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Optical, Noncontact, Automated Experimental Techniques for Three- 

Dimensional Reconstruction of Object Surfaces Using Projection 

Moire, Stereo Imaging, and Phase-Measuring Profilometry

By Jaime F. Cardenas-Garcia and Gary R. Severson 

Abstract

Three optical, noncontact, automated experimental techniques 

for determining the topography of object surfaces were assessed. 

The main objective was to test the limitations of three 

experimental techniques: projection moire, stereo imaging, and 

phase-measuring profilometry. Phase-measuring profilometry is the 

most promising of the three techniques for mapping rock fracture 

surfaces automatically, accurately, quickly, and with high 

resolution. The experimental set-ups used to assess these 

different techniques are similar, and they require essentially the 

same equipment. It is relatively easy and inexpensive to go from 

one experimental set-up to another. Also, the experience gained in 

implementing one experimental technique is often applicable in 

another, although the basic principles of each experimental 

technique are sometimes very dissimilar.

The first technique, projection moire, is an optical 

experimental technique that is useful for displaying and measuring 

the three-dimensional form of large objects. Manual analysis of



INTRODUCTION

This study was conducted by the U. S. Geological Survey and 

Texas Tech University, done in cooperation with the U.S. Department 

of Energy for the Yucca Mountain Site Characterization Project. 

Yucca Mountain in Nye County, Nevada is being studied as a 

potential site for a high-level radioactive waste repository. The 

Yucca Mountain Site Characterization Project was established to 

evaluate the potential for storing nuclear wastes in geologic 

formations on or adjacent to the Nevada Test Site. As part of this 

site-characterization effort, a series of tests to investigate the 

hydrologic characteristics of the welded and nonwelded tuffs at 

Yucca Mountain have started at the Exploratory Studies Facility at 

Yucca Mountain. Fracture flow characteristics are being studied in 

the unsaturated zone of Yucca Mountain, where the potential 

repository will be located, as part of the site-characterization 

work. One of the tests being conducted for site characterization 

purposes is the Intact-Fracture Test in the Exploratory Studies 

Facility (U.S. Department of Energy, 1988), which measures fluid 

flow in single fractures under laboratory conditions. One of the 

unknowns in the site-characterization studies is the role of 

fracture roughness in controlling fluid flow through single, 

partially saturated fractures. The Intact-Fracture Test will help 

better understand the relations between unsaturated-fracture flow 

and fracture roughness. Therefore, a method is needed to digitize 

the topography of fracture surfaces.



experimental moire data is tedious and time consuming; therefore, 

calibration of the experimental set-up, determination of the fringe 

number, phase measurement at a point, and distinction of concavity 

and convexity of a surface were automated in these studies. Also, 

estimates of the error for simply shaped objects were obtained. 

For the second technique, two stereo-imaging experimental set-ups 

that are useful in measuring the three-dimensional geometry of 

objects were studied: a parallel optical-axis model and a 

converging optical-axis model. Digital image correlation was used 

to find the disparities between corresponding points in a pair of 

images for each of these models with subpixel accuracy. To show 

the application of the developed algorithms and the stereo-imaging 

experimental set-ups, four different object surfaces were studied. 

For some of the objects, a higher measuring accuracy was obtained 

from a converging optical-axis experimental set-up. For the third 

technique, a new, fast, phase-measuring profilometer for full-field 

three-dimensional shape measurement was developed. Compared to 

other optical methods for three-dimensional shape measurement, this 

technique is faster and more accurate. The technique is based on 

the principle of phase measurement of a projected grating image on 

the object surface that conforms to the shape of the object. This 

deformed grating pattern carries the three-dimensional shape 

information of the surface to be measured. Six different kinds of 

surface shapes were measured with this experimental technique. The 

measurement error was less than 0.15 percent. For the objects 

used, the resolution reached 50 microns.



Purpose and Scope

This report presents the cumulative results of examining three 

optical, noncontact, automated experimental techniques for three- 

dimensional reconstructoin of object surfaces for mapping rock 

fracture surfaces. The three experimental techniques are 

projection moire, stereo imaging, and phase-measuring profilometry 

which were examined in the laboratory in that order. The 

experimental set-ups used to assess these three different 

experimental techniques are very similar and require essentially 

the same equipment. It is relatively easy and inexpensive to go 

from one experimental set-up to another, and the experience gained 

in one experimental technique often is applicable to another, 

although the basic principles of each experimental technique are 

sometimes very dissimilar. The main objective in this assessment 

was to test the limitations of each experimental technique for 

mapping rock fracture surfaces.
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AUTOMATED PROJECTION MOIRE FOR THREE-DIMENSIONAL RECONSTRUCTION OF 

OBJECT SURFACES

The use of the moire phenomenon for scientific purposes is 

more than a century old and was first reported by Lord Rayleigh

(1874). Only in the last twenty years has interest grown in using 

moire techniques for topographical measurement applications. 

Meadows and others (1970), Alien and Meadows (1971), and Takasaki

(1970, 1973) proposed this type of application and did the 

necessary analysis and experimentation to give it credibility. 

Since that time, shadow and projection moire techniques have been 

developed and applied in many situations (Tsuruta and others, 1970; 

Yokozeki and Suzuki, 1970; Der Hovanesian and Hung, 1971; Jaerisch 

and Makosch, 1973; Chiang, 1975; Idesawa and others, 1977; Heiniger 

and Tschudi, 1979; Moore and Truax, 1979; Perrin and Thomas, 1979). 

In the last decade, the advent and easy accessibility of 

microcomputers and video technology enabled convenient digital 

image processing of acquired moire experimental results. These 

developments have allowed more flexibility and creativity in 

exploring the full potential of moire-based topographical 

techniques (Livnat and others, 1980; Funnell, 1981; Cline and 

others, 1982; Yatagai and others, 1982; Doty, 1983; Gasvik, 1983; 

Halioua and others, 1983; Harding and Harris, 1983; Robinson, 1983; 

Schemm and Vest, 1983; Cline and others, 1984; Gasvik and Fourney, 

1986; Meyer-Arendt and others, 1987; Dirckx and others, 1988; Jin 

and Tang, 1989).



The moire phenomenon is not observed in nature except where 

order has been imposed by humankind in the form of picket fences, 

bamboo huts, or woven fabrics. The simplest moire creation results 

from the superimposition of nearly identical regular patterns 

almost parallel to each other. The result is a "watered or wavy 

appearance" (Durelli and Parks, 1970; Dally and Riley, 1991; 

Karara, 1989) formed by the secondary fringes. These resulting 

secondary fringes (or moire fringes) have much lower density (or 

frequency) and stronger contrast than those of the original primary 

fringes. Two approaches are generally taken by researchers to 

apply moire techniques to surface topography measurements. The 

most common approach is shadow moire, where only one grid is used 

with a light source and image recording equipment. Figure 1 shows 

a common experimental set-up (Gasvik, 1987; Kafri and Glatt, 1990; 

Dally and Riley, 1991) . The use of one grid accomplishes the 

objectives of allowing projection of the grid onto the object and 

serving as the reference grating for viewing the moire fringes. 

The grid needs to be close to the object to prevent a deteriorative 

diffraction effect in the projecting shadow. Also, if there is 

great variation in the height of the object along the direction of 

the projection compared to the period of the grid, diffraction will 

occur. The major disadvantage of using shadow moire is that the 

grid needs to be at least as large as the object being studied. 

The result is an image with a set of fringes on the object 

representing a topographic map. By correctly interpreting these 

fringes, it is possible to obtain the three-dimensional coordinates
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Figure 1. Schematic of shadow moire



of every point on the object surface.

The other approach to surface topography measurements is 

projection moire. A typical experimental set-up is shown in figure 

2 (Doty, 1983; Gasvik, 1987; Dally and Riley, 1991). In this 

technique two equal gratings are used with a matched projector 

(containing the light source) and a viewer (which may incorporate 

image-recording equipment). The projector is used to project one 

grating onto the object, which allows for greater flexibility when 

analyzing objects of varying size. Objects from a fraction to 

several meters in size can be accommodated. The only limitations 

in the size of the object to be assessed are determined by the 

power of the illumination source attached to the projector and the 

sensitivity of the measurements to be performed. The object, with 

a projected grating on its surface, is imaged using the viewer 

containing the reference grating. The result is an image similar 

to that obtained with shadow moire, except that now the grating 

size is not a limitation. Similar interpretation of the fringes 

yields the three-dimensional coordinates of every point on the 

object surface. An experimental set-up of this type is described 

in this section of the report.

Although many papers have been written on the use of 

projection moire, whether automated or not, it is uncommon to 

obtain detailed specifications on experimental data with the errors 

associated with the experimental set-ups. Also, simple shapes are
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generally used to simplify the analysis of the object surfaces. 

Possibly one of the reasons for not detailing the obtained 

accuracies and for not considering more complex shapes is that 

manual analysis of experimental moire data is tedious and time 

consuming. To analyze the data and obtain experimental errors and 

accuracies, many researchers have applied image processing 

techniques to the acquired video images of the moire fringes (Cline 

and others, 1982; Yatagai and others, 1982; Robinson, 1983; Gasvik, 

1983; Cline and others, 1984; Gasvik and Fourney, 1986). One 

aspect that has not been made explicit in these papers is an 

analysis of the sensitivity and accuracy of the experimental set­ 

ups. The main objective of this section of the report is to 

describe in detail an automated experimental implementation of 

projection moire. This section includes the calibration of the 

experimental set-up, the determination of the fringe number, the 

phase measurement at any point, and the distinction of concavity 

and convexity of a surface. Also, estimates of error on several 

simply shaped specimens are obtained. This section of the report 

has been previously described in Cardenas-Garcia and others (1991) .

Experimental Set-up

The experimental set-up for this automated projection moire 

implementation is shown in figure 3, with a corresponding schematic 

shown in figure 4. The origin of the Cartesian coordinate system 

is set at the intersection of the viewer optical axis and the

10



viewer lens plane. Reference will be made to this Cartesian 

coordinate system throughout this section. The moire projector and 

viewer were mounted onto a precisely machined aluminum base, which 

is shown in figure 5. The mounting base for the projector and 

viewer is fixed and was designed for easy disassembly and for 

repeatable measurements. The fundamental aspects of this 

experimental set-up are that the optical axes of the moire 

projector and viewer are separated by a fixed distance of 91.4 ± 

0.0254 mm, are parallel to each other to within ± 0.0254 mm over a 

distance of 200 mm, and lie in the same horizontal plane. Also, 

the projector and viewer gratings are the same nominal fixed 

distance from the base plane, distance Z0 in figure 4. The matched 

pair of gratings have a pitch of 0.05 mm (see appendix for other 

grating information). Also, a Cohu Model 4815 charge-coupled 

device (CCD) video camera is attached to the viewer. The number of 

horizontal and vertical picture elements (or pixels) is 752 and 

480, respectively. All lenses used in this set-up are Nikon 55-mm 

micro lenses. A C-mount is used to attach the lens to the video 

camera. An EPIX, Inc., 1-megabyte image memory Silicon Video 

digitizing image processing board is attached to the video camera 

for data acquisition. Image processing is performed using 

Microsoft C, which is compatible with the software drivers on the 

imaging board. The imaging board resides in a Compaq 386/25 micro­ 

computer. Attachments to this experimental set-up include a model 

PVM-1342Q Sony Trinitron color video monitor and a model P61U 

Mitsubishi video copy processor. Also, a model 106122P-20M Daedal

11



X-Y linear motion positioning table with computer control capable 

of 300-mm maximum travel, with an accuracy of ± 0.001 mm is used.

To obtain moire fringes that accurately reflect the actual 

contour lines of the object under study, the following conditions 

for the experimental.set-up have been observed (Perrin and Thomas, 

1979; Doty, 1983):

a. The optical axes of the projection and the viewing 

systems are parallel and aligned along the same 

horizontal plane;

b. The projection and viewing gratings are in the same 

vertical plane, which is perpendicular to the optical 

axes;

c. The distance from the lens to the grating in the 

projection system is equal to that in the observation 

system.

If both axes are not parallel or not in the same horizontal 

plane, the moire fringes do not accurately reflect the contour 

lines of the object, complicating the fringe analysis.

12



Figure 3. Projection moire experimental set-up used
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1. projector
2. viewer
3. projector lens
4. viewer lens
5. projection axis
6. viewing axis
7. projection grating
8. viewing grating
9. rotating table

10. base plane
11. calibration ruler
12. object
13. video camera
14. image processor 

and computer
15. X-Y positioner

Figure 4. Schematic of projection moire experimental set-up 

used.
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Calibration

The calibration of the experimental set-up used in this study 

requires the determination of several important set-up parameters. 

Once these set-up parameters are determined and used in conjunction 

with the experimental set-up, an accurate determination of surface 

topography can be obtained when used on a well-defined surface. An 

implicit assumption is that any inaccuracies that result from lens 

distortion and equipment alignment are accounted for in the 

calibration procedure, as any resulting errors are systematic. The 

general procedure is similar to the one followed by Perrin and 

Thomas (1979) and relies on a rotating plane calibration ruler. 

The rotating stage on which the rotating calibration ruler is 

mounted has an accuracy of ± 0.017 degrees. Using the rotating 

stage enables the determination of the base plane; the 

magnification factor, ms, the distance between the camera lens and

the base plane, Z0 ; the distance between the camera lens and the 

grating, /; the fringe number on the base plane, nb ; and the 

relation between the fringe number, n, and the distance between two 

fringes, AT.. The schematic of the experimental set-up, shown in 

figure 4, is referred to in the following explanation of how to 

obtain each of these parameters.

The rotating plane calibration ruler is placed at the center 

of the field of view. If the rotating plane calibration ruler is 

positioned so that it is normal to the z-axis, it will show a 

constant phase distribution, which is easily tested at a particular

16



z-location by tilting the rotating plane back and forth until a 

uniform intensity is obtained. The tilt angle obtained at the base 

configuration can be easily adjusted to zero degrees using an 

attached vernier dial with an accuracy of ± 0.017 degrees. Thus, 

it is possible to locate the base plane at the axis of rotation at 

either total extinction, full intensity, or at any other constant 

phase position by moving the computer-controlled translation stage 

along the z-axis. For calibration purposes, the base plane is 

positioned on the translating stage where the base plane is fully 

illuminated. The video digitizer, using the computer-controlled 

translation stage makes this determination of the base plane with 

less than 1 percent error. The image-processing algorithm 

calculates the fringe centers using the lowest gray level value. 

A more complete description of useful algorithms for this purpose 

may be found in Cardenas-Garcia and others (1991). These 

calculations are easily done along two axes of rotation of the 

ruler. The x- and y-axis are considered separately. The base 

plane, which is normal to the z-axis, is located at each axis of 

rotation. Also, the rotation axis is positioned so that it 

coincides with the center of the field of view.

The magnification factor, my, is obtained by projecting an

image of the grating on the base plane and counting the number of 

lines per unit length that are projected on the base plane. By 

comparing the grating spatial frequency (lines per mm), v, used in 

the experimental set-up with the projected grating pitch, the 

magnification factor is calculated from

17



N\ (D
d)

where d is the distance of grating projection, and N is the number 

of projected grating lines observed.

Given the magnification factor, m*, the distance between the 

camera lens and the base plane, Z0 , and the distance between the 

camera lens and the grating, /, are obtained from combining the 

equations

mt - . (2)

and

Z f
(3)

0

where X is the lens focal length. Then Z0 and/ can be determined 

from

Z - (flv-1) A (4)'o ^"f

and

f - |1 +   I A. (5)
mf

By tilting the rotating plane, it is possible to obtain any 

desired number of fringes. The resulting moire patterns, at

18



different tilt angles, for rotating plane rotation about the x-axis 

are shown in figures 6 (a) through 6(e). The moire patterns for 

rotating plane rotation about the y-axis are shown in figures 7(a) 

through 7(e). In both sets of pictures, it is possible to observe 

parallel sets of fringes on the surface of the tilted plane. The 

observed moire fringes are interpreted as contour lines of the 

object. They are equi-order surfaces normal to the optical axis 

(z-axis) . The coordinate of the nth fringe center, zn , can be 

calculated (Perrin and Thomas, 1979) using

where / is the image length of the lenses, B is the distance 

between two optical axes, v is the grating spatial frequency (lines 

per mm) , and n is the fringe number. In order to obtain the 

coordinates (xn,yn ) at the center of the fringe on the object 

corresponding to the coordinates (xm,ym ) on the viewer image plane, 

the following relations can be used:

- (7)V '

and

V " V  * n J m
£ja (8)f '
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It is also possible to find the fringe number on the base plane, nb , 

from

2Bf\-Z, 
-Hib

Generally the fringe number is a large number and any possible 

error in its determination is not very significant when calculating 

Az, which is the parameter of interest in moire topography. Once

the base plane has been identified and numbered, each additional 

fringe can easily be numbered, which is especially true in the case 

of a tilted plane where the numbering will either increase or 

decrease monotonically. In other applications, as described below, 

a paper tape may be used as an extended portion of the tilted 

calibration ruler to connect it with the object of interest. The 

fringe numbering can then be easily transferred to the object using 

the tilted calibration ruler as a reference.

Using equation 6, the distance between adjacent fringes 4s, is 

easily found to be

20



Figure 6a. Rotating plane calibration ruler positioned to 

rotate about the x-axis, a = 0 degrees.
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Figure 6b. Rotating plane calibration ruler positioned to 

rotate about the x-axis, a = 10 degrees.
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Figure 6c. Rotating plane calibration ruler positioned to 

rotate about the x-axis, a = 20 degrees.

23
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Figure 6d. Rotating plane calibration ruler positioned to 

rotate about the x-axis, a = 30 degrees.

24



Figure 6e. Rotating plane calibration ruler positioned to 

rotate about the x-axis, a = 40 degrees.

25



Figure 7a. Rotating plane calibration ruler positioned to 

rotate about the y-axis, a = 0 degrees.
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Figure 7b. Rotating plane calibration ruler positioned to 

rotate about the y-axis, a = 10 degrees.
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Figure 7c. Rotating plane calibration ruler positioned to 

rotate about the y-axis, a = 20 degrees.
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Figure 7d. Rotating plane calibration ruler positioned to 

rotate about the y-axis, a = 30 degrees.
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Figure 7e. Rotating plane calibration ruler positioned to 

rotate about the y-axis, a = 40 degrees.
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Also, for the case of the tilted plane, Aze , the distance 

between two fringe center points along the z-direction is 

calculated using the following relationship, which is obtained from 

geometrical considerations,

f
xB *tana J I xA *tana

(ii)

where a is the tilt angle from the base plane and XA and XB locate 

the centers of two adjacent fringes.

After the projection moire image is obtained for a particular 

orientation of the rotating plane calibration ruler, it is averaged 

to eliminate the high-frequency noise on the digitized image. 

Then a window is defined on the image that encloses the image area 

to be analyzed. After entering the basic experimental set-up 

parameters into a computer program, the data analysis is then 

performed automatically. It is possible to analyze experimental 

results for 10, 20, 30, and 40 degrees using the rotating plane 

calibration ruler and this approach. Table 1 summarizes the 

results at each of the positions of the rotating plane calibration 

ruler about the y-axis. The following two equations were used to 

determine the error, eif and the statistical error, es , respectively,

and

31



AZ -AZ e± -   |   x 100% (I2a)

e. - '- l
S

n

n-1

Table 1 identifies the fringe numbers for the fringes visible 

in the field of view, the center of the fringe location in terms of 

a pixel number, the experimentally obtained distance between 

fringes, Aze , and the theoretically obtained distance between 

fringes, Azt . Additionally, the error and statistical error are 

listed. Table 2 summarizes the average values of error and 

statistical error from which a judgment of the relative accuracy of 

the experimental set-up can be made. The statistical error for a 

plane rotated about the x-axis is 3.12 percent and about the y-axis 

is 2.13 percent. This difference in results may be attributed to 

a difference in size between the vertical and horizontal dimensions 

of the pixels- in the CCD camera, that is, the vertical pixel size 

is larger than the horizontal pixel size.
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Table 1. Results of using the rotating plane calibration ruler 

positioned to rotate about the y-axis [The theoretically obtained 

distances between the fringes are Aze (fringe center points) and Az t 

(adjacent fringes); mm, millimeters. Parameters for the 

experimental setup: A, 55.00 mm; m.,, 11.22; ZQ/ 671.90 mm; f, 59.90 

mm; u, 20 lines per .mm; B, 91.40 mm; nb , 162.48.]

Fringe 

number

Pixel 

number

Aze

(mm)

Az t 

(mm)

Error 

(percent)

163

164

165

a = 10 degrees

(Statistical error. e£ . is 2.96 percent) 

231 4.12 4.07 

375 3.88 4.02 

512 4.11 3.97

1.27

-3.66

3.34

162

163

164

165

166

	 a = 20 degrees

(Statistical error. es . is 2.71 percent)

120 4.17 4.12

191 4.11 4.07

262 4.00 4.02

332 3.84 3.97

400 3.96 3.93

1.07

1.00

-0.49

-3.36 

0.86
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Table 1 (continued). Results of using the rotating plane 

calibration ruler positioned to rotate about the y-axis [The 

theoretically obtained distances between the fringes are Aze 

(fringe center points) and Azt (adjacent fringes); mm, millimeters. 

Parameters for the experimental setup: A., 55.00 mm; m1f 11.22; z0/ 

671.90 mm; f, 59.90 mm; u, 20 lines per mm; B, 91.40 mm; nb/ 

162.48. ]

Fringe

number

167

168

169

Pixel

number

a = 20

( Statistical

471

537

608

Aze

(mm)

Az t

(mm)

Error

(percent)

degrees (continued)

error. es . is 2.71

3.64

3.87

3.71

percent)

3.88

3.83

3.79

-6.27

0.80

-2.09

161

162

163

164

165

166

167

f Statistical

86

132

177

223

268

313

357

a = 30 degrees

error, e. is 2 . 15
S

4.24

4.09

4.13

3.98

3.93

3.80

3.92

percent)

4.17

4.12

4.07

4.02

3.97

3.93

3.88

1.53

-0.78

1.32

-0.98

-1.07

-3.33

0.98
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Table 1 (continued). Results of using the rotating plane 

calibration ruler positioned to rotate about the y-axis [The 

theoretically obtained distances between the fringes are Aze 

(fringe center points) and Az t (adjacent fringes); mm, millimeters. 

Parameters for the experimental setup: A, 55.00 mm; m.,, 11.22; z0 , 

671.90 mm; t, 59.90 mm; u, 20 lines per mm; B, 91.40 mm; nb/ 

162.48.]

Fringe

number

168

169

170

171

172

173

Pixel

number

a = 30

(Statistical

403

448

493

537

581

628

Az e

(mm)

degrees

error . es

3.78

3.74

3.61

3.57

3.76

3.56

Az t

(mm)

(continued)

. is 2.15 percent)

3.83

3.79

3.74

3.70

3.66

3.62

Error

(percent)

-1.31

-1.39

-3.65

-3.70

2.78

-1.70

a = 40 degrees

161

162

163

164

(Statistical

105

137

169

201

error . e^

4.16

4.10

4.04

3.99

, is 1.47 percent)

4.17

4.12

4.07

4.02

-0.40

-0.54

-0.68

-0.82
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Table 1 (continued). Results of using the rotating plane 

calibration ruler positioned to rotate about the y-axis [The 

theoretically obtained distances between the fringes are Aze 

(fringe center points) and Azt (adjacent fringes); mm, millimeters. 

Parameters for the experimental setup: A., 55.00 mm; m.,, 11.22; z0/ 

671.90 mm; f, 59.90 mm; u, 20 lines per mm; B, 91.40 mm; nb , 

162.48.]

Fringe

number

165

166

167

168

169

170

171

172

173

174

175

176

177

Pixel

number

a = 40

f Statistical

233

265

297

329

361

393

425

458

490

522

554

586

618

Aze

(mm)

degrees

error . es

3.94

3.88

3.83

3.78

3.73

3.69

3.75

3.59

3.54

3.50

3.46

3.41

3.48

Az t

(mm)

(continued)

, is 1.47 percent)

3.97

3.93

3.88

3.83

3.79

3.75

3.70

3.66

3.62

3.58

3.54

3.50

3.46

Error

(percent)

-0.95

-1.09

-1.22

-1.35

-1.48

-1.61

1.32

-^**

-2.01

-2.13

-2.25

-2.37

0.55
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Table 2. Summary of error results of using the rotating plane 

calibration ruler positioned to rotate about the x- and y-axis 

[Parameters for the experimental setup: A, 55.00 mm; i>, 20 lines 

per mm; B, 91.40 mm; for the x-axis, mf/ 11.08; Z Q/ 664.28 mm; f, 

59.97 mm; nb/ 164.51; and for the y-axis, mf/ 11.22; Z Q/ 671.90 mm; 

f, 59.90 mm; nb/ 162^48.]

Rotational plane angle 

(a, in degrees)

Axis of rotation 

x-axis y-axis

10

20

30

40

Statistical error

4.27 2.

3.46 2.

3.25 2.

2.54 1.

3.12 2.

96

71

15

47

13

Phase Measurement Between Fringes

Using more than one image with moire projection techniques can 

increase the accuracy of the profile of an object. This approach 

works well in areas that are relatively flat and where the interval

37



between two fringes is large. To use this approach, several images 

with different phase information need to be obtained. The most 

convenient way to implement this phase change is by moving the 

translation stage along the z-axis, thus shifting the location of 

the base plane, with respect to the object. If the fringes and 

associated fringe numbers are tracked as they move, then it is 

possible to generate enough points on the object surface under 

study to assure accurate profiling. An assumption inherent in this 

procedure is that the motions along the z-axis are so small that 

they do not affect the experimental set-up calibration. Also, it 

has to be assumed that the center of the fringes is easily 

determined, especially for broad fringes.

Measurements Using A Cylindrical Specimen

After checking the accuracy and repeatability of the 

experimental set-up using the rotating plane calibration ruler, it 

is then possible to further check experimental results using a 

cylindrical specimen. The diameter, D0 , of the cylindrical specimen

is 64.70 ± 0.0254 mm, and its length is 125.00 ± 0.1 mm. It is 

machined to this tolerance using a lathe and checked with a dial 

gage. The cylinder is positioned on the translation stage with its 

longitudinal axis parallel to the y-axis. The optical axis of the 

viewer is aligned, as closely as possible, with the center of the 

cylinder. The rotating plane calibration ruler is positioned to 

the right of the cylinder with its axis of rotation aligned 

parallel to- the y-axis. A paper tape is used to connect the
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rotating plane calibration ruler to the cylinder, as shown in 

figure 8, so as to transfer the fringe number from the calibration 

ruler to the object of interest, that is, the cylinder. For this 

case, the fringe numbering also is very predictable once the fringe 

number is transferred from the calibration ruler.

An initial analysis of the fringe positions is performed along 

a horizontal line toward the top of the image of the cylinder (fig. 

8, line number 1), after the fringe numbers have been transferred 

from the calibration ruler to the cylinder. Before actual data 

collection, each image is averaged to eliminate the high frequency 

noise on the digitized image. To obtain additional points on the 

cylinder surface and check the results, the specimen is moved eight 

times in 0.500 ± 0.001-mm increments along the z-axis of the 

projection moire experimental set-up. By translating the specimen 

4.000 mm, more than 100 data points are collected for the cross 

section considered. Figures 9(a) and 9(b) show the moire fringes 

after moving the cylinder toward and away from the viewer, 

respectively. In this way, it is possible to generate the (x,y,z) 

coordinates of many experimentally measured points on the surface 

of the cylinder at a particular vertical location. Figure 10 shows 

the sampling of points and the cylindrical configuration that is 

generated along cross section 1, shown in figure 8. The equation 

for the surface of the cylinder is
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where jcc andzc/ the coordinates at the center of the cylinder, equal 

0.26 mm and 671.80 mm, respectively.

The data points taken at this location and two other locations 

on the cylinder, shown in figures 8, 9(a), and 9(b), are detailed 

in table 3. This table shows the results of analyzing nine 

separate images with different phase information, as explained 

above. Also listed are the number of experimental points 

considered for each image, the calculated radius of the cylinder 

obtained from the experimental data collected, Re , and the 

statistical error, es . Given the (xn,yn,zn ) coordinates of every 

sampled point, the distance from each of these points to the center 

line of the cylinder can be calculated using

This experimentally obtained value of the cylinder radius, Re , can 

be compared with the cylinder radius, D0/2, and the statistical 

error, es , can be evaluated for every point (xn,yn,zn ) . The statistical 

errors for each of the three cross sections considered are 0.49 

percent, 0.47 percent and 0.53 percent, respectively. The average 

statistical error is 0.49 percent.
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Figure 8. Transfer of the fringe number from the rotating 

plane calibration ruler to a cylindrical s.
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Figure 9a. Motion of moire fringes on a cylindrical surface 

translated along the z-axis (Az = -1.500 ± 0.00 millimeters 

with respect to the reference position.)
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Figure 9b. Motion of moire fringes on a cylindrical surface 

translated along the z-axis (Az = 1.500 ± 0.001 millimeters 

with respect to the reference position.)
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Figure 10. Reconstruction of the cylindrical surface using 

experimentally obtained data from analysis of moire fringe 

patterns. Nine scans were made of the left (LO - L8) and 

right (RO - L8) side of the cylinder.
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Table 3. Results obtained from interrogating a cylindrical surface 

translated along the z-axis [Parameters for the experimental setup: 

A., 55.00 mm; u, 20 lines per mm; B, 91.40 mm; mf/ 11.21; Z Q , 671.68 

mm; f, 59.91 mm; nb/ 162.54.]

Image

1

2

3

4

5

6

7

8

9

Number of

experimental

points

Horizontal cross

( Statistical error.

13

12

13

14

12

12

12

13

13

Average cylinder

radius, Re/ (mm)

section number 1

e£ , is 0.49 percent)

32.30

32.30

32.36

32.36

32.33

32.38

32.43

32.34

32.43

Statistical

error, es

(percent)

0.57

0.44

0.46

0.47

0.48

0.41

0.54

0.57

0.54

Horizontal cross section number 2 

(Statistical error, e . is 0.47 percent)

13

12

13

32.29

32.27

32.36

0.48

0.48

0.50
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Table 3 (continued). Results obtained from interrogating a 

cylindrical surface translated along the z-axis [Parameters for the 

experimental setup: A, 55.00 mm; u, 20 lines per mm; B, 91.40 mm; 

mf/ 11.21; zQ , 671.68 mm; f, 59.91 mm; nb , 162.54.]

Number of Statistical

experimental Average cylinder error, es

Image points radius, Re , (mm) (percent)

Horizontal cross section number 2 (continued)

4

5

6

7

8

9

f Statistical error.

14

12

12

12

12

13

e£ . is 0.47 percent)

32.

32.

32.

32.

32.

32.

40

35

38

44

38

42

0.47

0.48

0.41

0.54

0.57

0.54

1

2

3

4

5

6

Horizontal cross

( Statistical error.

13

12

13

14

12

12

section number 3

e£ . is 0.53 percent)

32.

32.

32.

32.

32.

32.

35

28

40

37

31

35

0.60

0.47

0.66

0.61

0.48

0.53
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Table 3 (continued). Results obtained from interrogating a 

cylindrical surface translated along the z-axis [Parameters for the 

experimental setup: A., 55.00 mm; u, 20 lines per mm; B, 91.40 mm; 

mf , 11.21; Z0 , 671.68 mm; f, 59.91 mm; nfa , 162.54.]

Number of Statistical

experimental Average cylinder error, es

Image points radius, Re , (mm) (percent)

Horizontal cross section number 3 (continued) 

(Statistical error. e£ , is 0.53 percent)

7 12 32.38 0.48

8 11 32.37 0.56

9 14 32.39 0.49

Concavity and Convexity Measurements

From the calibration results using a rotating plane 

calibration ruler and the tests using a cylinder, it can be 

concluded that the accuracy of the experimental set-up is 

approximately 3 percent and can be used to determine the surface 

topography of different simple configurations. The main task is 

not the identification of the fringe number, which can easily be 

transferred from the rotating plane calibration ruler. Many other 

problems then become of primary concern, including the following: 

1) making an automatic distinction between a depression and an
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elevation from a contour map of the object; 2) assigning fringe 

orders automatically including those separated by discontinuities; 

3) locating the center lines of broad fringes by correcting 

unwanted irradiance variations caused by nonuniform light 

reflection on the object surface; 4) interpolating in surface 

regions lying between contour lines; and 5) evaluating the 

existence of false or partially dark fringes.

Figure 11(a) shows what is defined as the base configuration 

of moire fringes for an artificially created surface composed of 

two-dimensional hills and valleys. The x-axis is oriented along 

the direction of the surface showing the most waviness. Next to 

the wavy surface is the rotating plane calibration ruler with its 

rotation axis parallel to the y-axis. Figures 11(b) and 11(c) show 

the same surface, except that the fringes have moved from their 

original positions (-1.000 ± 0.001 mm for figure 11(b) and 1.000 ± 

0.001 mm for figure 11 (c)) due to moving the object along the z- 

axis. For the case where the object is moved toward the viewer 

(fig. 12), the fringes that lie on the hills of the object should

move away from each other and those that lie on the valleys of the
s^

object should move toward each other, which is seen in figure i'I(b) 

when it is compared to 11(a). The opposite would be true if the 

object were moved away from the viewer, which would be the case if 

figure 11(a) were taken as the reference position and compared to 

figure 11(c).

48



Figure lla. Surface composed of concave-convex segments 

translated along the z-axis, reference position.
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Figure lib. Surface composed of concave-convex segments 

translated along the z-axis (Az = -1.000 ± 0.001 millimeters 

with respect to the reference position.)

50



Figure lie. Surface composed of concave-convex segments 

translated along the z-axis (Az = 1.000 ± 0.001 millimeters 

with respect to the reference position.)
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of fringes
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x-Axis

y-Axis

Figure 12. Schematic showing the relation between fringe 

movement and translation of object.
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Using the automation capabilities of the experimental set-up, 

it is possible to locate the center of the fringes on the wavy 

surface and to number the fringes. By taking several images with 

differing phase and repeating this analysis, it is possible to 

better approximate the profile of the surface along the three cross 

sections shown in figure 11(a). Curve fitting can then be used to 

attempt a reconstruction of the actual profile of the curved 

surface, which is shown in figures 13(a) through 13(c). The 

profiles of the curved surface have been plotted using data 

obtained from computer analysis by moving the object in two 

increments forward and backward from a reference position along the 

z-axis. Because no independent verification of the surface profile 

was made, the accuracy of this determination depends on the 

previous calibration and on measurements performed on the rotating 

calibration plane ruler accuracy (upper limit) of 3.12 percent and 

the cylinder accuracy, approximately 0.5 percent.
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Figure 13a. Profile of the concave-convex surface along 

cross-section 1, using five separate scans (m, bl, b2, fl, and 

f2) with differing phases.
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Figure 13b. Profile of the concave-convex surface along 

cross-section 2, using five separate scans (m, bl, b2 , fl, and 

f2) with differing phases.
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Figure 13c. Profile of the concave-convex surface along 

cross-section 3, using five separate scans (m, bl, b2, fl, and 

f2) with differing phases.
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STEREO IMAGING FOR THREE-DIMENSIONAL RECONSTRUCTION OF OBJECT 

SURFACES

There are several optical, noncontact approaches for obtaining 

three-dimensional topographical data for objects, including shadow 

and projection moire methods (Meadows and others, 1970; Alien and 

Meadows, 1971; Takasaki, 1970, 1973), fast-Fourier transform 

approaches (Takeda and Mutoh, 1983), and stereo imaging (Barnea and 

Silverman, 1972; Marr and Poggio, 1979; Crimson, 1981, 1984, 1985; 

Frobin and Hierholzer, 1982; Kashef, 1983; Wu and others, 1983; 

Jain and others, 1987; Lee, 1990). Stereo imaging provides more 

direct, unambiguous, and quantitative depth information than for 

example, shadow moire. In addition, to three-dimensional 

topographic measurement, stereo imaging can be used for a wide 

range of applications, such as robotic vision, autonomous vehicle 

control, sight for the blind, remote sensing, and automated 

manufacturing.

Most approaches to the application of stereo imaging use human 

vision as a model for the camera system (see, for example, Kashef, 

1983) . Figure 14 shows the comparison between the human vision 

system and a camera system. The model consists of the object that 

is imaged by two cameras whose optical axes are usually parallel to 

each other. If only one camera is used to image the object, then 

either the object is moved slightly along a plane perpendicular to 

the camera optical axis, or the camera is moved laterally with
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respect to its optical axis. In figure 14, two cameras (lenses 1 

and 2) are translated laterally along the baseline. Lens 1 is 

translated from X1A to X1B . Lens 2 is translated from X2A to X2B . 

This translation results in a change in depth, Dz , along the 

parallel z-axes, Z 1 and Z2/ between the points A and B observed by 

lenses 1 and 2. In both instances, the imaged object remains in 

the camera field of view. Many different camera-object geometries 

have been used for specific applications such as, converging camera 

optical axes (Frobin and Hierholzer, 1982); camera translation 

along the optical axis (Jain and others, 1987); and rotating camera 

optical axis (Wu and others, 1983).

Once the camera-object geometry has been defined and two 

images of the object are obtained, it is then necessary to locate 

the same points on the two images. To do this manually for an 

entire image is very time intensive. Video imaging and digital 

image processing make the problem of finding similar points on two 

images less tedious for a human operator. The problem is when 

determining depth information it is necessary to find disparities, 

or translation differences, among a series of corresponding points 

between a pair of images taken from the same scene. There are many 

matching algorithms that can be used to perform these computer- 

intensive operations. In general, matching techniques and 

corresponding algorithms can be divided into three major 

categories: Area-based (Anuta, 1970; Barnea and Silverman, 1972; 

Barnard and Thompson, 1980; Crimson, 1984), feature-based (Crimson,
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Object Surface

X

Figure 14. The human eye model of stereo vision. Comparison of human
vision system (on left) and a camera system (on right).
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1981, 1985), and hybrid (Lillestrand, 1972). Area-based algorithms 

use image gray-level distribution information directly to find the 

best match between a pair of images. Various correlation 

techniques are used to define area-based algorithms. Feature-based 

algorithms compare specific characteristics extracted from a pair 

of images, such as edges, lines, vertices, and other regular 

shapes. Through this process, a best match between two images can 

be obtained. In general, the correlation algorithms provide good 

matches because of their inherent noise-suppression effects if 

distortion is not excessive. This approach may not be the best 

alternative when attempting to detect the peak of a broad 

correlation function. Thus, feature-based algorithms strongly 

depend on good, noise-free images for exact feature extraction. In 

general, feature-based techniques yield a best match more reliably 

and accurately than area-based techniques. The hybrid algorithms 

combine both area-based and feature-based algorithms.

Two stereo imaging experimental set-ups for measuring the 

three-dimensional geometry of objects are described in this part of 

the report: A parallel optical-axis model and a converging 

optical-axis model. Digital image correlation is used to find the 

disparities between corresponding points in a pair of images for 

each of these models with subpixel accuracy. The application of 

the developed algorithms and the stereo-imaging experimental set­ 

ups are shown using four different object surfaces.
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Principles of Stereo Imaging

The selection of the coordinate system that governs the 

experimental set-up depends on the particular experimental set-up. 

Figure 15 shows the general scheme of the experimental set-up used 

in this investigation. The three-dimensional world coordinate 

system, as represented by coordinates (X, Y, Z) , is centered at 

point O. The X-axis of the world coordinate system coincides with 

the line segment A^2 and the Z-axis with the perpendicular bisector 

of the line segment A1A2 . Point O lies on the line connecting 

points A1 and A2 , being equidistant from both.

The individual two-dimensional camera-image plane coordinate 

systems are centered at points O,, which defines local coordinate 

axes (x1f y.,) , and O2 , which defines local coordinate axes (x2 , y2 ) . 

Points A1 and A2 are at the center of rotation for each of the 

cameras. Considering that the swing angle (for rotation about the 

Z-axis) and the tilt angle (for rotation about the X-axis) are 

negligible, points O, A1f A^ O1 and O2 lie in the same plane, that 

is, in the XOZ plane. The optical axes of both cameras are normal 

to the camera-image planes, and it is along the respective optical 

axes that the z 1 and z2 axes of the local camera coordinate systems 

are defined. Also, as shown in figure 15, each of the optical axes 

is assumed to be rotated about its respective y-axis. Thus, the 

z-axis is rotated clockwise by an angle 61 about the y,,-axis and 

the z2-axis counterclockwise by an angle 62 about the y2-axis.
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Object

(x2 ,y 2 )

Figure 15. The coordinate system used for binocular vision
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Based on figure 15, the relation between the world coordinate 

system and the local or camera coordinate system can be 

established, using matrix notation, as:

[R] (15)

where the superscript T denotes the transpose of the vectors x and 

X, respectively. The homogeneous coordinate column matrices for 

the local and global coordinate systems, respectively, are

- [x*,y*, z*, - [X, Y,Z,1] T (16)

and [R] and [T] are the rotation and translation matrices, 

respectively, which are defined as follows:

and

cosp 0 -sinp 0 
0100

sinp 0 cosp 0 
0001

[r] -

i o o x0
0 1 0 Y0 

0 0 1 Z0 

0001

(17)

(18)

Thus, using these equations, it is possible to transform the 

world coordinate system into the local or camera coordinate system. 

Additionally, the perspective relation between world and local
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coordinates is expressed as,

x* z*- A,
X A

(19)
y* _ z*- A.
y A.

where/I is the distance from the camera lens to the image plane.

Substituting the parameters found from equation 16 into 

equation 20 (taking into account two camera systems) yields four 

equations. Solving these four equations for X, Y and Z allows the

three-dimensional shape of the surface of an object to be 

determined using the following expressions:

)

sinPi + (^+ ^oi) COSPJ (21)

where X^ and X2 are the distances from the camera lens to the image 

planes for cameras 1 and 2, respectively; (x^yj) and (x2,y2 ) are
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points in local image planes l and 2, respectively; and (XOJ,YOJ,Z0] ) 

and (X02, Y02,Z02 ) are the translation components along the X, Y, and 

Z directions from point O to points O1 and O2 , respectively; andm;/ 

m2,n1,n2 are given by the expressions,

(23)

A 2 cosp 2 - x2 sinp2 (24)

(25)

n2 - x2 cosp 2 + A 2 sinp 2 . (26)

Note that if reference is made to the experimental set-up in figure 

16, Y01 = Y02 = 0.

The following conditions are established: If B; = &2 = ° and Jl^ 

= >12 = >l, then m^ = m2 = X,n1 = x2 and /z2 =JC2 ; also, if the X- axis of 

the world system coincides with the line segment O^O2 (that is, Z01 

= Z02 = 0), and let X01 = -X02 =B/2, then the parallel optical-axis 

model of stereo imaging is obtained, as shown by the following 

equations :

*" X " <27>
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1. object
2. comero lens
3. comero
4. X-Y positioner
5. video camera
6. image plane
7. image processor
8. projector lens
9. grating 

10. projector

computer

Figure 16. Schematic diagram of the parallel optical-axis 

experimental set-up.
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Y - - Y (28)

Z - A - -£*_ (29)

where B is the baseline,- that is, the distance between the two 

optical axes located at camera positions 1 and 2.

Experimental Set-Up for a Parallel Optical-Axis Model

A schematic of the parallel optical-axis experimental set-up 

for stereo vision is shown in figure 16. A charge-coupled device 

(CCD) video camera that has 752 horizontal and 480 vertical picture 

elements is used with this system. Attached to the video camera is 

a lens with a nominal focal length of 105 mm. To obtain video 

capture of the images, a 1-megabyte image memory digitizing image 

processing board is attached to the video camera and mounted inside 

a 386/25 microcomputer. This set-up uses only one video camera. 

The camera is mounted on one of the translation stages of a 

computer-driven X-Y linear motion positioning table. This linear 

motion positioner is capable of 300 mm maximum travel, with an 

accuracy of ± 0.0001 mm. In addition, a projector is used to 

project a grating on the object of interest when the surface of the 

object to be measured is so diffuse that it does not provide a wide 

range of gray levels. It is difficult to find corresponding points
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by digital correlation techniques when a wide range of gray levels 

are not present. Projecting a grating onto such a surface provides 

a way to structure the surface with a convenient gray-level 

distribution at every point, making it more convenient to find the 

corresponding points. Additional attachments to this set-up 

include a video color monitor and video image printer.

The video camera is mounted and fixed on a spacer block that 

mounts on the translation stage of the X-Y positioner. The spacer 

block is machined carefully to guarantee that the top and bottom of 

this block are parallel to each other and to ensure that the camera 

tilt is negligible. The X-Y positioner is fixed on an anti- 

vibration optical table (1.22-m by 3.66-m) with a perfect planar 

surface (±0.13 mm over the entire surface). The object to be 

measured also rests on the table surface and is never moved during 

testing. Thus, by moving the X-Y positioner mounted camera, it is 

possible to obtain two or more video images of the object, with 

full control over the baseline length ensuring that the optical 

axes of the camera at the various positions are perfectly parallel.

Experimental Set-Up for a Converging Optical-Axis Model

A schematic of the converging optical-axis experimental set-up 

for stereo imaging is shown in figure 17. It uses the same 

components as the previously described parallel optical-axis 

experimental set-up, except that the X-Y positioner is not used.
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1. object
2. comero lens
3. comero
4. boseblock
5. video camera
6. image plane
7. projector lens
8. grating
9. projector 

10. image processor

Figure 17. Schematic diagram of the converging optical-axis 

experimental set-up.
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Instead, the single camera is moved from one position to another by 

taking advantage of the threaded holes in the optical table, which 

are precisely machined and whose center-to-center distance is 25.4 

mm ±0.38 mm. Thus the camera (s) can be moved a known fixed 

distance apart. Spacer blocks are used to attach the camera to the 

surface of the optical table. A hole drilled through the block 

serves as a rotating center, which also is the rotating center of 

the camera. Video images are then taken using camera 1 (on the 

left side of fig. 17) with pan angle 6^ clockwise, and camera 2 (on

the right side of fig. 17) with pan angle S>2 counterclockwise. To 

reduce experimental errors, it is necessary to perform a 

calibration to determine the values of the angles B^ and B2 -

Calibration

Calibration to take into account the swing, tilt, and pan 

angle errors in the parallel optical-axis experimental set-up was 

not necessary because of the high accuracy of all mechanical 

components. For the converging optical-axis experimental set-up, 

the swing and tilt angle errors also were neglected for calibration 

purposes. Any resulting errors as a result of inaccuracies in 

accounting for the correct values of swing, tilt, and pan angle as 

applicable in either of these experimental set-ups can be included 

in the final experimental results but are not covered in this 

report.
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The required calibration is related to determining pan angles, 

B7 and B2 and the transform components, X01 , X02, Z01 , and Z02 . The 

geometry used to perform this calibration is shown in figure 18. 

Points Wj andw2 are specific points on the object whose (Xj,YlfZj) and 

(X2,72,Z2 ) coordinates are known. In the case of this calibration, 

Xj = X2 = Yj = Y2 = 0, and the Zj and Z2 values measured from the X-axis 

are known. The translation components from the world system to the 

local or camera systems are:

(30)

- o

where d is the distance between the two camera rotating centers. 

From equation 30, equations 16 through 20, and taking into account 

the two camera systems, the following four equations are obtained

1 *oi

  ) COtPJ - X--A- - 0
O  *  JLJL JL

(X 1cosp 1 + x12 sinp 1 ) X(01

d (32) 
(x12 cosp 1 - XjSinpj) [Z2 + (x0i --2) cotpj - x12 X 1 - 0
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Figure 18. Calibration geometry for the more general 

converging optical-axis experimental set-up.
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- U2cosp 2 - x21sinp 2 ) XQ2
d (33)

(x21cosp 2 + X 2 sinp 2 ) [Zj. + (XQ2 - -H) cotp 2 ] - x21 X 2 - 0

- (X 2 cosp 2 - x22sinp2 ) X02
(34)

} cotB^l - x~~\~ - 0 
2

(x22cosp 2 + X 2 sinp 2 ) [Z2 + U02 -  ) cotp 2 ] - x22A 2 - 0

where Jij, A2,Rj, &2,X01 and XQ2 have been previously defined; Z7 and Z2 are 

the coordinate values of the calibration points Wj andw2 ;*;; and x12 

are the projections of the points w2 and w2 on the image plane at 

camera position 1;*27 andjc22 are the projections of the points w2 and 

vv2 on the image plane at camera position 2; and d is the distance 

between the two camera's rotating centers.

By solving equations 32 through 35 f or B7 , B2, X01 , and X02 and 

substituting X0J and_X02 into equation 31, all parameters needed for 

the accurate determination of the surface topography of objects are 

obtained, and the calibration of the experimental set-up is 

achieved.

Determination of Corresponding Points

The implementation of stereo imaging requires the 

determination of corresponding points between a pair of images.
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One approach to this problem is to use an area-based algorithm. 

There are other correlation techniques that have been developed by 

other researchers, but for convenience and to shorten computer 

runtime, an area-based algorithm approach is used in this study, 

which is defined as follows.

Define x0 and y0 as the disparity or translation difference 

existing between two corresponding points in a pair of images. Let 

g(x,y) represent a gray-level distribution sampled from the first 

image, where the center of this gray-level sample is located at the 

point (x,y). Then g*(x+x0,y+y0 ) represents a gray-level distribution

sampled from the second image, with its center located at point 

(x+x0,y+yo). The similarity between g(x,y) and g*(x+x0,y+y0) can be defined 

in discrete form by

S - R[ g(x,y), g*(x+xol y+y0 ) ] (35)

where g(x,y) and g*(x+XQ,y+y^ are gray-level distributions expressed in 

terms of an (n x m) matrix, and R represents a relationship 

operation that defines a correlation measure between g(x,y) ancl

If the Euclidian distance is used to measure the similarity 

between g(x,y) and g*(x+x0,y+y0) f the discrete correlation function C(x0,y^ 

is written as
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CU0 ,y0 ) - | S II ff±J (x,y) - g^U+x0 ,y+y0 ) || (36)

If normalized correlation is used to measure the similarity between 

two images, the discrete correlation function is defined as 

follows:

(37)i j
n m JL

1 2- y) '£ E *«
i J

The (n x m) area considered, in using either of these discrete 

correlation functions, is a gray-level subset extracted from the 

two images. The point (x+x0,y+y(j in the second image that corresponds 

to the point (x,y) in the first image is found by looking for a 

minimum value of the above correlation function. Thus, the peak of 

the similarity between the two areas is found using this approach. 

The result is that the disparity between the first and second image 

is (XQ^Q). This value is used to calculate the needed Z coordinate. 

This approach achieves subpixel accuracy when determining the 

surface topography of the objects considered.

Experimental Results of Surface Topography Measurements

To illustrate the validity of the above theoretical procedure, 

four different kinds of object surfaces were tested: A piece of
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paper with an inscribed hollow letter A taped to a tilted plane; a 

semi-cylindrical surface; a semi-spherical surface; and a semi- 

sinusoidal or wavy surface. The correlation function used for 

mapping the inscribed letter A, the semi-cylindrical, and the wavy 

surface is given by equation 38. The correlation function used to 

map the semi-spherical surface is given by equation 38. Some 

preprocessing (averaging the video images several times) of the 

video images was required to reduce background noise and was found 

to increase the accuracy of measurement.

Letter A Inscribed On a Tilted Plane

A hollow letter A is inscribed on a sheet of paper and is then 

glued to an aluminum plate. The aluminum plate is positioned at an 

angle to the vertical. The baseline B between the two cameras is

60 mm, and the focal length, X, of the camera lens is 110.74 mm. 

This experiment was carried out using a parallel optical-axis 

experimental set-up. In this test, the magnification factors, 

found by using a known standard to relate the actual length to the 

measured length in pixels, are 4.91 pixels/mm along the x-axis and 

4.24 pixels/mm along the y-axis. The analysis is performed from 

two video images of the hollow letter A, consisting of 11 thick- 

line segments. The algorithm used to determine the location of the 

letter A thick-line segments used their centerline location to 

reconstruct them. In determining the centers of the thick-lines, 

a scanning window program was used to interrogate and correlate the
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two video images.

Figure 19 shows the results of the point-by-point 

reconstruction of the three-dimensional shape of the hollow letter 

A with an accuracy of approximately ±0.07 pixels. Table 4 gives 

the statistical results and measurement errors. To obtain the 

vertical distance from the lowest to the highest point of the 

letter A, the average vertical location of 46 points at the lower 

end (zj = 1956.60 mm) and the average of 43 points at the upper end 

(z2 = 1995.79 mm) are used. This results in a vertical distance 

difference of Azm = 39.19 mm. Additionally, the tilt angle of the 

letter A from the horizontal is calculated using this vertical 

distance and the actual length of the letter A, D, which is 80 mm.
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Total Measurement Points: 947

Y

X

Figure 19. Three-dimensional reconstruction of the hollow 

letter A on a tilted plane.
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Table 4. Error analysis of hollow A

Vertical distance

from lowest to Tilt angle

highest point, Az (mm) (degrees)

Actual

Measured

Mean absolute error

Mean relative error (percent)

40.

39.

-0.

-2.

12

19

934

33

30.10

29.33

-0.11

-2.56

Semi-Cylindrical Surface

A semi-cylindrical surface inserted in a flat plane was 

measured using the parallel and converging optical-axis 

experimental set-ups. For the parallel optical-axis experimental 

set-up, the baseline B between the two cameras is 30 mm, and the 

focal length, A, of the camera lens is 112.02 mm. The following 

values were used for the converging optical-axis experimental set­ 

up: e>2 = -G>2 = 0.11 radians; Z01 = Z02 = 0, X01 = X02 = 127 mm; and Jij = A2 

- 112.83 mm. A reconstructed image of the point-by-point surface 

topography of the semi-cylindrical surface obtained with the 

converging optical-axis experimental set-up is shown in figure 20. 

The data has an accuracy of ±0.06 pixels.
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TOTAL MEASUREMENT POINTS: 1,560

Figure 20. Three-dimensional reconstruction of a semi- 

cylindrical surface.
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To determine which of the two experimental set-ups is more 

accurate, an error analysis was done using the results obtained 

from the two models. The radius of the cylinder is assumed to be 

the comparative base for this error evaluation. The actual radius 

of the cylinder, rt , is measured with calipers and is 32.25 ± 0.025

mm.

Figure 21 shows the geometry used to compute the measured 

radius of curvature at every point that defines the surface of the 

object. In this figure, ht and rt are the actual height and radius

of the semi-cylindrical surface. The measured height is hm at each 

experimental point. From the geometric relations shown in figure 

22, the measured radius is

rm - [ x2 + (r t -h t + hm)* ]"* (38) 

which is a function of the* coordinate of the experimental point.

The average or mean value of these data is (r^)^ ea is the 

absolute error, es is the statistical mean error, and S is the 

standard deviation for all observations. A comparison of the 

measured errors for the parallel and converging optical-axis 

experimental set-ups is given in table 5. This table shows that 

the converging optical-axis experimental set-up has a higher 

measuring accuracy than the parallel-axis experimental set-up.
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X

Figure 21. Geometry for computing radius r
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TOTAL MEASUREMENT POINTS: 4,698

Figure 22. Three-dimensional reconstruction of a semi- 

spherical surface.

83



Table 5. Error analysis of a semi-cylindrical surface [mm, 

millimeters; parameters for the experimental setup: ( rm ) m / mean 

value of the measured radius; ea/ absolute error: es , statistical 

mean error; S, standard deviation for all observations; and (rm ) m - 

rt , mean measured radius minus measured cylinder radius]

Optical-

axis ( rm)m ea_lmml es S (rj m - rt

model (mm) ( ea )max ( ea )min percent (mm) (mm)

Parallel 31.875 0.742 0.001 1.41 0.253 -0.375 

Converg­ 

ing 32.268 0.361 0.016 0.81 0.257 0.018

Semi-Spherical Surface

The converging optical-axis experimental set-up was used to 

determine the shape of a semi-spherical surface inserted in a flat 

plane. For this experiment, the parameters that define the 

experimental set-up are: 67 = -62 = 0.119 radians, Z01 = Z02 = 0, X01 = 

X02 = 127 mm, and X1 = X2 = 112.72 mm. A point-by-point reconstructed 

image of the semi-spherical surface and the plane into which it is 

inserted is shown in figure 22. The accuracy of the calculation is 

±0.06 pixels. The magnification factors in this test are 9.478 

pixels/mm along the x-axis, and 8.035 pixels/mm along the y-axis.
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X

Figure 23. Geometry for computing measurement errors in a 

semi-spherical surface.

85



The actual radius of the sphere is used as the basis of 

comparison to determine the measurement errors in this semi- 

cylindrical surface. A schematic of the geometry used for 

estimating these measurement errors is shown in figure 23. 

Calipers (with an accuracy of ± 0.025 mm) are used to measure the 

diameter, Dt , of the circular intersection of the semi-sphere with 

the flat plane, and the height, ht , of the semi-spherical surface. 

The radius, rr , of the semi-spherical surface is then calculated from

< 39)

The measured radius, rm , at every calculated point on the semi- 

spherical surface is obtained using the following procedure. 

First, the flat plane vertical location on the object is calculated 

by averaging the vertical location of 432 points on that plane. 

The value obtained is 1,230.84 mm. Then the center of the base 

circle is obtained by locating the horizontal position coordinates 

xc andyc from the first video images. If there is a measured radius

needed for a point that has been identified on the semi-spherical 

surface, the radius of a circle parallel to the base circle, rb , is 

obtained from

r - [ ( £ ) 2 + ( 2 ) 2 ] ^ (40>

86



Then, the measured radius, rm , of every point on the semi-spherical 

surface is obtained by

rm - [ rb2 + (r t - h t + hm) 2 ] 2

where hm is the measured height from the base plane to any point on 

the spherical surface.

An error analysis of the calculations of the semi-spherical 

surface was performed using 2,632 measurement points. The results 

are given in table 6. Also, figure 24 shows the maximum error 

cross section of the object. The figure illustrates a comparison 

between the actual shape and the measured values showing two smooth 

contours with different curvatures. The maximum error occurs at 

the highest point of the object. This result reflects the 

systematic error introduced as a result of the machining process, 

which was not very accurate, used to form this semi-spherical 

shape.
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Table 6. Error analysis of a semi-shperical surface [mm, 

millimeters; parameters for the experimental setup are: Dt/2, 

actual radius; (rm ) m/ mean measured radius; es , relative error; and 

standard deviation]

fit

2 (rj m g* (percent) S

(mm) (mm) Mean Max Min (mm) 

53.810 54.986 2.186 -0.004 4.358 0.620
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A Measured Calculated

X

Figure 24. Comparison of the measured and calculated semi- 

spherical surface.
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Wavy Surface

The final surface tested using the stereo imaging equipment 

was a semi-sinusoidal or wavy surface. It was chosen because of 

its more complex surface. The baseline of the parallel optical- 

axis experimental set-up is 30 mm, and the focal length, A f of the

camera lens is 109.61 mm. The number of measurement points on the 

wavy surface is 6,840 with an accuracy of ±0.06 pixels. The three- 

dimensional smoothed shape of this reconstructed surface is shown 

in figure 25. The parallel optical-axis experimental set-up was 

used because the converging optical-axis experimental set-up was 

unable to image all areas of this particular specimen. Since no 

independent measurements of the wavy surface topography were made, 

an estimate of the accuracy of this wavy surface mapping would have 

to rely on the previous experimental results.
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TOTAL MEASUREMENT POINTS: 6,840

Figure 25. 

surface.

Three-dimensional reconstruction of a wavy
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AUTOMATED PHASE-MEASURING PROFILOMETRY FOR THREE-DIMENSIONAL 

RECONSTRUCTION OF OBJECT SURFACES

Noncontact measurement of three-dimensional objects is a 

desirable alternative to using calipers, dial gauges, and 

micrometers. It is especially needed in high-speed on-line 

inspection, mechanical component quality control, automated 

manufacturing, computer-aided design, medical diagnostics, and 

robotic vision. Optical methods play an important role in 

noncontact surface profile measurement. Several optical three- 

dimensional surface profilometry methods that have been studied 

exhaustively include projection moire (Idesawa and others, 1977; 

Perrin and Thomas, 1979; Cardenas-Garcia and others, 1991), phase 

shifting technique (Kujawinska and Robinson, 1988; Asundi, 1991; 

Kujawinska and Wojciak, 1991), and Fourier transform (Takeda and 

others, 1982; Takeda and Mutoh, 1983).

The moire approach has been widely used as a tool to measure 

shapes, displacements, and deformation for many years. When two 

gratings or one grating with its shadow are superimposed under tk£ 

light, moire fringes appear on the surface, which are the loci of 

constant heights conveying three-dimensional information about the 

surface. However, it is not a simple matter to automate the 

demodulation of this information. Some problems that need to be 

solved are locating the center lines of the moire fringes, which is 

especially difficult for broad fringes where the surface is flat
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and almost normal to the optical axis; assigning fringe orders, 

automatically including those separated by discontinuities; making 

an automatic distinction between an elevation and a depression on 

the surface, which needs at least two moire fringe images that are 

obtained before and after the object is translated along the 

optical axis; and evaluating false or partially dark fringes.

Moire fringe analysis obtains three-dimensional data only at 

the fringe centers, and considerable information is lost. The 

points between fringe centers can be measured to increase the 

accuracy of the measurement. To accomplish this, the object is 

translated to several accurate locations to obtain different moire 

images. Processing of the images is then performed at all of these 

alternative positions. Although this whole procedure can be 

automated using a computer, considerable time is needed to perform 

all the processing. This technique is not useful for high speed, 

on-line inspection, or any other measurement that requires that the 

object move when measurements are taken. This requirement of more 

than one image to accurately analyze the surface topography of an 

object limits the applicability of this experimental technique.

Phase shifting, when applied to moire techniques, is one 

approach to using all the pixel information of a moire image to 

calculate the topography of an object. This implementation 

requires the translation of one grating on its own plane with 

respect to another. Images are obtained at preset values of
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translation, creating several related moire images. The phase of 

every pixel of the image then can be determined, if the exact 

translation distance is known. This phase modulation experimental 

approach avoids most of the problems of conventional moire 

techniques. However, the optical set-up is more complicated, and 

small errors in assessing the translation motion substantially 

affect the accuracy of the measurement. Also, variations in image 

intensity and contrast have a detrimental affect on the results. 

Although the use of this experimental approach permits the 

determination of the three-dimensional coordinates of all points on 

the moire image in a short time, this method cannot be used if the 

object being measured is in motion.

Fourier transform profilometry (FTP) does not rely on moire 

fringes, so it is free from all the difficulties associated with 

the moire contouring technique, and it can obtain the three- 

dimensional coordinate of every pixel on the image. The grating 

image projected on an object surface is processed by taking the 

Fourier transform. After selecting the second spectrum, its 

inverse Fourier transform is computed. A reference plane is also 

analyzed using the same method. By comparing both results, it is 

possible to obtain the phase difference that is directly associated 

with the height difference between the point on the surface and the 

reference plane. Because FTP relies on only one image to assess 

object shape, it is useful for measuring the shape of not only a 

static but also a moving object, which substantially broadens the
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choice of a window to select the part of the frequency spectrum to 

be analyzed when calculating the phase difference, it is sometimes 

difficult to precisely select the exact required spectrum. For 

example, if more than the required information is extracted, the 

measurement accuracy decreases near the object edge; whereas, if 

too little information is extracted, the resulting object shape is 

distorted.

Another approach that is useful in the mapping of object shape 

is stereo imaging (Keshef and Sawchuk, 1983; Crimson, 1984, 1985), 

discussed in a previous section of this report. No grating is 

needed in this method. Its basic principle is the same as the 

human vision system. Two images are needed to implement a stereo- 

imaging approach. Either the images are taken simultaneously from 

two cameras separated by some distance or with a single camera that 

is translated relative to itself while acquiring two images of the 

same object (or the object moves relative to a stationary camera). 

The same real point on the two images is located by digital 

correlation. The distance from the point of interest to the lens 

plane of the camera is calculated from the stereo parallax of the 

same point and the parameters of the observation set-up. It is a 

whole-field measurement technique much like FTP, but it has the 

advantage of giving more direct, unambiguous, and quantitative 

depth information. One disadvantage is that the computer 

processing time needed by stereo imaging is much more than that 

needed by FTP or by the moire phase shifting technique. Also, if
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there are not enough surface features on the object, the 

correlation technique cannot distinguish the same point on two 

different images.

Another approach to measuring the three-dimensional profile of 

objects is that taken by Tang and Hung (1990), which is based on 

the work outlined by Womack (1984) and Ichioka and Inuiya (1972). 

This measurement approach is a new, fast technique for automatic 

three-dimensional shape measurement. The phase-measuring 

profilometry technique, like FTP, is based on the principle of 

measuring the phase of the deformed grating pattern, which is 

projected on the object and conforms to its shape. The deformed 

grating contains the three-dimensional information of the object 

surface being measured. By using this measurement technique, it is 

possible to automatically and accurately obtain the phase map or 

the height information of the object at every pixel. Since only 

one object image is needed to assess object shape, the object can 

be either static or moving. Compared to FTP, the phase-measuring 

prof ilometry technique processes the deformed grating image pattern 

in the real-signal domain rather than the frequency domain. This 

technique has several advantages. It does not require extraction 

of an exact spectrum to ensure a high-accuracy measurement; it can 

process any number of pixel points; and it is much faster than FTP.

Using the approach of Tang and Hung (1990) , very high levels 

of measurement accuracy in shape measurement can be achieved if a
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simple low-pass digital filter is correctly designed. Several 

different object surfaces were successfully measured with high 

accuracy, including some simple diffuse reflecting cylindrical, 

spherical, triangular, and sinusoidal surfaces, and more 

complicated rock and silicon wafer surfaces.

Principles of Phase-measuring Profilometry

The principles of phase-measuring profilometry and the low- 

pass filtering function, which directly affects the accuracy of the 

measurement, are explained in this section of the report. Also, 

measurements of several samples and their accuracy are presented.

The optical geometry for the experimental set-up is shown in 

figure 26. On the reference plane, the grating pattern, gr(x,y), is

expressed by

-gT (x.y) - Ra (x.y) cos- + n
n-O

where p is the period of the grating fringes on the image, (pr (x) = (2n/p) 

r(x) is the phase shift on the reference plane owing to the divergent 

light source, where r(x) is the distance point (x,y) that moves when/? 

is moved from infinity to a finite distance from point O.

When the grating pattern is projected onto the surface to be
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grating

r

image plane

reference plane

x

Figure 26. The geometry of the experimental set-up
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measured, the deformed grating pattern is observed at point C. The 

grating pattern, g0(x,y), on the object surface can be expressed as

(43)
n-O L P J

where 4>0(x,y) = (2n/p) fr(x) + s(x,y)J is the phase shift on the object 

surface.

The phase difference, A<t>(x,y), between the reference plane and 

the object surface is

A+U,y) - + 0 U,y)- + Z U) - 22- s(x,y) (44)

where, s(x,y) for point h on the object surface is the distance 

between a and b as shown in figure 26. From simple geometry, the 

distance z from the reference plane to point h is easily determined 

from s(x,y) .

To obtain the phase 0rfc) (from eq. 43) an&$0(xty) (from eq. 44),

the following procedure is used. The general pattern is expressed 

as

9(x,y) - an (x/y) cos + n+(xf y) (45)

where phase Q(xty) varies very slowly compared to the variation of 

cos(2nnx/p) f is multiplied by cos(2nx/p) f and expanded to:
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P £o L P J P
OlTTf 1 T 4lT5f i 1  a (.2C vj cos    -   + a ^^c v) cosl ^ ^K / «  T^-N i

0 >y p 2 1V ^ I P ^ j (46)

+ -| a1 (x/ y) costly) + -|- a2 (x f y)
<U ^

+ 4- a2 (x,y)

does not have a (2rrnx/p) term, and it is the only low-frequency term. 

Assume that gl(x,y) is the result after the function g(x,y) cos(2nx/p) is 

processed by a digital low-pass filter.

When equation 46 is multiplied by sin(2nx/p) and expanded, the 

following equation is obtained:

g(x.y) sin- - V>n U,y) cos + n 
P

- a0 (x f y) s
P Z L P

- ^-.a1 .(x / y) .sin(x/ y) + -|a2 (x,y) sinf-^^ + 2 4>(x,y)| 
2 z [ p j

2 ^(^
P

In equation 48 f the only low frequency is -% aj(x,y) sin<t>(x,y). Assume 

that g2(x,y) is the result after the function g(x,y)sin(2nx/p) is processed 

by a digital low-pass filter.

The phase can then be obtained from
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tan'1 ~*'. (48)

The only remaining problem is extracting the low-frequency terms 

from equations 47 and 48. These can be obtained in the real-signal 

domain by performing the convolution of the unit sample response 

h(n) of a low-pass digital filter with the input signal represented 

by equation 46.

In a real measurement, the distribution of the intensity on 

the reference plane (reference line) should be taken and then 

multiplied by cos(2nx/p) and sin(2nx/p), separately. Through low-pass 

filtering, gl(x,y) and g2(x,y) are obtained, and <f>r is then calculated 

using equation 49. The deformed grating pattern on the object is 

processed line by line. For each line, the same procedure as for 

the reference line is performed to get <t>0(x,y) . The phase difference 

between the object point and the reference A<f> is obtained using

A<p - <p 0 (x,y) - <p r (x) . (49)

The phase calculated using equation 49 is a principal value 

ranging from -n to?r. The phase distribution is wrapped into this 

range and has discontinuities at -n and n. The unwrapped phase 

distribution can be automatically obtained by the Macy phase 

unwrapping algorithm (Macy, 1983).
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To calculate the height from a point on the object to the 

reference plane, z(x,y), either the simple geometrical relation given 

by equation 50 is used

z(x,y) - , L * A 'P.(x'/) . , (SO) 
2nd - p Acp (x,y)

or it can be determined by calibration, where the relation between 

a phase unit and a real length unit, such as millimeter, is 

defined.

Because it is difficult to accurately measure the distances d 

and L defined and shown in figure 26 and to evaluate the system 

error of the experimental set-up, calibration of the system is 

recommended to eliminate the system error. The calibration 

procedure can be performed using an object whose shape is known 

with the required measurement precision. The calibration and 

measurement procedures can be fully automated.

Experimental Set-up

Figure 27 shows a schematic of the measurement set-up used in 

this section of the report. A precision projector is used to 

project a Ronchi grating on the object surface. The projected 

grating is imaged using a charge-coupled device (CCD) video camera, 

whose optical axis can be either parallel or converging with that 

of the projector, without any noticeable affect on the measurement 

result. Data acquisition is performed using a video camera and a
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Figure 27. Schematic of the experimental set-up
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4-megabyte image memory video digitizing image processing board. 

The resolution of the image is 752 (horizontal) x 480 (vertical) 

pixels. The image board works in conjunction with a 486DX2/50 

microcomputer. A color video monitor is used to show the acquired 

video images. A machined reference plane is located near the 

object being measured. The processing of a 256 x 256 pixel window 

with this experimental set-up takes less than 8 seconds. This 

includes writing the result into a file. It is estimated that with 

a computer accelerator board and suitable software, real-time 

measurement could be easily achieved.

Six different kinds of object surfaces were tested, including 

some simple diffuse reflecting cylindrical, spherical, triangular 

and sinusoidal surfaces and more complicated rock and silicon wafer 

surfaces. The axis of the projector is set up parallel to that of 

the CCD video camera. The pitch of the Ronchi grating used is 20 

lines per mm.

Semi-Cylindrical Surface

The semi-cylindrical surface is a cylinder that was placed 

next to a flat plane. The radius of the cylinder is 32.25 ± 0.01 

mm and its length is 125.00 ± 0.1 mm. It was machined to this 

tolerance using a lathe and checked with a dial gage. The distance 

between reference plane and the lens plane L, shown in figure 26,

is 653.1 mm. The magnification factor on the reference plane is
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10.874, and the grating fringe pitch,/?, is 0.544 mm (4.418 pixels 

on the reference plane). Figure 28 shows the deformed grating 

image, and figure 29 shows the three-dimensional reconstruction of 

the semi-cylindrical object surface. The measured area is 60.06 mm 

by 44.92 mm. The statistical mean error of this measurement using 

100,490 points on the object surface, compared to the actual 

nominal radius of the cylinder, is 0.142 percent. The statistical 

absolute error is 46 microns.

Semi-Spherical Surface

The semi-spherical surface is obtained by carefully machining 

a semi-spherical surface on a flat plane. The nominal radius of 

the spheroid is 53.81 mm. The object is located 697.4 mm from the 

lens plane. The magnification factor is 11.680, and the pitch of 

the grating fringe on the reference plane is 0.584 mm (4.436 

pixels). Figures 30 shows the deformed grating image, and figure 

31 shows the reconstruction of the semi-spherical object surface. 

The measured area is 62.89 mm by 52.46 mm. The results of 

measuring about 90,000 points on the spherical surface show that 

the statistical mean error related to the nominal radius of the 

sphere is 0.129 percent, which gives a statistical absolute error 

of 69 microns.
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Figure 28. Deformed grating image of a semi-cylindrical 

surface.
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Figure 29. Three-dimensional reconstruction of a semi- 

cylindrical surface.
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Other Surfaces

The deformed grating image and their three-dimensional 

reconstruction for a roof-like triangular surface, a wavy surface, 

a coarse rock surface, and a silicon wafer are shown in figures 32- 

39. If a visual comparison is made of the reconstructed rock 

surface to the real object, great similarity is found, even in the 

smallest details. The statistical mean error of the measurements 

is predicted to be less than 0.15 percent. The resolution in the 

direction of the optical axis that can be reached is from 50 to 70 

microns.
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Figure 30. 

surface.

Deformed grating image of a semi-spherical
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Figure 31. Three-dimensional reconstruction of a semi- 

spherical surface.
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Figure 32. Deformed grating image of a triangular surface
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Figure 33. Three-dimensional reconstruction of a triangular 

surface.
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Figure 34. Deformed grating image of a wavy surface
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Figure 35. 

surface.

Three-dimensional reconstruction of a wavy
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Figure 36. Deformed grating image of a rock surface
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Figure 37. 

surface.

Three-dimensional reconstruction of a rock
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Figure 38. Deformed grating image of a silicon-wafer surface
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Figure 39. Three-dimensional reconstruction of a silicon- 

wafer surface.
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SUMMARY

Three experimental techniques for assessing the topography of 

object surfaces are projection moire, stereo imaging, and phase- 

measuring profilometry. These experimental techniques were 

developed in the laboratory to make topographical measurements of 

various objects.

This study was conducted to support site-characterization for 

the Yucca Mountain Project. A method was developed to digitize the 

topography of fracture surfaces for a series of tests investigating 

the hydrologic characteristics of the welded and nonwelded tuffs at 

Yucca Mountain. These tests are for determining the relations 

between unsaturated-fracture flow and fracture roughness.

The first experimental technique described in this report is 

an automated projection moire experimental set-up that is capable 

of displaying and measuring the three-dimensional form of some 

simple objects. Calibration of the experimental set-up, 

determination of the fringe number, and use of phase information 

are important aspects of this approach. The resolution and 

relative error were obtained using a cylindrical surface. This 

experimental set-up can be used for distinguishing the concavity 

and convexity of a surface.

Projection moire is not an ideal optical technique for making
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topographical measurements of surfaces. The principal problems of 

implementing moire projection in an automated mode are the 

following: Making an automatic distinction between a depression 

and an elevation from a contour map of the object requires the use 

of more than one image; assigning fringe orders automatically, 

including those separated by discontinuities; locating the center 

lines of broad fringes by correcting unwanted irradiance variations 

caused by nonuniform light reflection on the object surface; 

interpolating regions lying between contour lines; and evaluating 

the existence of false or partially dark fringes. However, despite 

these problems, projection moire is an experimental technique that 

provides a method for displaying and measuring the three- 

dimensional form of large objects with continuously variable 

resolution.

In the second section of this report, two stereo-imaging 

experimental set-ups for measuring the three-dimensional geometry 

of objects are described. A parallel optical-axis model and a 

converging optical-axis model are both obtainable from the same 

theoretical development. Digital image correlation was used to 

find the disparities between corresponding points in a pair of 

images, for each of these models, with sub-pixel accuracy. Four 

different object surfaces were used to illustrate the application 

of the developed algorithms and the stereo-imaging experimental 

set-ups. For some of the objects tested, a higher measuring 

accuracy was obtained from the converging optical-axis experimental
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set-up.

The most promising approach, phase-measuring profilometry, is 

described in the third section of this report. Phase-measuring 

prof ilometry provides a new fast prof ilometer for full-field three- 

dimensional shape measurement. Compared to other optical methods 

for three-dimensional shape measurement, this technique is faster, 

and more accurate. The technique is based on the principle of 

phase measurement of a projected grating image on the object 

surface that conforms to the shape of the object. This deformed 

grating pattern carries the three-dimensional shape information of 

the surface to be measured. Six different object surfaces were 

measured with this experimental technique. The measurement error 

was less than 0.15 percent, and, for the objects used, the 

resolution was 50 microns.
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APPENDIX - Newport Corporation Precision Moire Gratings 

(Manufacturer Specifications)

Model: MGP-20

Pitch: 20 line pairs per mm. A line pair

consists of one dark and one bright

line

Format: 35 mm 

Fabrication: Double coated chrome pattern on 1.6-

mm-thick optical glass 

Flatness: 0.0002 in. (0.00508 mm) for 2 in. by

2 in. (50.8 mm by 50.8 mm) 

Optical density: D > 3.0 

Local defects: Voids/blockage < 0.00


