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ABSTRACT

This report compiles hydrologic observations in southern California and
elsewhere associated with the 1992 M, = 7.3 Landers, California earthquake
sequence. In southern California, the largest ground-water-level changes were
a rise of 3 meters at Lucerne Valley and a drop of 5 m at Pinon Flat. Most of
the steplike water-level changes recorded in the hours following the Landers
and Big Bear earthquakes agreed in direction with the sign of the calculated
coseismic volume strain field. In the Pinon Flat area, however, two wells
measured on June 28, after both these earthquakes, displayed water-level rises
of 9 cm above the reading made two days before. A spring discharge increase
in Millard Canyon was reported to have preceded the earthquake by several
days. Outside of southern California, water-level changes were also observed,
but are not consistent in sign or size with the static strain field of the
earthquake sequence. At Parkfield, California, water-level changes took place in
three wells at the time of the earthquake, and recovered over periods as long as
30 days. At Long Valley, California, observed water-level changes generally
returned to normal after minutes to hours, consistent with their having been
caused by the passage of surface waves. Water levels in one well at Long Valley
and in a well near Grants Pass, Oregon, remained low for at least two days
following the earthquake. Water-level oscillations took place in two wells in
eastern Nevada. Phenomena accompanying the Landers earthquake that were
of practical significance include the Tapo Canyon oil seep, which polluted part
of the Santa Clara River; gas bubbles in San Bernardino city water supply wells,
which clogged filters; and a coseismic discharge increase in Millard Creek,
which added to the water supply.



INTRODUCTION

The Landers, California earthquake (M. =7.3, M,=7.5) was the largest
earthquake in California in 40 years (Hauksson et al., 1993). Like other
earthquakes of comparable size, the Landers earthquake affected ground water
and surface water not only in its immediate vicinity, but also at distances of
hundreds of kilometers. Some of these hydrologic observations are consistent
with our present understanding of the response of well-aquifer systems to
strain. Other observations, however, are unexplained at this time.
Observations of distant hydrologic effects may be particularly significant
because the Landers earthquake triggered seismicity at a number of locations
many hundreds of kilometers distant from the epicenter (Hill et al., 1993).

This purpose of this report is to collect hydrologic observations related to
the Landers earthquake sequence. Although an attempt has been made to locate
and include data from as many sources as possible, the report should not be
viewed as exhaustive. Where appropriate, the observations are compared with
observations from other earthquakes and with the present understanding of
earthquake-related hydrologic phenomena.

For further information about the data described here, the reader is
referred to the Appendix, which lists the authors’ addresses and field study
areas.



THE LANDERS EARTHQUAKE SEQUENCE

The Landers earthquake sequence actually began with the magnitude 6.1
Joshua Tree earthquake on April 23, 1992. The Landers earthquake itself took
place on June 28, 1992 and was followed about three hours later by the
magnitude 6.2 Big Bear earthquake, 30 to 40 kilometers to the west (Hauksson et
al., 1993) and on a separate fault. Table 1 lists the times, magnitudes, and
locations of these earthquakes. Figure 1 is a map showing the Landers and Big
Bear epicenters and the observation sites referred to in this report.

Table 1. Earthquakes larger than magnitude 6 in the Landers sequence
(Hauksson et al., 1993).

Earthquake Date Time Magnitude Latitude Longitude Depth

(UT) (UT) (km)
Joshua Tree 23 April 92 04:50 M. =6.1 33° 57.33° 116° 17.97" 14
Landers 28 June 92  11:57 M =73 34" 12.13° 116° 25.9%° 3
Big Bear 28 June 92  15:05 M, =6.2 34° 9.94 116° 49.35 13

Most of the hydrologic phenomena reported here are in response to the
Landers earthquake (M, =7.3), which was significantly larger than either the
Joshua Tree or Big Bear events. The Landers earthquake ruptured several
separate fault segments with a total length of 85 km, and the epicenters of its
aftershocks extend throughout an area 180 km long (Hauksson et al., 1993).

The Landers earthquake triggered seismic activity at a number of locations
in the western United States (Hill et al., 1993). In California, seismicity was
triggered at the White Mountains, Long Valley, and Mount Lassen. Outside of
California, seismicity was triggered at Cedar City, Utah; Cascade, Idaho; and
possibly at Yellowstone, Wyoming. The mechanism of the triggering is not
understood, but it is likely the Landers earthquake induced dynamic stresses
significantly larger at these locations than other recent California earthquakes
because rupture in the Landers event propagated unilaterally to the north (Wald
and Heaton, 1994).






PRESENT UNDERSTANDING OF EARTHQUAKE-RELATED
HYDROLOGIC PHENOMENA

This section provides a brief description of the types of hydrologic
phenomena caused by earthquakes and their causes, when known.

Coseismic Water-level S

An earthquake subjects the earth’s crust in its immediate vicinity to stress
and strain. These stresses and strains are applied in seconds or tens of seconds
as the earthquake rupture progresses, and they remain after the earthquake
shaking has ceased. In porous elastic aquifers, fluid pressure generally changes
when the aquifer undergoes volumetric strain. Consequently, a steplike change
in well water level would be expected when the earthquake occurs.

If the fault orientation and the amount and direction of slip are known,
then the amount of volumetric strain can be computed using a program such as
the one given by Okada (1992). For a well that responds to earth tides, the
relationship between well water-level change and strain can be determined.
Typically, water levels in wells completed in confined aquifers change tens of
centimeters in response to one part per million (ppm) volumetric strain.
Unconfined aquifers are much less sensitive to strain. A quantitative
comparison can sometimes be made between the size of a coseismic step and the
expected response to the earthquake’s volume strain field.

R  Coseismic Water-level S

In a perfectly confined aquifer, a coseismic water-level change that is due
to the earthquake’s static strain field should persist indefinitely. In practice,
most aquifers are not perfectly confined, so that recovery to the pre-earthquake
water level takes place via flow to or from the water table over a period of time.
This period of time can be so short that no change will be detected if the water
level is sampled every 15 minutes, or it may be as long as months. Seasonal
hydrologic fluctuations often mask the recovery of small coseismic steps, making
it difficult to establish exactly how long they persist.



Coseismic Water-level Oscillati

In addition to imposing a static strain field, an earthquake radiates several
types of seismic waves. Compressional (P) waves and Rayleigh waves both
involve volumetric strain and are therefore expected to change aquifer pressure.
If the aquifer is highly conductive and the well is favorably completed, it is
possible for the water column’s motion to resonate at periods of several tens of
seconds, amplifying the aquifer pressure changes by an order of magnitude or
more (Cooper et al.,, 1965; Liu et al., 1989). In the few cases where the
oscillations have been recorded on a sufficient time scale, they resemble long-
period seismograms. Theory predicts that these oscillations should last as long
as the surface wave frain of the earthquake, which is on the order of ten
minutes for an event the size of Landers. After the wave amplitudes have
diminished sufficiently, the water level should return to its pre-earthquake
level.

Surface-water Effects

Effects of earthquakes on surface water are not quantitatively understood,
but often include discharge increases following the earthquake. These increases
seem to reflect permeability increases caused by the earthquake (Rojstaczer and
Wolf, 1992; Rojstaczer and Hickman, 1994), but it has also been suggested that
they reflect fracture conductance changes caused by the earthquake’s static
strain field (Muir-Wood and King, 1993). Appearance of new springs,
particularly in landslide areas, and turbidity in streams are also common.



HYDROLOGIC OBSERVATIONS IN SOUTHERN CALIFORNIA
Ground Water

Water-level changes in wells within 150 km of the Landers epicenter can
plausibly be caused by the static strain field of the earthquake. Murray and
others (1993) used geodetic data to determine the amounts of strike-slip
displacement over 10 separate fault segments that ruptured in the Landers-Big
Bear sequence. Eight of these fault segments are along the main Landers
rupture; one represents the Big Bear earthquake; and one represents the Eureka
Peak fault, which was the site of aftershock activity to the south of the main
Landers rupture. Subsurface slip on these fault segments, as adjusted to fit the
geodetic measurements, ranged from 0.1 m left lateral on the Johnson Valley
north segment to 9.2 m right-lateral on the Kickapoo segment. This “dislocation
model” of the earthquake sequence was used to calculate the volumetric strain
produced by the earthquake, which is plotted in Figure 2.

Information about wells being monitored is listed in Table 2 and their
locations are shown in Figure 2. Although many additional wells are monitored
in southern California, the data are often not suitable for detecting earthquake-
related changes because they are measured too infrequently or because artificial
effects obscure the natural aquifer response. Precipitation was negligible in
southern California during June, 1992 (National Climatologic Data Center, 1992).
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Edwards Air Force Base. At the time of the Landers earthquake, wells
were monitored by the U.S. Geological Survey (USGS) Water Resources Division
at Edwards Airforce Base (Galloway, 1993). Data are shown in Figures 3
through 6. Data are instantaneous hourly measurements from H-300 Hydronet
5 psi transducers. Data precision is approximately 1 mm of water.

Water levels increased in each of the wells by 11 to 51 cm after the Landers
earthquake. No preseismic signals were observed in these records. The one-
hour sampling interval does not permit the recording of any possible water-level
oscillations caused by surface waves.

The Graham Ranch and the deeper Holly water-levels respond to earth
tides. A least-squares analysis of M2, N2, and O1 tidal constituents of Graham
Ranch water-level data results in an estimate of the tidal response of 0.62 meters
per part-per-million (m/ppm). Consequently, the 51 cm coseismic water-level
rise in this well would correspond to volumetric strain of 0.82 ppm
compression, in approximate agreement with the calculated strain field shown
in Figure 2.

In addition to earth tides, water-level data from the Holly site also display
frequent transient changes due to pumping which complicates the task of
obtaining well-constrained tidal response estimates from water-level data at this
site. Pumping near the GR2 well also influences the water-level records. A new
pumping well that came on line near GR2 on July 6 masks the recovery of
water-level data after the coseismic offset due to the Landers earthquake.

The steplike water-level changes in these wells are consistent with the
expected effects of the earthquake’s static strain field. Each hydrograph exhibits
an exponential decay of the coseismic water level rise over a period of days to a
week. The recovery of the steps presumably reflects the dissipation of the
strain-induced pressure by flow to the water table. In particular, these
hydrographs cannot be interpreted as the time history of the strain caused by
the Landers earthquake.

10
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San Bernardino. Water level is being monitored in wells at several depths
in alluvial aquifers in the San Bernardino area. In a group of wells about 60
meters from the San Jacinto fault (SBV in Figure 2), measurements are made
once every 15 minutes with a resolution of at least 0.3 cm of water. Water-level
changes generally less than 1 cm were observed in response to the Landers
earthquake sequence.

Hourly measurements are made in wells in Garner (Encanto) Park and in
Meadowbrook Park (GP and MBP in Figure 2, respectively). In Meadowbrook
Park, water level is measured at depths of 207-213 m, 91-98 m, and 30-37 m. No
earthquake response was observed in the two deeper intervals. In the
shallowest depth interval, water level rose 33 cm in response to the Landers
earthquake, with a further rise of 12 cm in response to the Big Bear event
(Figure 7). Water level gradually returned to the pre-earthquake level in about
30 days.

In Garner Park, three aquifer levels are monitored. No response was
observed in the depth intervals 49-53 m or 163-168 m. In the intermediate
depth interval 73-78 m, water level rose 42 cm in response to the Landers
earthquake, with a further rise of 13 cm in response to the Big Bear event
(Figure 8). Post-earthquake recovery of the water level is masked by water-level
changes due to pumping.

Neither the Meadowbrook Park nor Garner Park hydrographs exhibit
fluctuations caused by earth tides, so no quantitative comparison can be made
between the sizes of the water-level changes and the calculated volumetric strain
fields of the Landers and Big Bear earthquakes.

19
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Other Sites. At Pinon Flat, water levels are monitored continuously in four
boreholes (Wyatt et al., 1994). At the time of the Landers earthquake, water
levels in three of these wells dropped 15 to 30 cm; water level in the fourth well
dropped 500 cm. A variety of longer-term changes took place following the
earthquake. In particular, water level in one of the wells recovered in several
days following the coseismic drop, and then continued to rise for at least 60
days to a level above the pre-earthquake level. The data are shown in Wyatt et
al. (1994).

Water levels in two unused wells in the Pinon Flats area have been
measured using a water-level indicator on a rather regular basis since December
22, 1991. The two wells are located 5 m apart, near the ruins of the old Jim
Wellman ranch (JWR in Figure 2). No information is available on the drilling or
completion of these wells, but they probably date to the 1930’s or early 1940’s.
In 1992, water levels had been measured 14 times between January 1 and April
26, but no measurements were made between April 26 and June 24, 1992,
Measurements from June 24 to August 15 are shown in Figure 9. In both wells,
the water level measured on June 28, 1992, after the Landers and Big Bear
earthquakes, was 9 cm higher than the previous measurement on June 24.
These water-level changes are in the opposite direction from the intial water
level changes recorded by Wyatt et al. (1994).

A borehole volumetric strainmeter is operated by the U.S. Geological
Survey in southern California (PUB in Figure 2). This strainmeter recorded
compressional strain of 0.4 ppm at the time of the Landers earthquake, in
general agreement with the computed volumetric strain field shown in Figure 2.

24



“(dsap wr 1) 1# (e) "T661
‘6T Isndny 0} GI aun{ ‘eruroje) ‘jel UOULJ Jeau Yduey UeW[[PAM PO 2} It S[[eM pasnun OM} UI S[oAd] 1B)ep\ 6 9mM3L]

6ol
Lsnonv Anr INOr
o 6 14 0¢ 14 0Z Gl ol S 0¢ SZ 0Z gl
H___._*_______ﬁ__.___________.___dﬁ____#_______“ﬂ__________ﬁ_ O.m
M 4 v
|
apnbyjang siepunT lw," 4 7y
L# HONVY NVATTIM °F |

(O] 4

SYILIN ¥IIVM Ol HId3d

25



"(doap w 72) T# (@ "Z661 ‘ST ISN3NY
0} G1 aun{ ‘eruIoje)) ‘e[ UOULJ Jeau YoUey UBWPM PO Y} 1B S[[9M PIsnun OMmj Ul S[9AI[ JAJep PANUNU0d ‘g IS

cbol
1SNONV AP ANNC
i 6 14 o¢ G¢ 0¢ Gl o1 S o¢ T4 0¢ Gl
_m___ﬁ_aﬁ_____«m__ﬁ—__________w________________"__.__________ .vch
m -+ ZL
1 o0z
| - 89
apnbyjiog siepup]
it HONVY NVWTIIm T |

99

SHILIN ¥ILVM OL H1d3d

26



Summary of Ground-water Level Changes Within 150 km of Epicenter.
Except for the two Wellman ranch wells near Pinon Flat, the signs of the initial
water-level changes at all sites shown in Figure 2 agree with the calculated
volumetric strain field. With the exception of the one 500 cm drop at Pinon Flat,
the sizes of the water-level changes are in approximate relation to the calculated
volumetric strains. This consistency would be expected if all of the observation
wells were in formations that could be characterized as “porous”, rather than
fractured. Analysis of longer records of data from these sites would be
necessary to establish which wells consistently respond to volumetric strain.

After the earthquake, the water level at some sites recovered to the pre-
earthquake level on a time scale consistent with flow to the water table. One
well at Pinon Flat displayed a longer-term increase in water level.
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Surface Water

USGS Gaging Stations. The U.S. Geological Survey maintains 80 stream
gaging stations within 125 km of the Landers epicenter (Figure 10). In at least 23
of these, flow is artificially controlled, either partially or completely. Daily
average discharge from all 80 gaging stations was examined to identify possible
earthquake-related changes. At all stations except for the Santa Ana River near
Mentone, any effect of the earthquake on discharge was below the resolution
and/or background variation level of the data.

In the Santa Ana River near Mentone, discharge increased by
approximately 50 cubic feet per second (cfs) on the day of the Landers
earthquake because earthquake damage to a power plant water intake reduced
the amount of flow that could be diverted to the plant (C. Fessler, Southern
California Edison Co., written communication, 1994).

Pinon Flat Area. Following the Landers-Big Bear earthquake sequence,
increased flow was reported by hikers and by Bureau of Land Management
personnel in Palm Canyon, Martinez Canyon, and Horsethief Canyon,
approximately 20-40 km to the NW, E, and SE of Pinon Flat, respectively.
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Millard Creek. Rick Hall, a technician with the Cabazon County Water
District (CCWD), reported that flow from a spring that they use as a water
source had increased before and after the Landers earthquake. The spring is
located in Millard Canyon, within the Morongo Indian Reservation, about 130
kilometers east of Los Angeles and near the town of Cabazon (Figures 10 and
11). The Southern Pacific (SP) spring is associated with, and probably in, a
strand of the San Andreas fault system, as mapped by Matti et al. (1992) and
Matti (unpublished map, 1994).

The spring, which is in the bed of Millard Creek, has been “developed”
for use as a water source by excavating its vent to a depth of 3 meters, over a
roughly elliptical area 12 m wide and 37 m long, and backfilling with gravel.
Spring discharge enters a perforated pipe in this ”infiltration gallery” and from
there enters an older system of piping belonging to the CCWD. The CCWD
has adjudicated rights to 224 gpm (0.5 cfs) from this spring, which they take
through the pipes down to tanks at the valley floor near Interstate 10. When
spring discharge exceeds this rate, a valve about 100 m downstream from the
infiltration gallery is used to reduce the flow rate. When the valve is sufficiently
closed down or the natural spring discharge is sufficiently high, excess flow
emerges from one or both of two bypasses in the pipe between the infiltration
gallery and the valve. When natural spring discharge is below 224 gpm, the
valve is fully opened. There is no provision for measurement of the spring
discharge upstream of the valve, but there is a flowmeter at the tank site at the
valley floor, which is read every few days by Rick Hall.

Because of the valve and the excess flow bypasses, natural spring
discharge can be read at the flowmeter only when the valve is open and the
flow is less than about 275 gpm. This was the situation in March, April, and
May 1992, before the Landers earthquake. At 5:30 PM on June 26, Mr. Hall
noticed flow emerging from one of the bypass outlets near the SP spring. He
noted on June 27 that the situation was the same as the previous day. At 9 AM
on June 29, after the earthquake, he read the flowmeter and found the flow to
be 410 gpm. At this time he closed the valve somewhat to decrease the flow
rate; subsequent readings do not accurately reflect the spring’s discharge but
confirm that the discharge remained high for at least several months following
the Landers event.

There have been many reports worldwide of hydrologic changes that
precede earthquakes, but to date there is no conclusive evidence that such
changes consistently take place. Roeloffs and Quilty (1995) reported small
ground-water-level and strain changes preceding the 1985 Kettleman Hills,
California earthquake (M5.8). The changes were observed at sites 30 to 40 km
from the epicenter and began 3 days before the earthquake. Roeloffs (1993)
describes a stream discharge increase observed by a hiker about one hour prior
to the 1989 Loma Prieta, California earthquake (M7.1), which qualitatively
resembles the report regarding the SP spring prior to the Landers earthquake.
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Figure 11. Map showing the area of the SP spring in Millard Canyon.
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Summary of Surface Water Effects. Of 80 gaging stations, none recorded a
postseismic discharge change of natural origin. A discharge increase, reported
to have begun before the earthquake, took place at the SP Spring in Millard
Canyon, near active strands of the San Andreas fault system.

Ground-water discharge at a seep or spring can increase because of either
an increase of spring vent conductance, or an increase of subsurface fluid
pressure in the formation feeding the spring. The SP Spring is in an area where
coseismic volumetric strains were 0.1 to 10 ppm extension. Available ground-
water observations suggest that the initial response to the earthquake was for
subsurface fluid pressure to rise in areas that were volumetrically compressed,
and fall in most areas that were volumetrically extended. The observation of
increased discharge in an area where coseismic volumetric extension should
have lowered subsurface fluid pressure suggests that the increased discharge
may be due to increased spring vent conductance. It is plausible that
volumetric extension would increase spring vent conductance, although it is also
likely that other components of the strain field would be better predictors of
spring vent conductance.
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Other Phenomena

Tapo Canyon Oil Seep. A pre-existing oil and natural gas seep at Tapo
Canyon in the Santa Clara River drainage east of Ventura (Figure 12) became
more active after the earthquakes. Information about the seep was obtained
from W. Lewis of the Environmental Protection Agency and J. Calloway of the
Minerals Management Service.

The increased seepage was not noticed until 8 July when it reached the
Santa Clara River. Although earthquake shaking may have been a factor in the
increased seepage, hot weather that lowered the oil’s viscosity near the surface,
and heavy rains that raised the water table may also have played roles.

These seeps are at locations marked as oil seeps on maps as early as 1900.
The material seeping from them was approximately 19 parts water to one part
oil. The seepage is from the Modelo formation. At least one of the seeps was
described as ”roiling”, and smelled as though hydrogen sulfide and methane
were being emitted.

The oil seep contaminated the Santa Clara River, with possible effects on
endangered fish and bird species as well as other river life.

Gas Bubbles in San Bernardino Wells. Five wells that are part of the water
supply system for the City of San Bernardino (Figure 12) began to produce
relatively large amounts of a clear, odorless, non-flammable gas on July 21,
1992. This phenomenon has not been observed before in the city water supply
wells. Gas samples were taken from two of the wells on July 30, and analysis in
the Gas Geochemistry Lab at the USGS in Vancouver showed the samples to
consist of air somewhat enriched with CO,.

The gas bubbles posed a practical problem in that the water containing the
gas could not pass through the filtering system. The bubbling was still in
progress as of July 19, 1994.
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HYDROLOGIC OBSERVATIONS OUTSIDE OF SOUTHERN CALIFORNIA
Parkfield. Californi

Three observation wells in the Parkfield water-level network (Figures 1 and
13) displayed coseismic responses to the Landers earthquake. Well information
is listed in Table 3, and Figures 14 through 17 show barometric pressure,
rainfall, and hydrographs. All wells near Parkfield are monitored using
transducers with a resolution of approximately 1 mm of water. Data are
sampled at intervals of either 10 or 15 minutes.

The Bourdieu Shallow (BS) well displayed a 34 cm water-level rise
following the Landers earthquake (Figures 14 and 15). This behavior is similar to
the response of this well to the Loma Prieta earthquake of October 18, 1989, the
Parkfield M 4.7 earthquake of October 20, 1992, and the Parkfield M 4.8
earthquake of November 14, 1993 (Figure 14). A small amount of rainfall fell in
the Parkfield area on June 30, but is judged unlikely to have contributed
significantly to the water-level rise, which began before the rainfall. Moreover,
additional rainfall in the second week of July did not produce a comparable
water-level rise. After the coseismic water-level rise associated with the Landers
earthquake the long term hydrological decline characteristic of summer months
at this well site was re-established.
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Figure 15. Water level in the Bourdieu Shallow well, barometric pressure, and
rainfall. ”“Corrected” data have been prepared by multiplying the barometric
pressure record by a scalar barometric efficiency and subtracting the result from
the “Raw” data. (a) May 28 to July 28, 1992.
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The coseismic responses of water level in the wells located at Middle
Mountain and Turkey Flat were much smaller and are not clearly
distinguishable until earth tide and barometric pressure signals are removed
from both water-level data sets (Figures 16 and 17). The slow recovery of water
level in the Middle Mountain well after the coseismic drop is very similar to
water-level recovery at this site following large water-level drops that coincide
with nearby creep events on the San Andreas fault (Roeloffs et al., 1989). Small
water-level rises in the corrected Middle Mountain data on June 2 and July 14
coincide with small creep events. The Landers earthquake itself triggered about
0.5 mm of right-lateral slip on the San Andreas fault near the Middle Mountain
well (K. Breckenridge, unpublished data), which may have in turn influenced
the response of well water level.

The Middle Mountain and Turkey Flat wells exhibit earth tidal signals,
with strain sensitivities of 53 cm/ppm. At this distance from the epicenter,
- however, the static strain field of the Landers sequence would not be expected
to produce measureable water-level changes in these wells. The Bourdieu
Shallow well does not respond to earth tides. In general, it seems unlikely that
a static strain change could produce the water-level changes observed in the
Parkfield wells.

At Middle Mountain, the slow recovery of water level is characteristic of a
confined aquifer. The slow recovery of water level in the filtered data from the
Turkey Flat well after the coseismic rise cannot be so readily accounted for since
various investigators (Rojstaczer,1988; Quilty and Roeloffs,1991) have
established by means of cross-spectral analysis that the aquifer at this site is
poorly confined. In a poorly confined aquifer, water-level changes due to
volume strain would be expected to recover quickly via upward flow to the
water table. Water-level changes in poorly confined aquifers that do not recover
quickly might be explained by flow of fluid into or out of the region around the
wells but cannot be explained by elastic response to static or dynamic
earthquake strain fields.

Other types of data are available from Parkfield. Spudich and others
(1995) used data from a dense seismograph array to measure the transient
stresses induced by the Landers earthquake. They found that, at the earth’s
surface, transient strain of 7 ppm and stress of 0.035 Mpa occurred with periods
of 2 to 15 seconds, with peak stresses inferred to increase to 0.12 Mpa at depths
of 2 to 14 km. The amplitude of the transient strain is thus more than sufficient
to account for the amplitude of the observed water-level changes in the Turkey
Flat and Middle Mountain wells, but offers no explanation for their persistence.
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Figure 16. Water level in the Middle Mountain well, barometric pressure, and
rainfall. Earth tidal and barometric fluctuations have been subtracted from the
”Corrected” data. (a) May 28 to July 28, 1992.
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Figure 17. Water level in the Turkey Flat well, barometric pressure, and rainfall.
Earth tidal and barometric fluctuations have been subtracted from the
”Corrected” data. (a) May 28 to July 28, 1992,
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Figure 17, continued. Water level in the Turkey Flat well, barometric pressure,
and rainfall. Earth tidal and barometric fluctuations have been subtracted from
the “Corrected” data. (b) June 25 to July 5, 1992.
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Lone Valley. Californi

The Long Valley area is shown in Figure 1 and the site locations are shown
in Figure 18. Table 4 lists the Long Valley sites and their responses. Records of
water level or pressure change for three wells with digital recorders and two
wells with chart recorders showed coseismic changes of 1.5 to 180 cm (Figures
19 through 22). For two other wells with digital recorders (CH-1 and CM-2),
slight rises at the time of the Landers earthquake were comparable to the
resolution of the measurement and therefore may be insignificant. In addition
to water-level changes in wells, the water level in the Hot Bubbling Pool (HBP)
dropped about 4 cm (Figure 23). Hot Bubbling Pool is a thermal (80° C) spring
pool approximately 20 m in diameter with no surface discharge point.

At all the Long Valley sites, low frequency (< 1 cycle per day) water-level
changes were taking place prior to the Landers earthquake and continued
afterwards. These water-level changes included both long-term trends (with
periods of 1 year or more) and seasonal fluctuations. In addition, water levels
were changing at RDO-8 and probably at HBP, CW-3, and CM-2 due to well
field testing in the geothermal field at Casa Diablo. In particular, water level was
changing in well RDO-8 before the Landers earthquake in response to a partial
shutdown of the geothermal plants at Casa Diablo, beginning at 19:15 local time
on June 26, 1992. Because this well is hydraulically connected to the injection
zone, its response to the shutdown was a drop in water level. Water levels in
wells LKT and CH10-B showed no response to the well field testing because of
their distance from the well field.

The recorded water-level changes are in part a function of measurement
frequency. The hydrograph from CW-3 (Figure 19) which is equipped with a
chart recorder, exhibits vertical lines at the times of the Landers and Big Bear
earthquakes. These lines most likely represent an oscillatory response to the
earthquake surface waves. Although the time resolution does not allow
individual oscillations to be discerned, the maximum amplitude should be
accurately recorded because of the continuous nature of the record. Well MW-5
(data not shown) is also monitored using a chart recorder, and appears to have
exhibited smaller amplitude fluctuations at the time of the Landers earthquake.

The other three Long Valley wells that responded (CH10-B, LKT, and
RDO-8) probably also oscillated in response to the earthquake surface waves,
but because the sampling interval of 15 or 30 minutes is long compared to
surface wave periods of tens of seconds, the maximum recorded amplitude is
probably not equal to the maximum amplitude of the oscillations.
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The transducer in well LKT, which is designated as a strain-indicator well,
malfunctioned during the initial coseismic compressional change. Thus, it is not
possible to determine the full extent of the compressional change, or whether a
postseismic extensional change occurred, as was observed after the Chalfant and
Loma Prieta earthquakes.

Aside from well CH10-B, the magnitude of the coseismic response in the
wells is less than a maximum of 37 cm, and in each case the seismically induced
changes were considerably smaller than fluctuations occurring during that
general time period as a result of the shut-down of the geothermal well field at
Casa Diablo and normal seasonal hydrologic processes. The coseismic change
observed in well CH10-B, located near the Hot Creek gorge, was anomalous in
magnitude and duration. Its response is due in part to the characteristics of the
nitrogen bubbler-tube system used to detect changes in water level, and
possibly to its proximity to the thermal water discharge area in Hot Creek

gorge.

Except for RDO-8, water levels in all wells returned to their pre-earthquake
levels within an hour or two, consistent with the hypothesis that the coseismic
changes were oscillations in response to elastic strain induced in the aquifers by
the passage of surface waves. At RDO-8, however, a decrease of about 12 cm
relative to the pre-earthquake water level persisted for about two days. It is not
known when the water level at well LKT returned to its pre-earthquake level,
because the transducer failed.
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Eastern Nevada

Water-level fluctuations were recorded in two wells in eastern Nevada
(Figure 1; Table 5), 509 and 522 km from the Landers epicenter. Both wells are
completed in unconsolidated alluvium. The wells are instrumented with 20 psi
transducers, and maximum, minimum, and average water levels are logged
every six hours (Figure 24). The data are consistent with the occurrence of
seismic oscillations, with water level returning to the pre-earthquake level
within one six-hour sampling interval.

Table 5. Wells in Eastern Nevada

Site Name Latitude Longitude Depth
(meters)

Spring Valley 38° 37’ 04” 114° 22’ 50” 213

North Railroad Valley 38° 43" 48” 115° 28’ 37" 178
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Grants Pass, Oregon

Water-level oscillations were recorded in the North Valley Industrial Park
(NVIP) well in Grants Pass, Oregon. The well is 91 meters deep, cased to a
depth of 51 meters, and developed in fractured granodiorite and crystalline
metamorphic rock. The well has been monitored since 1984 with a Stevens
chart recorder.

The NVIP well has displayed many oscillations in response to earthquakes.
Some of these oscillations correspond to earthquakes of magnitude 7 or larger at
teleseismic distances. The largest oscillations measured 114 cm peak to peak,
- and were recorded on April 25, 1992, corresponding to the magnitude 7.1 Cape
Mendocino earthquake. The oscillations corresponding to the Landers
earthquake, with an amplitude of 78 cm peak to peak, were the second largest
to have been recorded in the NVIP well. The chart record was digitized and is
plotted as Figure 25.

Seismic water-level oscillations in the NVIP well that are larger than 30 cm
peak to peak have been accompanied by water-level drops that persist for a
period of days after the earthquake. For the Landers earthquake, the occurrence
of a persistent water level change is suggested by comparing the tidal troughs
for the three days following the earthquake with those for the three days
before. Following the coseismic water-level oscillation, the water level appears
to have fallen by about 3 cm and returned to the pre-earthquake level 5 to 6
days later. Barometric pressure effects probably obscure the recovery to the
pre-earthquake water level, because a storm accompanied by 3.2 cm of rain took
place on June 28 and 29, 1992.

The coseismic oscillations in the NVIP well are probably due to resonant
movement of the water column in the well, as described by Cooper et al. (1965)
and Liu et al. (1989). The reason why water-level changes sometimes persist for
several days after earthquakes is not yet understood.
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SUMMARY

Ground-water level changes in southern California recorded in the hours
following the Landers and Big Bear earthquakes agreed in direction with the
sign of the calculated coseismic volume strain field. In two shallow wells at the
old Wellman ranch near Pinon Flat, however, measurements on June 28 after
both the Landers and Big Bear earthquakes showed that water levels had risen 9
cm. The largest ground-water level changes were a rise of 3 meters at Lucerne
Valley and a drop of 5 m at Pinon Flat.

A spring discharge increase in Millard Canyon was observed by a
technician, who reported that the change preceded the earthquake by several
days. This discharge increase was in an area where the earthquake produced
extensional volumetric strain, which presumably decreased subsurface fluid
pressure. The discharge increase may therefore represent an increase of spring
vent conductance caused by the earthquake’s static strain field.

At Parkfield, California, water-level changes took place in three wells at
the time of the earthquake, and recovered over periods as long as 30 days. At
Long Valley, California, observed water-level changes generally returned to
normal after minutes to hours, consistent with their having been caused by the
passage of surface waves. However, water level in one well at Long Valley and
in the NVIP well near Grants Pass, Oregon, remained low for at least two days
following the earthquake. Water-level oscillations were observed in two wells in
eastern Nevada.

Some of the hydrologic phenomena accompanying the Landers earthquake
were of practical significance. The Tapo Canyon oil seep polluted part of the
Santa Clara River. Gas bubbles in San Bernardino city water supply wells
rendered those wells temporarily unusable. The coseismic discharge increase in
Millard Creek was a welcome addition to the water supply.
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