Chemical analyses of 33 surface water samples from the Redcloud Peak area, Colorado

by

J.B. McHugh*, W.R. Miller*, A.L. Meier*, and W.M. d’Angelo*

Open-File Report 95-79

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

*U.S. Geological Survey, DFC, Box 25046, MS 973, Denver, CO 80225

1995
CONTENTS

Page
Introduction... 1
Sample Collection..1
Analytical methods...1
References cited...2

TABLE

Table 1. Analytical data for 33 water samples from the Redcloud Peak area, Colorado.........................3
INTRODUCTION

The Redcloud Peak areas, west and southwest of Lake City, Colorado, was selected for study because no significant mining or acid mine drainage is associated with the study area. The study area was determined to have high potential for base and precious metals in vein and breccia-pipe epithermal deposits and moderate potential for molybdenum and copper porphyry deposits (Sanford and others, 1987). The study area lies mostly within the Lake City caldera and exposed rocks are mainly a caldera-fill sequence of high silica to quartz trachytic ash-flow tuffs and caldera collapse breccia.

SAMPLE COLLECTION

Thirty-three samples of water were collected from streams in the Redcloud Peak area on July 21-23, 1994. Samples were collected in polyethylene bottles that had been rinsed with 10 percent nitric acid. At each site, a 60-mL sample was collected and filtered through a 0.45-um filter, and acidified to pH<2 with concentrated nitric acid. An additional unfiltered, and unacidified 500-mL sample was also collected.

ANALYTICAL METHODS

At each site temperature and pH were measured. Ferrous iron was also determined at each site colorimetrically with a Hach DR/2000 spectrophotometer. Calcium, magnesium, sodium, potassium, silica, aluminum, manganese, and iron were determined in the filtered acidified samples by flame atomic absorption spectrophotometry (Perkin-Elmer, 1976). Arsenic, copper, cobalt, nickel, molybdenum, uranium, and zinc were determined in the filtered acidified samples by inductively coupled plasma-mass spectrometry. Fluoride, chloride, sulfate, and nitrate were determined by ion chromatography using the untreated samples (Fishman and Pyen 1979). Alkalinity was determined in the untreated samples, by Gran's plot potentiometric titration (Orion Research, 1978), as was specific conductance. The analytical data for these analyses are shown in table 1.
REFERENCES CITED

Table 1. Analytical data for 33 water samples from Redcloud Peak area, Colorado

<table>
<thead>
<tr>
<th>Sample</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>Ca(mg/L)</th>
<th>Mg(mg/L)</th>
<th>Na(mg/L)</th>
<th>K(mg/L)</th>
<th>ALK(mg/L)</th>
<th>F(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW01</td>
<td>38 1 6</td>
<td>107 21 30</td>
<td>15</td>
<td>2.4</td>
<td>2.1</td>
<td>.9</td>
<td>13</td>
<td>0.23</td>
</tr>
<tr>
<td>RW02</td>
<td>37 58 59</td>
<td>107 29 7</td>
<td>15</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
<td>29</td>
<td>0.12</td>
</tr>
<tr>
<td>RW03</td>
<td>38 0 27</td>
<td>107 26 51</td>
<td>31</td>
<td>3.3</td>
<td>1.5</td>
<td>0.8</td>
<td><1</td>
<td>0.41</td>
</tr>
<tr>
<td>RW04</td>
<td>38 0 30</td>
<td>107 26 6</td>
<td>17</td>
<td>1.3</td>
<td>1.0</td>
<td>0.4</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>RW05</td>
<td>38 1 13</td>
<td>107 24 6</td>
<td>19</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
<td>20</td>
<td>0.18</td>
</tr>
<tr>
<td>RW06</td>
<td>38 1 5</td>
<td>107 22 24</td>
<td>14</td>
<td>1.9</td>
<td>1.7</td>
<td>0.4</td>
<td>23</td>
<td>0.16</td>
</tr>
<tr>
<td>RW07</td>
<td>37 56 33</td>
<td>107 29 57</td>
<td>25</td>
<td>5.3</td>
<td>0.4</td>
<td>0.5</td>
<td>18</td>
<td>0.15</td>
</tr>
<tr>
<td>RW08</td>
<td>37 56 31</td>
<td>107 29 57</td>
<td>18</td>
<td>1.8</td>
<td>0.4</td>
<td>0.4</td>
<td>26</td>
<td>0.11</td>
</tr>
<tr>
<td>RW09</td>
<td>37 56 44</td>
<td>107 29 31</td>
<td>13</td>
<td>1.0</td>
<td>0.5</td>
<td>0.4</td>
<td>21</td>
<td>0.11</td>
</tr>
<tr>
<td>RW10</td>
<td>37 56 40</td>
<td>107 28 42</td>
<td>14</td>
<td>2.5</td>
<td>0.4</td>
<td>0.9</td>
<td>12</td>
<td>0.09</td>
</tr>
<tr>
<td>RW11</td>
<td>37 56 37</td>
<td>107 28 9</td>
<td>12</td>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
<td>15</td>
<td>0.27</td>
</tr>
<tr>
<td>RW12</td>
<td>37 56 54</td>
<td>107 26 19</td>
<td>12</td>
<td>2.0</td>
<td>0.6</td>
<td>1.9</td>
<td><1</td>
<td>0.19</td>
</tr>
<tr>
<td>RW13</td>
<td>37 56 56</td>
<td>107 26 18</td>
<td>17</td>
<td>2.9</td>
<td>1.6</td>
<td>1.1</td>
<td>17</td>
<td>0.2</td>
</tr>
<tr>
<td>RW14</td>
<td>37 56 56</td>
<td>107 26 25</td>
<td>22</td>
<td>4.5</td>
<td>2.2</td>
<td>4.5</td>
<td><1</td>
<td>0.96</td>
</tr>
<tr>
<td>RW15</td>
<td>37 56 46</td>
<td>107 26 39</td>
<td>7.8</td>
<td>1.2</td>
<td>0.6</td>
<td>1.7</td>
<td>13</td>
<td>0.15</td>
</tr>
<tr>
<td>RW16</td>
<td>37 56 28</td>
<td>107 27 13</td>
<td>11</td>
<td>2.0</td>
<td>0.5</td>
<td>3.6</td>
<td><1</td>
<td>0.33</td>
</tr>
<tr>
<td>RW17</td>
<td>38 0 12</td>
<td>107 21 45</td>
<td>15</td>
<td>2.4</td>
<td>2.0</td>
<td>0.9</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>RW18</td>
<td>38 0 17</td>
<td>107 21 46</td>
<td>28</td>
<td>4.3</td>
<td>4.4</td>
<td>0.5</td>
<td>86</td>
<td>0.1</td>
</tr>
<tr>
<td>RW19</td>
<td>38 0 35</td>
<td>107 21 40</td>
<td>85</td>
<td>10</td>
<td>26</td>
<td>1.1</td>
<td>179</td>
<td>0.39</td>
</tr>
<tr>
<td>RW20</td>
<td>37 55 25</td>
<td>107 20 1</td>
<td>13</td>
<td>1.2</td>
<td>4.0</td>
<td>0.4</td>
<td>40</td>
<td>0.1</td>
</tr>
<tr>
<td>RW21</td>
<td>37 54 29</td>
<td>107 22 31</td>
<td>12</td>
<td>1.4</td>
<td>1.2</td>
<td>0.7</td>
<td>29</td>
<td>0.07</td>
</tr>
<tr>
<td>RW22</td>
<td>37 54 26</td>
<td>107 22 49</td>
<td>12</td>
<td>1.4</td>
<td>1.2</td>
<td>0.7</td>
<td>15</td>
<td>0.08</td>
</tr>
<tr>
<td>RW23</td>
<td>37 54 24</td>
<td>107 25 55</td>
<td>18</td>
<td>1.6</td>
<td>2.3</td>
<td>0.3</td>
<td>45</td>
<td>0.32</td>
</tr>
<tr>
<td>RW24</td>
<td>37 54 44</td>
<td>107 26 27</td>
<td>33</td>
<td>2.0</td>
<td>4.4</td>
<td>1.2</td>
<td>94</td>
<td>0.28</td>
</tr>
<tr>
<td>RW25</td>
<td>37 55 5</td>
<td>107 26 51</td>
<td>11</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>13</td>
<td>0.09</td>
</tr>
<tr>
<td>RW26</td>
<td>37 56 9</td>
<td>107 27 30</td>
<td>14</td>
<td>2.4</td>
<td>1.1</td>
<td>1.7</td>
<td><1</td>
<td>0.2</td>
</tr>
<tr>
<td>RW27</td>
<td>37 54 20</td>
<td>107 24 33</td>
<td>6.3</td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>23</td>
<td>0.08</td>
</tr>
<tr>
<td>RW28</td>
<td>37 54 24</td>
<td>107 21 47</td>
<td>16</td>
<td>1.8</td>
<td>1.7</td>
<td>0.8</td>
<td>28</td>
<td>0.16</td>
</tr>
<tr>
<td>RW29</td>
<td>38 1 9</td>
<td>107 21 33</td>
<td>18</td>
<td>2.1</td>
<td>2.3</td>
<td>0.6</td>
<td>35</td>
<td>0.14</td>
</tr>
<tr>
<td>RW30</td>
<td>37 58 22</td>
<td>107 26 33</td>
<td>12</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td><1</td>
<td>0.26</td>
</tr>
<tr>
<td>RW31</td>
<td>37 58 24</td>
<td>107 26 36</td>
<td>7.6</td>
<td>0.7</td>
<td>0.4</td>
<td>0.4</td>
<td>15</td>
<td>0.12</td>
</tr>
<tr>
<td>RW32</td>
<td>37 57 53</td>
<td>107 27 4</td>
<td>14</td>
<td>2.3</td>
<td>1.1</td>
<td>2.3</td>
<td><1</td>
<td>0.69</td>
</tr>
<tr>
<td>RW33</td>
<td>37 57 19</td>
<td>107 27 50</td>
<td>6.7</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
<td>20</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Table 1. Analytical data for 33 water samples from Redcloud Peak area, Colorado—Continued

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cl (mg/L)</th>
<th>SO₄ (mg/L)</th>
<th>NO₃ (mg/L)</th>
<th>SiO₂ (mg/L)</th>
<th>Al (mg/L)</th>
<th>Mn (mg/L)</th>
<th>Fe (mg/L)</th>
<th>Fe²⁺ (mg/L)</th>
<th>As (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW01</td>
<td>0.17</td>
<td>42</td>
<td><0.2</td>
<td>9</td>
<td><0.1</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW02</td>
<td>0.15</td>
<td>32</td>
<td><0.2</td>
<td>3</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW03</td>
<td>0.11</td>
<td>93</td>
<td><0.2</td>
<td>9</td>
<td>0.4</td>
<td>0.18</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW04</td>
<td>0.14</td>
<td>28</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW05</td>
<td>0.11</td>
<td>34</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW06</td>
<td>0.12</td>
<td>20</td>
<td><0.2</td>
<td>8</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW07</td>
<td><0.1</td>
<td>70</td>
<td><0.2</td>
<td>3</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td>0.02</td>
<td><1</td>
</tr>
<tr>
<td>RW08</td>
<td><0.1</td>
<td>28</td>
<td><0.2</td>
<td>3</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW09</td>
<td><0.1</td>
<td>22</td>
<td><0.2</td>
<td>4</td>
<td><0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW10</td>
<td><0.1</td>
<td>42</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW11</td>
<td><0.1</td>
<td>45</td>
<td>0.32</td>
<td>10</td>
<td>1.2</td>
<td>0.5</td>
<td>0.04</td>
<td>0.04</td>
<td><1</td>
</tr>
<tr>
<td>RW12</td>
<td>0.15</td>
<td>49</td>
<td>1.1</td>
<td>9</td>
<td>1.6</td>
<td>0.52</td>
<td><0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW13</td>
<td>0.11</td>
<td>49</td>
<td>0.32</td>
<td>9</td>
<td>0.1</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW14</td>
<td>0.14</td>
<td>106</td>
<td><0.2</td>
<td>29</td>
<td>2.6</td>
<td>2</td>
<td>0.45</td>
<td>0.21</td>
<td><1</td>
</tr>
<tr>
<td>RW15</td>
<td>0.14</td>
<td>23</td>
<td><0.2</td>
<td>16</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW16</td>
<td>0.15</td>
<td>53</td>
<td><0.2</td>
<td>25</td>
<td>1.7</td>
<td>1.2</td>
<td>0.07</td>
<td>0.07</td>
<td><1</td>
</tr>
<tr>
<td>RW17</td>
<td>0.1</td>
<td>43</td>
<td><0.2</td>
<td>10</td>
<td><0.1</td>
<td>0.02</td>
<td>0.27</td>
<td>0.27</td>
<td><1</td>
</tr>
<tr>
<td>RW18</td>
<td>0.29</td>
<td>37</td>
<td><0.2</td>
<td>12</td>
<td><0.1</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW19</td>
<td>0.82</td>
<td>176</td>
<td><0.2</td>
<td>14</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td>11</td>
</tr>
<tr>
<td>RW20</td>
<td>0.17</td>
<td>9</td>
<td><0.2</td>
<td>9</td>
<td><0.1</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW21</td>
<td>0.13</td>
<td>23</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW22</td>
<td>0.11</td>
<td>23</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td>0.03</td>
<td>0.02</td>
<td><1</td>
</tr>
<tr>
<td>RW23</td>
<td>0.15</td>
<td>16</td>
<td><0.2</td>
<td>7</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW24</td>
<td>0.17</td>
<td>24</td>
<td><0.2</td>
<td>8</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW25</td>
<td>0.11</td>
<td>24</td>
<td><0.2</td>
<td>8</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW26</td>
<td>0.13</td>
<td>50</td>
<td>0.59</td>
<td>10</td>
<td>0.3</td>
<td>0.26</td>
<td>0.03</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW27</td>
<td>0.13</td>
<td>6.9</td>
<td><0.2</td>
<td>6</td>
<td><0.1</td>
<td><0.01</td>
<td>0.04</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW28</td>
<td>0.19</td>
<td>23</td>
<td><0.2</td>
<td>7</td>
<td><0.1</td>
<td><0.01</td>
<td>0.03</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW29</td>
<td>0.22</td>
<td>31</td>
<td><0.2</td>
<td>10</td>
<td><0.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW30</td>
<td><0.1</td>
<td>52</td>
<td>0.37</td>
<td>10</td>
<td>2.1</td>
<td>0.67</td>
<td>0.07</td>
<td>0.05</td>
<td><1</td>
</tr>
<tr>
<td>RW31</td>
<td>0.18</td>
<td>13</td>
<td><0.2</td>
<td>3</td>
<td><0.1</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>RW32</td>
<td>0.17</td>
<td>74</td>
<td><0.2</td>
<td>17</td>
<td>4.4</td>
<td>0.53</td>
<td>0.04</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>RW33</td>
<td><0.1</td>
<td>10</td>
<td><0.2</td>
<td>4</td>
<td><0.1</td>
<td><0.01</td>
<td>0.02</td>
<td>0.01</td>
<td><1</td>
</tr>
</tbody>
</table>
Table 1. Analytical data for 33 water samples from Redcloud Peak area, Colorado—Continued

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu (μg/L)</th>
<th>Co (μg/L)</th>
<th>Ni (μg/L)</th>
<th>Mo (μg/L)</th>
<th>U (μg/L)</th>
<th>Zn (μg/L)</th>
<th>SP</th>
<th>COND</th>
<th>pH</th>
<th>TEMP</th>
<th>C°</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW01</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><0.1</td>
<td><5</td>
<td>128</td>
<td>6.86</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW02</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.1</td>
<td><5</td>
<td>110</td>
<td>7.09</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW03</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td><1</td>
<td>0.3</td>
<td>60</td>
<td>230</td>
<td>5.92</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW04</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>7</td>
<td>1.1</td>
<td><5</td>
<td>119</td>
<td>7.55</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW05</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>3</td>
<td>0.5</td>
<td><5</td>
<td>112</td>
<td>7.14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW06</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.1</td>
<td><5</td>
<td>105</td>
<td>7.65</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW07</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><0.1</td>
<td>67</td>
<td>195</td>
<td>7.1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW08</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.1</td>
<td>22</td>
<td>120</td>
<td>7.37</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW09</td>
<td>3</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.4</td>
<td>6</td>
<td>37</td>
<td>6.87</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW10</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><0.1</td>
<td>7</td>
<td>117</td>
<td>6.73</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td><1</td>
<td>2.6</td>
<td>90</td>
<td>117</td>
<td>5.17</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW12</td>
<td>4</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td>6.6</td>
<td>110</td>
<td>127</td>
<td>4.92</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW13</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.6</td>
<td>10</td>
<td>143</td>
<td>7.18</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW14</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td><1</td>
<td>3.4</td>
<td>280</td>
<td>320</td>
<td>3.58</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW15</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>0.2</td>
<td>10</td>
<td>70</td>
<td>6.08</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW16</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td><1</td>
<td>3.5</td>
<td>83</td>
<td>148</td>
<td>4.17</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW17</td>
<td><1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td><0.1</td>
<td>5</td>
<td>128</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW18</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>1</td>
<td><5</td>
<td>208</td>
<td>7.92</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW19</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>29</td>
<td>2.2</td>
<td><5</td>
<td>622</td>
<td>7.81</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW20</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.2</td>
<td>5</td>
<td>95</td>
<td>6.8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW21</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>0.3</td>
<td><5</td>
<td>93</td>
<td>6.91</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW22</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>0.2</td>
<td><5</td>
<td>94</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW23</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>6</td>
<td>2.1</td>
<td><5</td>
<td>121</td>
<td>7.42</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW24</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>9</td>
<td>8.1</td>
<td><5</td>
<td>210</td>
<td>7.6</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW25</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>0.1</td>
<td><5</td>
<td>87</td>
<td>7.57</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW26</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td><1</td>
<td>2.6</td>
<td>100</td>
<td>129</td>
<td>6.06</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW27</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>0.6</td>
<td><5</td>
<td>44</td>
<td>7.05</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW28</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.5</td>
<td><5</td>
<td>115</td>
<td>7.12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW29</td>
<td>2</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>0.3</td>
<td>26</td>
<td>136</td>
<td>7.53</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW30</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td><1</td>
<td>5.2</td>
<td>130</td>
<td>142</td>
<td>4.42</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW31</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><0.1</td>
<td><5</td>
<td>55</td>
<td>6.4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW32</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td><1</td>
<td>4.6</td>
<td>93</td>
<td>194</td>
<td>3.9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW33</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><0.1</td>
<td><5</td>
<td>47</td>
<td>6.6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>