
Geophysical Database of the East Coast of the United States:
Southern Atlantic Margin - Stratigraphy and Velocity

from Multichannel Seismic Profiles

'T

Florida-Hotteras Slope

. Florido-Hatteras Shelf 
Little Bahama Bank

Blake Plateau Blake Outer Ridge
Carolina Slope

KM

UE:30

1000 KM

Carolina Rise

200 
Blake Escarpment

400 
Blake Spur

D.R. Hutchinson, C.W. Poag, and P. Popenoe 
U.S. Geological Survey 
Woods Hole, MA 02543

U.S. Geological Survey 
Open File Report 95-27



Geophysical Database of the East Coast of the United States:
Southern Atlantic Margin - Stratigraphy and Velocity

from Multichannel Seismic Profiles

by

D.R. Hutchinson, C.W. Poag, and P. Popenoe 
U.S. Geological Survey 
Woods Hole, MA 02543

U.S. Geological Survey 
Open File Report 95-27

1995

This report is preliminary and has not been reviewed for conformity with U.S. Geological 
Survey editorial standards and nomenclature. Use of trade names is for the purposes of 
identification only and does not contitute endorsement by the U.S. Geological Survey.



TABLE OF CONTENTS

Introduction ................................................................................................................. 1
Acknowledgements ..................................................................................................... 1
Data Overview ............................................................................................................ 1
Geologic Framework .................................................................................................. 4

Morphology ..................................................................................................... 4
Tectonic Setting .............................................................................................. 4
Stratigraphic Overview ................................................................................... 8

Stratigraphic Nomenclature ........................................................................................ 12
Travel Time Data and Uncertainties .......................................................................... 14

Multichannel Acquisition ............................................................................... 14
Multichannel Processing ................................................................................. 17
Stratigraphic Interpretation ............................................................................. 22

Velocity Data and Uncertainties ................................................................................ 32
Velocity Scans ................................................................................................ 33
Independent Velocity Estimates ..................................................................... 42
Velocity Smoothing ........................................................................................ 46

Development of Digital Profile Data ......................................................................... 48
Overview ......................................................................................................... 48
Digital Seismic Stratigraphy ........................................................................... 50
Digital Velocity ............................................................................................... 51
Depth Conversions .......................................................................................... 55
Final Format .................................................................................................... 55

Discussion ................................................................................................................... 55
Summary ..................................................................................................................... 58

References Cited ......................................................................................................... 59

APPENDICES (Note these are a separate document on 11 in. x 17 in. paper)
Appendix 1 Travel Time and Depth Profiles .......................................................... 67
Appendix 2 Initial and Final RMS Velocity Plots .................................................. 96
Appendix 3 Initial and Final Interval Velocity Plots .............................................. 126
Appendix 4 Independent Refraction Velocities ....................................................... 156



LIST OF TABLES 
Table 1 Multichannel Line Segments ...................................................................... 6
Table 2 Seismic Stratigraphy .................................................................................... 13
Table 3 Description of Information about Multichannel Profiles ........................... 16
Table 4 Locations of Well and Other Samples ....................................................... 31

LIST OF FIGURES
Figure 1A: Location of Multichannel Profiles ....................................................... 2
Figure IB: Physiography of the U.S. Continental Margin ................................ 3
Figure 2: Simplified Tectonic Map of the Study Area ........................................... 5
Figure 3: Representative Multichannel Seismic Profile Line 32 ..................... 9
Figure 4: Representative Multichannel Seismic Profile Line TD-4 ..................... 11
Figure 5: Hypothetical Stratigraphy with Terminology and Labelling Conventions 15
Figure 6A: MCS Profiles at crossing of Lines 32 and TD-1 ................................ 19
Figure 6B: MCS Profiles at crossing of Lines BT-8 and FC-7 ................................ 20
Figure 6C: MCS Profiles at crossing of Lines TD-1 and FC-7 ................................ 21
Figure 7: Map showing Location of Zone of Multichannel Mute ..................... 23
Figure 8: Map showing Location of Profiles and Sample Information ..................... 25
Figure 9A: Stratigraphic tie from COST GE-1 to Line TD-5 ................................ 27
Figure 9B: Stratigraphic tie from DSDP 390 to TD-5 ........................................... 28
Figure 9C: Stratigraphic tie from DSDP 391 to TD-3 ........................................... 29
Figure 9D: Stratigraphic tie from Great Isaac 1 to TD-1 ................................ 30
Figure 10: Poag (1991) and Dillon and Popenoe (1988) Stratigraphy on TD-3 33
Figure 11 A: Example of Velocity Scan from Line 32 ........................................... 35
Figure 11B: Example of Velocity Scan from Line IPOD ................................ 36
Figure 11C: Example of Velocity Scan from Line BT-1 ................................ 37
Figure 11D: Example of Velocity Scan from Line TD-4 ................................ 38
Figure HE: Example of Velocity Scan from Line FC-3 ................................ 39
Figure 12: Plots of Initial RMS Velocity for Lines 32 and TD-4 ..................... 41
Figure 13: Map showing Locations of Profiles and Independent Refraction Stations 43
Figure 14: Compilation of Velocities for COST GE-1 well and DSDP 391 ......... 45
Figure 15: Compilation of Velocities from Recent Refraction Experiments ......... 47
Figure 16: Flow Chart of Digitizing Strategy ....................................................... 49
Figure 17: Examples of Stratigraphic and Velocity Formats ................................ 52
Figure 18: Initial and Smoothed Interval Velocities for Line 32 ..................... 54
Figure 19: Initial and Smoothed Depth Sections for Line TD-4 ..................... 56

11



INTRODUCTION

During the middle and late 1970's, the U.S. Geological Survey acquired approximately 
25,000 km of then state-of-the-art marine multichannel seismic-reflection data along the U.S. 
Atlantic Continental Margin, primarily to address hydrocarbon resource potential and 
stratigraphic history (e.g., Sheridan et al., 1988). Despite the many advances in our 
understanding of the geologic evolution of the margin (e.g., Klitgord et al., 1988; Poag, 1991), 
most of the interpretations of the data were based on stratigraphic and structural interpretations 
of individual analog records. The derivative information contained in the original digital 
seismic field data remained archived in rather inaccessible 9-track tapes. In 1990, the Naval 
Oceanographic Office and the U.S. Geological Survey agreed to develop a digital data base for 
the U.S. Atlantic Continental Margin that would be built upon the stratigraphic interpretations 
of the seismic reflection data and the velocity information derived from processing the 
multichannel data. The goal of compiling the data base was to assign acoustic properties to 
the continental margin postrift sediments in an internally consistent, geologically meaningful, 
regionally extensive, digital form. The acoustic properties of interest include layer thickness, 
depth, compressional- and shear-wave velocity, compressional and shear-wave attenuation, 
density, and lithology.

This report describes the first part of developing the data base for the continental margin 
between Florida and North Carolina: stratigraphic interpretation and velocity analysis of the 
multichannel seismic-reflection data. The stratigraphic and velocity information form the basic 
observational inputs to the data base and both are based on the multichannel seismic-reflection 
data (Figure 1A). A knowledge of the resolution, uncertainty, calibration, and quality control 
of these data is therefore essential to understanding the validity and significance of the rest of 
the data base. A second report (Hutchinson et al., 1996) describes the methods of spatial 
gridding of the data, calculation of secondary acoustic properties (e.g., shear-wave parameters), 
and format of the final data base.
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DATA OVERVIEW

Approximately 7,600 km of 48-fold multichannel seismic-reflection profiles were used 
in the data compilation (Figure 1A, Plate 1). These lines were collected in 1974, 1975, and 
1978, by private companies under contract to, or in cooperation with, the U.S. Geological 
Survey. The profiles are designated by 18 separate line numbers, but because many of the
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Figure 1 : (A) Location of multichannel seismic profiles used in this study. Shot point 
locations and line number designations are shown in Plate I. (B) Physiography of the U.S. 
continental margin between Cape Hatter as (right) and the Bahamas (left). In the 
physiographic diagram, the coast line for the U.S. is shown, but not that for the Bahamas.



lines were shot in segments, the number of discreet profiles used is 42 (Table 1). The original 
seismic profiles and velocity scans supplied by the contractor or collaborator were used for the 
interpretation of stratigraphy and root-mean-square (RMS) velocity, except for lines 12, 13, 
TD-6, and TD-2 north of the Blake Outer Ridge. Lines 12 and 13 at the extreme northern end 
of the study area were reprocessed and redisplayed by USGS (Wise and Oliver, 1988). Line 
TD-6 and the northern half of line TD-2 were originally processed by USGS in 1979.

All of the digital data are presented in graphical form in the appendices that accompany 
this report. All profiles are plotted at the same scales to facilitate comparison; each segment 
of a line is plotted separately. Time and depth sections are shown in Appendix 1. Initial and 
final RMS velocity plots are shown in Appendix 2. Initial and final interval velocity plots are 
shown in Appendix 3. Independent refraction velocities compared to the multichannel interval 
velocities are illustrated in Appendix 4.

GEOLOGIC FRAMEWORK
Morphology

The physiography of the U.S. Continental Margin south of Cape Hatteras can be divided 
along the offshore extension of the Georgia/South Carolina boundary (Figure IB). Off the 
Carolinas, the margin consists of a typical shelf-slope-rise configuration. Off Florida and 
Georgia, the slope is interrupted by a large plateau at about 800-m depth, the Blake Plateau, 
which is approximately 350 x 800 km in extent. The Blake Plateau abruptly terminates along 
the steep Blake Escarpment, which extends north-south between the Bahamas and the Blake 
Spur. The Blake Escarpment is the steepest morphologic feature along the U.S. East Coast. 
Hatteras Abyssal Plain forms the deep sea floor seaward of both the Carolina and Blake 
Plateau regions. The otherwise regularly spaced isobaths of the Carolina continental margin 
are modified by the Blake Outer Ridge sedimentary drift (Markl et al., 1970; Markl and Bryan, 
1983; Mountain and Tucholke, 1985) and the Charleston Bump structure (Pinet et al., 1981).

Tectonic Setting
Two large sedimentary basins underlie the U.S. continental margin south of Cape 

Hatteras, the Carolina trough and the Blake Plateau basin (Figure 2); each marks a distinct 
geological province. These two large basins were formed as the continental margin evolved 
following the separation of North America and Africa in Middle Jurassic time. The Carolina 
platform and Florida platform form the landward sides of these basins, respectively.

The Carolina trough and the Blake Plateau basin have the greatest contrasts of any of 
the large offshore Atlantic basins (Dillon and Popenoe, 1988) and these differences can be seen

Figure 2: Simplified tectonic map of the continental margin south of Cape Hatteras. 
Abbreviations are H - hinge zone; BMA - Brunswick magnetic anomaly; ECMA - East Coast 
Magnetic Anomaly; BSMA - Blake Spur magnetic anomaly. The map shows the positions of 
synrift basins on land, major fracture zones, major magnetic anomalies, the hinge zone, the 
positions of the deeply subsided offshore sedimentary basins (Carolina trough and Blake 
Plateau), large faults, and bathymetry in meters (dotted lines). Modified from Klitgord et al. 
(1988).
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Table 1: Detailed Information about all Multichannel Seismic Profile Segments.

Line No.

IPOD

Line 12AB

Line 13H

Line 31

Line 32

Line 30

FC-1

FC-2

FC-3A

FC-3C

FC-4

FC-5

FC-6

FC-7

FC-8A

FC-8C

FC-9

FC-10

BT-1

BT-4

BT-8

First 
SP

101

100

100

101

559

640

1

4

1

129

50

29

2

36

2

1

20

1

1

1181

1

Last 
SP

1120

1000

1000

3870

6213

3060

8640

2695

2499

6170

2853

2934

2453

5499

1867

4293

1992

8833

7810

5393

4125

Total 
Shots

1019

900

900

2699

5654

2420

5599

2691

2498

6041

2803

2905

2451

5463

1865

4292

1172

8832

7809

4793

4124

Total 
km

51.0

45.0

45.0

135.0

282.7

121.0

280.0

135.0

124.9

302.0

140.2

145.3

122.5

273.1

93.2

214.6

58.6

441.6

390.4

239.7

206.2

Firing 
interval 

(m)

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

Near 
offset 
(m)

348

348

348

359

425

540

362

362

362

362

362

304

362

362

362

355

355

355

306

306

306

Far 
offset 
(m)

3873

3848

3848

3874

3970

4090

2712

2712

2712

2712

2712

2654

2712

2712

2712

2705

2705

2705

3906

3906

3906

Streamer 
Length 

(m)

3600

3600

3600

3600

3600

3600

2400

2400

2400

2400

2400

2400

2400

2400

2400

2400

2400

2400

3600

3600

3600

No. 
Chan.

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

Velocity 
source

Scans/TV box

Scans/TV box

Scans/TV box

Scans/TV box

Scans/TV box

Scans/TV box

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans/TV Box

Scans/TV box

DISCO

Source 
Array 

(cu. in.)

1700

1700

1700

2000

2000

2000

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

Flexichoc

1310

1310

1310



TD-l-BC

TD-l-CD

TD-l-DE

TD-1-EE'a

TD-1-EE'b

TD-1-E'F

TD-2-GH

TD-2-HI

TD-2-IJ

TD-2-JK

TD-2-KK'

TD-2-K'K"

TD-3-LM

TD-3-MN

TD-3-NO

TD-4

TD-5-ST

TD-5-TU

TD-5-UV

TD-5-VW

TD-6

1001

1001

1011

1001

1001

1001

972

981

971

967

940

940

1081

1001

1001

1161

1901

961

981

2180

1001

3890

5961

6111

1201

4410

5281

6641

4981

3111

4340

1554

2096

7041

4781

1331

11486

2811

6631

2350

3281

6250

2889

5960

5000

200

3409

4280

5669

4000

2140

3373

614

1156

5960

3780

330

10325

910

5670

1369

1101

5249

144.5

298.0

250.0

20.0

170.5

214.0

283.5

200.0

107.0

168.8

30.7

57.8

298.0

189.0

16.5

516.3

91.0

283.5

68.5

110.1

262.5

50

50

50

100

50

50

50

50

50

50

50

50

50

50

50

50

100

50

50

100

50

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3825

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

3600

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

Scans

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160

2160



by comparing the representative seismic profiles across each basin (Figures 3 and 4): the 
Carolina trough is the narrowest and most linear of the basins (Figure 3); the Blake Plateau is 
the widest and most equidimensional (Figure 4). The Carolina trough is underlain by narrow 
rift basins and extensive salt deposits (Hutchinson et al., 1983; Dillon et al., 1983) whereas 
rifting in the Blake Plateau occurred over a much wider zone and no salt deposits are known 
(Dillon and Popenoe, 1988). The Carolina trough is dominated by a terrigenous-clastic 
depositional regime; the Blake Plateau is transitional into a carbonate-platform depositional 
regime best developed in the Bahamas to the south. The continent-ocean transition is well 
marked by a prominent magnetic anomaly in the Carolina trough, the East Coast Magnetic 
Anomaly, (see review by Holbrook and Keleman, 1993). No similar geophysical marker exists 
along the Blake Plateau basin, and the continent-ocean transition is presumed to underlie the 
Blake Escarpment (e.g., Dillon and Popenoe, 1988).

The break-up history of the Carolina trough and Blake Plateau regions also differed 
significantly. Sea-floor spreading was initiated in the Carolina trough by 175 Ma, but was 
delayed by about 4 my in the Blake Plateau until 171 Ma (Dillon and Popenoe, 1988). Within 
a million years, at 170 Ma, a spreading-center jump occurred at the position of the Blake Spur 
magnetic anomaly. Numerous oceanic fracture zones project into the continental margin from 
oceanic crust (Figure 2); the largest is the Blake Spur fracture zone, which separates the 
Carolina trough from the Blake Plateau basin (Klitgord and Behrendt, 1979).

Stratigraphic Overview
The stratigraphy of the Carolina trough and Blake Plateau basin is known primarily 

from interpretation of seismic-reflection profiles calibrated by limited samples (Dillon and 
Popenoe, 1988; Poag, 1991). No dated samples older than Early Cretaceous have been 
recovered from this part of the continental margin in either shallow or deep water (Sheridan 
and Enos, 1979; Dillon et al., 1985); therefore, the geologic interpretation of the rift and early 
post-rift formation of the margin is based on seismic character, inference, and comparison with 
the continental margin to the north. The following paragraphs on the stratigraphy of the 
Carolina trough and Blake Plateau basin are taken from the summaries in Dillon and Popenoe 
(1988) and Poag (1991).

Blake Plateau basin: The postrift sedimentary history of the Blake Plateau began in the 
Jurassic with widespread carbonate deposition and reef building along the eastern portion of 
the margin. The Blake Plateau did not exist as a deep water environment: the region was 
characterized by shallow-water, carbonate-bank deposition. Much of this carbonate deposition 
formed a Jurassic gigaplatform/reef system that extended from the Bahamas to Georges Bank 
(Poag, 1991). Anhydrite deposits of presumed Jurassic age are recorded in wells from the 
Bahamas (Tator and Hatfield, 1975a, 1975b). On the western side of the region, deposition 
was more terrigenous. During the Early Cretaceous, similar depositional patterns persisted,

Figure 3: Representative multichannel seismic reflection profile line 32 across the Carolina 
trough showing uninterpreted profile data (upper) and the same profile with numbered 
Stratigraphic horizons, ages, faults, major reef structure, and inferred salt deposits flower). 
PRU - post rift unconformity.
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TABLE 2: U.S. Atlantic Margin Seismic Stratigraphy

Reflector 
Number

1

20

30

40

45

50

60

70

80

90

105

110

120

140

150

170

180

190

Geologic Surface

Base water column

Base Quaternary

Base Pliocene

Base Upper Miocene

Base Middle Miocene

Base Lower Miocene

Base Upper Oligocene

Base Paleocene/Eocene

Base Campanian/Maastrichtian

Base Coniacian/Santonian

Base Aptian/Albian/Cenomanian/ Turonian

Base Barremian

Base Berriasian/Valanginian/ Hauterivian

Base Kimmeridgian/Tithonian

Base Oxfordian

Base Upper Bathonian/Callovian

Base Bajocian/Lower Bathonian

Base Aalenian

Common Name 3

Seafloor

Mid-Miocene Unconformity

Mid-Oligocene Unconformity

Top Cretaceous

Horizon A* in Deep Sea

Late Cenomanian Unconformity

Mid Cretaceous Unconformity

Horizon P in Deep Sea

Top Jurassic

Top Middle Jurassic

Postrift Unconformity

1 This is the same stratigraphy used by Klitgord et al. (1994) for the continental margin north of Cape Hatteras, 
except for horizons 30 (Base Pliocene), 100 (Base Cenomanian/Turonian), and 130 (Base Tithonian). These three 
horizons were not mapped separately in the area south of Hatteras.

2 Numbers have no geologic significance and are used only as an identifier in the digital data base. They 
correspond to the same geologic horizons throughout the data set.

3 Names commonly encountered in the literature.

Each numbered discontinuity represents the surface at the base of a unit. Properties that 
characterize a unit (e.g., interval velocity or thickness) refer to the unit immediately above the 
numbered discontinuity. In this convention, we always refer to material that exists above a 
reflector, since the original material below a reflector may have been eroded. This is illustrated 
in Figure 5 which shows an example where the surface represented by reflector 60 (base of 
Oligocene) merges with reflector 70 (base of Paleocene-Eocene). We call the reflector at the 
base of Oligocene reflector 60 and assume that the surface represented by reflector 70 is not 
present in the middle of the profile. Prominent geologic boundaries that form erosional

13



unconformities at the tops of units (such as the top of Cretaceous) often consist of several 
reflectors (reflector 70 at the sides of the figure and reflector 60 in the center of Figure 5). 
This convention differs from standard reference to the tops of geologic units, but eliminates 
ambiguity in defining units and bounding horizons as well as simplifying the stratigraphic 
framework. Representative seismic sections illustrating the stratigraphy are shown in Figures 
3 and 4.

The reflectors defined in Table 2 are identical to those used by Klitgord et al. (1994) 
for the stratigraphic data base north of Cape Hatteras, except for two horizons: 100 (base 
Cenomanian/Turonian), and 130 (base Tithonian). These two horizons are not regionally 
extensive and therefore have not been mapped for the area south of Cape Hatteras.

TRAVEL-TIME DATA AND UNCERTAINTIES

Scaled, stacked multichannel seismic profiles form the basis for interpreting and 
digitizing allostratigraphic units. This section discusses the acquisition, processing, and 
interpretation of the multichannel data, which affects the quality of the final digitized travel 
time data. An assessment of possible sources of error and uncertainties is given for each stage 
of analysis.

Multichannel Acquisition
The multichannel reflection profiles used in developing the data base were collected 

between 1974 and 1978. Details of the source and receiver acquisition parameters for each line 
are given in Table 1. The lines can be separated into five groups that have slightly different 
acquisition systems: IPOD line, BT lines, FC lines, TD lines, and GSI lines. The IPOD, BT, 
TD, and FC lines are labelled by their acquisition letters (e.g., BT-1, TD-6, or FC-7). The GSI 
lines refer to lines 30, 31, and 32 in the northern Carolina trough (Table 3). Line 12 and 13 
are taken from Klitgord et al. (1994); they were acquired by Digicon in 1975 and are similar 
to the IPOD line in overall quality. Some of the FC and TD lines were collected in segments, 
designated by letters: for example, line TD-3 consists of the the segments TD-3LM, TD-3MN, 
and TD-3NO (Figure 1).

The acquisition systems for all seismic data are roughly equivalent; all used a firing 
interval of 50 m and 48-channel streamers which were 2.4- or 3.6-km long. The 1978 GSI 
lines probably have the highest resolution, with the longest streamer and largest, tuned air gun 
source. Teledyne lines, with four large low-frequency air guns as the source (with a total 
volume of 2,160 in3), are noticeably ringier and lack the clarity and resolution of the GSI 
profiles. The IPOD line was shot with a slightly smaller source (1,700 in3) than the GSI lines 
(2,000 in3). The BT lines (1,310 in3) were shot with a source that was about two-thirds the 
size of the source used in the GSI lines. The FC lines have the shortest offset and smallest 
source: the Flexichoc is a large low-pressure airgun equivalent to about 1,000 in3 (Magneville, 
1970). The shorter offsets, different source, and generally higher towing speeds (Dillon et al., 
1976) probably contributed to the generally lower signal quality and total penetration of the 
FC lines relative to the others.

14



Figure 9: Correlation between drill hole information and seismic stratigraphy. (A) COST 
GE-1 well tied to line TD-5 at the landward end of TD-5.. Lithology patterns and 
interpretations are from Poag (1991). (B) DSDP 390 tied to line TD-5 near the top of the 
Blake Spur. Lithology patterns and descriptions are from Leg 44 Scientific Party (1978). (C) 
DSDP 391 tied to TD-3 in the Hatteras Abyssal Plain. Lithology patterns and descriptions are 
from Leg 44 Shipboard Scientific Party (1978). (D) Great Isaac 1 well tied through Sheridan 
et al. (1981) to line TD-1. Lithologic descriptions are simplified from Sheridan et al. (1981), 
Schlager et al. (1988), and Tator and Hatfield (1975a, 1975b). Line TD-1 does not tie directly 
with either the multichannel data of Sheridan et al. (1981) or the Great Isaacs 1 well, and 
therefore, the correlations are approximate.
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recovery (usually a spherical divergence correction), edit, deconvolution (generally predictive 
deconvolution with design and application dependent on water depth), velocity analysis (every 
3-7 km), normal moveout correction, stack, time-varying frequency filter, scaling, and display. 
The BT and TD lines had a second (predictive) deconvolution operator applied after stack and 
before final scaling and display. For the FC lines, a prestack predictive deconvolution was 
applied on the shallow water portions of the lines, but no deconvolution was applied for the 
portions of lines over the Blake Plateau or the abyssal plain.

The primitive processing of these lines, depending on the effectiveness of the 
deconvolution operators, can compromise the resolution of both the travel-time sections and 
the velocity analyses. This, in turn, can limit the accuracy and precision of the travel time 
estimates and velocity values. Detailed discussion of the velocity scans is given in the 
following section on Velocity Data and Uncertainties. Errors in travel time are impossible to 
quantify without detailed reprocessing and statistical analysis, and this remains a concern in 
the overall assessment of uncertainty in the data base. Reprocessing of these data should 
include F-K filtering (especially in regions of high-velocity carbonates on the Blake Plateau), 
more extensive deconvolution tests (including spiking, predictive, and wavelet algorithms), and 
migration.

Nonquantitative assessments of data quality can be made by (1) estimating the duration 
of the source wavelet at a prominent reflection and (2) comparing record quality at line 
crossings. The water-bottom reflection is a primary geologic discontinuity that can be used to 
show how sharp the source is. For the IPOD, GSI, and TD lines, it is a double reflection about 
50 ms long; for the BT lines, it is a single or double wavelet of 30 or 50 ms respectively; for 
the FC lines where no deconvolution was applied, it is a triple wavelet about 90 ms in 
duration. The duration of the water bottom return is also an indicator of how well units that 
extend upward to the sea floor can be imaged or detected. For durations of 30, 50, and 90 ms, 
the resolvable unit thickness is about 10, 35, and 65 m respectively (assuming a subsea-floor 
velocity of 1500 m/s and resolution of 1/4 wavelength). Individual reflection events (i.e., 
single wavelets) can be resolved in the shallow subbottom on the GSI, TD, BT, and IPOD lines 
and are about 20 - 25 ms duration, indicating a slightly better resolution for individual 
subbottom events. Subbottom reflections on the FC lines are generally double wavelets and 
are about 50 ms duration. Actual resolution within the sedimentary section is difficult to 
quantify because it depends on several factors that interact, such as frequency content, 
attenuation, wavelet shape, and rock velocity. Qualitatively, this type of analysis shows that 
the FC lines have inherently lower resolution than the other lines.

An alternative assessment of data quality can be made by comparing profiles at three 
line crossings (Figure 6). These displays visually show how different acquisition and 
processing schemes affect the overall quality and clarity of data from different surveys. GSI 
line 32 has more clarity and resolution than TD-1 (Fig. 6a); line BT-8 has better resolution

Figure 6: A comparison of multichannel data profiles at line crossings. (A) Line 32 and TD- 
1. (B) Line BT-8 and FC-7. (C) Line TD-1 and FC-7. The horizontal scale on the FC-data 
is somewhat compressed compared to the other lines.
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and clarity than line FC-7 (Fig. 6b); and line TD-1 is slightly better than FC-7 (Fig. 6c). The 
perception of clarity and resolution also depends somewhat on the individual interpreter.

A special problem unique to processing the data occurs in shallow water due to mute 
patterns. Muting is a prestack processing procedure that removes noise, such as shallow 
refractions or normal-moveout (NMO) stretch, from common depth point (cdp) gathers by 
zeroing amplitudes. In shallow water, this noise interferes with the water-bottom and shallow 
subbottom reflections; the result of muting is to remove the water bottom and shallow 
reflections from the final stacked data. Careful muting can minimize the effect, but some data 
are invariably lost along profiles where the geometry of acquisition causes the near offset to 
be several times longer than the water depth, such as on all the multichannel data used in this 
compilation where near offsets are 300 - 400 m, and water depths on the shelf are less than 
100 m. The mutes typically affect subbottom reflections for 100 - 150 ms. Deeper reflections 
are unaffected. Figure 7 shows the locations where shallow data are lost due to mute patterns. 
For the landwardmost portions of these affected lines, bathymetry was digitized from NOS 
(1986) and shallow reflectors were projected through the mute zone based on extrapolated dips 
or known outcrop geometries (Popenoe, 1993).

Stratigraphic Interpretation
Stacked, unmigrated multichannel profiles provided by the contractor or collaborator 

were used in the interpretation. Migrated sections were utilized when available to help 
constrain the interpretation in areas of complex structure, but were not used when the 
interpretations were digitized. Scales of the profiles for the IPOD, BT, TD, and GSI lines were 
2.5 inches/second (vertical) and about 1.2 km per inch (horizontal). The FC lines were 
displayed at a more compressed scale of about 2.0 inches/second (vertical) and 2.5 km/inch 
(horizontal). Digital tapes of the FC lines were not available for redisplay of the data at the 
scale used in the other profiles. The difference in scale between the FC and other lines 
presented a continuing difficulty in linking Stratigraphic horizons at line crossings.

Stratigraphic calibration points (i.e., samples) for the continental margin south of Cape 
Hatteras are sparse (Table 4). The summaries of Dillon and Popenoe (1988) and Poag (1991) 
examine the two wells to basement (COST GE-1 and TR 1005-1, Figure 8) that provide 
Cretaceous and younger ties on the Florida-Hatteras shelf off Georgia. Several shallower wells 
were drilled by Joint Oceanographic Institutions for Deep Earth Sampling - JOIDES (Bunce 
et al., 1965; Charm et al., 1969), by the USGS - AMCOR (Hathaway et al., 1981; Poppe, 
1981), and by the Atlantic Slope Project - ASP - a consortium of oil companies (Poag, 1978; 
Poag and Valentine, 1988). Seven Deep Sea Drilling Project (DSDP) holes were drilled on 
the Blake Spur, the Blake Outer Ridge, and on the Hatteras abyssal plain (Hollister, Ewing et 
al, 1972; Benson, Sheridan et al., 1978; Sheridan, Gradstein et al., 1983). Dredge samples 
(Heezen and Sheridan, 1966; Sheridan et al., 1971) and Alvin submersible samples on the

Figure 7: Location of the zone affected by mute along the landward ends of the multichannel 
profiles. In these zones, the bathymetry was digitized from NOS (1986) and horizons in the 
first 100-200 milliseconds subbottom were extrapolated from projected dips and outcrop 
patterns from Paull et al. (1980) and Popenoe (1993).
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Blake Escarpment (Dillon et al., 1987, 1988) provide additional stratigraphic information. 
None of the samples contains fossils unambiguously older than Cretaceous, and therefore the 
entire rift and early postrift evolution of the margin remains uncalibrated in the Carolina 
trough and Blake Plateau. Examples of correlations between four wells and seismic profiles 
are shown in Figures 9; the correlation between dive samples and line TD-4 is shown in 
Figure 4; the correlation between dive samples and line TD-3 is shown in Figure 10.

Three other sources of calibration were used in the study: (1) long-distance correlation 
of seismic stratigraphy from the Great Isaacs well (Figure 9D) in the Bahamas (Sheridan et al., 
1981) and from wells further north in the Baltimore Canyon (summarized in Klitgord and 
Schneider, 1994; Klitgord et al., 1994); (2) similarity of seismic character to units of inferred 
equivalent age or provenance elsewhere on the continental margin (e.g., from Baltimore 
Canyon trough or Georges Bank basin); and (3) surficial geology mapped from closely spaced 
grids of high-resolution single-channel seismic-reflection profiles, shallow cores, and surface 
samples. (Popenoe, 1993). The first two methods, which depend on extrapolations over large 
distances, can result in systematic biases, depending on how the interpreter traces individual 
.events or packages of events through structurally complex areas or through regions where data 
quality is poor. The morphology and geology of the continental margin in the Carolina trough- 
Blake Plateau regions encumbers long-distance correlations because the steep topography and 
paleoslope reef complex make it impossible to continuously trace deeper reflections from the 
shelf across the slope into deep water (e.g., Dillon and Popenoe, 1988; Poag, 1991). Therefore, 
stratigraphic correlations from the north and south must be made separately for shallow shelf 
environments and slope/rise/abyssal plain environments.

The third source of calibration, constraining interpretations from high-resolution seismic- 
reflection data and samples, is based on geologic maps of the northern Blake Plateau and 
Carolina trough (Popenoe, 1993) and southern (inner) Blake Plateau (Paull et al., 1980). 
Because of interference with the water-bottom return, the multichannel data do not always 
show exactly where units pinch out or thin near the sea floor. The Tertiary and Early 
Cretaceous outcrop patterns from geologic maps (Popenoe, 1993; Paull et al., 1980) were used 
to constrain the pinch-out positions of reflectors at the sea floor. The geologic maps were also 
used to constrain the geometry of reflections in shallow water where mute patterns (discussed 
above under Multichannel Processing} obliterated the shallow signal on the multichannel data.

An example of actual discrepancies in stratigraphic interpretation of the deepest units 
(i.e., Lower Cretaceous and Jurassic deposits) exists between Dillon and Popenoe (1988 and 
references therein) and the stratigraphy used in this compilation (Poag, 1991). The interpreted 
stratigraphic horizons of Dillon and Popenoe (1988) corresponding to reflectors 105, 120, and 
140 (base Aptian/top Berremian, base Berriasian/top Jurassic, and base Kimmeridgian/top 
Oxfordian, respectively) are about .7 - 1.0 s deeper in the Blake Plateau (Figure 10). Similar 
differences exist in the Carolina Trough: for example, the top of Jurassic interpreted by Dillon 
et al. (1983) is about .9 s deeper than the top of Jurassic of Poag (1991) on line TD-6.

Figure 8: Locations of multichannel profiles and sample information used to constrain 
interpretations of the multichannel data. Bathymetry contoured at 500-m intervals.
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Figure 9: Correlation between drill hole information and seismic stratigraphy. (A) COST 
GE-1 well tied to line TD-5 at the landward end of TD-5.. Lithology patterns and 
interpretations are from Poag (1991). (B) DSDP 390 tied to line TD-5 near the top of the 
Blake Spur. Lithology patterns and descriptions are from Leg 44 Scientific Party (1978). (C) 
DSDP 391 tied to TD-3 in the Hatteras Abyssal Plain. Lithology patterns and descriptions are 
from Leg 44 Shipboard Scientific Party (1978). (D) Great Isaac 1 well tied through Sheridan 
et al. (1981) to line TD-1. Lithologic descriptions are simplified from Sheridan et al. (1981), 
Schlager et al. (1988), and Tator and Hatfield (1975a, 1975b). Line TD-1 does not tie directly 
with either the multichannel data of Sheridan et al. (1981) or the Great Isaacs 1 well, and 
therefore, the correlations are approximate.
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TABLE 4: Locations of Well and Other Samples

Name

COST GE-1
DSDP 390
DSDP 391
DSDP 392
DSDP 533'
DSDP 534
TR-1005

J-l
3-2
3-3
3-4
3-5
3-6

ASP 3
ASP 5

6002
6004
6005
6006

Site A Alvin-1054
Alvin-1055
Alvin-1056
Alvin-1057

Site B Alvin-1058
Alvin-1059
Alvin-1060

Site C Alvin-1061
Alvin-1062
Alvin-1063

E-9-66-7
E-9-66-4
E-9-66-3
E-9-66-12
E- 11 067
E- 11 070
E- 11 072
E- 11 073
E-13548
E- 13549

Location
Latitude

30°37.128'N
30°08.54'N
28°13.73'N
29°54.63'N
31°15.60'N
28°20.63'N
30°59.567'N

30°33.0'N
30°21.0'N
28°30.0'N
31°03.0'N
30°23.0'N
30°05.0'N

29°54.7'N
33°09.7'N

31°08.57'N
32°03.98'N
33°15.10'N
34°41.40'N

30°06.0'N
30°07.0'N
30°08.0'N
30°08.0'N

29°02.0'N
29°02.0'N
29°03.0'N

28°23.0'N
28°24.0'N
28°23.0'N

28°57.5'N
28°59.0'N
28°59.5'N
30°15.0'N
27°11.0'N
26°55.0'N
26°52.5'N
26°53.0'N
26°53.0'N
26°53.0'N

Longitude

80°17.986'W
76°06.74'W
75°36.88'W
76°10.68'W
74°52.19'W
75°22.89'W
80°14.638'W

STOO.O'W
80°20.0'W
77°31.0'W
77°45.0'W
80°08.0'W
79°15.0'W

76°44.6'W
77°15.5'W

80°31.05'W
79°05.86'W
78°44.08'W
75°43.00'W

76°02.0'W
76°02.0'W
76°03.0'W
76°02.0'W

76°43.0'W
76°44.0'W
76°44.0'W

76°36.0'W
76°38.0'W
76°39.0'W

76°45.0'W
76°43.5'W
76°45.0'W
76°21.0'W
76°27.0'W
76°32.0'W
76°38.0'W
76°38.2'W
76°36.0'W
76°38.0'W

Comment

Deep wells/logs
Benson, Sheridan et al. (1978)
Sheridan, Gradstein et al.
(1983)
Dillon and Popenoe (1988)

JOIDES Boreholes
No logs
Bunce et al. (1965)
Charm et al. (1969)

Atlantic Slope Project
Poag (1978)

USGS Drilling Program
No logs
Hathaway et al. (1979)
Poppe (1981)

Alvin Dives on Blake
Escarpment
Dillon et al. (1987)
Dillon et al. (1988)

Dredge Samples on Blake
Escarpment
Heezen and Sheridan (1966)
Sheridan et al. (1971)

1 Information from DSDP 533 and 534 was used instead of DSDP holes 102, 103, 104 
(Hollister, Ewing et al., 1972) because of better line ties to BT-1.

31



Differences in the Dillon and Popenoe (1988) and Poag (1991) interpretations can be 
reduced to differences in (1) how dates on unfossiliferous samples are extrapolated; (2) how 
the depth stratigraphy of the Great Isaacs 1 well is converted to travel time and extrapolated 
north to line TD-1; and (3) how structure is interpreted across the Blake Escarpment. 
Concerning unfossiliferous samples, Poag (1991) assigned Early Cretaceous or Late Jurassic 
ages to these sections in the COST GE-1 well, DSDP Hole 390, and several of the undated 
Alvin samples on the Blake Escarpment, whereas Dillon and Popenoe (1988) prefer middle 
Cretaceous ages. Concerning the Great Isaacs 1 well, sonic velocities are published for the 
Upper Cretaceous and Tertiary strata of the well (Schlager et al., 1988); but the only published 
seismic correlation for the deeper units is that of Sheridan et al, (1981), which forms the basis 
for the Poag (1991) interpretation. The Dillon and Popenoe (1988) interpretation of the Great 
Isaacs 1 well generally places the Lower Cretaceous and Jurassic section at greater travel times. 
Concerning the structural interpretation of the Blake Escarpment, Poag (1991) infers the 
existence of large normal faults (>300 m displacement) near the escarpment edge to explain 
the positions of dated samples, whereas Dillon and Popenoe (1988) interpreted no structural 
offsets. Much of the Dillon interpretation uses the premise of constant subsidence throughout 
the postrift period (Dillon et al., 1985), whereas the Poag interpretation is based on regionally 
consistent stratigraphic ties between Georges Bank and the Bahamas. Both interpretations are 
consistent with available sample data, but have different geologic rationales.

Two seismic lines, showing the Poag (1991) interpretation used in this study, are 
presented as representative sections from the Carolina trough (line 32; Figure 3) and the Blake 
Plateau basin (line TD-4; Figure 4). Both of these lines have been used extensively as 
reference sections within each basin (Dillon et al., 1983; Hutchinson et al., 1983; Dillon et al., 
1985; Dillon et al., 1988, Poag, 1991).

VELOCITY DATA AND UNCERTAINTIES

Velocity information derived from stacking the multichannel seismic data form the raw 
"observations" upon which the depth conversions and some of the secondary acoustic properties 
of the digital data set are based. This section analyzes the nature of the velocity scans, 
independent measurements of velocity for calibration, the likely sources of error, and associated 
uncertainties.

Figure 10: A comparison of the stratigraphy of selected Early Cretaceous and Jurassic 
horizons interpreted by Poag, 1991 (solid lines) and Dillon and Popenoe, 1988 (dashed lines) 
together with locations of samples from Alvin dives along the escarpment. The interpretation 
of Poag (1991) is used in this study.
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Velocity Scans
Velocity scans are the displays which processors use to estimate multichannel stacking 

velocities. These stacking velocities, also called Root-Mean-Square (RMS) velocities, are used 
to stack traces together and improve signal-to-noise ratios in the final processed record 
sections. The RMS velocity information contained in the velocity scans determines the 
accuracy and resolution of the velocity data. Variables such as streamer length, frequency 
content of the source and wavelet shape contribute to the final velocity display, and therefore 
their contribution to resolution can be evaluated in the context of the quality of the scan. 
Examples of the five types of velocity scans used in processing the multichannel data are 
illustrated in Figure 11. The scans from the GSI, IPOD, and BT lines are representative of the 
bulk of the data in the Carolina trough; those from the TD and FC lines show the quality of 
data from the Blake Plateau. The purpose of discussing the velocity scans is not to assign 
specific error bars or uncertainties to each data set (which is line-dependent, water-depth 
dependent, and velocity dependent), but to show the magnitude of the differences in the quality 
of the velocity data between data sets.

Figure lla (GSI lines) gives the interpreter the most information to evaluate quality of 
the velocity data. This velocity scan comes from the seaward end of Line 32, where the water 
depth is about 4.6 s (two-way travel time). Types of information included in this display are 
the raw common depth point (cdp) gather, seven normal-moveout corrected examples of the 
raw cdp using seven different velocity functions (VI to V7), seven stacks of 9 traces centered 
on the raw cdp trace using the seven velocity functions, a plot of the seven velocity functions 
with automatic point estimates of different amplitude strengths, and information about dip. 
This scan provides many different ways of analyzing the effects of different velocity functions 
and allows one to choose the optimum function. Unfortunately, this scan also illustrates a 
limitation of this display which occurs when the optimum picks are at velocities less than any 
of the seven velocity functions, a situation which occurs from 5.5 to 8.0 s two-way travel time. 
At the depth of the strong event at 8.7 s, normal moveout differences on the seven velocity 
scans can be seen, indicating that the maximum offset of the streamer is enough to make a 
reasonable velocity pick, even at these large travel times.

Figure lib (IPOD line) shows an earlier generation of the same (GSI) velocity analysis 
display used in Figure lla. This scan comes from the continental slope where water depths 
are about 1.0 s. Despite the similarity of display, the quality of the raw seismic data input to 
the scan is considerably less than that used for line 32 in Figure lla. Normal moveout is 
difficult to distinguish below about 5 s. Because the base of sediments on this portion of IPOD 
is interpreted just above 5 s, this scan shows that the streamer length and all other variables

Figure 11: Examples of velocity scans used in the 5 multichannel surveys. (A) GSI velocity 
scan from Line 32, SP 5504. (B) IPOD velocity scan from SP 550. (C) BT velocity scan from 
line BT-1, SP 2005. (D) TD velocity scan from line TD-4, SP 4001. (E) FC velocity scan 
from line FC-3, SP 5575. Labels have been added for two-way travel time, RMS velocity, the 
approximate location of the sea floor and basement, and other relevant information. Very little 
primary information exists at subbottom depths in excess of 2 sfor the scans from the TD- and 
FC-lines in the Blake Plateau and southern Carolina trough.
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still make velocity resolvable, although the larger scatter in the velocity estimates (presumably 
related to the lower quality of the input raw cdp) adds uncertainty to the final velocity function.

The velocity scans used for the BT lines (Figure lie) are still an earlier version of the 
same program used for the GSI and IPOD lines (each of these data sets was processed by GSI 
in different years). In this display, for shot 2005 on the axis of the Blake Ridge in water 
depths of 3.7 s, only the NMO-corrected cdp for a single velocity function is shown, with 
amplitude picks rated by size; different velocity functions are not applied to the data nor are 
the displays of multiple normal-moveout-corrected cdps or stacked traces included. The lack 
of these additional displays means that little information exists in the scan to evaluate whether 
measurable normal moveout occurs at travel times up to 8 s (near the basement reflection). 
It is therefore difficult to evaluate how well the deeper velocities are resolved, or whether this 
is the optimum velocity function for stacking.

The velocity scans used for the TD lines (Figure lid) and FC lines (Figure lie) are 
extremely primitive. Neither includes displays of the raw or normal-moveout-corrected data 
(either cdps or stacks); both are printed with low-resolution line printer output; the analysed 
time gates are coarse (50 ms and 25 ms for the TD and FC data, respectively); the velocity 
scales are coarse. An additional difficulty on the FC lines is that the velocity scale is non 
linear, complicating the digitizing process. Both examples are from the inner part of the Blake 
Plateau. Good primary velocity extimates exist in the uppermost 1-2 s subbottom, although 
the coarse scales of display make the estimates look better constrained than they probably are; 
significant multiple energy contaminates the deeper arrivals; and little information exists for 
primary velocity estimates at travel times greater than about 2 s subbottom. This is true for 
all of the TD and FC lines in the Blake Plateau, indicating that velocity information is of 
consistently very low quality and resolution.

The distance between adjacent velocity scans affects the horizontal or lateral resolution 
of velocities. For most of the multichannel data, the spacing of velocity scans was 3 km 
(Table 4), although lines TD-6 and the northern segments of line TD-2 had velocity analyses 
at 5-km intervals and the FC-lines had analyses at 10.8-km intervals. This spatial sampling of 
the velocity data limits the resolution to velocity anomalies that equal or exceed 3-5 km 
wavelength along each line (about 10 km along the FC lines).

Another way of assessing the quality of the scans is to look at the variability and scatter 
of adjacent estimates along individual lines. This can be misleading, however, because 
estimates can be remarkably smooth in regions of no data if the interpreter maintains consistent 
(default) velocity functions. This is shown by an example of the initial VR^ picks for line TD- 
4 (Figure 12b). Two reflectors, 120 and 180, are examined; reflector 120 is about 2 s 
subbottom, or at about the limit of velocity resolution using the velocity scans; reflector 180

Figure 12: Plots of the initial RMS velocity for lines TD-4 (upper) and 32 (lower). The 
vertical scale is velocity, enabling the velocity for each horizon to be plotted separately. The 
larger scatter on the TD-lines can be attributed to the much lower quality of the deeper 
velocity information compared to line 32.
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is the deepest reflector picked. The uncertainty for reflector 120, based on an envelope 
constructed around the maximum and minimum peaks, is about 275 m/s, or about 10 % of an 
average velocity of 2,700 m/s. The uncertainty in the velocity of reflector 180 is about 310 m/s, 
or about 7 % of an average velocity of 4,400 m/s. These uncertainties are deceptively small, 
because very little information exists on which to base the velocity values. This figure does 
show that the scatter (i.e., jaggedness) of the deeper part of the section for line TD-4 is much 
greater than that for line 32 (Figure 12a).

Independent Velocity Estimates
Independent velocity measurements have been made in the study area using sonic logs 

in wells and wide-angle reflection/refraction experiments. These data provide information that 
can be compared with velocities calculated from the multichannel data in discrete locations on 
the margin. The locations of these independent velocity experiments that are near the 
multichannel seismic-reflection profiles are shown in Figure 13; comparisons between these 
velocities and the multichannel velocities are presented in Appendix 4.

The COST GE-1 well at the landward end of line TD-5 (Figures 8, 9A) contains the 
only sonic log on the margin south of Cape Hatteras that has been modelled extensively 
(Anderson and Taylor, 1979). A comparison of the sonic-log velocities with interval velocities 
from SP 1921 on line TD-5 shows good consistency (Figure 14A). Dillon et al. (1985) pointed 
out that velocities estimated in the COST GE-1 well by Schlumberger using both sonic log and 
check shot (well shooting) yielded slightly higher velocities than the velocity functions derived 
by Anderson and Taylor (1979) from the same data set.

DSDP 391 provides a second well in which velocities are determined to basement. The 
velocities were taken from routine physical properties measurements, rather than true sonic logs 
taken in the hole during drilling (Leg 44 Shipboard Scientific Party, 1978; Bryan et al., 1980). 
Figure 14B shows the average velocity and range in velocity for the drill hole together with 
the interval velocity calculated from SP 1001 of line TD-3 (segment NO). The agreement is 
reasonable.

The other drilled holes either did not include sonic or other acoustic velocity 
measurements or they did not penetrate deeply enough to provide velocities for more than the 
uppermost one or twoTunits in this database (e.g., wells 102, 103, 104, 392, 533, 534).

Velocity information is also independently measured in wide-angle reflection/refraction 
experiments that are distributed throughout the study area (Fig. 13). These refraction data can 
be divided into two categories: (a) Recent lines - those collected with closely spaced shots, 
fixed ocean-bottom instruments, and satellite navigation (Trehu et al., 1989; Holbrook et al., 
1994); and (b) Old lines - those collected with widely spaced shots, drifting sonobuoys, and 
poor navigational control (Ewing and Ewing, 1959; Hersey et al., 1959; Sheridan et al., 1966; 
Dillon and McGinnis, 1983; and other lines summarized in Sheridan et al., 1988). The recent

Figure 13: Map showing the locations of the seismic refraction profiles where they intersect 
with the multichannel seismic reflection tracklines.
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Velocity Smoothing
An essential component in this project has been the smoothing of velocities. The 

original RMS velocities derived from velocity scans contain large short-wavelength oscillations 
(e.g., Figure 12) that are acceptable for purposes of stacking the data, but which are not 
geologically meaningful. These oscillations are primarily a function of the manual and non- 
interactive methodology used in 1970's processing. The purpose of velocity smoothing is to 
remove these short-wavelength variations in velocity while maintaining overall velocity trends. 
Smoothing also provided a mechanism for adjusting velocities to be consistent at line crossings.

Several assumptions have guided the smoothing process:
(1) The water velocity was set to a constant 1500 m/s. In the original scans, the water 

velocity varied between about 1480 and 1520 m/s. This change provides a smooth water- 
bottom reflection.

(2) Smoothing was performed in the interval velocity domain, rather than the RMS 
velocity domain, because small changes in RMS velocity yield large changes in interval 
velocity (Cordier, 1985) and because the geologically important velocity for constructing the 
data base is the interval velocity. This approach is based on the observation that smoothing 
in the interval velocity domain will automatically create a smoother RMS curve. This differs 
from the approach used by Klitgord and Schneider (1994), who smoothed in the RMS domain 
for the velocities north of Cape Hatteras.

(3) Interval velocities increase with depth. This relationship generally holds for most 
parts of the U.S. continental margin (e.g., Sheridan et al., 1988) and makes velocity analysis 
and computation simpler. The Blake Plateau is one region where this relationship is violated, 
because velocity inversions probably occur where higher velocity carbonate and lower velocity 
clastic units are interlayered (e.g., Trehu 1984, 1985; Dillon et al., 1988). However, the poor 
velocity control in the Blake Plateau makes resolving velocity inversions extremely unlikely, 
if not impossible. Further, rarely does one raw velocity estimate coincide with one unit 
boundary, and therefore the velocities are an average value taken from a resampled velocity 
curve. Our choice of an increase in the average velocity of each unit is based on assuming that 
the average (increasing) velocity curve is consistent with the high overall velocities inferred 
from the "old" refraction lines (Appendix 4).

(4) Sedimentary units do not have short wavelength (< 1 km) variations in lithology 
and therefore in interval velocity. The most likely lateral gradations between carbonate and 
clastic sedimet occurs over distances of several kilometers.

(5) Abrupt lithologic (and velocity) changes can occur over the modern and paleo 
shelf/slope breaks (including the Blake Escarpment). These regions mark positions where 
erosional and depositional processes have been most pronounced and have caused terminations 
of units and reflections. These variations can be lateral and vertical, especially in the vicinity

Figure 15: A comparison of velocities from "recent" seismic refraction experiments (light 
lines) and from the multichannel profiles (heavy lines). (A) Line BA-3 (Holbrook et al., 
1994) and line FC-4 on the Carolina platform. (B) Line BA-6 (Holbrook et al, 1994) and 
line TD-1 on the Carolina Platform. (C) Line BA-6 (Holbrook et al., 1994) and line BT-8 
from the Blake Ridge. (D) Line 1 (Trehu et al., 1989) and line 32 in deep water. (E) Line 
2 (Trehu et al., 1989) and line 32 in deep water.
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1 inch/second vertical). Minor adjustments in the stratigraphy were required at some of the 
line crossings, and these tended to be at junctions with the FC lines, which had been displayed 
at a scale different from the rest of the multichannel data.

An early step in digitizing the multichannel profile data was to digitize the bathymetry 
off NOS (1986) in regions where the mute patterns in the processing removed the bottom 
reflection. This was done manually by constructing cross sections of bathymetry from the chart 
along each affected profile. These estimated water depths were converted to travel time using 
a velocity of 1500 m/s, and manually inserted into the SDA files. In addition, this bathymetry 
was drawn onto the original mcs profile along with outcrop information (Paull et al., 1980; 
Popenoe, 1993) so that other horizons removed in the mute process could be drawn in and then 
digitized.

The stratigraphic discontinuities on the multichannel profiles tend to be reflections with 
wavelets lasting 20 - 60 ms. We estimate that the uncertainty associated with digitizing the 
stratigraphic information averages about 30 ms.

Stratigraphic horizon 30 (base Pliocene) was digitized separately from the other horizons 
and added to the data late in the compilation, when it because clear that omitting horizon 30 
resulted in a discontinuity with the database north of Cape Hatteras (Klitgord et al., 1994). 
Horizon 30 is regionally extensive to the north (Klitgord et al., 1994), but had not been 
digitized south of Hatteras because it only occurred on the Carolina slope and rise and pinched 
out on the Blake Ridge. In order to keep the stratigraphic compilations north and south of 
Hatteras continuous, horizon 30 was digitized and merged into the rest of the database "after 
the fact".

The original full-scale copies of each multichannel profile used in this project, with the 
final stratigraphic interpretation drawn on, are archived at the USGS Data Library in Woods 
Hole, Massachusetts.

Digital Velocity
Raw data for the RMS velocities consisted primarily of velocity scans supplied to USGS 

by the seismic contractor as part of processing the data. In a few cases, raw velocities were 
hand digitized from velocity panels on the multichannel profiles because the original velocity 
scans were either unavailable or unuseable. Spot checks comparing the RMS velocities from 
panels on the profiles with the scans supplied by the contractor showed that the two were 
essentially identical and, hence, they have not been treated separately in this compilation.

On only one portion of one line was there no useable velocity information: line TD- 
2HI (SP 3000 - 4981) for about 100 km on the south side of the Blake Outer Ridge. The 
velocities for sections GH and the rest of HI of line TD-2 were taken from the panel 
summaries. Inspection of the panels for much of line TD-2HI showed that the initial travel time 
estimates for the velocities had no consistent or reliable relationship with the travel time of the 
sea floor (varying by as much as several hundred milliseconds). We interpreted this situation 
to show that the velocity annotation file did not reliably match the multichannel data and the 
velocities were therefore not useable. All velocities in this interval have been interpolated
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through the region during the smoothing process. (Note that these original, unuseable RMS 
velocities on line TD-2HI are displayed as part of the initial data in Appendix 2; we interpret 
that the step increases shown in the plots of initial RMS and interval velocity at SP 3000 - 
4981 are not real).

The accuracy of digitizing depends on the quality of the scan: the GSI, IPOD, and BT 
scans allow RMS velocities to be digitized with an accuracy of about 20-30 m/s, and travel 
times with an accuracy of about 20 ms. The TD scans allow for an accuracy of about 80 m/s 
in velocity and 50 ms in travel time. The FC scans allow about 100 m/s for velocity and 25 
ms for travel time. Subsequent smoothing in the interval velocity domain translated into 
adjustments of RMS velocity that often exceeded these values for each data type. Hence, the 
velocities, in general, could be digitized with more accuracy than the data inherently contained. 
The uncertainty introduced in the digitizing process is, therefore, insignificant in understanding 
the accuracy of the velocities.

The smoothing of velocities was done after final adjustments to the travel time estimates 
of the stratigraphic horizons. RMS velocities, resampled for each horizon, were converted to 
interval velocities using the Dix equation (Dix, 1955) and displayed in shot versus velocity 
space for each horizon. The velocity of the water layer was set to 1500 m/s. For horizons 
beneath the water layer, smoothing was done by hand on the shot-velocity plots, with 
adjustments made for: (1) removing short wavelength oscillations (shown in Figure 18); (2) 
generating increasing velocity values for deeper horizons; (3) bringing line crossing values into 
agreement; and (4) verifying that the final picks were broadly consistent with refraction data. 
The strategy used to project the refraction velocities onto these plots was: (a) convert refraction 
depths to travel time; (b) superimpose these travel times on the stratigraphic plots of each line 
to estimate which horizons correlated with which velocity intervals; and (c) compare velocities 
for horizons estimated from the refraction results with the velocities calculated from the 
multichannel data.

Smoothing velocities generally took many iterations, similar to adjustments of the 
stratigraphic travel time estimates, because changes often affected large regions, several 
horizons, and multiple lines. One advantage of the strategy of smoothing in the interval 
velocity domain was that modifications to shallower horizons did not change the deeper 
interval velocities, as would have been the case if smoothing were done in the RMS domain.

The velocities associated with horizon 30 were treated differently than the other 
horizons, because of its late addition to the digital compilation. For the lines where horizon 
30 was added, interval velocities were estimated at the line crossings with TD-2, then 
interpolated along each line to be between the velocities for units 20 and 40. Because units

Figure 17: (A) An example of SDA format without navigation. (B) An example of SDA format 
with navigation. Ref. - Reflector number; SP - Shot Point; Twtt - Two-way travel time; Vrrtls - 
RMS velocity; Vint - Interval velocity. None of the descriptors for the data (e.g., SP, Data, 
Twtt) are included in the SDA files; they are included for clarifying the format. Negative 
numbers in the data portions of the file, such as -3.0000 shown here, indicate missing horizons.
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20 and 40 were generally close in velocity (i.e., also close to the velocities for unit 30), 
separating out unit 30 has a negligible effect on the recalculated depths of the deeper horizons.

After final interval velocities were determined for each line, RMS velocity was 
recomputed, and depths were calculated for each horizon.

Depth Conversions
After all stratigraphic horizon estimates and velocity smoothing were finalized, all lines 

were plotted in depth to visually inspect the quality of the depth information. Additional edits 
were required on all of the profiles across the Blake Escarpment, and a few of the profiles 
across the Carolina slope, because of unusual and unrealistic geometries created where both 
travel times and velocities were changing rapidly. Edits eliminated the velocity data as 
unreliable, and the depth conversions show no data in these regions of steep morphology. 
Generally, these edits only affected about 10 - 20 km of data across the steepest bathymetry. 
This same procedure was used across the slope and beneath the paleoshelf edge for the study 
area north of Cape Hatteras (Klitgord and Schneider, 1994). A comparison of a depth profile 
for line TD-4 before and after velocity smoothing is shown in Figure 19.

Final Format
The final data, merged with navigation (Figure 17b), are archived in SDA format at the 

Data Library at USGS in Woods Hole, Massachusetts. The initial data are also archived in the 
Data Library in SDA format. These initial files preserve the original digitized information 
from both the stratigraphic horizon picks and the RMS velocity picks, but in an SDA format, 
rather than in the format generated at the digitizing table. This makes comparison with the 
final data simpler.

DISCUSSION

This data compilation contains profiles of travel time, depth, RMS velocity, and interval 
velocity for all of the seismic lines at identical scales (Appendices 1 to 3). Several of the more 
salient points that arise from inspecting these profiles (Appendices 1 to 3) are:

(1) Travel time plots show great distortion wherever water deepens rapidly, such as 
across the shelf-slope break and across the Blake Escarpment. The travel time plots, if viewed 
as cross sections, suggest that the deepest layers in the abyssal plain are considerably deeper 
than equivalent layers beneath the Blake Plateau (e.g., lines FC-1, FC-3, TD-3, TD-4, and TD- 
5). In actuality,_ the depth converted profiles, which are cross sections, show that the deepest 
layers beneath the Blake Plateau are significantly deeper than equivalent layers beneath the 
abyssal plain. This fact has been emphasized in other analyses (e.g., Grow et al., 1979), but 
is easy to forget if depth sections are not routinely generated, which often is not done across 
continental margins because of poor velocity control.

Figure 18: Comparison of initial (upper) and final smoothed (lower) interval velocities for 
line 32 in the Carolina trough.
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(2) Large scatter is a serious problem with almost all of the initial interval velocity 
plots, particularly with the deeper horizons (primarily Cretaceous and older, horizons 70 - 190). 
This point reinforces the problem of poor velocity resolution, especially for the deeper 
velocities.

(3) The final RMS velocity plots contain some small, but identifiable, short-wavelength 
variations. These are a function of both the artificial increase in frequency of sampling (from 
several kilometers to 250 m) and the recomputation of RMS velocities from smoothed interval 
velocities. These variations should not be considered geologically meaningful or otherwise 
representative of the data.

(4) Geological structure, in the form of faults or diapirs, has not been displayed 
digitally on the profiles. For example, the salt diapirs imaged on line 32 (Figure 3) are not 
shown in the digitized sections (Appendix 1). Nor are the faults explicitly drawn on the 
sections, such as TD-4 (compare Figure 4 with the digitized version in Appendix 1). Salt 
diapirs and fault offsets are shown indirectly as terminations of horizons.

The digital compilation of the stratigraphic and velocity data for this study involved two 
steps that were bottlenecks. These bottlenecks are easy to identify in hindsight, but should be 
emphasized in order to streamline future data compilations of similar scope. First, velocities 
should be taken directly from digital analysis during processing of the multichannel data. This 
would eliminate the manual and time consuming steps of initial digitizing and redigitizing 
during quality control. For velocities available from modern, interactive, multichannel 
processing platforms, this step would offer the advantage of smoothing of the RMS velocities 
during processing, as is routinely done in interactive velocity-analysis packages. This was not 
an option for this data set because digital velocities were not part of the product supplied by 
the contractor to USGS in the 1970's.

Second, automated velocity smoothing would have eliminated artifacts introduced during 
hand smoothing. The recent analysis by Klitgord and Schneider (1994) shows that smoothing 
can be successfully done in the RMS domain, with good results in the interval velocity domain. 
For the Carolina trough and Blake Plateau, automated smoothing would be still be difficult, 
if not impossible across the steep slopes where velocities and travel times change rapidly. 
These sharp transitions are often the most poorly preserved during computer smoothing. 
Automated smoothing also would not be optimal for velocities in the deeper Blake Plateau 
where an analysis that combined both the multichannel and old refraction velocities was 
sounder than one which relied on the poorly constrained multichannel velocities alone. A 
mixture of automated and hand smoothing might be necessary to accomodate smoothing 
between regions of smooth and steep topography and between shallow and deep picks.

Figure 19: Comparison of the depth section for line TD-4 before smoothing the interval 
velocities (upper) and after smoothing (lower). The jaggedness of the deeper horizons in the 
upper section is caused by the large scatter in the unsmoothed interval velocities.
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SUMMARY

This report presents one part of a program to develop a geophysical database for the 
East Coast of the United States, specifically to describe the digital seismic and velocity 
horizons interpreted from multichannel seismic-reflection profiles across the continental margin 
south of Cape Hatteras. A companion paper (Hutchinson et al., 1996) describes the spatial, 
gridded data base for each horizon. The data base for the continental margin north of Cape 
Hatteras has been described by Klitgord and Schneider (1994) and Klitgord et al. (1994).

(1) 18 multichannel seismic lines, consisting of 42 line segments totalling about 7,600 
km, were used to develop the digital stratigraphic and velocity information. The stratigraphic 
interpretations used in the database follow the stratigraphy of Poag (1991).

(2) A total of 17 seismic discontinuities were interpreted for both stratigraphic and 
velocity information. Each horizon was assigned an arbitrary, but successively larger number 
starting at the sea floor and ending at the deepest postrift unit. The stratigraphic numbering 
scheme is identical to that used by Klitgord et al. (1994) for the region north of Cape Hatteras.

(3) Even though the multichannel data were acquired using roughly similar equipment 
and source size, a large variation in data quality exists. Uncertainties can be assigned based 
on many criteria: e.g., the duration of the observed wavelet, frequency of the processed data, 
display scales, digitizing resolution. None of these uncertainties, however, is as large as the 
uncertainty in interpretation that arises from the lack of well-dated samples throughout the 
study region. Two end-member interpretations show that depths to Lower Cretaceous and 
Jurassic horizons differ by as much as .9 s, or up to 2-3 km. Depths to the younger Cenozoic 
and Upper Cretaceous units are more consistent because of more abundant shallow boreholes 
and surface samples. The uncertainty in age does not affect the velocity or depth estimates 
associated with each horizon.

(4) Velocities for the study area are best constrained in the northern Carolina trough, 
and uncertainties are estimated at about 10-20 %. Data quality in the southern Carolina trough 
and Blake Plateau is compromised by poor, low-resolution velocity scans. Comparison of the 
poorly constrained multichannel velocities with recent and old refraction information suggests 
velocity uncertainties In the southern Carolina trough and Blake Plateau are probably no better 
than 20 -30 %. Because of the velocity smoothing process, velocities for the landwardmost 
20-30 km of each line are probably high by up to 20 %.
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APPENDIX 1

Multichannel Seismic Profiles: 

Travel Time Interpretations and Depth Conversions

NOTE: Pages 1 - 66 are a separate document
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EXPLANATORY NOTES

This appendix gives line drawing interpretations of the seismic stratigraphy in both two- 
way travel time and depth. These interpretations represent the final, smoothed data. The 
horizontal scales for all travel time plots and depth plots are 25 km/inch. The vertical scales 
are 2 s/in for travel time plots and 5 km/in for depth plots. Vertical exaggeration is about 5x.

The lines are organized according to their position. All strike lines, progressing from 
shallow water to deep water, are shown first; then all dip lines, progressing from north to south 
are shown. Line locations are shown in Figure 1-1 (this page), Figure 1 of the main text and 
Plate 1 that accompanies this report. The following table gives the actual order of the lines:
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APPENDIX 2

Multichannel Seismic Profiles: 

Initial and Final RMS Velocity Plots
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EXPLANATORY NOTES

This appendix gives initial (unsmoothed) and final (smoothed) RMS velocity estimates 
for each stratigraphic horizon. The horizontal and vertical scales for all plots are 25 km/inch 
and 1000 m/s per inch, respectively. The upper plots show the control points, i.e., where 
velocity scans exist (every 3-10 km). The lower plots have velocity values interpolated every 
5 shots (250 m). The small scale jitter in the final RMS plots is not geologically meaningful.

The lines are organized according to their position. All strike lines, progressing from 
shallow water to deep water, are shown first; then all dip lines, progressing from north to south 
are shown. Line locations are shown in Figure 1-1 (Appendix 1), Figure 1 of the main text 
and Plate 1 that accompanies this report. The following table gives the order of the lines:
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APPENDIX 3

Multichannel Seismic Profiles: 

Initial and Final Interval Velocity Plots
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EXPLANATORY NOTES

This appendix gives initial (unsmoothed) and final (smoothed) interval velocity 
estimates for each horizon interpreted in the seismic stratigraphy. The horizontal and vertical 
scales for all plots are identical (25 km/inch and 1000 m/s per inch, respectively). The upper 
(unsmoothed) plots show the control points, i.e., where velocity scans exist (every 3-10 km). 
The lower plots have velocity values interpolated every 5 shots (250 m).

The lines are organized according to their position. All strike lines, progressing from 
shallow water to deep water, are shown first; then all dip lines, progressing from north to south 
are shown. Line locations are shown in Figure 1-1 (Appendix 1), Figure 1 of the main text 
and Plate 1 that accompanies this report. The following table gives the order of the lines:
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APPENDIX 4

Independent Refraction Profiles: 

Comparison with Multichannel Interval Velocities
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EXPLANATORY NOTES

This appendix gives provides travel-time/velocity plots from independent refraction 
experiments compared to interval velocities at intersecting or nearby multichannel profiles. 
Beneath the xy plots are travel time sections showing the location and approximate depth of 
penetration of the refraction experiment along the multichannel line. The profiles are organized 
according to the multichannel lines they cross. All strike lines, progressing from shallow water 
to deep water, are shown first; then all dip lines, progressing from north to south are shown. 
Line locations are shown in Figure 4-1. The refraction lines are labelled according to the 
following scheme:
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Locations of Refraction Data Sets

Figure 4-1: Map showing the locations of seismic refraction profiles and their intersections 
with the multichannel seismic reflection tracklines.
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