BIBLIOGRAPHY AND SUMMARY OF DATA AVAILABLE FOR THE SALAR DE UYUNI, BOLIVIA

by

G.J. Orris

Open-File Report

95-618

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Salar de Uyuni</td>
<td>1</td>
</tr>
<tr>
<td>Brief Description</td>
<td>1</td>
</tr>
<tr>
<td>Regional Geologic Attributes</td>
<td>1</td>
</tr>
<tr>
<td>Local Geologic Attributes</td>
<td>4</td>
</tr>
<tr>
<td>Volcanism</td>
<td>5</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>5</td>
</tr>
<tr>
<td>Mineralization</td>
<td>5</td>
</tr>
<tr>
<td>Production</td>
<td>6</td>
</tr>
<tr>
<td>Reserves</td>
<td>6</td>
</tr>
<tr>
<td>Economic Limitations</td>
<td>7</td>
</tr>
<tr>
<td>Sources of Information</td>
<td>7</td>
</tr>
<tr>
<td>General description or mention of Uyuni</td>
<td>7</td>
</tr>
<tr>
<td>General Andean borate-lithium studies</td>
<td>7</td>
</tr>
<tr>
<td>Borate deposits, geology, and formation</td>
<td>8</td>
</tr>
<tr>
<td>Lithium, deposits, geology, and formation</td>
<td>8</td>
</tr>
<tr>
<td>Altiplano/Bolivian geology and tectonics</td>
<td>8</td>
</tr>
<tr>
<td>Cenozoic Volcanism</td>
<td>8</td>
</tr>
<tr>
<td>Paleoclimate/climate</td>
<td>8</td>
</tr>
<tr>
<td>Bibliography</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Salar de Uyuni is one of Bolivia’s largest mineral resources. The salar is known to contain significant resources of salt, magnesium, potassium, and boron, as well as one of the world’s largest lithium brine deposits. In addition, geological and geophysical data indicate significant potential for gold, copper, and other metal deposits in the volcanic rocks within and surrounding the salar.

SALAR DE UYUNI

BRIEF DESCRIPTION

Salar de Uyuni (fig. 1) is a wet playa deposit with significant resources/reserves of rock salt (halite) and ulexite, as well as brine containing lithium, potassium, magnesium, and boron. The salar is the remant of lakes that occupied much of the Bolivian Altiplano in the Late Pleistocene. Salar de Uyuni is the largest salt pan (salar) in the world (Erickson and others, 1978) and is one of the world’s largest lithium brine resources. In addition, the volcanic rocks underlying and surrounding the salar have created the potential for significant metal resources in the area. The salar occupies an area of over 10,000 sq km at an elevation of 3,653 m. The location of the center of the salar is approximately 20°S and 068°W; topographic/geologic coverage is provided by the Rio Mulato, Uyuni, Salinas de Garci Mendoza, and Villa Martin 1:250,000 quadrangles.

REGIONAL GEOLOGIC ATTRIBUTES

The Salar de Uyuni is located in the Bolivian Altiplano, a large closed basin in the central Andes bordered by the Cordillera Occidental and the Cordillera Oriental and extending from Peru to northern Argentina. The basin has existed since the early Tertiary and was formed during the uplift of the Andes.
Figure 1. Geology of the Salar de Uyuni area (after Marsh and others, 1992).
LOCAL GEOLOGIC ATTRIBUTES

Host rock(s): Lacustrine sediments and evaporites including extensive clay and mud layers, massive halite (fig. 1).

Associated rock(s): Area is largely surrounded by and in part or wholly underlain by Cenozoic volcanic rocks, largely andesitic in composition. Variable amounts of Pre-Quaternary continental sedimentary and volcano-sedimentary deposits are also present in the drainage area, as well as minor amounts of Pre-Tertiary rocks.

Ore mineralogy: halite, ulexite, brine, sylvite; possibly Cu, Au, Ag.

Gangue mineralogy: gypsum, clays.

Alteration: Strong hydrothermal clay alteration on islands of exposed volcanic rocks of a shallow buried ridge that bisects the salar from north to south.

Structural setting: Closed basin. The salar is bisected by a shallow buried ridge running from the major peninsula on the southern edge to the north shore.

Ore control(s): Arid climate; closed basin; presence of volcanic rocks.

Effect of weathering: Wind erosion may negatively impact surface salt deposits. Water may destroy evaporite deposits.

Climate/Paleoclimate: Remnant shorelines can be found more than 10 m above the present surface. Extensive algal reefs can be found up to 75 m above the present surface. During the Pleistocene, Lago Minchin (26-27,000 years B.P.) and Lago Tauca (12,000 years B.P.) extended more than 100 km north of the present drainage basin of the Salar de Uyuni and included the present drainage systems of the Salar de Poopo and Salar de Coipasa. Salar de Uyuni was the lowest point in the lake’s basin. The lake was reduced to approximately is present size about 10,000 years ago. The Pleistocene lake
level changes have been correlated with a changing fluid supply from upstream glaciers; i.e., not due to a change in average rainfall values, but to changes in temperature and distribution of precipitation. Today, the salar floods to a depth of about 25 cm during the rainy season and has no surface water during the dry season.

VOLCANISM

Volcanism began in this area in the late Cretaceous or early Tertiary with extrusion of the alkaline Potoco lavas which are of minor extent. Younger volcanism, beginning in the Miocene and continuing today, is of calc-alkaline composition and includes ignimbrites erupted from large calderas and lavas associated with stratovolcanoes. In general, the ignimbrites decrease in age to the west and are thought to be the most likely source of Li and B mineralization. The ignimbrites include parts of the Miocene Upper Quehua Formation in the east, the Miocene Los Frailes Formation in the northeast, and the Pliocene Ignimbrite Formation to the south and west. There are also scattered domal bodies of intrusive-extrusive rhyolite. Composite volcanoes as old as Miocene are known, but most have erupted during the Holocene. The Salar de Uyuni drainage basin contains many thermal springs enriched in Li, B, and other elements that are related to the continuing volcanism.

DRAINAGE BASIN

There is permanent inflow from the Rio Grande de Lipez which drains continental sediments to the southeast of Uyuni and and ignimbrite plateau breached by numerous composite volcanoes to the south. There is seasonal inflow from the Cordillera Occidental, an area largely composed of stratovolcanoes and their associated rocks to the west of the salar. The Rio Grande drains an area of more than 25,000 km².

MINERALIZATION

Known mineralization in the Salar de Uyuni includes extensive salt (sodium chloride) deposits, sub-economic to economic brines, and borate mineralization. Salt and ulexite have been produced from the salar. The salt crust covers an area of approximately 10,000 km²; this crust is very porous,
composed largely of halite and gypsum, and up to 10 feet thick. A 121 m deep borehole in 1978 encountered 12 different salt horizons separated by lacustrine sediments. Halite has been produced from the Colchani Mine since the 1500's and reportedly grades 95.10% NaCl. Kunasz (1979) estimated that salt precipitation in the basin began about 350,000 years ago.

There has been historic silver production on the east side of the salar, as well as mining in the Salinas de Garci Mendoza mining district in the north. Recent studies have indicated a potential for epithermal Au systems in the area.

Mines and deposits of the salar area:
- Colchani Mine - Holocene halite mine; production since 1500's;
- Salmuera del Salar de Uyuni - brine; no production
- Salmuera del Rio Grande - brine
- Boratera Pampa (Llipi-Llipi) - Holocene ulexite deposits
- Salinas de Garci Mendoza District - polymetallic veins
- San Cristóbal District - polymetallic veins

PRODUCTION

Salt has been produced since the 1500's.
Ulexite has been intermittently produced from surficial deposits.

RESERVES

<table>
<thead>
<tr>
<th>Location</th>
<th>Reserve Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Grande delta/Llipi-Llipi area</td>
<td>12 Mt ulexite (estimate, 1991)</td>
</tr>
<tr>
<td>Rio Grande area</td>
<td>13-14 Mt ulexite ore @ 30% B₂O₃</td>
</tr>
<tr>
<td></td>
<td>(Suarez and others, 1993)</td>
</tr>
<tr>
<td>Salar de Uyuni brine</td>
<td>3.2 Mt B @ 247 g/l</td>
</tr>
<tr>
<td></td>
<td>5.5 Mt Li @ 423 g/l</td>
</tr>
<tr>
<td></td>
<td>110 Mt K @ 8.7 g/l</td>
</tr>
<tr>
<td></td>
<td>(Crozier, 1986)</td>
</tr>
<tr>
<td></td>
<td>(Ballivian and Risacher, 1981)</td>
</tr>
<tr>
<td>Salmuera del Rio Grande</td>
<td>64,000,000,000 mt salt, potential resource</td>
</tr>
<tr>
<td></td>
<td>(Ballivian and Risacher, 1981)</td>
</tr>
<tr>
<td>Salmueras del Rio Grande</td>
<td>600,000 mt Li, 4,500,000 mt K,</td>
</tr>
<tr>
<td></td>
<td>390,000 mt B; potential brine resource</td>
</tr>
<tr>
<td></td>
<td>(Ballivian and Risacher, 1981)</td>
</tr>
</tbody>
</table>
ECONOMIC LIMITATIONS

Physical/chemical properties affecting end use: The Mg to Li ratio is 21.5 and Mg precipitated with Li during trial processing.

Distance limitations to transportation, processing, end use: Railroad junction at town of Uyuni

SOURCES OF INFORMATION

In this section, references are categorized by topic.

GENERAL DESCRIPTION OR MENTION OF UYUNI

Ahlfeld and Schneider-Scherbina (1964); Grupo AQUATER-GEOBOL (1992); Arduz and others (1991); Ballivian and Risacher (1981); Cadima and Lafuente (1969); Cadima and others (1969); Crespo and Palma (gx, 1988); Crespo and others (gx, 1987); Crozier (1987); Ericksen and others (1977); Ericksen and others (1978); Ericksen and Vine (1976); Mariaca Carrasco (1985); Rettig and others (1980); Risacher (1976); Risacher (1978); Risacher (1987); Risacher (1988); Risacher (1989); Risacher and Armendia (1986); Risacher and Miranda (1976); Risacher and others (1977); Sabin and Miller (1993); Sanchez and Ikeda (1987); Suarez and others (1993); U.S. Geological Survey and Servicio Geologico de Bolivia (1992)

GENERAL ANDEAN BORATE-LITHIUM STUDIES

Alonso and Viramonte (1985); Ballivián C. and Arduz T. (1989); Burgos and Ruelans (1992); Crozier (1988); Davis and others (1982); Ericksen (1992); Ericksen and others (1976); Ericksen and Salas (1989); Muessig (1966); Norman and Santini (1985); Risacher (1984); Risacher (1992); Risacher and Fritz (1991)

BORATE DEPOSITS, GEOLOGY, AND FORMATION

Aristarain and Hurlbut (1972); Barker and Lefond (1985); Dickson and Harben (1983); Harben and Bates (1990); Harben and Dickson (1984);
Harben and Dickson (1985); Industrial Minerals (1974); Kistler and Smith (1975); Muessig (1959); Rettig and others, 1980; Risacher and others, 1977

LITHIUM DEPOSITS, GEOLOGY, AND FORMATION
Crozier (1986); Industrial Minerals (1987); Kunasz (1979); Rettig and others, 1980; Risacher and others, 1977; Vine (1980)

ALTIPLANO/BOLIVIAN GEOLOGY AND TECTONICS
Ahlfeld and Branisa (1960); Baby and others (1990); Fröhlich and Servant-Vildary (1989); Guyot and others (1990); Institut de Géodynamique et Limnologie (1978); Isacks (1988); Jordan and Alonso (1987); Lavenu (1978); Lavenu (1986); Lavenu and others (1984); Marocco and others (1987); Risacher and others (1984); Sébrier and others (1988); Servant (1977); Servant-Vildary (1978a, b); Thouveny and Servant (1989)

CENOZOIC VOLCANISM
Avila-Salinas (1991); Baker and Francis (1978); De Silva (1989); Goemans and others (1987); Kussmaul and others (1977)

PALEOClimATE/CLIMATE
Johnson (1976); Seltzer (1990); Servant and Fontes (1978); Vacher and others (1988)
BIBLIOGRAPHY FOR SALAR DE UYUNI, BOLIVIA
(* - CIMRI holdings, + not seen by Orris)


Ahlfeld, F.E., and Schneider-Scherbina, Alejandro, 1964, Los yacimientos minerales y hidrocarburos de Bolivia: Bolivia Departamento Nacional de Geología Boletín 5 (Especial), 388 p. *

Alonso, R.N., and Viramonte, J.G., 1985, Provincia boratifera Centroandina, in Actas--IV Congreso Geológico Chileno: Antofagasto, Chile, Universidad del Norte Chile, p. 3.45-3.63. *


Ballivián, O., and Risacher, F., 1981, Los salares del Altiplano de Bolivia; métodos de estudio y estimación económica: Paris and La Paz, l’Office de la Recherché Scientifique et Technique Outré-Mer and Universidad Mayor de San Andres, 246 p. *

Ballivián C., Oscar, and Arduz T., Marcelo, 1989, Los depositos boratiferos, consideraciones geológicas, genéticas y económicas: Cedomin, ano II, no. 11, p. 18-44.*


Risacher, François, 1988, Ultimos datos sobre el Salar de Uyuni- recursos económicos y origen de las concentraciones en Li, K, Mg, B, in Actas del Segundo Simposio de la Investigacion Francesa en Bolivia: La Paz, Bolivia, l'Office de la Recherche Scientifique et Technique Outre-Mer, p.19-26. *


Seltzer, G.O., 1990, Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes: Quaternary Science Reviews, v. 9, p. 137-152.


