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ABSTRACT

The hydrate stability field is sensitive to the pressure and temperature in the earth, so the 
depth to a bottom simulating reflector (BSR), which occurs at the phase boundary, can be used to 
determine regional conductive heat flow. The inferred heat flow values estimated from the BSR 
depths in the recent slide on the Carolina Continental Rise, southeastern United States, indicate 
that the heat flow values in the slide area are significantly different from those in the adjacent 
undisturbed area. This difference in the heat flow values could be caused by a local perturbation 
of temperature in the sediments either by a local heat source or advective fluid flow.

In order to estimate the amount of heat source or advective fluid flow accountable for the 
difference in heat flow values, the temperature distribution in the earth by a local heat 
perturbation is required and this temperature perturbation are computed by one- and 
two-dimensional finite difference equations for inhomogeneous heat flow equations. Analytic 
solutions for homogeneous one-dimensional heat flow equations are derived in order to examine 
the numerical results and analyze the time required to reach the steady-state condition.

The depth-dependent thermal gradients observed at the Deep Sea Drilling Project (DSDP) 
well 533 could be explained by introducing a local heat source located between 40 m and 140 m 
in depth with a magnitude of 200 (J-M/m"3 . However, the heat source model is not unique, so the 
heat source model should be considered as one of the possible solutions explaining the 
depth-dependent thermal gradients at DSDP 533 hole.

INTRODUCTION

Natural-gas hydrates are stable at the temperature and pressure conditions that exist near 
and beneath the sea floor in the world's ocean where water depths exceed 300 to 500 m 
(Kvenvolden, 1993). Temperature increases downward through the sediments along the 
geothermal gradient, and although pressure also increases, the conditions become ultimately too 
hot for hydrate to exist. The lower boundary of gas hydrate phase stability represents a contact 
between hydrate-bearing sediments and those containing water plus, commonly free gas in their 
pores. This contact frequently manifest itself as bottom simulating reflectors (BSRs) in seismic 
profiles (Markl and others, 1970; Tucholke and others, 1977; Shipley and others, 1979)

Because the temperature and pressure conditions at the phase boundary are well known 
from laboratory measurements (Sloan, 1990), they can be used to determine the temperature at 
the BSR level. From this in-situ temperature, with other pertinent parameters, heat flow can be 
inferred from the measured BSR depth. Uyeda and others (1982) estimated the heat flow from 
the BSR depths at the Nankai Trough and compared these values with the actual heat flow 
measurements. They concluded that because of a few uncertain factors such as the thermal 
conductivity and interval velocity, the accuracy of the estimated values is not very high, but the 
values are consistent with those measured by conventional means.

An analysis of BSRs at the Gulf of Oman indicates that a heat flow profile derived from 
the BSR depths does not show the expected landward decrease of BSR depths as the sediment 
pile thickens (Minshull and White, 1989). They attributed this anomaly to the advective heat 
flow within the prism. Similarly Davis and Hyndman (1990) performed detailed analysis of heat 
flow measurements and BSRs at the Northern Cascadia accretionary prism. They observed that 
measured heat flow values are as much as 30 % higher than inferred heat flow values from the 
BSR depths and they explained this discrepancy by the advective heat transport resulting from 
the dewatering of the prism sediments.



In order to quantify the magnitude of a local heat source or an advective fluid flow that 
influences the BSR depths, temperature in the sediments must be known accurately. In cases 
where the material properties of the sediments, such as the thermal conductivity, are dependent 
on the location in the sediments, a numerical method is required to solve the heat flow equation. 
Sawyer (1982) used a two-dimensional finite difference equation in his study of thermal 
evolution of the northern United States Atlantic continental margin. Hutchison (1988) used 
one-dimensional a finite difference equation in order to predict thermal parameters and material 
advection rates for an evolving sediment/basement system.

In this paper one- and two-dimensional finite difference equations for inhomogeneous 
heat flow including a heat source term and an advective fluid flow term are solved in order to 
derive temperature distribution in the sediments. Two boundary conditions, a constant 
temperature and a constant heat flux, are utilized in the difference equation. The solutions of the 
difference equation are used to predict the BSR depths and the amount of surface heat flow 
contributed by the local heat perturbation.
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HEAT FLOW EQUATION

An inhomogeneous equation for the temperature within the sediment can be described by 
the following heat flow equation (Hutchison, 1985).

Pc^+p,c0 [V-<j)Fr]+pC[V.(i-<i>)sr] = v-(*vr) + H (i)
where p is the density of the sediment, C is the specific heat of the sediment at the constant 
pressure, p0 is the fluid density and C0 is the specific heat of the fluid at constant pressure, k is 
the thermal conductivity of the sediment, F is the fluid velocity, S is the sediment particle 
velocity, <j) is the porosity of the sediment, H is the rate of internal heat generation and T is the 
temperature.

In the two-dimensional orthogonal cartesian coordinate system, Equation (1) can be 
written as:

(2)

with 3 =

The superscripts x and z in Equation (2) represent the directions of velocity components.
The solution of Equation (2) is very complex because of the spatial dependence of the 

coefficients. Sclater and Francheteau(l970) analytically solved a similar but a simpler equation 
under the assumption of the steady-state condition with the constant thermal conductivity, 
density and specific heat, but included a heat source and an advective term in the solution. In



order to solve Equation (2) without any further assumptions, a numerical approach using a finite 
difference approximation is attempted. Both non-steady and steady state equations are 
considered here.

NON-STEADY STATE SOLUTION 
A) Two-Dimensional Solution

Using a central difference scheme for the spatial derivative and a forward difference for 
the time derivative, the derivatives in Equation (2) can be approximated by the following 
difference equations.

Let T(x,z,t) = T(i&xJAz,nAt) = T". Then

dt ~ Af

3;c 2 Ax 2

In Equation (3), Ax, Az and Af are the horizontal grid spacing, the vertical grid spacing and the 
time increment respectively. Using Equations (2) and (3), the two-dimensional finite difference 
approximation for the heat flow equation can be written as:

~^
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Let's consider a rectangular region with boundary (i = 1 and I : j = 1 and J). The 
appropriate boundary conditions are: 
a) At the top of the region (j = 1 for all i) - the constant temperature:

b) At the bottom of the region (j = J for all i)- the constant heat flux or the constant temperature. 
For the constant heat flux,

where QB is the heat flux at the basement or heat flux at depth which can be considered as 
constant. For a constant temperature, the boundary condition is the same form as that at the top 
of the model. 
c) At the right and left edge (i = 1 or I for all j) - no lateral heat transfer:

7^ = 7^,. and ^. = 7;_ u . (5c)

Other kinds of boundary conditions can be easily implemented in the framework of a finite 
difference approximation. For example, let's assume that the boundary temperature is changing 
with time and it is known. Then the boundary condition in Equation (5a) can be written as

The initial condition for the temperature inside the region can be computed with initial heat flux 
Q with T0 . Other initial conditions can be easily implemented in the finite difference formulation.

Equation (4) implies that if the temperature at n-step, the fluid and solid velocity, and other 
physical properties are known throughout the model, the temperature at n+1 step can be 
computed by Equation (4) with boundary conditions shown in Equation (5). For the 
homogeneous medium without a source or an advective term, the computation of temperature at 
any point, which serves either as a boundary condition or initial condition, is easy. However for 
the depth-dependent thermal conductivity, initial temperature is not simple to compute. Thus for 
the initial temperature distribution for a model having depth-dependent conductivities, I used the 
solution of the finite difference equation with constant flux at the lower boundary without a 
source or an advective term.

The solution of Equation (4) makes sense only if the solution is stable. The general 
stability condition for Equation (4) is very complicated. So it is assumed that the stability 
condition for the explicit scheme shown in Equation (4) is the same as that of a simpler 
difference equation. The simpler equation is the heat flow equation without a heat source term 
or an advective flow term under the assumption of constant parameters. If the stability condition 
for the simpler equation does not work for the general equation, we simply decrease the previous 
sampling interval (Ar) until a stability is reached. The simpler explicit difference scheme is 
stable, if the following condition for sampling interval is satisfied (Sawyer, 1982).

Ax Az



For the inhomogeneous media, we choose the minimum pC and maximum k in Equation (6) to 
insure the stability condition.

For the following numerical examples in this paper, constant (3 = 0.25xl07 Cal/ (°C cm3) 
and (3° = l.OxlO7 Cal/ (°C cm3) instead of depth-dependent variables were used for the sake of 
convenience. It is assumed that the thermal conductivity depends only on the porosity of the 
sediment and the porosity is a function of depth only. For the depth-dependent thermal 
conductivity, a simple geometric mean of the conductivities of pore fluid (0.6 Wrrf'K' 1 ) and 
matrix (2.4 Wm^K" 1 ) (Sass and others, 1971) was applied. The porosity was computed assuming 
that the porosity exponentially decreases with depth (Hutchison, 1985); the porosity-depth 
relationship is given by (]) = 0.65 EXP(-z/1500). This porosity equation provides the thermal 
conductivity of 0.975 Wrrr'K" 1 at the surface and 1.31 Wrrf'K" 1 at the depth of 600 m.

Figure 1 shows a schematic diagram of a two-dimensional landslide model in which 200 m 
of sediment is assumed to have initially slid away and Figure 2 shows the temperature 
distribution (solid lines) and the average thermal gradient (dashed lines) at location A without a 
local heat source or an advective fluid flow during the first 20,000 years after the landslide. The 
average thermal gradient is defined here as the difference between the surface temperature and 
temperature at depth divided by the depth. The model was run with Ax = Az = 50 m, Ar = 20 
years, T0 = 2.4°C with a constant flux boundary condition of QB= 40 mW/m2 at the bottom of the 
model. Because of the cold water at the water bottom, the temperature in the medium will 
decreases as time progresses. At the depth of 400 m, the temperature dropped about 4°C in 
20,000 years. The rate of temperature drop is inversely proportional to the elapsed time. The 
landslide is modeled after a recent slide on the Carolina Continental Rise.

B) One-Dimensional Solution

If the temperature and other parameters in Equation (1) depend only on the vertical 
direction (z-direction), Equation (4) can be simplified to the following one-dimensional equation 
retaining subscript] for the z-direction.

Figure 3 shows one-dimensional examples of the temperature distribution for the first 
20,000 years with a local heat source located between 40 m and 100 m in depth. The parameters 
for the constant thermal conductivity model (Figure 3a) are T0 = 2.4°C, H = 250 \\.Wm~z, and Q = 
40 mW/m2 at the depth of 600 m. The parameters for the depth-dependent thermal conductivity 
model (Figure 3b) are T0 = 2.4°C, H = 200 \aWm~z, and Q = 44 mW/m2 at the depth of 600 m.
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Figure 1. A schematic diagram (model) for a landslide with 200 m scar. A, B, C, and D are locations used in the 
analysis. Two internal heat sources, one at the near surface sediment and the other at the BSR level, and 
advective fluid flow are modeled in order to predict the BSR depths.
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Figure 2. Temperatures (solid lines) and average thermal gradients (dashed lines) at location A (Figure 1) for the 
first 20,000 years at 4,000 year time intervals, without a heat source or advective flow, using the landslide 
model shown in Figure 1. The model parameters are T0 = 2.0 °C and Q = 38 mW/m2 (a constant heat flux 
boundary condition at the depth of 4,000 m). KY is 1,000 years.
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Figure 3. Temperatures (solid lines) and average thermal gradients (dashed lines) for the first 20,000 years at 4,000 
year time intervals for an one-dimensional heat source uniformly located between 40 m and 140 m in depth 
with T0 = 2.4°C and a constant temperature boundary condition at the depth of 600 m . The dots indicate 
the measured average thermal gradients at the DSDP 533. a) Constant conductivity (1.0 Wrn^K"1) with Q = 
40 mW/m2 at the depth of 600 m and H = 250 \iWrn'3 b) Depth-dependent conductivity with Q = 44 
mW/m2 and H = 200 \LWm~3 at the depth of 600 m. KY is 1,000 years.



The constant temperature boundary condition at the lower boundary was used for both figures, 
and in the case of depth-dependent thermal conductivity, the constant temperature was computed 
by the one-dimensional steady-steady finite difference equation assuming that there is no heat 
source. The dots in Figure 3 are measured average thermal gradients at the DSDP hole 533 and 
will be discussed later. Notice the average thermal gradient is increased from an initial value of 
40 m°C/m to 63 m°C/m in 20,000 years for the constant thermal conductivity medium and from 
45 m°C/m to 63 m°C/m for the depth-dependent thermal conductivity. Because the thermal 
conductivity increases with depth, the initial thermal gradient before the source is emplaced 
decreases with depth.

STEADY STATE SOLUTION 
A) Two-Dimensional Solution

A two-dimensional steady-state equation can be easily derived from Equation (4) by 
deleting the terms T"/ 1 and the last term T"y- in Equation (4) and setting Ar = 1. The equation can
be solved approximately by the Gauss-Seidel iterating method (Carnahan and others, 1969). In 
other words, the solution can be obtained by the repeated application of

in the finite difference equation. Reasonable initial temperatures at the grid points are important 
in solving the steady-state equation.

The steady-state solution for the landslide model without a local heat source or an 
advective fluid flow is given in Figure 4. A constant heat flux at the depth of 4,000 m with 
Q=38 mW/m2 was used. The average gradient at location A is about 41 m°C/m, while it is about 
44 m°C/m at 20,000 years (Figure 2). The steady-state temperature at the depth of 600 m at 
point A as indicated in Figure 4 is about 2 degrees less than the temperature should be at 20,000 
years after slide occurred as indicated in Figure 2. The high thermal gradient at location B and 
the low thermal gradient at location C is due to the lateral heat transfer between the cold region 
and the hot region across the edge of the slide area.

B) One-Dimensional Solution
For the one-dimensional case, the finite difference equation can be written as:

_

4Az 2 J + Az 2 ' 4Az 2

//. (8)
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Figure 4. Steady-state temperatures (solid lines) and average thermal gradients (dashed lines) at 5 locations (Figure 
1) without a local heat source or advective flow for the landslide niodel. The model parameters are T0 = 
2.0°C and Q = 38 mW/m2 (a constant heat flux boundary condition at the depth of 4,000 m).
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The solution of Equation (8) with boundary conditions of the constant temperatures at the top 
and bottom of the model can be written by the following matrix equation.

1 0
c2 Z?2

0 c,

a-,

\

 

0 1 ,

r,r*

Tj

=

Boundary

-//,

^Boundary y

(9)

where j ' + 1
4A 2Az 2Az

Az 2

4Az 2 2Az 2Az

"Boundary" in Equation (9) denotes the boundary temperature. If the constant flux instead of the 
constant temperature is used at the bottom of the model, the bottom row of Equation (9) should 
be changed (0 changed into -1 and the value for the boundary is Qu/kj). In contrast to the 
two-dimensional steady-state solution, this tri-diagonal matrix equation can be solved very 
effectively (Wachspress, 1960).

An example of calculated steady-state temperatures and average thermal gradients is 
shown in Figure 5. Parameters for Figure 5 are T0 = 2.4°C, H = 200 \iWm~3 between 40 m and 
140 m in depth, with a constant heat flux boundary condition of Q = 40 mW/m2 at the depth of 
4000 m was applied. The curve for steady-steady temperature for the depth-dependent thermal 
conductivity (Figure 5) is almost identical to the temperature curve shown in Figure 3b. 
Considering that parameters for two figures are quite different, particularly for the boundary 
condition at the lower boundary, it is clear that the inverse problem in the real data analysis may 
not provide a unique solution. In other words, many thermal models fit the observations.

One-dimensional steady-state solutions are very important in implementing the initial 
conditions for either steady or non-steady state solutions. For example, the initial temperature 
for a model shown in Figure 4 was derived by solving the corresponding one-dimensional 
difference equation.

11



oU

zI I
w

200 400 600 

SUBBOTTOM DEPTH IN METERS

Figure 5. Steady-state temperatures (solid lines) and average thermal gradients (dashed lines) for one-dimensional 
heat source model, assuming either constant or depth-dependent thermal conductivity. Uniform heat source 
is located between 40 m and 140 m in depth with a magnitude of H = 200 yAVm'3. Other model parameters 
are T0 = 2.4°C and Q = 40 mW/m2 (a constant heat flux boundary condition at the depth of 4,000 m).
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SIMPLE ANALYTIC SOLUTIONS
The analytic solution of one-dimensional heat flow equation without a heat source or an 

advective term under the assumption of homogeneous medium can be easily derived. Let the 
initial condition be

z,

and the constant temperature boundary conditions be

T = T0 at z = 0 and = Tt at z = /.

Then the solution can be written as follows using the solution form of Hildebrand (1963) and the 
Fourier series.

  _ (Tt -T0 ) ~ 2AT . nnz ( i T = Ta -\-     z+ 2,  sin   exp   -  
I n = i nil I ^ /2p J

AT is the difference between initial temperature and the boundary condition at z = 0:

(10)

If the constant heat flux instead of the constant temperature at z = / is used , the solution 
can be written as:

= T ^w
 dz +

'o k ,

2AT l/2)7iz (ii)
and Q/, the heat flux at z = /, is kept constant.

These solutions indicate that the time required for the steady-state condition is dependent 
on the boundary conditions and the constant flux boundary condition requires more time to reach 
the steady state condition. The term inside the summation represents the time-dependent (or 
transient) temperature and Table 1 shows the contribution of these terms with respect to time.

Elapsed Time 
In Years

50,000

100,000

250,000

500,000

1,000,000

Time-Variant Temperature (°C) 
Using Constant Temperature 

Boundary Condition

2.80

1.60

0.42

0.048

0.0006

Time-Variant Temperature (°C) 
Using Constant Heat Flux 

Boundary Condition

4.83

3.63

2.32

1.34

0.45

Table 1. The temperature variation with respect to time for two different boundary conditions at 
the lower boundary. The lower boundary condition is emposed at 3800 m, the temperature 
difference at z=0 is 8 °C, and the transient temperature measured at z = 1000 m.
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The model parameters are / = 3800 m, AT = 8°C, z = 1000 m, and Q, = 38 mW/m2. As indicated 
in Table 1, by applying the constant temperature boundary condition at the lower boundary the 
temperature reaches the steady-state condition faster than by applying the constant flux boundary 
condition. At 250,000 years, the time-dependent temperature term is 0.42°C for the constant 
temperature boundary condition and 2.32 °C for the constant heat flux boundary condition.

Figure 6 shows the numerical solutions for the previous model for the first 1 million years 
at 200,000 year time increments and the result of this figure confirms the analysis of the analytic 
solution. The dots in Figure 6b show the analytic solutions at 200,000 years and show an 
excellent agreement between the finite difference solutions and the analytic solutions. Because 
of the imposed boundary condition (no lateral heat transfer) at location A, the two-dimensional 
solution at location A is identical to the one-dimensional solution. The average temperature 
difference between the numerical and analytic solutions at 5 locations (200m, 400m, 600m, 
800m, and 1000m in Figure 6b) is 0.05 °C at 200,000 years. Therefore, the numerical solutions 
in this paper do not have a gross error in the temperature of the sediments.

DISCUSSION 

A) THERMAL CONDUCTIVITY

One of the effects of high thermal conductivity in a heat flow equation is to reduce the time 
required to reach the steady-state condition. Solutions shown in Equations (10) and (11) indicate 
that system should take less time to reach the steady-state condition if the higher thermal 
conductivity is assumed. Figure 3 also indicates the same implication.

The steady-state solution shown in Figure 5 indicates that when the heat flux is constant at 
great depth, the average thermal gradient is lower for the depth-dependent thermal conductivity 
model (increasing conductivity with depth) than that for the constant thermal conductivity 
model. At 600 m in Figure 5, the average thermal gradient is about 39 m°C/m for the 
depth-dependent thermal conductivity case (its heat flow is about 44.6 mW/m2 using the average 
thermal conductivity of 1.146 Wm^K" 1 ) and about 43 m°C/m for the constant thermal 
conductivity case (its heat flow is 43 mW/m2 using the thermal conductivity of 1.0 Wrrf'K" 1 ). 
The lower average thermal gradient for the depth-dependent thermal conductivity has a 
significant implication on the BSR depth. Let's assume that the temperature at the BSR phase 
boundary is 25 °C. Figure 5 indicates that the BSR depth for constant thermal conductivity is 
about 510 m and 575 m for depth-dependent thermal conductivity. So the reduction in porosity 
or increase in thermal conductivity provides a deeper BSR depth.

The effect of depth-dependence of thermal conductivity in hydrate-bearing sediments may 
be reduced compared to non-hydrate-bearing sediments, because the hydrate might cement the 
grains and prevent compaction and the thermal conductivity of hydrate is a little lower than for 
pure water. However, the hydrate cementation in marine sediments is low (Lee and others, 
1993), so the compaction effect may be dominant over the effect of hydrate cementation for the 
computation of temperature that would control the hydrate phase boundary.

14
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B) DSDP 533

The average thermal gradients computed by the measured temperatures at DSDP 533 
(Sheridan and Gradstein and others, 1970) are indicated as dots in Figure 3. The average thermal 
gradients are 51 m°C/m, 45 m°C/m, and 42 m°C/m at the well depths of 155.5 m, 255.8m, 400m 
respectively. The observed BSR depth from the seismic profile at the DSDP 533 is about 515 m 
when using the average interval velocity of 1.723 km/s (Lee and others, 1992). If the average 
thermal gradient computed from the temperature at 155.5 m is used for the BSR depth 
computation, the predicted BSR depth is 436 m (The parameters for the BSR depth computation 
are T0 = 2.4°C, water depth = 3200 m, depth-dependent thermal conductivity, lithostatic pressure 
(sediments density is assumed to be 1.875 times of the sea water), and phase diagram for 100 % 
methane in 3.5 % NaCl water (Macleod, 1982)). On the other hand, when the measurement at the 
well depth of 400 m is used, the predicted BSR depth is 551 m, which is much closer to the 
observed BSR depth .

Figure 3 indicates that the depth-dependent thermal gradients at the well can be explained 
by introducing a uniform heat source of 200 fiVKm"3 located between 40 m and 140 m in depth 
when using the depth-dependent conductivity or by introducing a uniform heat source of 250 
[iWm~3 located between 40 m and 140 m in depth when using the constant conductivity medium. 
Possible heat sources are heat generated from the conversion of organic matter into biogenic gas 
in the anaerobic zone and heat generated from transforming gas into hydrate. The thermal 
gradient computed at 4,000 years after the emplacement of the source is similar to that computed 
at 20,000 years. So this internal source model does not provide accurate information about the 
time of source emplacement, but this model emphasizes that the depth-dependent thermal 
gradient can be reasonably well explained by introducing a heat source.

Figure 7 shows the temperature and average thermal gradient computed using parameters 
which are T0 = 2.4°C, / = 4000 m, Q = 42 mW/m2 at / = 4000 m, H = 200 \iWm~3 located 
between 40 m and 140 m in depth, and the constant heat flux boundary condition. The lower 
boundary condition imposed on two models shown in Figure 3 may not be realistic (the depth to 
the constant temperature or constant heat flux is too shallow), but the temperature distribution is 
similar to those shown in Figure 3. The results of Figures 3 and 7 demonstrate that as long as 
there are uncertainties in the heat flow measurements, there may not be a unique model to fit the 
observation. Notice the differences in the boundary conditions and heat flow at the lower 
boundary in Figures 3 and 7.

C) SLIDE AREA

Figure 8 shows a seismic profile crossing a recent landslide area and shows a variable BSR 
depths along the profile. The observed BSR depths and inferred heat flows at selected locations 
on the seismic profile 3 are shown in Table 2. The average inferred heat flow, estimated from 
the BSR depths, within the slide scar area is about 55 mW/m2 and about 39 mW/m2 at the outside 
area. Table 2 indicates that the subbottom depth to the BSR in the slide scar area is about 200 m 
shallower than BSR depths outside area. Let's assume that the water depth at the adjacent area is 
4,000 m and 200 m of sediments have slid away at the slide area. Then the temperature at the 
methane hydrate phase boundary in 3.5% NaCl water when using parameters of T0 = 2°C, the 
depth-dependent thermal conductivity, and lithostatic pressure is 24.74°C at the slide area and 
24.43 °C at the adjacent area.
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200 400 600 

SUBBOTTOM DEPTH IN METERS

Figure 7. Temperatures (solid lines) and average thermal gradients (dashed lines) for an one-dimensional heat source 
uniformly distributed between 40 m and 140 m with a magnitude of 200 \iWm~3. Time is for the first 20,000 
years at 4,000 year time intervals. Other model parameters are T0 = 2.4°C and Q = 42 mW/m2 (a constant 
heat flux boundary condition at the depth of 4,000 m). The dots indicate the measured average thermal 
gradients at the DSDP 533. KY is 1,000 years.
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Depth Observed 
(m) BSR Depth 

I (m)
3930

3935

3947

3946

4071

4060

4110

4108

4086

685

655

651

647

544

540

454

445

463

Inferred 
Heat Flow 
(mW/m2)

37.9

37.3

39.5

39.7

46.2

46.5

54.0

54.9

53.0

Table 2. Observed BSR depths and inferred heat flows along seismic profile 3. The parameters 
for the computation of heat flows inferred from the BSR depths are T0 = 2°C, lithostatic pressure, 
and a hydrate phase diagram for pure methane in 3.5% NaCl water. In order to derive the 
porosity variations with depth, and the resulting depth-dependent thermal conductivities, surface 
conductivities of 1 Wrrf'K' were used.

Figure 9a shows the temperatures and average thermal gradients at 5 locations shown in 
Figure 1 at 2,000 years after the slide without any internal heat source or advective flow and 
Figure 9b shows the temperatures and gradients at 20,000 years with similar conditions. Using 
the temperature and pressure appropriate to the gas hydrate phase boundary, I have shown the 
expected depths of BSR inside the slide scar (triangles) and outside it (dots) for times of 2000 
years after the slide (Figure 9a) and 20,000 years after the slide (Figure 9b). It is shown that the 
difference of subbottom depths to the BSR between the slide area (curves labelled A) and the 
adjacent area (curves labelled E) is about 200 m after 2,000 years and about 80 m in 20,000 
years. As far as the subbottom depth to the BSR is concerned, the younger slide model fits the 
observations better than the older slide model. Figure 9a predicts a heat flow difference of about 
20 mW/m2 between the slide and adjacent area (between locations A and E), whereas Figure 9b 
predicts a difference of about 5 mW/m2.

Numerical solutions that include internal heat sources are shown in Figures 10 and 11 
using the model shown in Figure 1. The steady-state solution for this model is shown in Figure 
10 and temperatures at 2000 years and 10,000 years after the slide are shown in Figures 1 la and 
1 Ib respectively. Figure 10, the steady-state solution, predicts that the subbottom depth to the 
BSR at location A is 430 m and the surface heat flow is 57 mW/m2. At location E, the 
subbottom depth to the BSR is 670 m and the surface heat flow is 46 mW/m2. The results of this 
model fit the observed BSR depths reasonably well at both locations.

Inferred heat flow value computed from the BSR depth should be very similar to the heat 
flow value measured at the surface, if there is no internal heat sources and/or advective fluid 
flows between the surface and the BSR depths.
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200 400 600 800 

SUBBOTTOM DEPTH IN METERS

1000

Figure 10. Steady-state temperatures (solid lines) and average thermal gradients (dashed lines) at 5 locations (Figure 
1) with two local heat sources for the landslide model. Other model parameters are T0 = 2.0°C and Q = 38 
mW/m2 (a constant heat flux boundary condition at the depth of 4,000 m). The local heat source in the slide 
scar area is H = 300 u.Wm"3 located between 450 m and 550 m in depth and the other source in the adjacent 
area is 67 \iWm "'located between 50 m and 150 m in depth.
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The average heat flow value of 37 mW/m2 at the adjacent undisturbed area, inferred from the 
observed BSR depth using seismic profile (Table 2), is almost identical to the steady state heat 
flow value I used for the model before the slide, but is 9 mW/m2 less than the heat flow value 
predicted at the surface from the model. Because the predicted and observed BSR depths are 
similar to each other, I interpret that the difference of 9 mW/m2 of heat flow value at location E 
is a thermal perturbation caused by a shallow internal heat source. Therefore a surface heat 
probe could overestimate the regional conductive heat flow value as much as 20 % in this case 
(about 46 mW/m2 versus 37 mW/m2). However, within the slide area, such as at location A, the 
heat flow value at the surface (57 mW/m2) predicted from the model is similar to the average 
heat flow value inferred from the observed BSR depths. Because an internal heat source is 
located below the BSR level in this case, this internal source affects similarly both the surface 
heat measurement and the BSR depth.

Comparing the solutions of the model shown in Figures 1 la and lib with the steady-state 
solution in Figure 10, it is concluded that estimating the age of the slide based on the BSR 
depths and surface heat flow measurement may not be possible. Note that the temperature 
difference between the steady-state solution and the solution at 10,000 years is negligible.

The steady-state solution shown in Figure 4 predicts that when thermal equilibrium is 
reached after all internal heat sources are consumed and/or no more hydration occurs at the BSR 
level, the final subbottom depth to the BSR is about 620 m at location A and 680 m at location E. 
Therefore the BSRs observed in the seismic profile shown in Figure 8 represents a transient 
phenomena and as time progresses the BSR depths at the slide area will become deeper.

A physical mechanism for an internal heat source responsible for the high heat flow value 
or shallow BSR depths at the slide area can be explained by the following three-stage 
development of the BSR.

Stage 1 : Initial removing of mass at the slide area reduces the pressure at the previous BSR 
level. Since the thermal equilibrium cannot be achieved instantly, the initial reaction to the slide 
is to raise the BSR depth slightly. Let's assume that the conductive heat flow in this region 
before the slide is similar to the one observed adjacent to the slide area; namely 38 mW/m2. 
Assume that the bottom water temperature is 2 °C and about 200 m of sediments was removed 
instantly. Just after the slide occurred, the pressure reduction, which would be instantaneous, 
would cause the base of hydrate stability to rise by 60 m; the temperature initially would be the 
same, and thus would have no effect. Therefore the subbottom depth of the BSR immediately 
after the slide would be reduced by the rise of the base of gas hydrate stability (60 m) and also 
reduced by the removal of sediment of the slide (200 m), so that the BSR after the slide would be 
260 m shallower (subbottom) than before. Because of the shallowing of the base of gas hydrate 
stability in response to the reduced pressure, the hydrated sediments would be decomposed into 
free gas below the new phase boundary and would absorb heat.

Stage 2: As time goes on, thermal equilibrium would be established and the temperatures in 
the upper several, hundred meters would approach the regional temperature gradient values. 
During this time, the base of gas hydrate stability would become deeper in response to the 
decreasing sediment temperature. As the level of the phase boundary becomes deeper, the 
available free gas forms hydrate and the hydrate formation releases heat at the current BSR level.
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Because the heat generation is at the BSR level, the observed heat flow at the sediment surface 
matches the heat flow inferred from the measured BSR depths. I interpret that the second stage 
is currently going on at the place where the seismic profile 3 (Fig. 8) is located.

Stage 3: When thermal equilibrium is established and no more hydrate is forming at the BSR 
level, the BSR depths will become close to the regional BSR depths. In this area, the BSR depths 
at the slide area will become about 620 m instead of the current depth of 450 m.

D) HEAT SOURCE AND ADVECTIVE FLOW

The anomalously high heat flow measured at the surface compared to inferred heat flow 
from the BSR depths has been attributed to the advective fluid flow in the sediments (Davis and 
Hyndman, 1990). Figure 12a shows the temperature distribution at 2,000 years after the slide 
and Figure 12b shows the steady-state temperature with the advective vertical fluid flow. The 
amount of fluid flow is given by  2.0e~IO<)> mis. Using the same temperature at the gas hydrate 
phase boundary for Figure 9, it is shown that the subbottom depths to the BSR at locations A 
and E are about 490 m and 670 m respectively and the difference of surface heat flow values 
between locations A and E is more than 20 mW/m2. The younger slide model (Figure 12a) 
predicts a difference of about 200 m of BSR depths between the slide area and the adjacent area, 
and predicts that the difference of surface heat flow between locations A and E is much higher 
than those from the results shown in Figures 9 and 11. As also shown in Figure 9a, the younger 
slide model (2,000 years old) predicts a difference of about 200 m in the BSR depths, because 
the modeled scar is 200 m and there has not been enough time to reach the thermal equilibrium.

The steady-state solution of this model is similar to the steady-state solution without 
advective fluid flow shown in Figure 4. The steady-state solution indicates that the subbottom 
depths to the BSRs do not agree with the observations as opposed to the excellent agreement for 
a model assuming internal heat sources shown in Figure 10. Even though the model results 
using the internal heat source are better than those using the advective fluid flow, in order to test 
models accurately, near surface heat flow measurements are required.

The predicted steady-state surface heat flow value is 51 mW/m2 at location A (Figure 12b) 
and the inferred heat flow value from the BSR depth is 43 mW/m2. The advective fluid model 
also predicts an anomalous high heat flow at the surface compared to the heat flows inferred 
from the BSR depths, as demonstrated by Davis and Hyndman (1990). But the fluid flow model 
has a disadvantage compared to the internal source model regardless of the goodness of fit to the 
observation. It is well known that the low permeability of the hydrate-cemented sediments at the 
base of the hydrate stable layer causes reduction in permeability and trapping of free gas at the 
hydrate phase boundary and is the cause of the BSR (Dillon and Paull, 1983; Shipley and others, 
1979). If this is the case, it is logical to assume that the fluid flow which affects the surface heat 
flow is confined only in the upper sediments above the BSR. This constraint introduces 
additional complication in the modeling and requires larger rates of fluid flow.
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CONCLUSIONS
In order to predict accurate temperature distribution for a realistic thermal model, which 

includes thermal conductivity that increases with depth and accommodates a heat source and/or 
an advective fluid transport, a numerical approach such as a finite difference method is required. 
A finite difference method is flexible enough to accommodate a variety of differerent thermal 
models. This study demonstrates that internal heat source models can explain nicely the 
observed heat flow measurement at DSDP 533 hole and the difference of BSR depths along the 
recent slide on the Carolina Continental Rise, but solutions are not unique. I speculate that 
possible heat sources considered in this study are heat generated from the conversion of organic 
material into biogenic gas in the anaerobic zone in the near surface sediments and heat generated 
from transforming gas into the hydrate at the level of BSR depth. The following conclusions can 
be drawn from the numerical model studies.

1) The depth-dependent average thermal gradients at DSDP 533 may be explained by 
introducing a shallow heat source, but the numerical modeling indicates that the heat source 
model is not unique.

2) Analyses of BSR depths along a landslide on the Carolina Rise indicate that a thermal model 
employing a heat source near the current BSR depth within the slide scar area and a shallow heat 
source (40 m to 140 m) in the adjacent undisturbed area accurately predicts the observed 
subbottom depths to the BSR across the slide. Because there are no available heat flow data 
along the seismic profile, the proposed thermal model for the slide is considered highly 
unconstrained and speculative.

3) The current subbottom depth to the BSR at the slide area is about 430 m, but the model 
predicts that it will become about 620 m when heat is no longer supplied or hydrate formation no 
longer occurs at the BSR level and the steady-state condition is reached.

4) A thermal model using advective fluid flow causes the same magnitude of surface heat flow 
anomaly as the internal heat source, but the observed BSR depths do not fit the modeled results.
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APPENDIX

C
C COMPUTER PROGRAM FOR THE FIGURE 10
C ARGUMENT DEFINITION
C
C DX = DZ : DEPTH SAMPLING INTERVAL IN METER
C DT : TIME SAMPLING INTERVAL IN YEAR
C TMAX : MAXIMUM TIME FOR THE COMPUTATION
C ITYPE : BOUNDARY CODE AT THE LOWER BOUNDARY
C 1 = CONSTANT TEMPERATURE BOUNDARY CONDITION
C 2 = CONSTANT FLUX BOUNDARY CONDITION
C G : THERMAL FLUX AT THE LOWER BOUNDARY (mW/(m*m))
C CD : COMPACTION CONSTANT IN METER
C TO : TEMPERATURE AT THE WATER BOTTOM
C BOT : DEPTH WHERE CONSTANT HEAT FLUX IS MAINTAINED
C AK : CONDUCTIVITY
C PHI : POROSITY
C H : SOURCE FUNCTION
C T, TN : TEMPERATURE
C TO : TEMPERATURE AT THE UPPER SURFACE

C
DIMENSION 7(14400), 7N(14400), H(14400)
DIMENSION PHI(IOOO), AK(IOOO), A(1000), B(1000), C(1000)
COMMON /BK1/G, 7O, TL, DX, DZ
DX= 50.
DT= 20.
TMAX= 20001.
DZ=DX
NSTEP= IFIX(TMAX / DT) + 1
JSTEP=NSTEP/5
DT= DT * 60 * 60 * 24 * 365.
ITYPE = 2
G=38.
CD= 1500.
TO= 2.0
BOT= 4000. 

C
C X - Z LOCATION OF THE SCAR (IH, IZ) 
C

IH=IFIX(1000/DX)
IZ=IFIX(200/DX)+1
NX=IFIX(BOT/DX)+1
NZ=IFIX(BOT/DX)+1
NXX= NX + 2
Nl= 1
N2= Nl + NXX
N3= N2 + NXX
N4= N3 + NXX
N5= N4 + NXX
N6= N5 + NXX
N7= N6 + NXX 

C
C COMPUTATION OF THE VARIABLE CONDUCTIVITY AND SOME PERTINENT VARIABLES 
C

CALL VARK(PHI, AK, CD, NZ, DZ, DT, A, B, C) 
C
C DETERMINE INITIAL CONDITIONS USING ONE-DIMENSIONAL EQUATION 
C

CALL INITIAL(T, AK, TN(N1), TN(N2), TN(N3), TN(N4), 
1 TN(N5), TN(N6), TN(N7), NX, NZ)
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C SOURCE FUNCTION 
C

CALL SOURCE(H, NX, NX, IH, DT) 
C
C ITERATION FOR THE (N+ 1 )-TH STEP FROM THE N-TH STEP 
C

DO J=1,NSTEP
CALL ITER(T, TN, H, PHI, AK, NX, NZ, IH, IZ, DT, J, 

1 JSTEP, ITYPE, A, B, C)
END DO 

100 FORMAT(4F)
STOP
END 

C
SUBROUTINE INITIAL(T, AK, A, B, C, D, E, S, Y, NX, NZ)
DIMENSION T(NX, NZ), AK(1), A(l), B(l), C(l), D(l), E(l), S(l), Y(l)
COMMON /BK1/G, TO, TL, DX, DZ
CALL COEFST(AK, A, B, C, D, NX, 2)
CALL BUDVAL(A, B, C, D, E, S, Y, NX)
DO L= l.NX
DO M=1,NZ
T(L, M)= Y(M)
END DO
END DO
TL=T(1,NZ)
RETURN
END 

C
SUBROUTINE BUDVAL(A, B, C, D, E, S, Y, NMAX)
DIMENSION A(l), B(l), C(l), D(l), E(l), S(l), Y(l) 

C
C INITIALIZATION 
C

DO L= 2, NMAX
TEMP= B(L) - C(L) * S(L-1)
S(L)=A(L)/TEMP
E(L)= (D(L) + C(L) * E(L-l)) / TEMP
END DO 

C
C OUTPUT 
C

Y(NMAX)= E(NMAX)
DO L=NMAX-1,1,-1
Y(L)= S(L) * Y(L + 1) + E(L)
END DO
RETURN
END 

C
SUBROUTINE VARK(PHI, AK, CD, NMAX, DZ, DT, A, B, C)
DIMENSION PHI(l), AK(1), A(l), B(l), C(l)
BETA= 0.25E07
BETAO= 1.0E07
AKR= 2.4
AKW= 0.6
DX=DZ
PHIO= 0.65
CON1= DT / (BETA * DX * DX)
CON3= DT * BETAO /(2 * DX * BETA)
CON4= DT * BETAO 1(2 * DZ * BETA)
CON5=DT/BETA
DO M=1,NMAX
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DIST= (M - 1) * DZ
POR= PHIO * EXP(- DIST/CD)
AK(M)= AKW ** FOR * AKR ** (1.0 - FOR)
CONST= EXP(-DIST/300.)
CONST= 1.0
PHI(M)= -2.0E-10 * CONST * POR * CONS
END DO
CON= DT /(4 * BETA * DX * DX)
DO M=1,NMAX
A(M)= AK(M+1.) + 4.0 * AK(M) - AK(M-l)
B(M)= - AK(M+1) + 4.0 * AK(M) + AK(M -1)
C(M)= - 8 * AK(M)
A(M)= CON * A(M)
B(M)= CON * B(M)
C(M> CON * C(M)
END DO
RETURN
END

SUBROUTINE SOURCE(H, NX, NZ, IH, DT)
DIMENSION H(NX, NZ)
BETA= 0.25E07
CON5=DT/BETA
DO I=IH,NX
DO N= 2 3
H(I,N)=CON5* 0.01/ISO.
END DO
END DO
DO 1=1, IH
DO J = 14,15
H(I, J)= CONS * 0.03 / 100.
END DO
END DO
RETURN
END

SUBROUTINE ITER(T, TN, H, PHI, AK, NX, NZ, IH, IZ, DT,
ISTEP, JSTEP, ITYPE, A, B, C)
DIMENSION T(NX, NZ), TN(NX, NZ), H(NX, NZ)
DIMENSION PHI(NZ), AK(NZ), A(l), B(l), C(l)
COMMON /BK1/ G, TO, TL, DX, DZ
LOGICAL VIRGIN
DATA VIRGIN/.TRUE./
IF(VIRGIN) THEN
VIRGIN= .FALSE.
QB= G/1000.
BETA= 0.25E07
BETAO= 1.0E07
DZ=DX
IOUT2= IFIX(900/DX) + 1
IOUT3=IFIX(1100/DX)+ 1
IOUT4=IFIX(1600/DX)+1
CON1= DT / (BETA * DX * DX)
CON3= DT * BETAO 1(2 * DX * BETA)
CON4= DT * BETAO 1(2 * DZ * BETA)
CON5=DT/BETA
DELT= QB * DZ / AK(NZ)
DO M= 1,NZ
AK(M> AK(M) * CON1
END DO
END IF
DO I = 2,IH
DO J=IZ+1,NZ-1
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Tl= AK(J) * (T(I+1, J) - T(I, J) - T(I,J) + T(I-1, J))
T2= A(J) * T(I, J+l) + C(J) * T(I,J) + B(J) * T(I, J -1)
T3= PHI(J+1) * T(I, J+l) - PHI(J-1) * T(I, J-l)
TN(I,J)= Tl + T2 - T3 + H(I, J) + T(I, J)
END DO
END DO
DO I = IH+1,NX-1
DO J = 2, NZ -1
Tl= AK(J) * (T(I+1, J) - T(I,J) - T(IJ) + T(I-1, J))
T2= A(J) * T(I, J+l) + C(J) * T(I,J) + B(J) * T(I, J -1)
T3= PHI(J+1) * T(I. J+l) - PHI(J-1) * T(I, J-l)
TN(I,J)= Tl + T2 - T3 + H(I, J) + T(I, J)
END DO
END DO 

C
C BOUNDARY CONDITION 
C

DO 1= 1,NX
TN(I, 1) = TO
TN(I, NZ)= TN(I, NZ - 1) + DELT
END DO
DO 1=1, IH
DO J= 1, IZ
TN(I, J)= TO
END DO
END DO
DO J=1,NZ
TN(1,J)=TN(2,J)
TN(NX,J) = TN(NX-1,J)
END DO
DO 1=1, NX
DO J=1,NZ
T(I, J)= TN(I, J)
END DO
END DO
IF(MOD(ISTEP, JSTEP) .EQ. 1) THEN
WRITE(60,100)(T(1, J), J = IZ, NZ)
WRITE(60,100)(T(IOUT2J), J = IZ, NZ)
WRITE(60,100)(T(IOUT3,J), J = 1, NZ-IZ + 1)
WRITE(60,100)(T(IOUT4J), J = 1, NZ-IZ + 1)
WRITE(60,100)(T(NX-1,J),J= 1, NZ-IZ + 1) 

100 FORMAT(4F)
END IF
RETURN
END 

C
SUBROUTINE COEFST(AK, A, B, C, D, NMAX, ITYPE)
DIMENSION AK(1), A(l), B(l), C(l), D(l)
COMMON /BK1/G, TO, TL, DX, DZ
DZ2= 0.25 / (DZ * DZ)
DO M= 2, NMAX - 1
A(M)= -(AK(M+1) - AK(M -1) + 4*AK(M)) * DZ2
B(M)= -8.0 * AK(M) * DZ2
C(M)= -(-AK(M + 1) + 4* AK(M) + AK(M-l)) * DZ2
END DO
A(l)=0.
C(NMAX)= 0.
A(NMAX)= 0.
C(l)= 0.
B(l)= 1.0
B(NMAX)= 1.0 

C 
C BOUNDARY CONDITION
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D(l)= TO
IF(ITYPE .EQ. 1) THEN
D(NMAX)= TL
C(NMAX)= 0.0
ELSE
D(NMAX)= G * DZ / (1000 * AK(NMAX))
C(NMAX)= 1.
END IF
RETURN
END
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