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Abstract

Geochemical and petrographic studies of source rocks in the region of the Malheur, Jordan and
Andrews Resource Areas, southeastern Oregon, indicate that some strata may be locally
capable of generating and perhaps expelling hydrocarbons. Wildcat welis to date, however, have
not demonstrated the existence of commercial hydrocarbon production in or near the Malheur,
Jordan and Andrews Resource Areas. Regional geology suggests source rocks may occur in
small deposits dispersed throughout the resource areas and this basis three conceptual plays
are proposed: Alvord Valley-Steens Mountain, Harney Basin and Vale basin. Geohistory
modeling of these conceptual plays shows that the high heat flow characteristic of the area
combined with Tertiary to Recent burial to over 1 or 2 km, depending on heat flow, apparently
heated the hypothesized source rocks into the hydrocarbon generation window in the Miocene.

Traps in these conceptual plays are considered to be related to fault truncation, stratigraphic
pinchouts and secondary porosity related to the diagenesis of volcanic provenance rocks.
Permeability is assessed to be generally poor in potential reservoir rocks because unstable
volcanic glasses are a common component of the rocks and during diagenesis they have been
altered to clays, zeolites and related materials which fill pores and reduce permeability.

In conclusion, the resource areas are considered permissive for small to medium size
hydrocarbon discoveries but are not considered favorable.

Introduction

This paper examines the organic geochemistry and petrography of potential source rocks and
their geohistory in the Malheur, Jordan and Andrews Resource Areas, southeastern Oregon.
These data and geohistory modeling are used to assess conceptual oil and gas plays with
potential for hydrocarbon accumulations.

These conceptual plays are formulated to include the geological environments in Malheur,
Jordan and Andrews Resource Areas that appear favorable for hydrocarbon generation,
accumulation and preservation. Conceptual plays are postulated hydrocarbon “accumulations
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sharing similar geologic, geographic, and temporal properties such as source rock, migration
pathway, timing, trapping mechanism, and hydrocarbon type” (Gautier et al., 1995). Play areas
are geographic regions where the defining play concepts are considered valid. Following Barker
et al., (1995) these conceptual plays are defined on the ongoing burial of Neogene source rocks
in the extensional basins of the Basin and Range Province. As discussed in Barker et al. (1995),
because of the sparse drilling, poor sample availability and lack of analyses, information on traps,
reservoirs and other geologic details in these conceptual plays is largely speculative. Further,
numerous wildcat wells have been drilled in the Malheur, Jordan and Andrews Resource Areas
but these tests have resulted in no commercial hydrocarbon production (Olmstead, 1988). Thus,
the conceptual plays presented in this study are unproven.

The Malheur, Jordan and Andrews Resource Areas of southeastern Oregon are a subregion
of province 18 of the USGS 1995 petroleum assessment (Barker et al., 1995) which
encompasses eastern Oregon, western Nevada, and eastern California. The conceptual plays
presented here are derived from that analysis of hydrocarbon potential which found low or no
potential. The data available for that study have been augmented by additional source rock
analyses from samples in wildcat wells and surface exposures in the area. Thus, the purpose of
this study is to reexamine the hydrocarbon potential in the light of these new data.
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Methods
The well samples were collected from the Oregon Department of Geology and Mineral
Industries (DOGAM)I) in Portland, Oregon. The well samples derived from cuttings were cleaned
of well additives and, if possible, picked for specific rock types thought to be representative of the
depth interval at the depth indicated on the sample bag. Surface samples were collected from
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exposures of Miocene Alvord Creek beds along the eastern side of Steens Mountain by Barker
and from the northern edge of the Malheur Resource Area by James Evans. Selected well and
surface samples were prepared for Rock-Eval pyrolysis and vitrinite reflectance analysis using
the method of Barker (1994).

Rock Eval Pyrolysis

Rock-Eval pyrolysis is a source-rock assay technique that involves heating smali quantities
(50-400 mg depending on carbon content) of pulverized rock and measuring the mass of
hydrocarbon gases evolved as a function of temperature. The carbon dioxide evolved during
heating is saved in a trap during heating and later analyzed to estimate the total organic carbon
content of the sample. During the initial stages of heating, sorbed or free hydrocarbons in the
sample are driven off and are recorded as the S, peak. With increasing temperature, the organic
matter in the sample breaks down to hydrocarbons and CO, ,which are recorded as the S, peak
and S, peak respectively, and other compounds which are not analyzed. Specific definitions for
Rock-Eval data reports are: S, and S, are the first and second peaks of hydrocarbon (HC) yield
occurring during pyrolysis of the sample. S, is the amount of CO, generated during pyrolysis;
TOC is total organic carbon. T, is the temperature at which the S, peak occurs during pyrolysis
of kerogen. Derivative values from these basic measurements are the hydrogen index (Hl) =
(S,/TOC)x100; the oxygen index (Ol) = (S,/TOC)x100; the genetic potential (S, +S,) and the
Transformation ratio = Pl = S,/(S,+S,). TOC when used in these derivative values is reported as
grams carbon (g C).

The analytical results of Rock-Eval pyrolysis are unreliable if the TOC content of the rock
sample is less than 0.5 weight-% (Peters, 1986; Bordenave et al., 1993). Furthermore, rocks with
less than 0.5 weight-% TOC are probably incapable of expelling hydrocarbons and therefore are
not source rocks. Samples with less than 0.5 weight-% TOC are included in the data tables but
are not included in the interpretative plots.

It must be emphasized that Rock-Eval pyrolysis only gives a semiquantitative estimate of
organic matter properties during rapid heating to extreme temperatures under dry conditions
which at best can only be considered a rough analog to natural conditions. There is a strong
tendency by geologists to take the semi-quantitative results from this poor experimental analog
and use the values to calculate what appear to be excessive volumes of hydrocarbons that could
be generated from the organic matter. This study interprets Rock-Eval results from the broad
trends of grouped data, ignoring outlier data and avoiding generated hydrocarbon volume
calculations. Even with these limitations, the trends shown by Rock-Eval analyses, if checked
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against other analyses such as organic petrography and hydrous pyrolysis, can be a useful
indicator of thermal maturation and petroleum generation potential. This philosophy has evolved
from my experience and published discussions of the interpretation of Rock-Eval data by Katz
(1983); Peters, (1986); Langford and Blanc-Valleron (1990); and Bordenave et al. (1993). The
consensus is that Rock-Eval pyrolysis data and the measurement of total organic carbon (TOC)
qualitatively evaluate the source rocks tendency to oil and gas generation, past and residual
hydrocarbon generation capacity, and thermal maturity (Table 1).

Besides these technical limitations of Rock-Eval, organic matter contaminants and naturally
occurring oils and bitumens can also interfere with the S, and S, values by increasing them.
Organic drilling mud additives often increase the hydrogen index (HI) and TOC. Samples
contaminated by particulate mud additives were detected by examination under a binocular
microscope and cleaned by sieving, blowing on the sample to remove the lighter organic
materials and selectively picking rock chips with tweezers. Rock-Eval pyrolysis is also influenced
by migrated oil or bitumen. Such migration produces an S, peak greater than 2 mg hydrocarbon
(HC)/g rock, an anomalously high transformation ratio and low T,,, as compared to adjacent
samples, and a bimodal S, peak. The low T, may also be related to weak S, peaks resulting
from low TOC values and not from organic contamination. Generally no oil staining or immature
bitumen was observed in the Neogene age samples, so migrated bitumen or 0il is assumed to
not to be a factor in the Rock-Eval analyses.



Table 1. Guidelines to the interpretation of Rock-Eval and Vitrinite Reflectance Results
Based on Type !l and Type Il Organic Matter. Compiled from Peters, (1986), Langford
and Blanc-Valleron (1990), and Bordenave et al. (1993), among others.

TOC Organic Generated Thermal Source Rock
Matter Petroleum Maturity Potential
(Wt.%) | Genetic Type
Potential
S1+82 HI S2/S3 Tmax R,
(mg HC/ | (mg HC/gC) | (mg HC/g CO,) (°C) (%)
— . = =~ |
05 <S5poor ] e any value | Nota source
rock.
Rock-Eval
parameters
not reliable
05t02 | <5 poor <200 Gas <2.5 Dry Gas <425 Marginal
200-300 Mixed 2.5-5 Wet Gas immature <05 source rock
>300 Oil >5 Ol 425-470 | Immature
mature 05-13
05t02 < 200 Gas <2.5 Dry Gas 5470 mature Fair source
5 fair 200-300 Mixed 2.5-5 Wet Gas post 513 rock but may
10 good >300 Oil >5 Ol mature post not be
s 1 N mature capable of
excellent I expuising oil
>2 < 4 poor < 200 Gas <2.5 Dry Gas > 425 Qil > 0.5 Oil Good to
5 fair 200-300 Mixed 2.5-5 Wet Gas >470 Gas | >1.3 Gas Excellent
10 good >300 Oil >5 Ol source rock
15
excellent




Vitrinite or Pryobitumen Reflectance

Vitrinite was selected using standard petrographic criteria (Robert, 1988). Reflectance was
measured on polished whole rock samples using vertical illumination on a Zeiss Universal
microscope fitted with a MPM-01 microphotometric system. The photometer was restricted with a
pinhole diaphragm to read a 3 micron spot on the sample at 500x total magnification, using a
40x/0.85 n.a. lens under oil immersion (n, = 1.518). The system was calibrated by a Zeiss
leucosapphire standard that has a reflectance of 0.58% and (or) glass standard with a reflectance of
1.6 % with filtered 546 nm light. In mixed samples of vitrinite and pyrobitumen, the modal reflectance
for that peak (R, or Rb) that represents each particle type is reported. In kerogen populations with
one mode, the mean random vitrinite reflectance (R,) value is reported.

Thermal History Reconstruction

Thermal history reconstruction in this study utilized Platte River Associates (Denver,
Colorado) BASINMOD for windows version 4.02 computer program for burial depth,
paleotemperature and thermal maturity computations. The measured thermal maturation data
(Appendix 2) and the temperature data presented below were used to constrain the burial history
reconstruction. The stratigraphic and variable heat flow models were considered successful when,
after fitting the thermal history to predicted peak temperature reconstructed from the heat flow
history, the vitrinite reflectance predicted from Lawrence-Livermore National Laboratory kinetic model
agreed with the measured reflectance value (see review by Barker and Pawlewicz, 1994). In most
cases, these reflectance values agreed with slight alterations to the paleoheat flow and no
adjustment of the burial depth history.

Geohistory Reconstruction Data
Thermal Data

Thermal data are required to document or estimate the temporal change in surface
temperature, heat flow and rock thermal conductivity which fixes the paleogeothermal gradients. Like
burial history reconstruction in deeply eroded areas, thermal history is difficult to reconstruct because
the heat flow regime has often changed (Vitorello and Pollack, 1980; Chapman and Pollack, 1975)
and the thermal conductivity is altered by diagenetic/metamorphic changes in porosity, mineralogy,
and pore fluid composition. However, stable heat flow conditions are probably rare in geologic
history, so these thermal models use variable heat flow even though it can only be loosely
constrained using present-day analogs.



Surface Temperature

At present, the mean annual surface temperature is about 10°C in eastern Oregon (Piper et
al., 1939). Tertiary paleosurface temperature was estimated using fossil evidence for paleoclimate
for the western U.S. (Savin, 1977).

Heat Flow

Present heat flow is variable but typically high in the region of the Malheur-Jordan-Andrews
Resource Areas. Blackwell et al. (1978) found an average heat flow of about 70mW/m?, a typical
value for the Basin and Range Province. However, during times of rapid extension and crustal
thinning, heat flow may have been higher (Vitorello and Pollack, 1980). For example, the areas
where geohistory was modeled had measured heat flows of 90 mW/m? for Steens Mountain, about
100 mwW/m? for Alvord Valley, and 100-120 mwW/m? for Vale Basin. These locally higher heat flow
values are similar to the typical heat flow measurement in the Andes Mountains of South America of
90 mW/m? (Chapman and Pollack (1975) which is noted as a possible modern analog to the Basin
and Range Province in the Cretaceous and Paleogene (Cook, 1988). This analog is used as a
rationale for extending present high heat flow values into the past.

Thermal Conductivity

BASINMOD sets thermal conductivity based on lithology mixes and decompacted porosity.
The rock lithology input into BASINMOD is as shown in Table 1. Thermal conductivity measurements
were recalculated in BASINMOD to a decompacted value of porosity and water saturation. In a
sedimentary rock of consistent grain size and framework grain composition, change in porosity with
compaction is a significant factor in changing thermal conductivity during burial, as long as the pores
remain filled with water. For this reason, contemporary thermal conductivity measurements must be
adjusted (lowered) to the former (higher) levels of porosity. Most geohistory modeling programs use
the geometric method of recalculating thermal conductivity discussed by Sass et al. (1971).



Erosion Estimates/ Original Strata Thickness

Reconstruction of how much rock was present and when it was removed is innately crude,
because the value must be estimated from the eroded rocks that no longer exist. In the region of the
Malheur-Jordan-Andrews Resource Areas, relief on unconformities within the volcanic series
reported by Piper et al. (1939) are the primary evidence that significant erosion has locally occurred
between depositional events. However, in general, because the strata are very young and deposition
rates were high, little time is presumed available for appreciable erosion to occur between basin
deposition events. Thus, without evidence to the contrary, the assumption was made that negligible
erosion occurred between formations for the purpose of the geohistory models.

In this study, compaction of the strata during burial considered the ‘predictions from the
Falvey and Middleton (1981) and the Sclater and Christie (1980) methods. The BASINMOD manual
(version 4) states that the Falvey and Middleton method gives good results in a wide range of
geologic conditions whereas the Sclater and Christie method is best for burial in rift valley conditions.
The effect of changing the compaction method is that the Sclater and Christie model tends to predict
a higher porosity for rocks at a given depth than the Falvey and Middleton method. Increased
porosity causes reduced thermal conductivity in the rocks, such that all other factors remaining the
same, Sclater and Christie compaction predicts higher temperatures at a given depth than Falvey
and Middleton. Consequently merely switching compaction methods in BASINMOD can produce
dramatic changes in the predicted extent and type of hydrocarbon generation because they are
largely temperature driven reactions. In well known areas, this issue can be addressed by measuring
porosity versus depth and either using this data directly in BASINMOD or determining which
compaction method seems to give the best prediction. However, this approach is not possible in the
Malheur-Jordan-Andrews Resource Areas as drilling and appropriate samples or analyses are
sparse. The geohistory models developed for this study use the Falvey and Middieton method in
BASINMOD because it can handle a wider array of geological conditions.

Petroleum Geology
Source Rocks
The portions of the Malheur-Jordan-Andrews Resource Areas with potential hydrocarbon
source rocks are located in the western part of the Basin and Range physiographic province of
southeastern Oregon and in the Snake River Plain which includes the Vale Basin of eastern Oregon
(Fig. 1). The oldest sedimentary rocks in the region are Paleozoic to early Mesozoic carbonate and
clastic rocks that have experienced episodic compressive orogenic events in the late Paleozoic and
early Mesozoic time. Heating related to these orogenic events and widespread igneous intrusion and
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metamorphism in middle to late Mesozoic and Cenozoic time have largely destroyed the hydrocarbon
generation potential of these Paleozoic to early Mesozoic sedimentary rocks. Paleozoic or Mesozoic
basement metasedimentary rocks exposed near the Nevada-Oregon border in the Quinn River
Graben area (McDaniels, 1982; Fig. 1) constitute basement rock with respect to oil and gas source
rocks there. Fringing the resource areas, in central Oregon and west central Nevada, are Triassic to
Jurassic rocks that have traces of oil in them or evidence of altered oils (Bortz, 1983; Brown and
Ruth Laboratories, Inc., 1983; Appendix 3, Sunnyvale Mitchell 1-- solid bitumen in Jurassic rocks).
Less metamorphosed Triassic to Jurassic age rocks also occur in the Blue Mountains along the
northern boundary of the Malheur resource area (Law et al., 1985; Appendix 2 and 3--Weatherby
Formation samples) but do not contain sufficient quantity or quality of organic matter to be
considered source rocks. Jurassic(?) to Cretaceous lacustrine rocks have source rock potential in
the Black Rock Desert and Jackson Range of Nevada just south of the resource areas (Barker et al.,
1995) but such lacustrine rocks have not yet been reported in southeastern Oregon.

Within the resource areas, extensive magmatism, occurring during Neogene extension and
crustal thinning, emplaced Miocene igneous rocks in the older Upper Paleozoic and Early Mesozoic
basement forming a hybridized crust that underlies much of southeast Oregon (Orr et al., 1992).
Because the older rocks apparently lack hydrocarbon source potential, only Neogene rocks are
considered further.




































These models are based on a composite stratigraphic section (Table 2) in the Steens
Mountain area and use a heat flow of 90-100 mW/m? suggested by the data of Blackwell et al.
(1978). The Alvord Valley model is similar to what would be predicted in the Catlow Valley and no
separate geohistory is presented here. The Steens Mountain model predicts a maximum
temperature of 65°C and a R, of 0.4% was reached near the top of the Alvord Creek Beds before
faulting exhumed it in the Miocene (Fig. 7). The measured values were 0.3 + 0.1%R,. The Alvord
Valley model suggests that block faulting is a crucial element in this play that could facilitate
hydrocarbon generation by increasing burial heating on the down-dropped block, resulting in a rise in
vitrinite reflectance from 0.3 £ 0.1 %R, to 0.6 to 0.7%R, corresponding to the oil window. If as
suggested by Halvorsen et al. (this volume) pre-caldera rocks exist below the volcanic rocks in the
Steens Mountains Caldera (Fig. 5) and they contain hidden lacustrine source rocks, this geohistory
model predicts that such rocks, having undergone greater burial heating would be at least thermally
mature. In this scenario, the geohistory model predicts that oil generation would have commenced in
the Alvord Valley during the Miocene after the onset of movement on the Steens Mountain Fault.
However, the onset of oil generation at about 10 Ma may be a disadvantage in extensional tectonic
regimes because the ongoing structural deformation and possible rupture of the seals may have
precluded accumulation of oil. Ongoing burial heating and the generation of oil and gas to the
present seems to be a key element for the preservation of oil fields like those found in the nearby
Railroad Valley of Nevada (Barker and Peterson, 1991).

The significance of the Alvord Valley geohistory model is that it is thought to be similar to the
geohistory of many other valleys floored by grabens in the Malheur-Jordan-Andrews Resource Areas
(Orr et al., 1992) and for the entire Basin and Range Province. Inside the resource areas, this style
of geohistory seems applicable to the Cottonwood Basin, south of Vale, Oregon (Kittleman, 1973;
Keith et al., 1989) and the Quinn River Valley (Barker et al., 1995); in the area surrounding the
resource areas, other examples are the Warner Lakes half graben and Lakeview, Oregon area
graben (Barker et al., 1995). These grabens are also considered to contain lacustrine source rocks
that are formed in areas of internal drainage caused by extensional faulting, and subsequently
entered the oil window because of burial heating from the rapid in -filling of the-down-dropped block.
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Table 2. Burial History Reconstruction Data, Steens Mountain-Alvord Valley, Southeastern Oregon

Formation/member Upper contact' | Estimated Strata or erosion Lithology for
Formation |thickness®, or fault | thermal
age at throw conductivity
Jevent) Base” (Ma) | i
(Steens Mountain Fault) | N/A 1.5 1000 of throw N/A
Volcanics, Unconformable |12 About 200 Rhyolite
undifferentiated
(heating event ?)
Trout Creek Formation Conformable 13.1 about 200 Tuffaceous
(local source rock mudstone
deposition?)
Steens Basalt Conformable 16.4 3000 Basalt
(heating event ?)
Steens Mountain Unconformable | 19.5 About 1500 Andesite and
Volcanic series basalt breccia
(heating event ?) and flows
Alvord Creek beds Unconformable |22 about 750 Tuffaceous
(local source rock shale
deposition?)
Pike Creek beds Conformable 25 1500 Tuffs and

rhyolitic flows

Notes: 1. Contact type from Piper et al. (1939); 2. Ages from Greene et al. (1972); Walker (1979); 3.
Thicknesses compiled from Piper et al. (1939); Greene et al. (1972); Walker (1979); and Terry
Gieseler, Bureau of Land Management, Burns, Oregon (field trip log, 1993)
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Harney Basin

The Harney Basin is a broad down-warp probably related to caldera formation. The
sedimentary fill is cut by small-displacement (tens of feet) normal faults and is intruded by silicic and
mafic volcanic vents (Walker and Swanson, 1968).

The geohistory of the Harney basin was not quantified in this study because the burial
heating produced by the relatively low heat flow (Blackwell et al., 13978) in the area and a total
Tertiary fill of 1.1 to 1.25 km (3600 to 4100 feet; Walker, 1979) is considered to be insufficient to
generate thermogenic hydrocarbons. Further, exhumation of the Harney basin commenced some 2.4
Ma as indicated by age dating (Greene et al., 1972) of a basalt capping Wright's Point, near Burns,
Oregon. The topographic relief of some 50 meters on Wright's Point indicates that since the basalt
covered the strata, considered here to represent thé time of maximum sedimentary fill, the Harney
basin had been exhumed by an amount equal to the topographic relief. If a near constant heat can
be applied to the last 2 Ma then the exhumation of the basin also infers that the sedimentary fill
within the Harney Basin is presently starting to cool. All of these lines of evidence suggest the
Harney Basin has a poor to low hydrocarbon potential.

Vale Basin (Northwestern Snake River Plain)

The Vale basin is a located in the northwest portion of the Snake River Plain basin in the
area around Vale, Oregon. Source rock deposition in the Vale Basin may be related to sediments
deposited in lakes formed by closure of the basin by volcanic activity during Miocene and Pliocene
time (Kimmel, 1982). Clastic deltas building out into the lake basins may have deposited suitable
reservoir rocks (Wood, 1994). At present the area is undergoing erosion related to the Snake River
drainage system that has breached the closed basin. Source rock analyses, discussed above ,are
largely derived from the Vale Basin and the data seem to indicate only poor source rock prospects.
But this is a sparsely drilled area and local areas of better source rocks may occur towards the basin
center and what would presumably have been the deeper portions of the lake where organic matter
concentration and preservation may have been better. Wells drilled into the Vale Basin have not yet
penetrated basement but demonstrate it is at least several kilometers deep (Olmstead, 1988). The
Vale basin also has a high heat flow of about 100 to 120 mW/m? (Blackwell et al., 1978).
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Figure 9. Geohistory reconstruction of the Vale Basin, northwestern Snake River Plain, east-central
Oregon. In this model, heating at maximum burial is sufficient to cause the onset of oil generatibn in
the Miocene. Continued burial heating generation continues to the present. The short dashed line
represents temperature. The long and short dashed line represents a formation curve.
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Table 3. Neogene Stratigraphy and Burial History Reconstruction Data for the Northwestern Snake
River Plain near Caldwell, Idaho used to model the Vale basin, eastern Oregon

Group/Formation--ldaho Upper Estimated Strata, erosion | Lithology for
[equivalent Formation name contact' |Formation Age |thickness®,or |thermal
used in Oregon®] at Base? (Ma) |fault throw conductivity
important event) (Feet) meodeling ___
(Hiatus or N/A 0.11 200 As in Bruneau
|l slight erosion) Formation
Snake River/ Bruneau Unconf. |2.1 Variable, Basalt 10%
[Bruneau] used 500 Claystone 50%
(source rock deposition?) Siltstone 40 %
Idaho/ Glenns Ferry Unconf. |3.75 3000+ Sandstone 75%
[Glenns Ferry] Used 3000 Siltstone 25%
(source rock deposition?
Idaho/Chalk Hills Unconf. |[8.4 300+ Tuffaceous
[Chalk Butte *] Used 300 mudstone
Idaho/ Poison Creek Unconf.? {10.5 400+ Tuff 75%
[Grassy Mountain Fm ?%] Used 400 Siltstone 25%
Idavada Volcanic/ Unconf.? |12 Variable, Rhyolite 30%
[Deer Butte Fm ?7] used 1500 Tuffs 70%
N/A / Columbia River Basalt Unconf.? {14to 17 Variable, Basalt 95%
[Columbia River Basalt] used 0 Siltstone 5%
N/A /Sucker Creek Unconf.? |15to 17, used | Variable, Tuffaceous
[Sucker Creek 4] 16 used 2300 mudstone 95%

Basalt 5%

Notes: 0. Correlation of Idaho formation names with Oregon formation names modified from Kimmel
(1982); 1. Contact type from Wood (1994) and Kimmel (1982); 2. Age from Wood (1994) and Kimmel
(1982); 3. compiled from Wood (1994); 4. These strata or their stratigraphic equivalents are found in
many grabens in southeastern Oregon where they may locally contain lacustrine source rocks.
Abbreviations: N/A = not applicable or not available; Fm = Formation; Conf. = conformable; Unconf.

= unconformable.
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Geohistory reconstruction of the Vale basin (Fig. 9) suggests that oil generation commenced
in the Miocene at about 10 Ma at a depth > 4000 ft. Although the basin is being exhumed, increasing
burial and heating of the source rocks, along with continued oil and gas generation has continued
into the Pleistocene. The model suggests that any source rocks that may exist in the basal strata will
have reached an R, exceeding 2.0% at about 7000 ft. The predicted R, from this model is
comparable with the measured R, versus depth profile (Fig. 2) that is largely constructed with data
from wells in the northwestern Snake River Plain.

Evidence for Effective Source Rocks

Evidence indicates the potential Neogene source rocks appear to have reached the gas
generation window in areas of high heat flow as gas quantities reportedly increase towards igneous
intrusions in the area (Kirkham, 1935). In large portions of the resource areas, measured well
temperatures commonly exceed 100°C (Kinney, 1976; Bowen et al., 1977; Blackwell et al., 1978;
Olmstead, 1988; Newton and Corcoran, 1963; and many others) and the organic-rich rocks in the
deeper sections could have reached the gas window.

There are common shows of gas at shallow depth in the resource areas but no production
has been established (Washburne, 1911a, b; Buwalda, 1921, 1923; and many others). The surface
hydrocarbon seeps and shows in wells reported within these resource areas are summarized in
Olmstead (1988), Newton and Corcoran (1963) and Brady (1984). Gas analyses indicate the gas is
dry (methane-rich) (Newton and Corcoran, 1963). This shallow gas, when it occurs in rocks that have
not been heated much by burial, contact metamorphism or hydrothermal fluids is speculated to be of
biogenic(?) origin but can also be thermogenic gas that migrated from sources at depth.

One unfilled objective of this ongoing investigation is to determine the origin of this shallow
gas. If it is thermogenic gas that has migrated from depth, it would indicate the existence of mature
source rocks that are capable of expelling significant gas and would greatly improve the hydrocarbon
prospects in the resource areas. Carbon and hydrogen isotope analyses along with determination of
the wetness of the gas can indicate the origin of gas, if gas samples can be obtained from water
wells or seeps.

Reservoirs, Seals and Traps-- Key but Unknown Elements
Potential reservoir formations include fractured Neogene welded tuff and basalt, and Neogene
fluvial sandstones. Tested reservoir rocks may have good to moderate porosity (9 to 25%) and
moderate to very low permeability (<1 to 281 md) (Newton and Corcoran, 1963). Permeability is
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thought to be generally poor in potential reservoir rocks because unstable volcanic glasses are a
common component of the rocks and during diagenesis have been altered to clays, zeolites and
related materials which fill pores and reduce permeabliity (Walker and Swanson, 1968; among
others). Limited reservoirs are confirmed by drill-stem-test histories that record an initial large
production of gas that quickly subsides to uneconomic levels (Newton and Corcoran, 1963;
Olmstead, 1988) suggesting the well is producing from small pockets of porous and permeable
rocks. These stratigraphic traps may have formed where porous reservoirs are encased in carbonate
and zeolite-cemented sandstones, and where local lenticular sandstones grade into mudrock.
Regional geology suggests that structural traps may be formed by fault fruncation of reservoir rocks
(Gray et al., 1983), and perhaps by local folding. Seals may be formed by fault planes, mudstones
draped over porous fluvial sandstones, densely cemented sedimentary and welded volcanic strata
enclosing reservoir pods of fractured volcanic rocks and porous fluvial sandstone (Barker et al.,
1995).

Petroleum Potential Assessment

The outline of possible conceptual plays in these resource areas is based on the inferred
presence of Neogene source rocks now buried in basins (Fig. 1). Evidence suggests that effective
gas source rocks exist but not oil-prone ones. Even the assignment of effective gas source rocks is
tenuous as no data is available to quantitatively determine if thermogenic gas is present. Geohistory
reconstruction of these conceptual plays shows that during Neogene burial, these source rocks may
have reached temperatures sufficient for generating thermogenic hydrocarbons. However, the
coincidence of conditions leading to commercial production has not been demonstrated in the
resource areas although numerous wildcat wells have been drilled. Thus, the resource areas are
considered permissive for small to medium size hydrocarbon discoveries but not favorable (Fig. 1).

Conclusions

1. The best Neogene source rocks found in this study are the carbonaceous beds within the Alvord
Creek Beds exposed on the eastern edge of Steens Mountain.

2. Burial heating in the Alvord Valley and Catlow Valley conceptual plays seems to be sufficient to
generate thermogenic hydrocarbons commencing in the Miocene.

3. Burial heating in the Steens Mountain and Harney Basin conceptual plays seems to be insufficient
to have generated hydrocarbons.

4. Burial heating in the Vale Basin conceptual play is sufficient to generate thermogenic

27



hydrocarbons.
5. The resource areas are considered permissive for small to medium size hydrocarbon discoveries
but not favorable.

Recommendations for Future Work
This initial study indicates that the additional geologic data needed to complete oil and gas
resource assessments are: 1) documentation of the origin of natural gases as either thermogenic or
biogenic by isotopic analyses, if samples can be obtained; and 2) determination of the reservoir
qualities of samples taken from oil and gas exploration wells.
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Appendix 1
Well Data

Malheur, Jordan and Andrews Resource Areas, Southeastern Oregon

ABBREVIATIONS USED IN ALL APPENDICES
( the definitions of Rock-Eval and thermal maturation parameters are in Appendix 3.)

BHT = bottom hole temperature
Carbonaceous = visible DOM in a rock
Coaly = thin wisps or layers coal in a rock
dk = dark

DOM = dispersed organic matter

FF = Final flowing pressure

ft = feet

GR = Elevation of ground level (in ft)

IF = Initial flowing pressure

KB = Elevation of kelly bushing (in ft)

Lat = Latitude

Long = Longitude

mdst = mudstone

mtn = mountain

NA = Not available

PSI = pressure in pounds per square inch
R, = mean random reflectance of vitrinite or solid bitumen, as indicated
T.D. = Total depth of well.

Well locations given as quarter section-section number-township-range.

Formation tops as reported in the well files of the Oregon Department of Geology and Mineral
Industries.
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Well/ APl number/ Elevations: | Tops: Notes : DST and
county/ location Dates: Formation and depth BHT data;
spud/
completion casing points
El Paso Spurrier Federal | 2520 GR U. Idaho Formation 0-900; DST no. 1
1/ 2531 KB Grassy Mtn. Basalt 900- 6065 -6196 ft
36-045-00017/ 1830; L. Idaho Formation IF 50 PSI
Malheur/ 11-25-54 1830-4440; Deer Butte FF 480 PSI
NE-5-20S-44E/ 1-12-55 Formation 4440-6570; SIP 2400 PSI
Lat = 43.8539°N Rhyolite (probably Owyhee Recovered 900 ft of muddy
Long = 117.37099°W Formation) 6570 to T.D. at water
7470. Casing point: 295 ft
Oroco McBride 1/ 2831.1 GR formations unknown. Core sample mentioned in
36-045-00020 Sand 0 ft well report at 1515-1525 ft
Malheur/ 11-30-56 Shale 590 ft not found. BHT of 185°F, 5
SE-19-16S-46E 1-12-57 Altered basalt 2040 ft hours after circulation
Lat = 43.15875°N Serpentine 3700 ft stopped at the TD of 4506ft.
Long = 117.12917°W Gas shows reported at
1845-1860 ft in tuff and
2780 ft in basalt
Riddle and Oroco 2177 GR Idaho Formation 0 ft DST at 2152-2178 ft. Open
Kiesel 1/ Grassy Mtn Basalt 4500 ft 1 hour to surface. Initial flow
36-045-015-00016/ 10-5-54/ T.D. 5137 f 150 PSI. Final pressure nil.
Malheur/ 10-28-55 Recovered 200 ft of gas cut
SW-8-19S-47E/ water. Numerous shows
Lat = 43.92720°N noted in mud log starting at
Long = 116.99763°W 210-220 ft.
BHT at 5106 ft 183°F, 2.5
hours after rig stopped.
Casing points at
130; 1970; 5115
Sinclair Eastern Oregon | 2640 GR Deer Butte 770 ft; Mud temperature was
Land Co. 1/ Owyhee 1355 ft; 126°F at 4630 ft
36-045-00019/ 1955 quartz diorite 4505 ft
Malheur County/ T.D. 4888 ft
SW-15-16S-44E in pre-Tertiary Elk Ridge
Lat = 44.1724°N Quartz Diorite.

Long = 117.31783°W
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Well/ APl number/ Elevations: Tops: Notes :
county/ location Dates: Formation and depth DST and BHT data;

spud/ casing points; shows

completion
Wells outside of
Resource Areas
Humble Leavitt 1/ 4783 GR Oligocene-Eocene age Mud temperature 149°F
36-037-00008/ 4796 KB Cedarville Series 0 ft near this sample depth.
Lake County/ Pre-Tertiary metavolcanics 7570 | BHT 295°F at 9561 t 9
NE-2-40S-20E/ 1960-1961 ft hours after logging
Lat = 42.13347°N T.D. 9579 ft started.
Long = 120.31976°W Casing: 712 ft

Gas shows over 7300
to 7500 ft.

Humble Thomas Creek | 5260 GR Tertiary undifferentiated The well was drilled on
Unit 1/ volcanics and interbedded a large northerly
36-037-00007/ 1960 sedimentary rocks. 0 ftto T.D. at | trending anticline.
Lake County/ 12093 ft
18-36S-18E/ No shows.
Lat = 42.44625°N
Long = 120.63151°W
Sunnyvale Mitchell 1/ 5200 GR Jurassic Movine 0 to 1168 ft Casing: 80 ft
36-023-00003/ 12-3-57
Grant County/ 4-30-58 TD 1168
SE-14-16S-29E
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Well/ APl number/ Elevations: Tops: Notes :
county/ location Dates: Formation and depth BHT data;

spud/ casing points

completion
Wells examined but
not
sampled
Halbouty 1-10 Federal/ 4765 GR Rhyolitic lavas and tuffs of BHT-1 98°F at 2514 ft
36-025-00023 4778 KB probable Miocene age . 2.5 hours after
Harney County/ Essentially no sedimentary rocks | circulation stopped.
NE-10-23S-29E 6-8-77 penetrated by well to a total BHT -2: 104°F at 6015
Lat = 43.59289°N 9-11-77 depth of 7684 ft. No samples ft 6.5 hours after
Long = 119.21808°W taken circulation stopped.

Casing points :40, 377,
2525 ft.

Two States Oil Co. Vale | Elevation Idaho Formation 0-760; Drilled with cable tool
City no. 1/ unknown Grassy Mountain Basalt 760- rig.
36-045-00021 1030; ldaho Formation 1030- 56°F water encountered
Malheur/ 8-1961 1060; Deer Butte Formation during drilling.
SW-21-18S-45E 10-24-62 1090-1130. T.D. 1130.
Lat = 43.9875°N Casing: 200, 430 ft.
Long = 117.22172°W No samples taken
Standard Blue Mountain | 5608 KB 0-8224 ft Miocene-Eocene BHT-1a 96°F at 2015 ft
1/ Basalt. 8224-8414 ft Pre-Tertiary | 2 hr after circulation
36-045-NA Spud: Granodiorite stopped.
Malheur County 6-16-73 No significant sedimentary rocks | BHT-1b 96°F at 2015 ft
sw-34-375-41E/ Completion penetrated by the well to a total 3.5 hr after circulation
Lat = N/A unknown depth of 8414 ft. No samples stopped.
Long = N/A taken. BHT-1¢c 98°F at 2015 ft

7 hr after circulation
stopped.

BHT-2a 180°F at 8421
ft: 5 hr after circulation
stopped.

BHT-2b 184°F at 8421
ft: 8 hr after circulation
stopped.

BHT-2¢ 206°F at 8421
ft: 14.5 hours after
circulation stopped.

Casing points: 171,
2015 ft.
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Appendix 2.

Potential Source Rocks

Location and Geological information for Surface Samples,
Malheur, Andrews, and Jordan Resource Areas, Southeastern Oregon
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Appendix 1. Potential Source Rock Sam

les from Surface Exposures, Southeastern Oregon

Sampler or well/ Latitude Age/ Notes

depth or number/ | Longitude | Formation/

locality lithology

SURFACE SAMPLES s i i : E

J. Evans /CVW99A/ 44.3216°N Jurassic/ Formation underlies part of

Cow Valley Butte 117.7502°W | Weatherby/ the northern Malheur R.A.
metagreywacke

J. Evans /CVW109A/ | 44.3150°N Jurassic/ Formation underlies part of

Cow Valley Butte 117.7506°W | Weatherby/ the northern Malheur R.A.
metagreywacke

J. Evans /CVW267/ 44.3767°N | Jurassic/ Formation underlies part of

Worsham Butte 117.7783°W | Weatherby/ the northern Malheur R.A.
metagreywacke

J. Evans /WDT 73B/ | 45.4333°N | Jurassic/ Formation underlies part of

Baldy Mountain 117.8067°W | Weatherby/ the northern Malheur R.A.
metagreywacke

I J. Evans /WDT 226A/ | 45.4300°N Jurassic/ Formation underlies part of

Porter Guich 117.7725°W | Weatherby/ the northern Malheur R.A.
metagreywacke

J. Evans /Tert.-1/ 44.0377°N Late Miocene/ A swamp facies of the Late

Bully Creek 117.4365°W | Willow Creek/ Miocene portion of the Snake

Reservoir inertinite rich River Plain sedimentary
mudstone assemblage.

C. Barker/ 42.6336°N Miocene-Pliocene/ | Not analyzed.

CB-OR-94-1/ 118.5113°W | Alvord Creek/

| Cottonwood Creek calcite vein

C. Barker/ 42.6343°N Miocene-Pliocene/ | Sample 2b represents a 0.3

CB-OR-94-2a and - 118.5131°W | Alvord Creek/ meter thick organic matter

2b/ carbonaceous rich bed in the generally

Cottonwood Creek plant debris in leaner mudstone unit
mudstone

C. Barker/ 42.6349°N Miocene-Pliocene/ | In a leaner looking mudstone

CB-OR-94-3/ 118.5143°W | Alvord Creek/ bed

Cottonwood Creek

carb.
mudstone
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Appendix 3.

Potential Source Rocks:
Results of Vitrinite Reflectance and Rock-Eval analyses,
Malheur, Andrews and Jordan Resource Areas, Southeastern Oregon

Units of measurement

Definitions for Rock-Eval data reports are: S, and S, are the first and second peaks of hydrocarbon
yield occurring during pyrolysis of the sample; S, is the amount of CO, generated during pyrolysis;
TOC is total organic carbon; T, is the temperature at which the S, peak occurs during pyrolysis of
kerogen. Derivative values based on these values are Hydrogen index (HI) = (S,/TOC)x100; Oxygen
index (Ol) = (S,/TOC)x100; Pl = Transformation ratio = S,/(S,+S,); S2/S3which is a measure of the
H/C ratio of the organic matter.

Vitrinite and solid bitumen reflectance are reported as mean random %R, with the standard deviaiton
of the analyses (std. dev.) and number of measurements (sample size, n).

Notes

Formation names as listed in the well files of the Oregon Department of Geology and Mineral
Industries (DOGAMI) in Portland, Oregon.
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