Current data from the northern Gulf of Mexico

Kaye Kinoshita and Marlene Noble
U.S. Geological Survey
Menlo Park, California 94025

Open-File Report 95-633

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Table of Contents

Abstract ... 1
Introduction ... 1
Description of the moored array ... 1
Instrumentation ... 3
Data sets and statistical methods .. 4
Moored current observations .. 5
Moored temperature, salinity and attenuation observations 5
Wind and sea level observations ... 6
Acknowledgments .. 8
References ... 8

Appendix A - Tables
Table A1. - Hour-averaged horizontal current components: A1
Table A2. - Low-passed horizontal current components: A1
Table A3. - Hour-averaged temperature and salinity A2
Table A4. - Low-passeded temperature and salinity A2
Table A5. - Diurnal tidal currents ... A3
Table A6. - Semi-diurnal tidal currents ... A3

Appendix B - Time Series Plots
Plots of hour-averaged currents ... B1-B2
Plots of subtidal currents ... B3-B4
Plots of subtidal current vectors .. B5
Table B1. - Dates and piece lengths used for current spectral plots B6
Variance-conserving auto spectra currents ... B7-B8

Appendix C - Temperature, salinity and transmission
Plots of hour-averaged temperature .. C1
Plots of low-passed temperature .. C2
Plots of hour-averaged salinity ... C3
Plots of low-passed salinity .. C4
Plots of hour-averaged transmission .. C5

Appendix D - Wind and sea level
Table D1.-Dates and piece lengths used for wind and sea level spectral plots D1
Table D2.-Sea level tidal components .. D1
Table D3.-Low-passed horizontal wind stress .. D1
Low-passed NODC wind stress vectors ... D2
Variance-conserving auto spectra winds .. D3
Plots of subtidal synthetic subsurface pressure .. D4
Variance-conserving auto spectra subtidal synthetic subsurface pressure . D5
ABSTRACT

A 20-month study of the circulation patterns and the processes that resuspend and transport sediment and/or pollutants within Mobile Bay, Alabama and over the adjacent gulf-coast shelf began in July, 1990. This report depicts data that was collected by one mooring deployed during the study. The single mooring monitored near-surface and near-bottom current, temperature, salinity and water clarity in 30 m of water on the shelf. This report also presents some statistical parameters derived from the data, together with wind and sea level data for the time spanning the entire study (July 1990 - March 1992).

INTRODUCTION

In July, 1990, a 20-month investigation of the circulation and related transport of suspended materials was begun over the shelf off Mobile Bay, along the northern coast of the Gulf of Mexico (Figure 1). The study was part of a larger program to measure the transport of materials and the associated pollutants within Mobile Bay, Alabama and to determine the exchange of materials between Mobile Bay and the coastal ocean. To monitor coastal ocean processes, a single mooring was deployed in 30 m of water on the shelf (Figure 1). The information gathered by the mooring was designed to provide both a basic description of the circulation patterns in the region and an understanding of important physical processes, especially those processes that control the resuspension and transport of sediment and associated pollutants.

This report describes the data set collected by the instrument mooring (July 1990 - March 1992, Figure 2). The principal data collected in this portion of the field program include records of current speed and direction, temperature, salinity and water clarity measured at the site on the shelf. A detailed description of the moored instruments is given in the next section. Subsequent sections present statistical quantities for the entire data set and depict the characteristics of the hour-averaged and subtidal records.

Description of the moored array

The coastal-ocean field program consisted of several elements. An instrument mooring was deployed on the continental shelf in 30 m of water, offshore of the entrance to Mobile Bay (Figure 1). The mooring was designed to monitor conditions of the water so that reasonably stable estimates of the processes controlling circulation and sediment transport on the shelf and process controlling the possible exchange of shelf water with Mobile Bay could be made. Wind and sea level measurements were obtained at several sites along the coast by the National Data Buoy Office and the National Ocean Services office.

The mooring site is generally outside the influence of the plume from Mobile Bay. Hence, the mooring monitored the general shelf environment (Stumpf, et al., 1993). The water depth is deep enough so that all instruments operate within their design specifications.
Currents, temperature, salinity and transmission data existed.

Figure 2. Timelines showing the dates when valid current, temperature, salinity and attenuation data existed.
Instrumentation

The near-surface instruments on the offshore mooring were attached 5 m below a single surface buoy. A second surface buoy was deployed near the first and both were used to mark the measurement site (Figure 3). A subsurface mooring was deployed between the two surface buoys, with a suite of near-bottom instruments located 6 m above the sea bed (6 mab). Either a single or dual acoustic release package was used to connect the subsurface mooring to the anchor.

Two types of current meters were used (Table 1), EG&G vector-averaging current meters (VACM) and EG&G vector-measuring current meters (VMCM), with the VMCM deployed near the surface when it was available. A VTCT is also referred to in this report. The VTCT is a vector averaging current meter with a transmissometer attached to it to record transmission data. Both types of current meters are specifically designed to measure currents even when high-frequency oscillatory currents from large surface waves are present. A detailed description of the design and measurement characteristics of these instruments is provided by McCullough, 1975, Mero, 1982 and Beardsley et al., 1987. Both types of current meters measured the average current direction and speed every 3.75 minutes.

To measure water clarity (transmission), Sea Tech transmissometers with a 25 cm path length were used. The data were recorded on a Sea Cat data logger or a modified VACM data logger. Poison rings were used to inhibit fouling of the lens. The clear water reading for each transmissometer was recorded before each deployment. The relation between the transmissometer reading and the amount of material resuspended in the water column was derived using calibration procedures described in Moody, et al., 1987. The sample rate was 3.75 minutes (Table 1).

Sea Bird conductivity cells were used to obtain conductivity measurements. The data were recorded on either a Sea Cat data logger or a modified VACM data logger. Each conductivity cell was calibrated by the manufacturer’s specifications before each deployment. The sample rate was the same as for the current meter (Table 1).

Water temperature was measured with temperature sensors installed in the VMCM’s, VACM’s, VTCT’s or Sea Bird data logger. All temperature sensors were calibrated by the manufacturer’s specifications before deployment. The sample rate was the same as for the current meter (Table 1).

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Water Depth (m)</th>
<th>Start Time (M/D/Y)</th>
<th>Stop Time (M/D/Y)</th>
<th>Instrument</th>
<th>Position</th>
<th>Sensor Depth (m)</th>
<th>Data Type</th>
<th>Sample Interval (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1</td>
<td>30</td>
<td>07/28/90</td>
<td>10/18/90</td>
<td>VACM</td>
<td>29.57.72 N</td>
<td>088 10.44 W</td>
<td>C,T</td>
<td>3.75</td>
</tr>
<tr>
<td>350-2</td>
<td>30</td>
<td>07/28/90</td>
<td>12/06/90</td>
<td>VACM</td>
<td>29.57.66 N</td>
<td>088 10.35 W</td>
<td>C,T</td>
<td>3.75</td>
</tr>
<tr>
<td>376-1</td>
<td>30</td>
<td>02/26/91</td>
<td>05/10/91</td>
<td>VACM</td>
<td>29.57.77 N</td>
<td>088 10.80 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
<tr>
<td>376-3</td>
<td>30</td>
<td>02/22/91</td>
<td>05/10/91</td>
<td>VTCT</td>
<td>29.57.77 N</td>
<td>088 10.70 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
<tr>
<td>380-2</td>
<td>30</td>
<td>05/11/91</td>
<td>07/30/91</td>
<td>VMCM</td>
<td>29.57.87 N</td>
<td>088 10.67 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
<tr>
<td>380-3</td>
<td>30</td>
<td>05/11/91</td>
<td>07/30/91</td>
<td>VTCT</td>
<td>29.57.85 N</td>
<td>088 10.73 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
<tr>
<td>385-1</td>
<td>30</td>
<td>07/30/91</td>
<td>11/19/91</td>
<td>VMCM</td>
<td>29.57.81 N</td>
<td>088 10.85 W</td>
<td>C,T</td>
<td>3.75</td>
</tr>
<tr>
<td>385-2</td>
<td>30</td>
<td>07/30/91</td>
<td>12/07/91</td>
<td>VTCT</td>
<td>29.57.80 N</td>
<td>088 10.95 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
<tr>
<td>391-1</td>
<td>30</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>VMCM</td>
<td>29.57.81 N</td>
<td>088 10.85 W</td>
<td>C,T</td>
<td>3.75</td>
</tr>
<tr>
<td>391-2</td>
<td>30</td>
<td>12/11/91</td>
<td>03/20/92</td>
<td>VTCT</td>
<td>29.57.81 N</td>
<td>088 10.85 W</td>
<td>C,T,S</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Table 1. - Data availability for all moorings in the Gulf of Mexico.

VACM = Vector averaging current meter (measures current and temperature) A = attenuation C = current data
VMCM = Vector measuring current meter (measures current and temperature) S = salinity T = sea temperature
VTCT = Vector averaging current meter (measures current, temperature and transmission)
Data sets and statistical methods

This report is a statistical and pictorial description of the data collected during the deployment period. The data sets from each instrument package have been decoded, transcribed into scientific units and passed through several processing steps. The data were checked for quality and errors caused by instrument noise or failures, using programs developed at Woods Hole Oceanographic Institute (Tarbell, et al, 1988). The data were then analyzed using standard time series and statistical procedures. These procedures included plotting the temporal structures and calculating the means, standard deviations, maximum values, minimum values and spectra of each data variable (Appendix A, B, D). In addition, tidal amplitudes were calculated using standard processing packages developed by Foreman (1977, 1978). Spectral plots of currents, wind and sea level were used to depict the frequency characteristics of the data set. All times are in Greenwich mean time (GMT). The units for the currents are centimeters per second (cm/s), temperature degrees Celsius (°C) and salinity parts per thousand (ppt).

The basic sample interval for all variables was 3.75 minutes (Table 1). All data in this report have been averaged into records that have an hour sample interval (denoted hour-averaged records). The data have also been lowpass filtered to remove oscillations with periods shorter than 33 hours. Since the majority of the variability at the shorter periods is due to tidal forcing, these lowpass-filtered records are referred to as subtidal records.
Moored current observations

The currents at the mooring site have been rotated into a coordinate system that is aligned with, or perpendicular to, the alongshelf isobaths. The positive alongshelf direction is east, or 90°; positive onshelf is north, or 0°.

Error bars at the 95% confidence level have been calculated for the mean along and on-shelf currents. The error bars around the mean value indicate how stable the calculated mean is. In order for a reliable mean direction to be estimated, the error bars can not span an interval that includes zero. Significant mean directions have been highlighted in the tables.

The formula for the error bar around the mean is

$$\frac{\Phi \text{r}_{m,a/2}}{\sqrt{m+1}}$$

where \(\Phi \text{r} \) is the student t statistic with \(m \) degrees of freedom at the confidence level, \(a \) is the standard deviation of the subtidal data set. The degrees of freedom of a record is the record length divided by the autocorrelation scale. The autocorrelation scale is calculated from the subtidal records. For both along and on-shelf currents, the autocorrelation scale is 2 days.

Several sections of this data report contain a series of figures that display characteristics of the measured currents. The time series of the hour-averaged and subtidal along and onshelf currents are in Appendix B. The hour-averaged currents are shown first (Appendix B, pgs. B1-B2), the subtidal currents follow (pg. B3-B4). An additional plot type, vector plots of the subtidal currents, are also shown in Appendix B. These figures display the direction and amplitude of the current vectors simultaneously.

The energy in the currents at the measurement site is depicted as a function of the frequency in Appendix B. A variance-conserving autospectra is calculated for the along and onshelf currents. We chose a variance-conserving spectra in order to highlight those frequencies that had the largest energies; the dominant processes occupy the biggest areas on the plots. The tidal frequencies generally have a large fraction of the energy; these large spectral peaks are found at frequencies above \(10^{-5} \) hertz (1.2 days).

All spectra for the instrument mooring are calculated with similar Fourier transform parameters. Each record was divided into pieces 292 days long that overlapped each other by 50% (Table B1). Each piece was windowed with a Hanning window shape in order to reduce leakage of energy from the dominant frequencies into the less energetic frequency bands. The spectra for all pieces at one location were averaged together.

Moored temperature, salinity and attenuation observations

The mean, standard deviation, minimum and maximum values for both the hour-averaged and subtidal temperature and salinity data sets are listed in Tables A3 and A4. Plots of all the data are located in Appendix C. Both the hour-averaged and subtidal data are depicted for temperature and salinity.

Plots of the transmission data are included in this report. The transmission data have been edited for obvious spikes and other bad data. Because transmission is an optical measurement, it is subject to fouling from growth of organisms on the lenses. The gradual decrease in measured clarity over periods of a month or more caused by biological fouling of the lens has not been removed from the data record and should be ignored. However, the large, daily oscillations seen in the transmission record in summer and fall are real, since the oscillation is just as strong at the end of a deployment period in July as it is near the middle of the next deployment in September (Figure C5).

Wind and sea level observations

For the same time period of this study, records of wind velocity and atmospheric pressure at Dauphin Island, Alabama and sea level at Dauphin Island and Pensacola, Florida were obtained from the National Data Buoy Office and the National Ocean Service (Table 2, Figures 4 and 5).
The hourly observations of wind velocity were converted into estimates of wind stress because wind stress represents the actual force that causes water to move over the shelf and slope. Wind stress was calculated from the formula by Wu (1980).

\[\tau = \rho c_D W |W| \]

(2)

where \(\rho \) is the air density (0.0012 g cm\(^{-3}\)), \(c_D \) the drag coefficient and \(W \) the wind velocity. The drag coefficient increases with wind strength

\[c_D = (0.8 + 0.065 |W_{10}|) \times 10^{-3} \]

(3)

where \(W_{10} \) is the wind speed 10 m above the surface in meters per second. The wind stress was lowpass filtered and rotated into an along/onshelf coordinate system. The positive alongshelf wind stress direction is 90\(^\circ\), parallel to the alongshelf topography. The positive onshelf direction is 0\(^\circ\).

The coastal sea level records were converted into records of synthetic subsurface pressure (SSP) by adding atmospheric pressure to the sea level records. SSP is a better representation of the pressure forces that cause currents to move along the coast because changes in sea level caused by high and low pressure systems are removed from the record. The mean was removed from each SSP record. The record was lowpass filtered to remove the tidal signal.

The wind stress and sea level information are presented in appendix D. The tidal amplitudes computed from the unfiltered sea level records are given in Table D2. The basic statistics for the subtidal wind stress records are given in Table D3. The subsequent pages display the temporal and spectral plots of winds stress and SSP data.

Figure 4. Wind W and sea level S stations at Dauphin Island, Alabama and Pensacola, Florida.
Wind and sea level

Sea level
- Pensacola, Florida
- Dauphin Island, Alabama

Wind
- Dauphin Island, Alabama

Figure 5. Timelines showing the dates when valid sea level and wind data exists.
<table>
<thead>
<tr>
<th>Data Type/Station</th>
<th>Water Depth (m)</th>
<th>Start Time (M/D/Y)</th>
<th>Stop Time (M/D/Y)</th>
<th>Position</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Data Type</th>
<th>Sample Interval (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea level</td>
<td>Dauphin Island, AL</td>
<td>1</td>
<td>07/01/90</td>
<td>03/30/92</td>
<td>30 18.0 N</td>
<td>088 06.0 W</td>
<td>SL</td>
<td>60</td>
</tr>
<tr>
<td>Pensacola, Fl</td>
<td>1</td>
<td>07/01/90</td>
<td>05/30/91</td>
<td>30 24.2 N</td>
<td>087 12.8 W</td>
<td>SL</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Buoy wind</td>
<td>Dauphin Island, AL</td>
<td>n/a</td>
<td>07/01/90</td>
<td>04/01/92</td>
<td>30 18.0 N</td>
<td>088 06.0 W</td>
<td>ST,P,AT,W</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 2. Sea level, surface wind and buoy wind data available.

ST = sea temperature
AT = air temperature
P = atmospheric pressure
W = wind (speed and direction)

ACKNOWLEDGMENTS

We would like to thank William Strahle, Marinna Martini, Richard Rendigs, Joseph Newell, and Allan Gunter for preparing, deploying and recovering the many types of instruments used in this project. Francis Hotchkiss decoded and cleaned up the raw data sets.

REFERENCES

Appendix A - Tables

Table A1. - Hour-averaged horizontal current components ... A1
Table A2. - Low-passed horizontal current components .. A1
Table A3. - Hour-averaged temperature and salinity ... A2
Table A4. - Low-passed temperature and salinity .. A2
Table A5. - Diurnal tidal currents .. A3
Table A6. - Semi-diurnal tidal currents .. A3
<table>
<thead>
<tr>
<th>Mooring</th>
<th>Water Depth (m)</th>
<th>Start Time GMT (M/D/Y)</th>
<th>Stop Time GMT (M/D/Y)</th>
<th>Sensor Depth (m)</th>
<th>Onshelf</th>
<th>Alongshef</th>
<th>Max Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1</td>
<td>30</td>
<td>07/28/90</td>
<td>10/18/90</td>
<td>5.0</td>
<td>2.5 ±2.8</td>
<td>17.7</td>
<td>-41.6</td>
</tr>
<tr>
<td>350-2</td>
<td>30</td>
<td>07/28/90</td>
<td>12/06/90</td>
<td>24.0</td>
<td>0.7 ±1.3</td>
<td>6.7</td>
<td>25.8</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/26/91</td>
<td>11/19/91</td>
<td>5.0</td>
<td>0.6 ±1.9</td>
<td>15.1</td>
<td>58.3</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>30</td>
<td>02/22/91</td>
<td>12/07/91</td>
<td>24.0</td>
<td>0.4 ±1.0</td>
<td>7.9</td>
<td>37.9</td>
</tr>
<tr>
<td>391-1</td>
<td>30</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>5.0</td>
<td>1.1 ±3.4</td>
<td>9.6</td>
<td>32.1</td>
</tr>
<tr>
<td>391-2</td>
<td>30</td>
<td>12/11/91</td>
<td>03/20/92</td>
<td>24.0</td>
<td>2.4 ±4.9</td>
<td>5.6</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Table A1. - Hour-averaged horizontal current components (cm/s). Means in bold type are significantly different from zero at the 95% confidence level.

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Water Depth (m)</th>
<th>Start Time GMT (M/D/Y)</th>
<th>Stop Time GMT (M/D/Y)</th>
<th>Sensor Depth (m)</th>
<th>Onshelf</th>
<th>Alongshef</th>
<th>Max Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1</td>
<td>30</td>
<td>07/28/90</td>
<td>10/18/90</td>
<td>5.0</td>
<td>2.5 ±2.8</td>
<td>5.9</td>
<td>15.0</td>
</tr>
<tr>
<td>350-2</td>
<td>30</td>
<td>07/28/90</td>
<td>12/06/90</td>
<td>24.0</td>
<td>0.6 ±1.3</td>
<td>3.7</td>
<td>15.1</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/26/91</td>
<td>11/19/91</td>
<td>5.0</td>
<td>0.5 ±1.9</td>
<td>7.8</td>
<td>30.7</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>30</td>
<td>02/22/91</td>
<td>12/07/91</td>
<td>24.0</td>
<td>0.4 ±1.0</td>
<td>4.3</td>
<td>20.8</td>
</tr>
<tr>
<td>391-1</td>
<td>30</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>5.0</td>
<td>1.2 ±3.4</td>
<td>5.9</td>
<td>17.6</td>
</tr>
<tr>
<td>391-2</td>
<td>30</td>
<td>12/11/91</td>
<td>03/20/92</td>
<td>24.0</td>
<td>2.4 ±4.9</td>
<td>4.5</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Table A2. - Low-passed horizontal current components (cm/s)
<table>
<thead>
<tr>
<th>Mooring</th>
<th>Water Depth (m)</th>
<th>Start Time GMT (M/D/Y)</th>
<th>Stop Time GMT (M/D/Y)</th>
<th>Sensor Depth (m)</th>
<th>Temperature (C)</th>
<th>Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean SD Max Min</td>
<td>Mean SD Max Min</td>
</tr>
<tr>
<td>350-1</td>
<td>30</td>
<td>07/28/90</td>
<td>12/12/90</td>
<td>5.0</td>
<td>26.4 ±3.5 3.7</td>
<td>31.8 19.2</td>
</tr>
<tr>
<td>350-2</td>
<td>30</td>
<td>07/28/90</td>
<td>12/12/90</td>
<td>24.0</td>
<td>24.3 ±1.8 1.9</td>
<td>28.8 19.2</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/26/91</td>
<td>07/22/91</td>
<td>5.0</td>
<td>-- -- --</td>
<td>-- --</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/26/91</td>
<td>12/07/91</td>
<td>5.0</td>
<td>24.8 ±2.3 4.1</td>
<td>30.9 16.2</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>30</td>
<td>02/22/91</td>
<td>12/07/91</td>
<td>24.0</td>
<td>24.3 ±2.0 3.5</td>
<td>30.5 17.7</td>
</tr>
<tr>
<td>391-1</td>
<td>30</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>5.0</td>
<td>17.2 ±2.9 1.0</td>
<td>19.4 14.9</td>
</tr>
<tr>
<td>391-2</td>
<td>30</td>
<td>12/11/91</td>
<td>01/21/92</td>
<td>24.0</td>
<td>18.0 -- 1.0</td>
<td>20.6 16.1</td>
</tr>
</tbody>
</table>

Table A3. - Hour-averaged temperature and salinity. Means in bold type are significantly different from zero at the 95% confidence level.

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Water Depth (m)</th>
<th>Start Time GMT (M/D/Y)</th>
<th>Stop Time GMT (M/D/Y)</th>
<th>Sensor Depth (m)</th>
<th>Temperature (C)</th>
<th>Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean SD Max Min</td>
<td>Mean SD Max Min</td>
</tr>
<tr>
<td>350-1</td>
<td>30</td>
<td>07/30/90</td>
<td>12/11/90</td>
<td>5.0</td>
<td>26.6 ±3.5 3.6</td>
<td>31.3 19.2</td>
</tr>
<tr>
<td>350-2</td>
<td>30</td>
<td>07/30/90</td>
<td>12/10/90</td>
<td>24.0</td>
<td>24.4 ±1.8 1.9</td>
<td>28.2 19.3</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/28/91</td>
<td>07/21/91</td>
<td>5.0</td>
<td>-- -- --</td>
<td>-- --</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>30</td>
<td>02/28/91</td>
<td>12/06/91</td>
<td>5.0</td>
<td>24.8 ±2.3 4.1</td>
<td>30.7 16.3</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>30</td>
<td>02/24/91</td>
<td>12/06/91</td>
<td>24.0</td>
<td>24.3 ±2.0 3.5</td>
<td>30.2 17.9</td>
</tr>
<tr>
<td>391-1</td>
<td>30</td>
<td>12/09/91</td>
<td>02/03/92</td>
<td>5.0</td>
<td>17.2 ±2.9 1.0</td>
<td>19.5 15.3</td>
</tr>
<tr>
<td>391-2</td>
<td>30</td>
<td>12/13/91</td>
<td>01/20/92</td>
<td>24.0</td>
<td>18.0 -- 1.0</td>
<td>20.4 16.4</td>
</tr>
</tbody>
</table>

Table A4. - Low-passed temperature and salinity. Means in bold type are significantly different from zero at the 95% confidence level.
Table A5. Diurnal tidal currents. A negative minor axis indicates a clockwise rotation for the tidal currents. The inclination angle is counterclockwise from east.

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Sensor depth (m)</th>
<th>Start time GMT (M/D/Y)</th>
<th>Stop time GMT (M/D/Y)</th>
<th>O_1 Major axis (cm/s)</th>
<th>Minor axis (cm/s)</th>
<th>Inclination (degrees)</th>
<th>K_1 Major Axis (cm/s)</th>
<th>Minor axis (cm/s)</th>
<th>Inclination (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1</td>
<td>5.0</td>
<td>07/28/90</td>
<td>10/17/90</td>
<td>6.5</td>
<td>-5.2</td>
<td>130.2</td>
<td>19.4</td>
<td>2.5</td>
<td>40.1</td>
</tr>
<tr>
<td>350-2</td>
<td>24.0</td>
<td>07/28/90</td>
<td>12/06/90</td>
<td>1.8</td>
<td>-0.2</td>
<td>120.6</td>
<td>3.8</td>
<td>-2.7</td>
<td>128.2</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>5.0</td>
<td>02/26/91</td>
<td>11/19/91</td>
<td>4.0</td>
<td>-2.3</td>
<td>106.7</td>
<td>5.3</td>
<td>-3.2</td>
<td>084.8</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>24.0</td>
<td>02/22/91</td>
<td>12/07/91</td>
<td>1.6</td>
<td>0.1</td>
<td>121.6</td>
<td>3.3</td>
<td>-2.0</td>
<td>112.8</td>
</tr>
<tr>
<td>391-1</td>
<td>5.0</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>2.2</td>
<td>-1.6</td>
<td>128.5</td>
<td>5.2</td>
<td>-3.2</td>
<td>141.0</td>
</tr>
<tr>
<td>391-2</td>
<td>24.0</td>
<td>12/11/91</td>
<td>01/06/92</td>
<td>2.5</td>
<td>-0.5</td>
<td>138.1</td>
<td>1.4</td>
<td>0.4</td>
<td>132.9</td>
</tr>
</tbody>
</table>

Table A6. Semidiurnal tidal currents. A negative minor axis indicates a clockwise rotation for the tidal currents. The inclination angle is counterclockwise from east.

<table>
<thead>
<tr>
<th>Mooring</th>
<th>Sensor depth (m)</th>
<th>Start time GMT (M/D/Y)</th>
<th>Stop time GMT (M/D/Y)</th>
<th>M_2 Major axis (cm/s)</th>
<th>Minor axis (cm/s)</th>
<th>Inclination (degrees)</th>
<th>S_2 Major Axis (cm/s)</th>
<th>Minor axis (cm/s)</th>
<th>Inclination (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1</td>
<td>5.0</td>
<td>07/28/90</td>
<td>10/17/90</td>
<td>1.6</td>
<td>-0.7</td>
<td>101.3</td>
<td>0.6</td>
<td>-0.2</td>
<td>123.9</td>
</tr>
<tr>
<td>350-2</td>
<td>24.0</td>
<td>07/28/90</td>
<td>12/06/90</td>
<td>0.8</td>
<td>0.3</td>
<td>127.5</td>
<td>0.2</td>
<td>0.2</td>
<td>109.3</td>
</tr>
<tr>
<td>376-1,380-2,385-1</td>
<td>5.0</td>
<td>02/26/91</td>
<td>11/19/91</td>
<td>0.6</td>
<td>0.4</td>
<td>096.3</td>
<td>0.8</td>
<td>-0.4</td>
<td>128.1</td>
</tr>
<tr>
<td>376-3,380-3,385-2</td>
<td>24.0</td>
<td>02/22/91</td>
<td>12/07/91</td>
<td>0.8</td>
<td>0.2</td>
<td>113.4</td>
<td>0.4</td>
<td>0.0</td>
<td>138.7</td>
</tr>
<tr>
<td>391-1</td>
<td>5.0</td>
<td>12/07/91</td>
<td>02/04/92</td>
<td>1.2</td>
<td>0.0</td>
<td>138.6</td>
<td>0.9</td>
<td>0.2</td>
<td>024.1</td>
</tr>
<tr>
<td>391-2</td>
<td>24.0</td>
<td>12/11/91</td>
<td>01/06/92</td>
<td>0.6</td>
<td>0.2</td>
<td>090.3</td>
<td>1.8</td>
<td>-0.5</td>
<td>155.6</td>
</tr>
</tbody>
</table>
Appendix B - Time series, subtidal current vectors and variance conserving autospectra

Plots of hour-averaged currents ... B 1 - B 2
Plots of subtidal currents .. B 3 - B 4
Plots of subtidal current vectors ... B 5
Table B1. - Dates of and piece lengths used for current spectral plots B 6
Variance conserving autospectra currents .. B 7 - B 8
Hour-averaged alongshore current

- 75
- 50
- 25
- 0
- 25
- 50
- 75

cm/s

5 m

24 m

Jan 1990

Jan 1991

Jan 1992

Mar

May

Jul

Sep

Nov

Jan

Mar

Nov
Subtidal alongshore current
Subtidal onshore current
Subtidal current vectors

5 m

24 m
Table B1. - Dates and piece lengths used for the spectral plots.
Alongshelf at 24 meters

Frequency (hertz)

D = diurnal, S = semidiurnal

Variance conserving autospectra currents

Aloneshelf at 24 meters

Frequency (hertz)
Appendix C - Temperature, salinity and transmission data

Plots of hour-averaged temperature ... C 1
Plots of low-passed temperature ... C 2
Plots of hour-averaged salinity ... C3
Plots of low-passed salinity ... C 4
Plots of hour-averaged transmission ... C5
Hour-averaged temperature

5 m

24 m
Lowpassed salinity

Appendix C
Transmission units are volts, where a value of 5 indicates maximum clarity and a value of 0 indicates light transmission is totally obscured.
Appendix D - Wind and sea level data

Table D1. - Dates and piece lengths used for wind and sea level spectral plots D1
Table D2. - Sea level tidal components ... D1
Table D3. - Low-passed horizontal wind stress components D1
Low-passed NODC wind stress vectors ... D2
Variance-conserving auto spectra winds ... D3
Plots of subtidal synthetic subsurface pressure ... D4
Variance-conserving auto spectra subtidal synthetic subsurface pressure D5
Table D1. Dates and piece lengths used for wind and sea level spectral plots.

<table>
<thead>
<tr>
<th>Station</th>
<th>Start time GMT (M/D/Y)</th>
<th>Stop time GMT (M/D/Y)</th>
<th>Piece length (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoy wind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauphin Island, Alabama (CMAN station)</td>
<td>07/01/90</td>
<td>04/01/92</td>
<td>1170</td>
</tr>
<tr>
<td>Sea level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauphin Island, Alabama</td>
<td>07/01/90</td>
<td>03/30/92</td>
<td>1170</td>
</tr>
<tr>
<td>Pensacola, Florida</td>
<td>07/01/90</td>
<td>05/30/91</td>
<td>1170</td>
</tr>
</tbody>
</table>

Table D2. Sea level tidal components.

<table>
<thead>
<tr>
<th>Station</th>
<th>Start time GMT (M/D/Y)</th>
<th>Stop time GMT (M/D/Y)</th>
<th>O_1 (cm)</th>
<th>K_1 (cm)</th>
<th>M_2 (cm)</th>
<th>S_2 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauphin Is, Alabama</td>
<td>07/01/90</td>
<td>3/30/92</td>
<td>12.3</td>
<td>12.7</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Pensacola, Florida</td>
<td>07/01/90</td>
<td>5/30/90</td>
<td>13.1</td>
<td>13.6</td>
<td>2.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table D3. Lowpassed horizontal wind stress components (cm/s) for Dauphin Island, Alabama.

<table>
<thead>
<tr>
<th>Component</th>
<th>Start time GMT (M/D/Y)</th>
<th>Stop time GMT (M/D/Y)</th>
<th>Dauphin Island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Onshelf</td>
<td>07/01/90</td>
<td>04/01/92</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>Alongshelf</td>
<td>07/01/90</td>
<td>04/01/92</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.6</td>
</tr>
</tbody>
</table>
Low-passed NODC wind stress vectors for Dauphin Island, Alabama
Variance conserving autospectra winds for Dauphin Island, Alabama
Subtidal synthetic subsurface pressure

- Pensacola, Florida
- Dauphin Island, Alabama

Mar 1 '91 to May 1 '91
Mar 1 '92 to May 1 '92

cm

-50 -40 -30 -20 -10 0 10 20 30 40 50

July
Nov
Jan
Mar
May
Jul
Sep
Nov
Jan
Mar
May
Jul
Variance conserving autospectra for subtidal synthetic subsurface pressure*

(*The lowpassed data was used for these plots so that the record would not be dominated by the tides)