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ABSTRACT

The observed reflection seismogram is the convolution of a source wavelet with the earth
reflectivity function and the primary purpose of deconvolution is to remove the effect of wavelet
on the seismogram. Conventionally, wavelet deconvolution is accomplished under the
assumptions that earth reflectivity is a white sequence and the phase of the source wavelet is
minimum. However, the earth reflectivities computed from well logs suggest that the power
spectra are proportional to the power of the frequency (a power law), and autocorrelation
functions show significant negative values at lags 1 and 2, which implies nonwhiteness.

Incorporating the observed behavior of the earth reflectivities using 2 or 3 terms of
autocorrelation function significantly improves the performance of deconvolution over a
conventional spiking deconvolution when the reflection coefficients series is assumed to be earth
reflectivity function( or impulse response). However, including random noise and inner-bed
multiples degrades the performance of deconvolution.

Because the statistics of the earth reflectivity is not known in most cases, a practical way
of incorporating the negative autocorrelation at small lags is applying a two-term shaping filter
(1 +vZ) with reasonable filter coefficients (y) between -0.1 and -0.6.

INTRODUCTION

Observed seismograms reveal complex interferences due to the effects of source wavelets
and consequently the original data provide low resolution of sedimentary sequences. The
essence of seismic deconvolution is to remove the wavelet effect from the original data and
improve the resolution of reflected events. Much research has been done in the areas of seismic
deconvolution (Wadsworth and others, 1953; Robinson, 1957; Peacock and Treitel, 1969). If the
source wavelet is known, deterministic approaches can be attempted. However, because the input
wavelet is not known in most cases, statistical methods are commonly applied. In the statistical
approach, a deconvolution operator is designed by making assumptions about the statistics of
reflection sequence.

The most common assumption of statistical deconvolution is that the earth reflectivity is a
white sequence and the phase of the source wavelet is minimum. Under these assumptions, a
spiking deconvolution is equivalent to a wavelet deconvolution (Robinson, 1957; Peacock and
Treitel, 1969). When the phase of the wavelet is not minimum, there remains some residual
phase error in the deconvolved output, but the output is a white sequence.

Walden and Hosken (1985) demonstrated that reflection coefficients from a wide variety
of rock sequences around world are nonwhite. They showed that the reflection sequences are
pseudo-white only above a corner frequency, below which their power spectrum falls away

according to a power law ®°, where ¢ is between 0.5 and 1.5. This spectrum can be adequately
modeled by an ARMAC(1,1) process (Autoregressive-moving average with a single pole and a
single zero). When the exponent is 1, the autocorrelation function decays very rapidly and only
2 terms of the autocorrelation are enough to describe the statistics of the reflectivity
(Todoeschuck and Jensen, 1989).

In order to incorporate the pseudo-whiteness of the earth reflectivity, Walden and Hosken
(1985) proposed a new seismic deconvolution method by deriving an ARMA shaping filter.
They assumed that the earth reflectivity can be decomposed into the convolution of the
ARMAC(1,1) shaping filter and the white noise sequence. The property of nonwhiteness of the
reflection coefficients is also utilized in the design of the deconvolution operator using an
autocorrelation of the reflectivity sequence (Todoeschuck and Jensen, 1988; Todoeschuck and
Jensen, 1989; Todoeschuck, 1994). Todoeschuck and Jensen (1989) showed that a simple
modification to the prediction error filter or spiking filter significantly improves the



deconvolution for nonwhite reflection sequences and provided an example showing that the error
between the known reflection sequences and that recovered by the conventional spiking filter
was 20 %, but it was 0.5 % using the new approach, about 40 fold improvement in reducing the
error. However, Todoeschuck (1994) indicated that this new approach did not work well with
the real data because the peg-leg multiples or inner-bed multiples alter the statistical property of
the reflectivity.

In this paper, in addition to deriving a deconvolution filter by solving nonlinear normal
equations using autocorrelations up to lag = 2, a much simpler shaping filter approach is
presented.
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THEORY

Seismic traces can be approximated by the following convolutional model denoting * as a
convolution operator in the time domain:
s@=h{r@}*w()+n() ¢Y)
where
s(t) = seismic trace,

h{r(t)} = earth reflectivity or impulse response,
r(t) = reflection coefficient,
w(t) = source wavelet, and

n(t) =noise.
The objective of seismic deconvolution is to remove the wavelet effect from the seismic trace
and recover the earth reflectivity function. Let’s define a filter function f(t) in such a way that if
the filter is applied to the observed seismic trace, the output is the estimation of earth reflection
coefficient or earth reflectivity function. In other words,

e(t) =s()*ft) @

where e(r) is the estimated earth reflectivity.
The computation of the inverse filter f(t) is easily accomplished, if the source wavelet is known.
When the source wavelet is not known, a statistical estimation method under some assumptions
can be applied. The well known spiking deconvolution filter is based on the assumption that the
earth reflectivity is a white sequence. Because the earth reflectivity is a white sequence, the
autocorrelation function is zero except at zero lag.

Let’s derive a more general deconvolution filter based on the nonwhiteness of the earth
reflectivity function.



A) Time Domain Solution Using Normal Equation

The autocorrelation function of the estimated earth reflectivity is given by:
An = z eken -k
k

= %Ef#&—m?fl&-k-l

= §fmlzf;Qm+u -1 (3)

In equation (3), Q is the autocorrelation of the observed seismogram and is different from the
autocorrelation of the estimated earth reflectivity function because of the wavelet effect. Let’s
minimize the zero-lag autocorrelation function (A,) with respect to the filter coefficient in
Equation (3), as in Todoeschuck and Jensen (1989). The resulting equation is:

5,0, =0. @

If Equation (4) is satisfied when i> 0, it cab be shown that A, = O for n greater than 0. Thus

Equation (3) with Equation (4) can be written by the following matrix equation.

(00 O oo o O \(5) (A

Ql QO Ql e QK -1 -fl 0
: . S . =l | (5)

\QK Ok-1 oo - Q, )KfK} \ 0
Equation (5) is the same as that used in the design of a spiking deconvolution filter (Peacock and
Treitel, 1969). As indicated in Equation (5), the autocorrelation of the output using this
deconvolution filter (a spiking deconvolution filter) is zero except at the zero lag.

If an assumption is made that Equation (4) is satisfied for i > 1, then it is shown that A; =0
fori> 1. In general, it can be shown that by making A, = 0 for i > I in Equation (4), the
autocorrelation function of the reflectivity in Equation (3) is non-zero up to I-th lag. Therefore
Equation (3) with the condition of Equation (4) provides a general deconvolution filter for the
specified autocorrelation function of the earth reflectivity. If the autocorrelation function is
non-zero up to la; 2, the following matrix equation can be easily derived:

0 Ql QK ) (f;\ (Ao - fl (Al _szz)\
Q1 Qo Q1 QK-] fl Al - fi Az
. . . . . . = A2 (6)
Gk Ok - -~ Qo A\ \O

J

This is a nonlinear equation for the filter coefficients f and can be solved by an iterative method.

When the earth reflectivity is assumed to be white, the magnitude of A, in Equation (5) is
immaterial, so Equation (5) can be solved based on the observed seismic traces. However, in
general, the relative values of the autocorrelation function for given lags greater than 0 must be
known in solving Equation (6). So Equation (6) can not be solved based on the observed
seismogram without some knowledge of the statistical behavior of the reflectivity. Todoeschuck
(1994) labeled this new approach of deconvolution fractal deconvolution.



B) Frequency Domain Solution Using Spectral Decomposition

The above derivation of a deconvolution operator for nonwhite reflectivity can be
formulated in the context of a shaping filter in the frequency domain. Let’s assume that Fourier
transformed variables are denoted as capital letters (e.g. S () is the Fourier transform of s(t)),
then Equation (1) can be written as follows under the assumption that the earth reflectivity
function is the same as the reflection coefficient series (primary impulse response):

S(w) =R (®)W(w)+ N (). )
If we define a filter F(w) as an inverse operator of wavelet, that is
W 1
F@)=—— @ _ L) ®)

WeW (@+c W
In Equation (8), the asterisk denotes a complex conjugate and © is a constant.

Let’s assume that the phase of the wavelet is minimum and the autocorrelation of the
wavelet, not the wavelet itself, is known. Then a wavelet can be derived by a spectral
decomposition of the wavelet autocorrelation function (Claerbout, 1976; Robinson and Treitel,
1980). Because a wavelet can be estimated, an inverse operator can be derived as shown in
Equation (8). The autocorrelation of the observed seismogram ®(w) without noise can be
written as follows the frequency domain:

() =S (WS (®)

=R(®)R ()W (@)W (m)
= O_(0)D, (@)W ()W (®) (%a)
= cW(@)W (o), b)

where @, and &_ are the spectral decomposition of the autocorrelation function ®(w) andc is a

constant.

Equation (9b) is true when the reflectivity sequence is white. In this case, the wavelet

autocorrelation function is a scaled version of the autocorrelation function of the seismogram and

a wavelet inverse filter (let’s denote it as F,) can be derived from the observed seismogram with

a minimum phase assumption. Therefore, the output of the filter derived in Equation (5) and F;

provide the same autocorrelation function, and the autocorrelation function of the output is
S(0)S (@)F (W)F, (®) = R(@)R (@) =c. (10)

Notice that Equation (10) is valid when the reflectivity is assumed to be white and the filter (F;) -
is derived using only the zero-lag autocorrelation function of the observed seismogram (a spiking
deconvolution operator). Let’s multiply the spectral decomposition of autocorrelation function,
Equation (9a), to both sides of Equation (10).

D, (0)D_()S (0)S (W)F (0)F. (0) = c D, (0)D_(w)

S (W)F (0)S “(0)F (@) = c D (0)P_(w). (11
If we define F () = ®,(w)F,(w)as in Equation (11), then the output autocorrelation function

deconvolved with F (m) is the scaled version of the autocorrelation function of the earth
reflectivity. Therefore the filter @, (w)F,(w) is equivalent to the filter derived from Equation (4).

In other words,®,(®)F,(®) shapes the output autocorrelation function into the desired



autocorrelation function, instead of the function itself.

The shaping filter approach presented here is similar to the one proposed by Walden and
Hosken (1985). They proposed to use an ARMA (1,1) (A polynomial with a single pole and a
single zero) shaping filter. Here a moving average type shaping filter based on the spectral
decomposition of the autocorrelation function is presented. Both approaches are fundamentally
equivalent in that they try to shape the output autocorrelation into a desired form.

The implementation of Equation (11) can be easily demonstrated by the following
example. Let’s assume that the autocorrelation function can be written in the following form,
using the Z-transform, assuming that only two values (lag 0 and lag 1) are non-zero.

A
A@Q)=5+A+ALZ,

, 1
=B(Z+Y)(Z+’Y),

oo, (12)
In the Z-transform, ®_ is the solution of spectral decomposition whose zeroes are inside a unit
circle and @, is the solution whose zeroes are outside a unit circle. The spectral decomposition

of the autocorrelation function can be accomplished by finding y in Equation (12). The solution
is given with Ay = 1,
1-+1-4A}
B Ml . |

Similarly, the three term autocorrelation function can be decomposed by finding roots of the
cubic equation.

Because the output of the spiking deconvolution is white, the order of application of
Equation (11) is important. The proper sequence is:
1) Firstly, derive a spiking deconvolution operator using the observed seismogram and apply it
to the data. :
2) Secondly, perform spectral decomposition of the autocorrelation function of earth reflectivity
and apply this minimum phase function to the deconvolved output.

In this paper, the minimum phase function computed from the first two terms of
autocorrelation function is called a two-term shaping filter and a three-term shaping filter when
the first 3 terms of autocorrelation function are used for the filter design.

CHARACTERISTICS OF EARTH REFLECTIVITY

As mentioned in the previous section, when the earth reflectivity is a white sequence, a
spiking deconvolution is equivalent to a wavelet deconvolution under the assumption of a
minimum phase source wavelet. When the reflectivity sequence is white, the power spectrum of
the time series is a uniform function of the frequency. How accurate is this white sequence of
the earth reflectivity ? In order to examine the behavior of the power spectrum of earth
reflectivity with respect to the frequency, reflection coefficient series were analyzed. The
reflection coefficient series was computed from sonic logs with 1 ms sampling interval (two-way
time). Figures 1-2 show examples of amplitude spectra of the reflection coefficient series at 4
different wells. A power spectrum of a time series is given by the Fourier transform of the
corresponding autocorrelation function.

13)
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All the amplitude spectra of reflection series indicate diminishing of the low frequency content
relative to high frequency content. Let’s assume that the power spectrum of the reflectivity
function is proportional to the some power & of the frequency (w):

P ="
This is one class of random fractals known as the Gaussian scaling noises (Mandelbrot, 1982). A
sample of a Gaussian scaling noise has a Gaussian probability distribution. Because the
Gaussian scaling noise is a power function of frequency, a log-log plot of frequency versus
power shows a linear trend. The examples shown in Figures 1 and 2 indicate this linear trend to
varying degrees. The slopes of the least squares fit to the power spectra, parameter o, shown in
Figures 1 and 2 are 1.05, 0.47, 0.39, 0.87 for the Powder, Mitchell, Tex15 and Tex12 wells
respectively. If the reflection series is a white sequence, the slope of the power spectra should be
close to O or flat in the log-log plot. Therefore, it is shown that the reflection coefficient series
shown in Figures 1 and 2 are not white sequences.

The autocorrelation functions of reflection coefficients for the time lag up to 5 msec are
shown in Table I. The autocorrelation values at lag 1 and lag 2 indicate large negative values
except for the Tex15 well. Negative values at small lags are characteristic of the autocorrelation
function of reflection sequences generated from well logs (O’Doherty and Anstey ,1971).

Lag, ms Powder | Mitchell Tex12 Tex15 Powder Tex15"
0 1.0 1.0 1.0 1.0 1.0 1.0
1 -0.308 -0.14 -0.36 0.03 -0.131 0.04
2 -0.184 -0.145 -0.08 -0.33 -0.07 -0.12
3 0.01 -0.04 0.01 -0.10 0.00 0.01
4 -0.01 -0.02 -0.06 ©0.01 0.00 0.05

Table I, The normalized autocorrelation functions of reflection coefficient series for lags up to 4
ms. Superscript * indicates the seismic response including all inner-bed multiples except the
surface multiple.

The reflection coefficient series is an approximation of earth reflectivity function, because
the earth reflectivity should include all multiples, particularly short-period inner-beds multiples.
The amplitude spectra of earth reflectivity functions including all inner-bed multiples except a
free-surface multiple are shown in Figure 3 for the Powder and Tex15 wells. Notice the relative
increase of low-frequency content compared to the amplitude spectra of the reflection
coefficients. The least squares estimations of slope parameter o are 0.237 and 0.02 for the
Powder and Tex15 wells respectively, and are much close to the expected parameters for a white
sequence. ~
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NUMERICAL EXAMPLES
A)Primary Response Without Noise

In order to investigate the effect of the autocorrelation function on the performance of
deconvolution operator, the reflection coefficient series used to generate the spectrum in Figure
1, the Powder well, was used. Figure 4 shows deconvolved outputs with various assumptions
about the autocorrelation function. The phase of input wavelet is a minimum phase with a peak
frequency of 100 Hz and it is given by

w(t) = e " sin(mt/5).

Figure 4A represents the reflection coefficient series, which is assumed to be the earth
reflectivity. The convolution of reflection coefficients with the minimum phase wavelet (input
for the deconvolution example) is shown in Figure 4B. Shown in Figure 4C is the error sequence
of the output after an 11 point spiking deconvolution operator is applied to input data. Figure 4D
represents the error sequence of output when a deconvolution operator using Equation (6) under
the assumption that the autocorrelation function has only two values (lag 0 and lag 1) and all
other values are zero is applied, and Figure 4E shows the result of applying Equation (6) under
the assumption that the autocorrelation has three non-zero values (lag 0, lag 1 and lag 2) and all
other autocorrelation values are zero. An error sequence is defined as the difference between the
true earth reflectivity function and estimated reflectivity function through the deconvolution.
The root-mean-square error, which is defined as the RMS value of the error sequence divided by
the RMS value of input, of the results shown in Figure 4 are 54 %, 22 % and 9 % for Figure 4C,
4D and 4E respectively. The output of Figure 4E and RMS values indicates that the
deconvolution with the assumption of three non-zero autocorrelation function is almost perfect,
while the output of the spiking deconvolution shows the large error in the output. Using 3 term
autocorrelation improves the performance of deconvolution by about 3 times that of using 2 term
autocorrelation. As indicated in Table I, the autocorrelation function of the reflection coefficient
at the Powder Well shows significant non-zero values at lag 1 and lag 2. Equation (6) tries to
honor the input autocorrelation as accurately as possible and the result proves that the formula
shown in Equation (6) adequately handles the statistical property of the reflection series.

The input for the spiking deconvolution is the seismogram itself (i.e., Figure 4B).
However the input for the Figures 4D and 4E requires the normalized autocorrelation function of
the true reflection coefficients, which is not generally available. The autocorrelation function of
the deconvolved output for Figure 4D indicates that the normalized autocorrelation function at
lag 1 is -0.424 instead of the input -0.308 (Table II). The discrepancy of the autocorrelation
function result from the way the nonlinear equation is solved. In the computer program, the
optimum filter coefficients f, and f; of Equation (6) are computed to get the minimum RMS error
values for the output. As we can see later, this does not happen when a shaping filter approach is
used. The autocorrelation of the deconvolved output for Figure 4E is 1.0 - 0.303Z - 0.1872>%
This is very similar to the input autocorrelation function, because there are no significant
autocorrelation values after lag 2.

10
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Lag, ms | Figure | Figure | ‘Figure | ‘Figure | ‘Figure | ‘Figure | “Figure
4A 4B 4C - 4D 4E 5D S5E

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 -0.308 0.638 -0.003 -0.424 -0.303 -0.308 -0.304

2 -0.184 0.055 -0.008 -0.004 -0.187 -0.003 -0.182

3 0.007 -0.387 -0.016 -0.003 -0.001 -0.008 -0.003

4 -0.010 -0.557 -0.017 0.001 0.003 -0.005 0.001

Table II. The autocorrelation functions for the input and deconvolved outputs shown in Figures 4
and 5. Superscript * indicates that the actual input is not the error function shown in Figures 4
and 5, but the actual deconvolved output.

The deconvolved output using the shaping filter approach is shown in Figure 5 using same
format as for Figure 4. The RMS error values are 58 %, 28 % and 10% for Figures 5C, 5D, and
SE respectively. The autocorrelation function of the deconvolved output is shown in Table II.
As indicated in Table 11, the autocorrelation function of output matches the input autocorrelation
function quite well. However, the RMS values of error indicate that the performance based on
the shaping filter approach is apparently somewhat inferior to the output when using Equation
(6). It must be emphasized that there would have been no performance difference between the
two approaches, if the actual input has only two non-zero autocorrelation values for Figure 4D
and Figure 5D or only three non-zero autocorrelation values for Figure 4E and Figure 5E.

B) Intrabed Multiple and Noise Effect -

The effect of the random uncorrelated Gaussian noise on the performance of deconvolution
is shown in Figure 6 for the signal to noise ratio (S/N) of 5 and in Figure 7 for the S/N of 2. The
RMS errors between true and deconvolved outputs are 54 %, 32 %, and 23 % for Figures 6C,
6D, and 6E respectively. Improvement of about 2 fold in the RMS error has been achieved by
honoring the 3 term autocorrelation function. However the RMS errors are 62 %, 50% and 48%
for Figures 7C, 7D, and 7E respectively. In this case, the improvement by using a 2 or 3 term
autocorrelation function of reflection series is marginal.

As mentioned before, the reflection coefficient series is an approximation of the earth
impulse response. The results for the earth impulse response including all the inner-bed
multiples except the surface multiple is shown in Figure 8 using the format as that of Figure 5.
The RMS errors between the true earth reflectivity and the deconvolved output are 17 %, 9%,
and 6% for Figures 8C, 8D, and 8E respectively. This example indicates that the effect of
autocorrelation function at small lags on the deconvolution when including inner-bed multiples is
less significant than that of the primary only case (Figure 5).

DISCUSSION
A) Earth Reflectivity

Spectral analyses indicate that the reflection coefficient sequence is better approximated by
a power law in the frequency domain than by a white spectrum and the analyses from 4 wells
indicate that the exponent for the power law varies between 0.4 and 1.0. Walden and Hosken
(1985) reported that the exponent varies between 0.5 and 1.5 by analyzing 8 wells from a wide

12
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variety of geographical locations and geological sequences. The positive value of the exponent
implies the low-cut behavior of reflection coefficient series and is a manifestation of negative
autocorrelations at small lags (Walden and Hosken, 1985).

If the reflection sequence is white, the autocorrelation values can be ignored except at lag
0. However, Table I indicates that the autocorrelations of reflection sequences contain
significant contributions at correlation lags greater than 0. Theses large negative
autocorrelations at small lag and the low-cut behavior of the reflection sequence (Figure 1)
confirms Walden and Hosken (1985). Table I also indicates that the autocorrelation of the
reflection coefficient can be approximated by the first 3 terms. These negative autocorrelations
at small lags have significant implications for the design of deconvolution operator.

B) Fractal Deconvolution

The conventional spiking deconvolution assumes that the earth reflectivity sequence is
white and the autocorrelation of the reflectivity is zero except at zero lag. Numerical examples
indicate that significant improvement in the performance of the deconvolution operator can be
achieved by including more autocorrelation values of the earth reflectivity (Figures 4 and 5).
However, the improvements of the fractal deconvolution over conventional spiking
deconvolution degrades as inner-bed multiples are included and the noise content increases
(Figures 6, 7 and 8).

The effect of inner-bed multiples and random noise on the autocorrelation function is to
increase the value of zero-lag autocorrelation. Schoenberge and Levin (1974) demonstrated that
the intrabed (inner-bed) multiples tend to raise the amplitudes at the low-frequency end of the
spectrum and lower those at the high-frequency end (apparent attenuation). This low-pass
filtering effect is evident in Figure 3. The low pass filtering effect of the intrabed multiples
manifested itself by reducing the relative strength of the negative values of autocorrelation at
small lags. The A, and A, of the reflection coefficients are -0.308 and -0.184 respectively, but
those values including intrabed multiples are reduced to -0.131 and -0.07 (Table I), a reduction
of about 3 fold. Also, adding uncorrelated random noise to the seismogram only increases the
value of the zero-lag autocorrelation. Thus the effect of autocorrelation values at small lags in
the design of the fractal deconvolution operator is reduced when intrabed multiples or random
noises are included. For example, the improvement in the RMS error of deconvolved output by
an operator including 3 term autocorrelation function for Powder well over the spiking
deconvolution is about 6 fold when reflection sequences is used for earth impulse responses, but
it is only about 3 fold when inner-beds multiples are included. Also note that the RMS error for
Figure SE (deconvolution using 3 term autocorrelation function) is almost identical to that for
Figure 8C (spiking deconvolution). -

Numerical examples suggest that the iterative method, solution of Equatuion (6), in
deriving a deconvolution operator using Equation (6) seems to work better than the shaping filter
approach (Compare Figure 4 and Figure 5). However, these two approaches are essentially the
same. The apparent discrepancy between the two approaches is due to fact that the iterative
method keys on minimizing the error in the output rather than preserving the input
autocorrelation as accurate as possible. The output autocorrelation value at lag = 1 for Figure 4D
is -0.424, which differs from the input autocorrelation value of - 0.308. Whereas the
autocorelation value at lag 1 for Figure 5D is -0.308, which is identical to the input
autocorelation value. However, the RMS error for Figure 4D is much smaller than that for
Figure 5D. This implies that the fratcal deconvolution filter derived from the PEF method
somewhat compensated the effect of autocorelation at lag 2 by altering the output autocorreltion
value atlag = 1. When this output autocorrelation value is used for the 2-term shaping filter
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approach, the RMS of the error function is 1.3X10%, which is the same RMS value for the error
function computed from applying Equation (6). This analysis concludes that the underlying
principle for two approaches for the fractal deconvolution is the same.

C) Practical Considerations

As indicated in the previous examples, the effectiveness of a three-term shaping filter over
a two-term shaping filter decreases as random noise and inner-bed multiples are increased. Also,
because the autocorrelation function of earth reflectivity is not known in most cases, designing a
two-term shaping filter is more practical than designing a three-term shaping filter when
processing real data. Equation (13) indicates that the theoretical minimum value of negative
autocorrelation at lag = 1 is -0.5. Table I shows that the negative autocorrelation value at lag = 1
ranges from -0.14 to -0.308 except at the Tex15 well. A practical approach may be to design
two-term shaping filters with various A, in the range of -0.1 to -0.5 and examine the output.
Because true reflectivity is not known except in the case of where well logs are available, the
user should decide logically which filter performs best. Figure 9 shows this approach. Various
two-term filters were computed using A, between -0.1 and -0.5 and applied to the spiking
deconvolved trace (Figure 9C). The RMS values for the error function are 54 %, 46 %, 37 %, 29
%, 23 %, and 35 % for Figure 9C, 9D, 9E, 9F, 9G and 9H respectively. In this case we know
that the minimum error occurs near A, = -0.4, but in real data processing we cannot determine
which value is best for the data set without any other knowledge.

The general form of the shaping filter is 1 +YZ, where yis between O and -1.0. Filter
coefficients are -0.1, -0.21, -0.33, -0.5, -0.63, and -1.0, for A, =-0.1, -0.2, -0.3, -0.4, -0.45, and
-0.5 respectively. When A, = -0.5, y= -1.0. In this case the two-term shaping filter is a
differential operator. Figure 10 shows the amplitude spectra of these various two-term filters
with respect to Yy when the temporal sample rate is 1 ms. For values of y> —0.5, the shaping filter
does almost nothing when frequencies are less than about 100 Hz. This suggests that the
advantage of the fractal deconvolution in processing conventional surface seismic data, where
frequency content is usually less than 80 Hz, is insignificant and conventional spiking
deconvolution works well.

CONCLUSIONS

This paper showed how to incorporate autocorrelation function up to small lags in the
design of deconvolution operator and provided synthetic examples. This study concludes that:
1) The autocorrelations of reflection coefficients show non-negligible negative values at small
lags and the spectral behavior implies the nonwhiteness of the sequence. The power spectra of

the reflection coefficients for the 4 wells studied here approximately varies with ®*, where o, is
between 0.4 and 1.0. The autocorrelation function of the earth reflectivity can be approximated
by the first 3 terms. '

2) Applying a shaping filter derived from the spectral decomposition of the autocorrelation
function after the spiking deconvolution is equivalent to applying a deconvolution operator
derived from the solution of a nonlinear normal equation. The shaping filter approach offers
remarkably simple computational implementation.

3) Significant improvements of deconvolution using 2 or 3 terms of the autocorrelation function
can be achieved when the reflection coefficients are used for the earth impulse response.
However, the performance degrades as random noises and inner-bed multiples are included in
the seismogram. This implies that the improvement of this new deconvolution method over the
conventional spiking deconvolution is marginal when processing real data.
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Figure 10. Fourier amplitude spectré for the 2-term shaping filters in the form of
F(Z)=1.0+%Z, where Yis between -0.25 to -1.0. Sampling interval is 1 ms.
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4) In real data processing, a simple 2-term shaping filter in the form of 1+9Z, where yis
between -0.1 and -0.6 can be applied to the data after spiking deconvolution. This shaping filter
can be considered as a post-deconvolution spectral shaping filter. The reasonable choice of 7y

depends upon the interpretability of the processed section.
5) When the frequency content is less than about 80 Hz, conventional spiking deconvolution is

adequate.
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