshold is obtained, we resample as many as 200 times
(nominally, unless stated below). This process is repeated for 100 random station locations. From



these 100 trials (or fewer if resampling produces no values above the threshold), we compute the
average of the log(maximum peak-acceleration values) of each trial. This process mimics the
way in which peak-acceleration data are obtained. The Z-value computed from this average is the
value that is plotted for the given magnitude and distance. This process is repeated for the
remaining standard distances and magnitudes to obtain a suite of Z-value curves.

The model parameters are set as follows for the parameter study. For crustal earthquakes, we
assume the following values for fault length: M 4-1.3 km; M 5-3.6 km; M 6-10 km; M 7-50 km;
M 8-190 km. Fault width equals fault length for M 4-6, and the fault mid-point is fixed at 7 km.
Hence, all magnitude 4 events, for example, have a depth extent given by 7 + width X sin(dip)/2.
This assumption leads to ruptures for M<6 that are never closer to the surface than 2 km (for 90
degree dip). The fault width for M 7 is determined both by the dip and depth to the brittle-ductile
boundary. We assume this boundary is at 15 km depth for crustal intraplate earthquakes. The dip is
assumed to vary randomly between 60 and 90 degrees. For M 8 earthquakes, we assume a fixed
90 degree dip and 15 km width.

For subduction thrust earthquakes, we assume a fault length of 250 km for M 8, a brittle-
ductile boundary at 25 km, and fault dip varying randomly between 10 and 20 degrees. Only
stations off the downdip fault flanks are used for simulated subduction-zone earthquakes because
other potential station locations are assumed to lie offshore. Smaller subduction earthquakes are not
considered because we only wish to approximately bound the data. Larger subduction thrust
earthquakes are not contained in the data set.

EFFECTS OF THE PATCH PEAK-ACCELERATION DISTRIBUTION

Inasmuch as the patch peak-acceleration distribution is the core of this simulation, we expect
that the parameters of this distribution will produce first-order effects. For example, increasing or
decreasing the distribution mean should increase or decrease the levels of the Z-curves, although
not their relative shapes. When upper or lower limits are included, however, the effect of the mean
is more complex, as explained below. The effect of the standard deviation (sigma) is harder to
anticipate, but it should have an effect on the level of the curves because, as standard deviation
increases, the upper fractiles controlling the peak ground motions correspond to larger ground
motions. .

Figure 5 shows the effect of varying the standard deviation for a constant mean log(peak
acceleration) equal to -0.3 (corresponding to 0.5 g). This figure illustrates how varying the
standard deviation affects the relative frequency with which 2.0 g is exceeded. For example, a
distribution with standard deviation, sigma=0.3, has a probability, p=0.02, of generating a value
greater than 2 g, but, for a distribution with sigma=0.6, p=0.16. (The probability of generating a 2
g peak, of course, will also vary if the distribution mean is changed.)

Figure 6 shows a set of Z-curves for several values of patch standard deviation with the other
parameter values fixed, as shown. As sigma increases, the level of the curves increases as
anticipated, and the scaling of peak acceleration with magnitude is more pronounced. Note also that
the degree of peak-acceleration saturation with magnitude for a given distance decreases with
increasing sigma. The saturation is also distance dependent, that is, saturation is strong at close
distances and weak at large distances.

EFFECTS OF PATCH SIZE

Figure 7 illustrates the effects of patch size on the peak-acceleration attenuation. For a given
fault size, patch size controls the number of effective patches contributing to the sampling of
extremes. Decreasing the patch size increases the number of effective patches for any fixed fault
size (given magnitude) and, hence, increases the level of the curves. Level change, without large
changes in scaling or scaling saturation, is the strongest effect of patch size. As patch size
decreases, the separation of the curves for the smallest events first increases and then decreases.
This result follows because, for low-magnitude events, small patch sizes (e.g., patch size=0.5
km) increase the rate of exceedances for small earthquakes relatively faster than that of the larger



events. Another scaling effect is also observed. At large patch sizes, as the patch size approaches

the fault size for small earthquakes (e.g., patch size=4 km), small events have the same number of
patches and, thus, the same scaling.

EFFECTS OF ACCELEROMETER-TRIGGERING THRESHOLD

For actual strong-motion data sets, as ground-motion levels decline with either declining
magnitude or increasing distance, there is a decrease in the likelihood that a strong-motion
instrument will trigger. Or, even if triggered, the ground motion may be too low to be considered
worthwhile digitizing or reporting. Accordingly, there is a tendency for data to fail to express the
full range of ground-motion variability for low magnitudes at a given distance or for large distances
at any given magnitude. Thus, at the bottom and right hand edges of real-data Z-curves, bias
should be present in the data means. The level of ground motion at which this bias is expected
could vary, but it is near the instrument triggering level. This level varies among different
accelerographs but is commonly in the range 0.01-0.05 g. The lack of values below some level
will produce biased overestimates of the mean value beginning at larger distances for larger
magnitudes.

Site effects complicate the bias modeling because rock sites may trigger less frequently than
soil sites, and hence data near the bias regions are likely to be over represented by soil sites.
Inasmuch as soil-site amplification is itself distance dependent (Rogers, Perkins, and others,
1991), the use of a simple site ground-motion threshold to model this bias is not entirely correct.

Our model results (Figure 8a-c) show the sampling bias effect for different triggering
thresholds. As the triggering threshold increases from 0.01 to 0.03 g, the mean values increase at
increasing distances as magnitude increases relative to the unbiased case, as expected. This effect is
only apparent for M=4-6 at a threshold of 0.01 g, but affects all magnitudes at the 0.05 g threshold
at the largest distances (not shown). Note that the strength of this effect is also dependent on the
values of the patch distribution mean and sigma. A lower mean increases the threshold effect
because more values are below the threshold. A lower sigma, on the other hand, decreases the
threshold effect because fewer values are below the threshold when the distribution is narrower.

The effect of the lower-limit threshold is also influenced by the number of allowed resampling
attempts required to exceed the threshold. Though we do not show these results, the number of
resamples permitted produces several effects. First, as the number of resamples is reduced, the
level of the curves is reduced because fewer extremes are sampled. Second, the variance is
increased because the mean value plotted may be computed for fewer than 100 stations. That is,
some station distances produce only a few exceedances, and some produce none for the given set
of parameters. If no exceedances are observed, no value is plotted at that distance. Use of a
relatively low number of retrials may produce a result that mimics the actual availability of data at
the affected magnitude-distance pairs.

EFFECTS OF PATCH UPPER-LIMIT GROUND MOTION

Setting a finite limit for the ground motion that can be sampled from the patch ground-motion
distribution may be justified on the basis of a rock-strength limit. In the past, peak-acceleration
limits near 2 g have been suggested (i.e., Brune, 1970) on this basis. Such a limit should have an
effect both on level and scaling of our Z-curves.

Figure 8d-f shows the effect of limiting the maximum peak acceleration at the patches. The plot
with no limit has log(mean)=0.0 and log(standard deviation)=0.3. The values with no upper limit
give magnitude scaling and Z-curve levels comparable to those observed in the data. Setting the
truncation value at 3 g, which is near that suggested in literature, severely reduces both the
magnitude scaling and curve levels relative to that of the no-upper-bound case (and, hence, the
observations). Although, this result is dependent on the assumed mean and sigma, a higher mean
would contract the available range of ground motions to be sampled and, thus, further reduce the
magnitude scaling. Ordinarily we would expect a higher value of sigma to expand the scaling and
increase the level. In the presence of a 3-g near-field limit, however, the M 6-8 curves are almost
fixed in level, the M 5 curve moves slightly higher, and the M 4 curve exhibits lower values



because the number of samples below the mean increases faster than those above the mean. A 3-g
upper limit decreases the scaling to a degree that is less than that in the data for M 6-8. These
results suggest that the upper limit for peak acceleration is higher than previously supposed. This
conclusion, however, must be qualified by considering the likely presence of site effects in the
data, the treatment of peak-acceleration characteristics in the near-field, and other limitations noted
above. We consider these factors in the data fitting and discussion sections below.

STRENGTH OF CRUST VS. DEPTH PARAMETER

Another factor that may control peak-acceleration attenuation is crustal shear strength. For the
simulation we assume that the peak acceleration that is generated by a patch at a given depth is
proportional to the shear strength of the crust at that depth. This property can be modeled by
multiplying the patch peak acceleration by the relative shear strength at the patch depth. The relative
shear strength is not known exactly, but several models have been suggested and tested against
heat flow measurements. One such model (Turcotte, Tag, and Cooper, 1980) is:

T/1y=2z/d, z2d,
)

=e(1—(z/dl)" Z>d1 (1
Typical values of d; and n are 14.2 and 1.38, respectively. We expect that this modification should
reduce the effective number of patches represented in the extremes and, hence, reduce both curve
levels and magnitude scaling. Note that in applying this effect, the patch upper limit, when one is
included (see discussion section), is only produced at depth dj.

Figure 9a shows this function and its effect on the peak-acceleration characteristics and can be
directly compared with the no-lower limit panel in figure 8a. Inclusion of the strength function
generally reduces the level of the curves, particularly at short distances. This feature results
because, at short distances, where the shallow parts of crustal faults tend to be closest to the
stations, the strength is low. At large distances, the deeper parts of subduction faults tend to be
closest to the stations, but strength is also low. Therefore, for this model of crustal strength,
subduction-zone faults tend to produce acceleration-attenuation curves that lie below the crustal
M=38 curves over a significant range in distance. Stated differently, the part of the fault that is
producing the largest peak acceleration is farther away than the closest distance to the fault for most
station locations, yet the attenuation distance is the patch-station distance, and the plotting position
is the closest distance to the fault. This combination of circumstances leads to lower values for
most distances.

Our principal inference from this experiment, however, is that, if crustal strength produces a
depth-dependent stress drop, the statistical properties of peak accelerations are significantly
influenced. Is such an influence seen in the data? We will address this issue in the discussion
section.

Modifying the Model for Data Fitting

Next, we compare model curves with two smoothed data representations determined in the
previous study (Perkins, Rogers, and Campbell, in prep.) and described above. For the
comparison between model and data, we modify the model to make it more realistic. For example,
rupture depths are randomized according to the following rules. For M 4-5 earthquake rupture
depths are randomized so that faults lie randomly between the surface and 10 km. For earthquakes
with M26, rupture depths are randomized so that faults lie randomly between the surface and the
brittle-ductile boundary (assumed to be 15 km for crustal events and 20 km for subduction events).
M 8-crustal earthquakes with fixed vertical dip rupture the width of the seismogenic zone, and,
therefore, for this case, depths are not adjusted. As before, dip is uniformly randomly distributed
in the range 60<dip<90 degrees for crustal faults and in the range 10<dip<20 degrees for
subduction faults.

We also randomized the fault length and width based on observed relationships for rupture area
versus magnitude and aspect ratio versus magnitude. Fault length and width were obtained from



empirical relationships for the rupture area and subsurface length (Wells and Coppersmith, 1994).
For a given magnitude in the range M 4-7, we assumed that the logarithm of the area

log(area) = -3.49+0.91M £0.24 (2)
is normally distributed with mean and standard deviation given by this equation. The fault length
and width were computed from:

fault length = . fault arealaspect ratio

Sfault width = fault length X aspect ratio
For M 4-7 earthquakes, the maximum width of faulting, max.width=15 km/sin(dip). If the

computed fault width in (3) is greater than max. width, the fault width was set equal to the max.
width, and the fault length = fault area/max. width. For M 8-crustal earthquakes, this procedure
occasionally gave lengths that were larger than values reported in the literature, thus, for these
earthquakes, we assumed dip = 90 degrees, max. width of the fault = 15 km, and obtain the fault
length from

log(fault length) = —2.44 + 0.59M 1+ 0.16 (4)

(Wells and Coppersmith, 1994) . For M 8-subduction thrust earthquakes, we compiled fault areas
for events ranging between M 7.8 and M 8.2 because Wells and Coppersmith’s relation is not valid
for subduction zone thrust faults. We regressed log(area[km?]) against M to obtain:

log(area) = -6.11+1.27TM £ 0.24 (5)
As before, equation (3) was used to obtain the fault dimensions.

Upper and lower limits are also placed on these distributions as shown in Table 1. These limits
are approximately equal to the observed limits. Aspect ratios (fault width/fault length) reported in
the literature vary widely, especially for subduction thrust earthquakes. The aspect ratios we
assume are shown in Table 1. Magnitude 8-crustal ruptures have variable aspect ratios that range
between 0.04 and 0.09, values established by the random fault length and fixed maximum width.
For M 8-subduction ruptures we assume an aspect ratio=0.75. Other values of the aspect ratios
could have been used without affecting the results substantially, but the values we assume are
based on earlier observations (Astiz, Kanamori, and Eissler, 1987; Kasahara, 1981; Scholz, 1982;
Thatcher, 1989; Wyss, 1979). The effect of aspect ratio is shown in figure 10, which demonstrates
that variation of the aspect ratio by more than an order of magnitude commonly produces less than
a 0.1 unit variation in Z (i.e., in log Ap).

Table 1. Inclusive limits on fault rupture areas

- Area[km?]
Magnitude Lower Limit Upper Limit Aspect Ratio
4 0.5 9 1
5 3 30 1
6 30 250 0.65
7 300 1650 0.33
8-crustal 170 [length: km] 400 [length: km] variable
8-subduction 6900 40000 . 0.75

The distributions of fault length and width resulting from these assumptions are shown in
figure 11. The results of 100 trials are plotted for each magnitude level. As expected, for M 4-6,
the distributions for fault width are identical to those for fault length because the aspect ratio
assumed is 1 and because the faults are never large enough to exceed the maximum downdip
width. The area values for M 4 are an extrapolation of the relationship of Wells and Coppersmith,
and our length and width values are somewhat larger than reported in seismological determinations
(i.e., Dysart, Snoke, and Sacks, 1988; Fletcher, Boatwright, and others, 1984; Haar, Fletcher,
and Mueller, 1984), which tend to be less than 1 km radius. This discrepancy, however, is not of
significance because our model produces only one patch for an M 4 event when the patch size is 3
km (the value used for most <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>