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ABSTRACT

A technique is described for doing land cover classification using a neural network to integrate 
and classify SPOT multispectral and derived texture data. Orientated texture energy was derived 
from the higher spatial resolution SPOT panchromatic band with directional spatial filtering 
techniques. The multispectral and textural data were each clustered using a reported fuzzy 
learning vector quantization technique, which also produced fuzzy segmented images. The fuzzy 
membership values of data to clusters was then input to a multilayer neural network that had been 
trained using training samples of the land cover classes. Using an output layer that scales 
individual outputs to the range from zero to one and their sum to one, allows interpretation of the 
neural network outputs as class probabilities and the potential for post classification 
improvements by probabilistic relaxation techniques. Initial land cover classification results for 
neural network test and training data in a mixed rural-urban area are promising.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government



I. INTRODUCTION

This is an interim report on an experimental technique for doing land cover classification by 
application of fuzzy clustering and segmentation techniques to multisource, remotely sensed 
images, and the classification of the fuzzy data by a trained neural network (NN). The 
multisource data includes SPOT multispectral (XS) images and texture features derived from the 
higher resolution SPOT panchromatic (PAN) image. Directional filtering techniques were 
applied to the SPOT PAN image to obtain measures of orientated texture energy, as described in 
section II. A fuzzy learning vector quantization clustering procedure was then applied to both the 
derived texture and the SPOT XS principal component images. To help visualize the results of 
this procedure, a reported technique for mapping fuzzy membership function values to color 
images was applied. These procedures and their results are described in section HI. The fuzzy 
membership values of the XS and texture feature data were then input to a three layer, feedfoward 
NN, which was trained as a classifier. By using a NN with "softmax" output layer (Bridle, 1990), 
individual outputs can be interpreted as the probability of land cover class, (section IV). Section 
V describes the collection of test and training data used to train the NN, the classification results, 
and proposed postclassification processing with a reported probabilistic relaxation 
technique. The conclusions on this preliminary work are included in section VI.

In the following, image data are the georeferenced, cubic interpolated to 10-m sample distance 
SPOT PAN and XS images. The study region, 5,120 by 5,120m, is centered on Chestertown, 
Md., and includes mixed urban and agricultural areas.

II. TEXTURE ENERGY

Laws (1980) defined texture energy as the amount of variation within a spatial image window and 
described image segmentation tests based on texture energy. Convolving the image with various 
combinations of horizontal and vertical spatial filters produced directional filtered 
images. Orientated texture energy was computed as the local spatial average of the absolute value 
of the filtered images.

In this study, texture features were derived from a 10-m ground sample distance SPOT PAN 
image. A measure of spatial strength was derived from the squared output (that is orientated 
energy) of four fixed orientation, quadrature parr bandpass filters at 0 = 0, 45, 90, and 135 degrees 
as described by Freeman and Adelson (1991).

For this- study, and merely to reduce numerical range, orientated texture data T(6) was calculated 
from orientated energy £(0) as T(0) = E(0) 1/2 . Orientated energy £(0) is (Freeman and Adelson, 
1991)

(1)

where 0 was one of the above fixed orientations and spatial filters G(0) and //(0) were derived 
from the fourth derivative of a Gaussian and its Hilbert transform using their filter coefficient 
tables. G(0) and //(0) were computed from x-y separable, 13 tap spatial filters.

A fifth, nondirectional measure of texture energy was computed as the average

7XO - -360- ) = (1/4) ([7X0°)] + [1(45°)] + [7(90°)] + [7X135°)]). (2)



To reduce the dependence of local image intensity on texture energy, filtered images 7(0°), 7(45°), 
7(90°), and 7(135°) were divided by 7(0°-360°). Applying a 7 by 7 moving average window to 
the four normalized images and the £YO°-360°) image resulted in five orientated texture feature 
images.

Texture data at any x-y location of all five images was considered a five element texture vector for 
subsequent clustering.

ffl. FUZZY CLUSTERING

The derived texture and SPOT XS principal component data were clustered by means of a fuzzy 
learning vector quantization (FLVQ) technique reported by Bezdek (1993). There are two steps 
to this clustering: (1) FLVQ to get cluster prototype vectors, and (2) calculation of fuzzy 
membership function values between the data and the cluster prototype vector.
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Figure 1. Diagram of neural network classification of fuzzy clustered multispectral and texture 
data.

Fuzzy learning vector quantization, FLVQ, was applied separately to the XS principal 
component data vectors, Xfc, and oriented texture data vectors, XkT, to get the respective 
cluster prototype vectors, Vfc and V*. NN inputs are the computed fuzzy membership values 
(M^) of the input sample to its respective cluster vectors, {ViPC} or {Vf}. As discussed in a later 
section, NN outputs are considered the probability of class A:, (P*), given the input data.

In this study each texture or XS principal components (PC) image was clustered separately. The 
PC transformation (Richards, 1993) was applied to the three band XS data to reduce the interband 
correlation. Clustering used the full dimensional XS-PC data. After clustering, NN inputs were 
the fuzzy membership values of texture and PC feature vectors to their respective predetermined 
clusters. Figure 1 is a diagram of the fuzzy clustering and NN classification technique used in this 
study. (Vectors are denoted in bold type).



The FLVQ technique by Bezdek (1993) is outlined below. See Bezdek's paper for a complete 
description and also a comparison with Kohonen learning vector quantization (LVQ).

Although there are similarities between the FLVQ and Kohonen's LVQ, one important advantage 
of FLVQ is that none of the heuristics associated with the LVQ training algorithms are needed 
(Bezdek, 1993). Another advantage of fuzzy clustering is that the results can be depicted as fuzzy 
segmented images (Hall and others, 1992). Fuzzy segmented XS and texture images were used as 
an interpretation guide to help the collection of network training data.

For FLVQ, the desired number, c, of cluster prototype vectors, V, where i = 1,..., c and their 
initial values are first defined and then each V, is repeatedly updated to minimize an error 
criterion. The vector update is calculated from the fuzzy membership, uik, between data vectors, 
Xk, where £=1,...,«, and cluster prototype vectors, V-t .

The update for V, at iteration t is

n n
V   V -4-YfY (Y - V /YfY (1\Y i,t~ v i, t-1 ^ ^ u wt, t \Ak v i, t-1) I 4-t uw, t   \3)

k=l 5=1

Learning rate, a^ t , is computed from fuzzy membership, uikt t for parameter m, and Dik is the 
Euclidean distance between V, and Xk.

c 
(X-t, = (U't )m*   ( 5^ O- / O- \^mt i ( mt~ ^ (A\

Parameter mt is
/wr =/wo+ /[ (/«/-mo)/7] (5) 

where rrio and rry are predefined initial and final values. The number of updates, T, of cluster 
prototype vectors V/ is

j -f /^ rrt /f\t=l,2,...,T. (6)

In this preliminary study V, and NN training and test data were from the same 512 x 512 pixel 
image area. To reduce computations, FLVQ was applied to the principal component, Xpc, and 
texture energy images, XT, after subsampling by a factor of 2 to get 256 x 256 pixel samples.

For the clustering process of figure 1, there were 10 PC cluster vectors, V pcy and 5 texture cluster 
vectors, Vf. Equation 3 was repeated for T- 20 and for parameter mt of equation 5 having initial, 
m0 , and final, ny, values of 3.0 and 1.2, respectively. After 20 updates, convergence error 
Et which is defined as

illV-,-n*-i" (7) 
1=1

was 1.32 and 9.14, respectively, for PC and texture data values ranging from 0 to 255. The 
resulting V, are the cluster prototype vectors.

Next, NN test and training data were computed from the fuzzy membership, uik of Xkpc (or XkT )



to their respective cluster vectors, where

** = (ZDik /Dski Y2 «'»-V (8)
s=l

and Dik was the Euclidean distance between X^ and V, Parameter m, which was 2, determines the 
weighting of distances between data and cluster vectors. For m = 2, the distances are weighted 
inversely.

Two fuzzy segmented images were produced. One for the 256- x 256-sample PC feature image 
and one for the 256- x 256-sample texture feature image. Segmented color images were made by 
assigning a color to each of the k image feature samples calculated as the product of the fuzzy 
membership value of the feature vector of the nearest cluster and the defined color of that cluster 
(Hall and others, 1992). That is, the red, green, and blue color values (R, G, B) of image feature 
sample k are

Rk = u'ikRi (9) 
G^utfiGi (10)
** = "**/ (ID

where u'^ is the maximum value of uik (equation 8) for /=!,...,c . Equal, or tie values of uik , were 
resolved randomly.

An alternative color assignment method wherein uik modulates only the color's intensity may be 
to transform (Rit G,, 5f) to intensity (/) hue (//) and saturation (S) and then transform (u ik I, H, S) 
to (Rk, Gk , Bk). This is subject to further study.

Figures 2 and 3 show the results of fuzzy segmentation applied to the texture and PC feature 
images, after they were subsampled from 512x512 to 256 x 256 samples. The sample distance is 
20 m. Figure 2 shows the result of fuzzy clustering and segmentation using 10 cluster prototype 
vectors, (V,, /=!,...,10) applied to the SPOT XS PC image. The color of each pixel sample was 
computed from the color of the nearest cluster prototype times the fuzzy membership to that 
cluster per equations (9, 10,11).

Figure 3 is the result of fuzzy clustering (five clusters) and segmentation applied to the five-band 
texture feature image. Texture features (that is, orientated energy) were derived from the 10-m 
SPOT PAN image as per section H As a spatial reference, a gray-level slice from the PAN image 
is superimposed on the segmented image.

These images were helpful in interpreting land cover classes and should prove valuable in manual 
compilation of land cover and land use regions.

IV. NEURAL NETWORK

A NN trained as a classifier can be considered a process that maps input data to desired output 
class. As shown in figure 1, classification of the fuzzy clustered data is by a multilayer 
NN. There are numerous reported applications of, and empirical comparisons between, 
multilayer NN classifiers and statistical classification techniques. Recently Ruck and others 
(1990) proved that every fully connected feedforward multilayer NN, when backpropagation



trained as a classifier, approximates the Bayes optimal discriminant function. They also proved 
that individual NN outputs, when trained to represent class membership, approximate the a 
posteriori probability function for the class being trained.

The advantage of this type of NN classifier is that it is distribution-free and thus requires no 
knowledge of the statistical distribution of the data (Benediktsson, and others, 1990). They have 
a further advantage over statistical classification methods when there is no knowledge of the 
distribution functions or when the data are non-Gaussian.

Another advantage is that probabilistic relaxation methods can be applied to the NN output data 
because they approximate the a posteriori probabilities. These post classification methods 
improve classification accuracy by incorporating spatial information that describes the influence 
of neighboring pixels on the probable classification of a central pixel (Richards, 1993; Gong and 
Howarth, 1989).

This study used a single hidden layer, fully connected, feedforward NN to classify preclustered 
data in the form of fuzzy membership values. For the output layer, the output of each individual 
processing node, or neuron, represents one of the N land cover classes; N was equal to 8. Because 
the NN input data values vary inversely with distance to the cluster vectors, this approach has 
some similarity to radial basis function networks (Rogers and Kabrisky, 1991).

Because network output layer neurons had normalized exponential output nonlinearities, 
described by Bridle (1990) as "softmax", the neuron output, Ot , for class /, where / = 1,..., N are 
likened to probabilities. That is

0f >l V/ and E0f-=l. (12a,b)1=1

It is unknown at this time whether these output values approximate class conditional probabilities 
because the NN inputs are fuzzy memberships and also because of the "softmax" output 
layer. The application of probabilistic relaxation methods to these output data is the subject of 
further study.

V. NETWORK TRAINING AND TEST SAMPLE COLLECTION

To train the NN to classify the data to a given set of land cover classes, the classes had to be 
defined, and then areas representative of each class, known as training samples, had to be 
collected. Data sources for determining what land cover classes were present in the study area 
included the U.S. Geological Survey (USGS) l:24,000-scale topographic map, National Wetlands 
Inventory map, National Aerial Photography Program color-infrared photos from April 1989, 
SPOT ( © 1988, SPOT Image Corporation, Reston, Virginia) XS and PAN images from July 7, 
1988, and the fuzzy segmented texture and PC images. Also an unsupervised classification of the 
XS image was useful in choosing areas representative of each class.

Also related to this study, several merged or sharpened 10-m sample distance SPOT images were 
produced and their utility for interpreting land cover types evaluated. Basically following a 
technique described by Toet (1992) for multiresolution image fusion, coregistered PAN and XS 
data were merged. In this image, urban and residential areas were easily distinguished. The 
PAN-XS image was then merged with a USGS side-looking airborne radar image 
(SLAR). Compared to the PAN-XS image, forested and nonforested areas were easily



distinguished in this PAN-XS-SLAR image merge.

ERDAS (ERDAS, 1990) image classification software was used to delineate training samples. 
The XS image was displayed and training samples were defined by drawing polygons around 
areas representative of each class. Some iteration was required to develop classes that were fairly 
distinct within the test image. To test this, a spectral signature was developed for each class and 
then a maximum likelihood classifier was used on the samples. Some classes that could not be 
well distinguished were combined. The final eight land use and land cover classes chosen were 
river, pond, wetlands, forest, urban/residential, and three different crop types.

The final training sample polygon file based on these eight classes was then converted into a raster 
image so that pixel values within a class polygon were equal to the class value, and zero 
elsewhere. A number of software programs were developed to convert XSPC and texture images 
and the training sample file into an ASCII format usable by the NN classifier. With the XSPC , 
texture, and the training sample images as inputs, these programs create an ASCII file that has one 
line for each NN training (or test) sample. Each line contains the pixel/data value from each of 
the input files (three bands of SPOT XS/>C and five texture bands in this case), and the designated 
class value.

As shown in figure 1, the image data values were then replaced by their computed fuzzy 
membership values (equation 8). The ASCII file was then arbitrarily split to form two distinct 
NN data-class sample files; one to be used for training the NN, and the other for testing the 
resulting network. Rather than keeping half the data for training and half for testing, and to 
increase the number of training samples per class, 80 percent of the data-class samples were used 
for training. The number of training samples per class ranged from 600 to 9,000 and depended on 
the size of the land cover area. Although desirable for certain classes, it was not possible to 
collect more training samples per class.

The fully connected, feedforward, single hidden layer NN for these tests had 15 inputs. Ten 
inputs were the fuzzy membership values of XSPC data to the 10 prototype cluster vectors 
previously established by FLVQ; 5 inputs were the fuzzy membership values of texture data to the 
5 previously established texture prototype cluster vectors. The NN integrates this multisource 
data into the classification process.

In the output layer, a value of 1.0 for an individual neuron output, 0,-, (equation 12a) represents 
the desired class, /. In training the network as a classifier, the interconnection weights are 
adjusted such that the desired class (that is, neuron output 0;) approximates the true class of the 
training data. The NN output layer used the "softmax" activation function of Bridle (1990) as 
described in NeuralWare (1993). The other layers had TanH transfer functions. There were 15 
hidden layer nodes and 8 output layer nodes. Each output is roughly the probability of land cover 
class / where / = 1,...,/V. That is, for eight classes there were eight outputs; or 1 of N code where
yv = 8.
Backpropagation training (NeuralWare, 1993) was used with weight updates after each sample 
presentation. The learning rates for the hidden and output layers were 0.15 and 0.075; 
corresponding momentum values were 0.2, 0.2 . After training for 600,000 sample presentations, 
the classification accuracy for both training and test files was measured. At this time, no 
classification sensitivity tests versus number of hidden nodes were made.

Tables 1 and 2 give classification results for the training and test files where class assignment per



sample presentation was from the NN output with maximum value. Table 3 gives class number 
versus land cover type.

Table 1: Classification rate, training data; 24,640 samples 
Desired class

Class
1
2
3
4
5
6
7
8

1
0.9790

0.0000

0.0000

0.0149

0.0002

0.0000

0.0012

0.0046

2

0.0000

0.8913

0.0898

0.0038

0.0000

0.0085

0.0000

0.0066

3

0.0000

0.0145

0.9837

0.0000

0.0000

0.0000

0.0000

0.0017

4

0.0122

0.0007

0.0001

0.9832

0.0006

0.0008

0.0012

0.0013

5

0.0222

0.0000

0.0000

0.0032

0.9731

0.0000

0.0016

0.0000

6

0.0000

0.0000

0.0000

0.0322

0.0000

0.9678

0.0000

0.0000

7

0.0103

0.0000

0.0000

0.0009

0.0000

0.0000

0.9599

0.0289

8

0.0900

0.0401

0.0409

0.0312

0.0305

0.0000

0.0483

0.7190

Table 2: Classification rate, test data; 6164 samples. 
Desired class

Class

1
2
3
4
5
6
7
8

1
0.9922

0.0000

0.0000

0.0059

0.0000

0.0000

0.0001

0.0001

2
0.0000

0.8447

0.0000

0.0795

0.0000

0.0114

0.0000

0.0644

3

0.0000

0.0097

0.9903

0.0000

0.0000

0.0000

0.0000

0.0000

4

0.0005

0.0065

0.0037

0.9714

0.0060

0.0120

0.0000

0.0000

5

0.0125

0.0000

0.0000

0.0000

0.9812

0.0000

0.0000

0.0063

6

0.0000

0.0000

0.0000

0.0054

0.0000

0.9946

0.0000

0.0000

7

0.0718

0.0037

0.0000

0.0483

0.1301

0.0000

0.4610

0.2788

8

0.0861

0.0000

0.0000

0.2196

0.0000

0.0059

0.0178

0.6706

Table 3: Class number and land cover type.

Class number
Land cover type

1
forest

2
ponds

3
river

4
urban

5
crop 1

6
crop 2

7
crop 3

8
wetland

The classification accuracy of the test file should be less than that of the training file since the 
former consists of samples not seen by the NN. This was not true for classes 1, 3, 5, or 6 and may 
be due to the differences between the test and training data. Class test samples were merely from 
the last 20 percent of the respective data-class files and thus correspond to the latter part of class 
polygons. An alternative approach to give more uniform sampling would be to split every five 
consecutive data-class samples into four training and one testing data samples. This is subject to 
further study.
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The test file performance for samples not in the training set gives a measure of network 
generalization. Generalization, one of the most important properties of NN's, is the ability to 
induce a relationship that interpolates and extrapolates from the training examples in a sensible 
way (Hertz and others, 1991). Because too many weights in the NN can lead to poor 
generalization, additional classification tests with less hidden layer nodes (and less weights) are 
needed to determine if the relatively low test classification accuracy for classes 7 and 8 is due to 
poor network generalization or nonseparable classes.

A very rough comparison between maximum likelihood (ML) classification (of only XSPC data) 
and NN classification (of table 2) is given in table 4. Although this data was similar to but not 
identical to the NN XSPC class-data file, it allows some comparison of results.

Table 4: ML classification contingency table for XS^data; 31,369 samples

Class

1
2
3
4
5
6
7
8

1
0.947

0.000

0.000

0.009

0.000

0.000

0.002

0.042

2

0.000

0.690

0.016

0.234

0.000

0.000

0.000

0.060

3

0.000

0.000

0.989

0.000

0.000

0.000

0.000

0.011

4

0.001

0.000

0.001

0.877

0.000

0.032

0.012

0.076

5

0.000

0.000

0.000

0.000

0.960

0.000

0.010

0.030

6

0.000

0.000

0.000

0.091

0.000

0.909

0.000

0.000

7

0.000

0.000

0.000

0.020

0.000

0.000

0.933

0.047

8

0.003

0.000

0.017

0.013

0.004

0.000

0.093

0.871

Comparing urban class 4 of table 2 with table 4, NN classification accuracy for the fuzzy clustered 
XSPC and texture data was 0.9714, whereas ML classification of XSPC data was 0.877 . In the 
fuzzy segmented texture image, texture appears an important feature in distinguishing urban and 
nonurban areas. Also, the NN classifier integrated texture and XS data into the classification 
process. This high classification accuracy may be due to the texture data, however, comparative 
tests without texture data are necessary to confirm this. It is noted that urban class training and 
test data were collected merely by drawing one or more polygons in urban image areas such as the 
city and subdivisions.

The benefit of classifying XSPC instead of XS data is the subject of further study. Typically NN 
training data should be uncorrelated (Wasserman, 1993) therefore principle component data were 
used. For comparison, the differences in class accuracy results for maximum likelihood ML 
classification of the XS data-class file and XSPC were between 0 and 2 percent.

Although these preliminary results are encouraging, further tests are planned including classifying 
the entire image using the trained network to spatially visualize classification results and also 
postclassification processing with probabilistic relaxation techniques (Gong and Howarth, 1989).
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VI. CONCLUSION

A technique was described for doing land cover classification from multisource data using a NN 
trained as a classifier. Network inputs were the fuzzy membership values of derived orientated 
texture data and multispecrral data. This technique allows for the supervised classification of 
fuzzy clustered data. It also gives continuous value, class probability-like outputs and the 
potential for postclassification processing with probabilistic relaxation techniques to improve 
classification accuracy.

Although this is an interim report on preliminary test results, the incorporation of texture with 
multispectral data appears to improve the classification of urban land cover; additional tests are 
required to confirm this.

Used for clustering, the FLVQ process requires few parameter adjustments. One benefit of fuzzy 
clustering is that it leads to fuzzy segmented images. Fuzzy segmented principal components 
images were useful in interpreting land cover categories from 10- and 20-m SPOT images. Their 
utility as auxiliary data for the interpretation and manual delineation of land cover regions will be 
evaluated. Texture based fuzzy segmentation and automated classification of urban areas from 
the SPOT PAN image or radar data, or both, appears promising and are the subjects of further 
study.
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