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ABSTRACT
The observed reflection seismogram is the convolution of a source wavelet with the earth 

reflectivity function and the primary purpose of deconvolution is to remove the effect of wavelet 
on the seismogram. Conventionally, wavelet deconvolution is accomplished under the 
assumptions that earth reflectivity is a white sequence and the phase of the source wavelet is 
minimum. However, the earth reflectivities computed from well logs suggest that the power 
spectra are proportional to the power of the frequency (a power law), and autocorrelation 
functions show significant negative values at lags 1 and 2, which implies nonwhiteness.

Incorporating the observed behavior of the earth reflectivities using 2 or 3 terms of 
autocorrelation function significantly improves the performance of deconvolution over a 
conventional spiking deconvolution when the reflection coefficients series is assumed to be earth 
reflectivity function^ or impulse response). However, including random noise and inner-bed 
multiples degrades the performance of deconvolution.

Because the statistics of the earth reflectivity is not known in most cases, a practical way 
of incorporating the negative autocorrelation at small lags is applying a two-term shaping filter 
(1 +*/Z) with reasonable filter coefficients (y) between -0.1 and -0.6.

INTRODUCTION
Observed seismograms reveal complex interferences due to the effects of source wavelets 

and consequently the original data provide low resolution of sedimentary sequences. The 
essence of seismic deconvolution is to remove the wavelet effect from the original data and 
improve the resolution of reflected events. Much research has been done in the areas of seismic 
deconvolution (Wadsworth and others, 1953; Robinson, 1957; Peacock and Treitel, 1969). If the 
source wavelet is known, deterministic approaches can be attempted. However, because the input 
wavelet is not known in most cases, statistical methods are commonly applied. In the statistical 
approach, a deconvolution operator is designed by making assumptions about the statistics of 
reflection sequence.

The most common assumption of statistical deconvolution is that the earth reflectivity is a 
white sequence and the phase of the source wavelet is minimum. Under these assumptions, a 
spiking deconvolution is equivalent to a wavelet deconvolution (Robinson, 1957; Peacock and 
Treitel, 1969). When the phase of the wavelet is not minimum, there remains some residual 
phase error in the deconvolved output, but the output is a white sequence.

Walden and Hosken (1985) demonstrated that reflection coefficients from a wide variety 
of rock sequences around world are nonwhite. They showed that the reflection sequences are 
pseudo-white only above a corner frequency, below which their power spectrum falls away
according to a power law 0)a, where a is between 0.5 and 1.5. This spectrum can be adequately 
modeled by an ARMA(1,1) process (Autoregressive-moving average with a single pole and a 
single zero). When the exponent is 1, the autocorrelation function decays very rapidly and only 
2 terms of the autocorrelation are enough to describe the statistics of the reflectivity 
(Todoeschuck and Jensen, 1989).

In order to incorporate the pseudo-whiteness of the earth reflectivity, Walden and Hosken 
(1985) proposed a new seismic deconvolution method by deriving an ARMA shaping filter. 
They assumed that the earth reflectivity can be decomposed into the convolution of the 
ARMA(1,1) shaping filter and the white noise sequence. The property of nonwhiteness of the 
reflection coefficients is also utilized in the design of the deconvolution operator using an 
autocorrelation of the reflectivity sequence (Todoeschuck and Jensen, 1988; Todoeschuck and 
Jensen, 1989; Todoeschuck, 1994). Todoeschuck and Jensen (1989) showed that a simple 
modification to the prediction error filter or spiking filter significantly improves the



deconvolution for nonwhite reflection sequences and provided an example showing that the error 
between the known reflection sequences and that recovered by the conventional spiking filter 
was 20 %, but it was 0.5 % using the new approach, about 40 fold improvement in reducing the 
error. However, Todoeschuck (1994) indicated that this new approach did not work well with 
the real data because the peg-leg multiples or inner-bed multiples alter the statistical property of 
the reflectivity.

In this paper, in addition to deriving a deconvolution filter by solving nonlinear normal 
equations using autocorrelations up to lag = 2, a much simpler shaping filter approach is 
presented.
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THEORY
Seismic traces can be approximated by the following convolutional model denoting * as a 

convolution operator in the time domain:
j(r) = *{r(r)}*w(0 + »« (1) 

where
s (r) = seismic trace,

= earth reflectivity or impulse response, 

r(r) = reflection coefficient, 

w(f) = source wavelet, and

w(r) = noise.
The objective of seismic deconvolution is to remove the wavelet effect from the seismic trace 
and recover the earth reflectivity function. Let's define a filter function f(t) in such a way that if 
the filter is applied to the observed seismic trace, the output is the estimation of earth reflection 
coefficient or earth reflectivity function. In other words,

*(0 = *(')*/(') (2)

where e(t) is the estimated earth reflectivity.
The computation of the inverse filter f(t) is easily accomplished, if the source wavelet is known. 
When the source wavelet is not known, a statistical estimation method under some assumptions 
can be applied. The well known spiking deconvolution filter is based on the assumption mat the 
earth reflectivity is a white sequence. Because the earth reflectivity is a white sequence, the 
autocorrelation function is zero except at zero lag.

Let's derive a more general deconvolution filter based on the nonwhiteness of the earth 
reflectivity function.



A) Time Domain Solution Using Normal Equation
The autocorrelation function of the estimated earth reflectivity is given by:

k m

m /
-l (3).

In equation (3), Q is the autocorrelation of the observed seismogram and is different from the 
autocorrelation of the estimated earth reflectivity function because of the wavelet effect. Let's 
minimize the zero-lag autocorrelation function (Ao) with respect to the filter coefficient in 
Equation (3), as in Todoeschuck and Jensen (1989). The resulting equation is:

(4)

If Equation (4) is satisfied when i> 0, it cab be shown that An = 0 for n greater than 0. Thus
Equation (3) with Equation (4) can be written by the following matrix equation.

\s/> \ / . \ 
A,Go 

G,
G, 
Go G,

QK GK-, JU

0
(5)

Equation (5) is the same as that used in the design of a spiking deconvolution filter (Peacock and 
Treitel, 1969). As indicated in Equation (5), the autocorrelation of the output using this 
deconvolution filter (a spiking deconvolution filter) is zero except at the zero lag.

If an assumption is made that Equation (4) is satisfied for i > 1, then it is shown that A{ = 0 
for i > 1. In general, it can be shown that by making A{ = 0 for i > I in Equation (4), the 
autocorrelation function of the reflectivity in Equation (3) is non-zero up to I-th lag. Therefore 
Equation (3) with the condition of Equation (4) provides a general deconvolution filter for the 
specified autocorrelation function of the earth reflectivity. If the autocorrelation function is 
non-zero up to lag 2, the following matrix equation can be easily derived:

/ > % > % ,X"V \ / /  \ /A f S A

Go ft 
Go

a "" fi

(6)

QK QK-, ... .. Go _ __ 
This is a nonlinear equation for the filter coefficients f and can be solved by an iterative method. 

When the earth reflectivity is assumed to be white, the magnitude of A0 in Equation (5) is 
immaterial, so Equation (5) can be solved based on the observed seismic traces. However, in 
general, the relative values of the autocorrelation function for given lags greater than 0 must be 
known in solving Equation (6). So Equation (6) can not be solved based on the observed 
seismogram without some knowledge of the statistical behavior of the reflectivity. Todoeschuck 
(1994) labeled this new approach of deconvolution fractal deconvolution.



B) Frequency Domain Solution Using Spectral Decomposition
The above derivation of a deconvolution operator for nonwhite reflectivity can be 

formulated in the context of a shaping filter in the frequency domain. Let's assume that Fourier 
transformed variables are denoted as capital letters (e.g. 5(0)) is the Fourier transform of s(t)), 
then Equation (1) can be written as follows under the assumption that the earth reflectivity 
function is the same as the reflection coefficient series (primary impulse response):

5(0)) =/?(G))W(G)) + Af (G)). (7)

If we define a filter F(co) as an inverse operator of wavelet, that is

"W-^\ 4(o»). (8) 
W(<£>)W (o) + a W

In Equation (8), the asterisk denotes a complex conjugate and a is a constant.
Let's assume that the phase of the wavelet is minimum and the autocorrelation of the 

wavelet, not the wavelet itself, is known. Then a wavelet can be derived by a spectral 
decomposition of the wavelet autocorrelation function (Claerbout, 1976; Robinson and Treitel, 
1980). Because a wavelet can be estimated, an inverse operator can be derived as shown in 
Equation (8). The autocorrelation of the observed seismogram <X>(G)) without noise can be 
written as follows the frequency domain:

= ®_(G>)<S>+(G>)W(G)W\G>) (90)

(9b) 
where <X>+ and <X>_ are the spectral decomposition of the autocorrelation function <X>((Q) and c is a
constant.
Equation (9b) is true when the reflectivity sequence is white. In this case, the wavelet 
autocorrelation function is a scaled version of the autocorrelation function of the seismogram and 
a wavelet inverse filter (let's denote it as Fs) can be derived from the observed seismogram with 
a minimum phase assumption. Therefore, the output of the filter derived in Equation (5) and Fs 
provide the same autocorrelation function, and the autocorrelation function of the output is

S(G))S\G))F,(G))F;(G)) - tf(G))/?*(G)) = c. (10)
Notice that Equation (10) is valid when the reflectivity is assumed to be white and the filter (F$) 
is derived using only the zero-lag autocorrelation function of the observed seismogram (a spiking 
deconvolution operator). Let's multiply the spectral decomposition of autocorrelation function, 
Equation (9a), to both sides of Equation (10).

If we define F(co) = <X>+(G))FXG))as in Equation (11), then the output autocorrelation function 
deconvolved with F(co) is the scaled version of the autocorrelation function of the earth 
reflectivity. Therefore the filter <X>+(G))F,(co) is equivalent to the filter derived from Equation (4). 
In other words ,<X>+(G))F, (CO) shapes the output autocorrelation function into the desired



autocorrelation function, instead of the function itself.
The shaping filter approach presented here is similar to the one proposed by Walden and 

Hosken (1985). They proposed to use an ARMA (1,1) (A polynomial with a single pole and a 
single zero) shaping filter. Here a moving average type shaping filter based on the spectral 
decomposition of the autocorrelation function is presented. Both approaches are fundamentally 
equivalent in that they try to shape the output autocorrelation into a desired form.

The implementation of Equation (11) can be easily demonstrated by the following 
example. Let's assume that the autocorrelation function can be written in the following form, 
using the Z-transform, assuming that only two values (lag 0 and lag 1) are non-zero.

= 0_0+. (12)
In the Z-transform, <X>_ is the solution of spectral decomposition whose zeroes are inside a unit 
circle and <X>+ is the solution whose zeroes are outside a unit circle. The spectral decomposition
of the autocorrelation function can be accomplished by finding y in Equation (12). The solution 
is given with AQ= 1,

Similarly, the three term autocorrelation function can be decomposed by finding roots of the 
cubic equation.

Because the output of the spiking deconvolution is white, the order of application of 
Equation (1 1) is important. The proper sequence is:
1) Firstly, derive a spiking deconvolution operator using the observed seismogram and apply it 
to the data.
2) Secondly, perform spectral decomposition of the autocorrelation function of earth reflectivity 
and apply this minimum phase function to the deconvolved output

In this paper, the minimum phase function computed from the first two terms of 
autocorrelation function is called a two-term shaping filter and a three-term shaping filter when 
the first 3 terms of autocorrelation function are used for the filter design.

CHARACTERISTICS OF EARTH REFLECTIVITY
As mentioned in the previous section, when the earth reflectivity is a white sequence, a 

spiking deconvolution is equivalent to a wavelet deconvolution under the assumption of a 
minimum phase source wavelet. When the reflectivity sequence is white, the power spectrum of 
the time series is a uniform function of the frequency. How accurate is this white sequence of 
the earth reflectivity ? In order to examine the behavior of the power spectrum of earth 
reflectivity with respect to the frequency, reflection coefficient series were analyzed. The 
reflection coefficient series was computed from sonic logs with 1 ms sampling interval (two-way 
time). Figures 1-2 show examples of amplitude spectra of the reflection coefficient series at 4 
different wells. A power spectrum of a time series is given by the Fourier transform of the 
corresponding autocorrelation function.
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All the amplitude spectra of reflection series indicate diminishing of the low frequency content 
relative to high frequency content. Let's assume that the power spectrum of the reflectivity 
function is proportional to the some power a of the frequency (co):

/> = coa.
This is one class of random fractals known as the Gaussian scaling noises (Mandelbrot, 1982). A 
sample of a Gaussian scaling noise has a Gaussian probability distribution. Because the 
Gaussian scaling noise is a power function of frequency, a log-log plot of frequency versus 
power shows a linear trend. The examples shown in Figures 1 and 2 indicate this linear trend to 
varying degrees. The slopes of the least squares fit to the power spectra, parameter a, shown in 
Figures 1 and 2 are 1.05,0.47,0.39,0.87 for the Powder, Mitchell, Texl5 and Texl2 wells 
respectively. If the reflection series is a white sequence, the slope of the power spectra should be 
close to 0 or flat in the log-log plot. Therefore, it is shown that the reflection coefficient series 
shown in Figures 1 and 2 are not white sequences.

The autocorrelation functions of reflection coefficients for the time lag up to 5 msec are 
shown in Table I. The autocorrelation values at lag 1 and lag 2 indicate large negative values 
except for the Texl5 well. Negative values at small lags are characteristic of the autocorrelation 
function of reflection sequences generated from well logs (O'Doherty and Anstey ,1971).

Lag, ms

0

1

2

3

4

Powder

1.0

-0.308

-0.184

0.01

-0.01

Mitchell

1.0

-0.14

-0.145

-0.04

-0.02

Texl2

1.0

-0.36

-0.08

0.01

-0.06

Texl5

1.0

0.03

-0.33

-0.10

0.01

Powder*

1.0

-0.131

-0.07

0.00

0.00

Texl5*

1.0

0.04

-0.12

0.01

0.05

Table I, The normalized autocorrelation functions of reflection coefficient series for lags up to 4 
ms. Superscript * indicates the seismic response including all inner-bed multiples except the 
surface multiple.

The reflection coefficient series is an approximation of earth reflectivity function, because 
the earth reflectivity should include all multiples, particularly short-period inner-beds multiples. 
The amplitude spectra of earth reflectivity functions including all inner-bed multiples except a 
free-surface multiple are shown in Figure 3 for the Powder and Texl5 wells. Notice the relative 
increase of low-frequency content compared to the amplitude spectra of the reflection 
coefficients. The least squares estimations of slope parameter a are 0.237 and 0.02 for the 
Powder and Texl5 wells respectively, and are much close to the expected parameters for a white 
sequence.
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NUMERICAL EXAMPLES 
A)Primary Response Without Noise

In order to investigate the effect of the autocorrelation function on the performance of 
deconvolution operator, the reflection coefficient series used to generate the spectrum in Figure 
1, the Powder well, was used. Figure 4 shows deconvolved outputs with various assumptions 
about the autocorrelation function. The phase of input wavelet is a minimum phase with a peak 
frequency of 100 Hz and it is given by

Figure 4A represents the reflection coefficient series, which is assumed to be the earth 
reflectivity. The convolution of reflection coefficients with the minimum phase wavelet (input 
for the deconvolution example) is shown in Figure 4B. Shown in Figure 4C is the error sequence 
of the output after an 1 1 point spiking deconvolution operator is applied to input data. Figure 4D 
represents the error sequence of output when a deconvolution operator using Equation (6) under 
the assumption that the autocorrelation function has only two values (lag 0 and lag 1) and all 
other values are zero is applied, and Figure 4E shows the result of applying Equation (6) under 
the assumption that the autocorrelation has three non-zero values (lag 0, lag 1 and lag 2) and all 
other autocorrelation values are zero. An error sequence is defined as the difference between the 
true earth reflectivity function and estimated reflectivity function through the deconvolution. 
The root-mean-square error, which is defined as the RMS value of the error sequence divided by 
the RMS value of input, of the results shown in Figure 4 are 54 %, 22 % and 9 % for Figure 4C, 
4D and 4E respectively. The output of Figure 4E and RMS values indicates that the 
deconvolution with the assumption of three non-zero autocorrelation function is almost perfect, 
while the output of the spiking deconvolution shows the large error in the output. Using 3 term 
autocorrelation improves the performance of deconvolution by about 3 times that of using 2 term 
autocorrelation. As indicated in Table I, the autocorrelation function of the reflection coefficient 
at the Powder Well shows significant non-zero values at lag 1 and lag 2. Equation (6) tries to 
honor the input autocorrelation as accurately as possible and the result proves that the formula 
shown in Equation (6) adequately handles the statistical property of the reflection series. 

The input for the spiking deconvolution is the seismogram itself (i.e., Figure 4B). 
However the input for the Figures 4D and 4E requires the normalized autocorrelation function of 
the true reflection coefficients, which is not generally available. The autocorrelation function of 
the deconvolved output for Figure 4D indicates that the normalized autocorrelation function at 
lag 1 is -0.424 instead of the input -0.308 (Table II). The discrepancy of the autocorrelation 
function result from the way the nonlinear equation is solved. In the computer program, the 
optimum filter coefficients f0 and fj of Equation (6) are computed to get the minimum RMS error 
values for the output As we can see later, this does not happen when a shaping filter approach is 
used. The autocorrelation of the deconvolved output for Figure 4E is 1.0 - 0.303Z - 0.1 87Z2. 
This is very similar to the input autocorrelation function, because there are no significant 
autocorrelation values after lag 2.
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Lag, ms

0

1

2

3

4

Figure 
4A

1.000

-0.308

-0.184

0.007

-0.010

Figure 
4B

1.000

0.638

0.055

-0.387

-0.557

*Figure 
4C

1.000

-0.003

-0.008

-0.016

-0.017

*Figure 
4D

1.000

-0.424

-0.004

-0.003

0.001

'Figure 
4E

1.000

-0.303

-0.187

-0.001

0.003

*Figure 
5D

1.000

-0.308

-0.003

-0.008

-0.005

*Figure 
5E

1.000

-0.304

-0.182

-0.003

0.001

Table II. The autocorrelation functions for the input and deconvolved outputs shown in Figures 4 
and 5. Superscript * indicates that the actual input is not the error function shown in Figures 4 
and 5, but the actual deconvolved output.

The deconvolved output using the shaping filter approach is shown in Figure 5 using same 
format as for Figure 4. The RMS error values are 58 %, 28 % and 10% for Figures 5C, 5D, and 
5E respectively. The autocorrelation function of the deconvolved output is shown in Table II. 
As indicated in Table n, the autocorrelation function of output matches the input autocorrelation 
function quite well. However, the RMS values of error indicate that the performance based on 
the shaping filter approach is apparently somewhat inferior to the output when using Equation 
(6). It must be emphasized that there would have been no performance difference between the 
two approaches, if the actual input has only two non-zero autocorrelation values for Figure 4D 
and Figure 5D or only three non-zero autocorrelation values for Figure 4E and Figure 5E.

B) Intrabed Multiple and Noise Effect
The effect of the random uncorrelated Gaussian noise on the performance of deconvolution 

is shown in Figure 6 for the signal to noise ratio (S/N) of 5 and in Figure 7 for the S/N of 2. The 
RMS errors between true and deconvolved outputs are 54 %, 32 %, and 23 % for Figures 6C, 
6D, and 6E respectively. Improvement of about 2 fold in the RMS error has been achieved by 
honoring the 3 term autocorrelation function. However the RMS errors are 62 %, 50% and 48% 
for Figures 7C, 7D, and 7E respectively. In this case, the improvement by using a 2 or 3 term 
autocorrelation function of reflection series is marginal.

As mentioned before, the reflection coefficient series is an approximation of the earth 
impulse response. The results for the earth impulse response including all the inner-bed 
multiples except the surface multiple is shown in Figure 8 using the format as that of Figure 5. 
The RMS errors between the true earth reflectivity and the deconvolved output are 17 %, 9%, 
and 6% for Figures 8C, 8D, and 8E respectively. This example indicates that the effect of 
autocorrelation function at small lags on the deconvolution when including inner-bed multiples is 
less significant than that of the primary only case (Figure 5).

DISCUSSION 
A) Earth Reflectivity

Spectral analyses indicate that the reflection coefficient sequence is better approximated by 
a power law in the frequency domain than by a white spectrum and the analyses from 4 wells 
indicate that the exponent for the power law varies between 0.4 and 1.0. Walden and Hosken 
(1985) reported that the exponent varies between 0.5 and 1.5 by analyzing 8 wells from a wide

12
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variety of geographical locations and geological sequences. The positive value of the exponent 
implies the low-cut behavior of reflection coefficient series and is a manifestation of negative 
autocorrelations at small lags (Walden and Hosken, 1985).

If the reflection sequence is white, the autocorrelation values can be ignored except at lag 
0. However, Table I indicates that the autocorrelations of reflection sequences contain 
significant contributions at correlation lags greater than 0. Theses large negative 
autocorrelations at small lag and the low-cut behavior of the reflection sequence (Figure 1) 
confirms Walden and Hosken (1985). Table I also indicates that the autocorrelation of the 
reflection coefficient can be approximated by the first 3 terms. These negative autocorrelations 
at small lags have significant implications for the design of deconvolution operator.

B) Fractal Deconvolution
The conventional spiking deconvolution assumes that the earth reflectivity sequence is 

white and the autocorrelation of the reflectivity is zero except at zero lag. Numerical examples 
indicate that significant improvement in the performance of the deconvolution operator can be 
achieved by including more autocorrelation values of the earth reflectivity (Figures 4 and 5). 
However, the improvements of the fractal deconvolution over conventional spiking 
deconvolution degrades as inner-bed multiples are included and the noise content increases 
(Figures 6, 7 and 8).

The effect of inner-bed multiples and random noise on the autocorrelation function is to 
increase the value of zero-lag autocorrelation. Schoenberge and Levin (1974) demonstrated that 
the intrabed (inner-bed) multiples tend to raise the amplitudes at the low-frequency end of the 
spectrum and lower those at the high-frequency end (apparent attenuation). This low-pass 
filtering effect is evident in Figure 3. The low pass filtering effect of the intrabed multiples 
manifested itself by reducing the relative strength of the negative values of autocorrelation at 
small lags. The Al and A2 of the reflection coefficients are -0.308 and -0.184 respectively, but 
those values including intrabed multiples are reduced to -0.131 and -0.07 (Table I), a reduction 
of about 3 fold. Also, adding uncorrelated random noise to the seismogram only increases the 
value of the zero-lag autocorrelation. Thus the effect of autocorrelation values at small lags in 
the design of the fractal deconvolution operator is reduced when intrabed multiples or random 
noises are included. For example, the improvement in the RMS error of deconvolved output by 
an operator including 3 term autocorrelation function for Powder well over the spiking 
deconvolution is about 6 fold when reflection sequences is used for earth impulse responses, but 
it is only about 3 fold when inner-beds multiples are included. Also note that the RMS error for 
Figure 5E (deconvolution using 3 term autocorrelation function) is almost identical to that for 
Figure 8C (spiking deconvolution).

Numerical examples suggest that the iterative method, solution of Equatuion (6), in 
deriving a deconvolution operator using Equation (6) seems to work better than the shaping filter 
approach (Compare Figure 4 and Figure 5). However, these two approaches are essentially the 
same. The apparent discrepancy between the two approaches is due to fact that the iterative 
method keys on minimizing the error in the output rather than preserving the input 
autocorrelation as accurate as possible. The output autocorrelation value at lag = 1 for Figure 4D 
is -0.424, which differs from the input autocorrelation value of - 0.308. Whereas the 
autocorelation value at lag 1 for Figure 5D is -0.308, which is identical to the input 
autocorelation value. However, the RMS error for Figure 4D is much smaller than that for 
Figure 5D. This implies that the fratcal deconvolution filter derived from the PEF method 
somewhat compensated the effect of autocorelation at lag 2 by altering the output autocorreltion 
value at lag = 1. When this output autocorrelation value is used for the 2-term shaping filter
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approach, the RMS of the error function is 1.3X10"2, which is the same RMS value for the error 
function computed from applying Equation (6). This analysis concludes that the underlying 
principle for two approaches for the fractal deconvolution is the same.

C) Practical Considerations
As indicated in the previous examples, the effectiveness of a three-term shaping filter over 

a two-term shaping filter decreases as random noise and inner-bed multiples are increased. Also, 
because the autocorrelation function of earth reflectivity is not known in most cases, designing a 
two-term shaping filter is more practical than designing a three-term shaping filter when 
processing real data. Equation (13) indicates that the theoretical minimum value of negative 
autocorrelation at lag = 1 is -0.5. Table I shows that the negative autocorrelation value at lag = 1 
ranges from -0.14 to -0.308 except at the Texl5 well. A practical approach may be to design 
two-term shaping filters with various Al in the range of -0.1 to -0.5 and examine the output. 
Because true reflectivity is not known except in the case of where well logs are available, the 
user should decide logically which filter performs best. Figure 9 shows this approach. Various 
two-term filters were computed using A! between -0.1 and -0.5 and applied to the spiking 
deconvolved trace (Figure 9C). The RMS values for the error function are 54 %, 46 %, 37 %, 29 
%, 23 %, and 35 % for Figure 9C, 9D, 9E, 9F, 9G and 9H respectively. In this case we know 
that the minimum error occurs near Al = -0.4, but in real data processing we cannot determine 
which value is best for the data set without any other knowledge.

The general form of the shaping filter is 1 + ̂ £, where yis between 0 and -1.0. Filter 
coefficients are -0.1, -0.21, -0.33, -0.5, -0.63, and -1.0, for A, = -0.1, -0.2, -0.3, -0.4, -0.45, and 
-0.5 respectively. When A, = -0.5, y= -1.0. In this case the two-term shaping filter is a 
differential operator. Figure 10 shows the amplitude spectra of these various two-term filters 
with respect to y when the temporal sample rate is 1 ms. For values of y> -0.5, the shaping filter 
does almost nothing when frequencies are less than about 100 Hz. This suggests that the 
advantage of the fractal deconvolution in processing conventional surface seismic data, where 
frequency content is usually less than 80 Hz, is insignificant and conventional spiking 
deconvolution works well.

CONCLUSIONS
This paper showed how to incorporate autocorrelation function up to small lags in the 

design of deconvolution operator and provided synthetic examples. This study concludes that:
1) The autocorrelations of reflection coefficients show non-negligible negative values at small 
lags and the spectral behavior implies the nonwhiteness of the sequence. The power spectra of
the reflection coefficients for the 4 wells studied here approximately varies with coa, where a is 
between 0.4 and 1.0. The autocorrelation function of the earth reflectivity can be approximated 
by the first 3 terms.
2) Applying a shaping filter derived from the spectral decomposition of the autocorrelation 
function after the spiking deconvolution is equivalent to applying a deconvolution operator 
derived from the solution of a nonlinear normal equation. The shaping filter approach offers 
remarkably simple computational implementation.
3) Significant improvements of deconvolution using 2 or 3 terms of the autocorrelation function 
can be achieved when the reflection coefficients are used for the earth impulse response. 
However, the performance degrades as random noises and inner-bed multiples are included in 
the seismogram. This implies that the improvement of this new deconvolution method over the 
conventional spiking deconvolution is marginal when processing real data.
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Figure 10. Fourier amplitude spectra for the 2-term shaping filters in the form of
F(Z) = 1.0 + ^Z, where yis between -0.25 to -1.0. Sampling interval is 1 ms.
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4) In real data processing, a simple 2-term shaping filter in the form of 1 + ̂ Z, where 7 is 
between -0.1 and -0.6 can be applied to the data after spiking deconvolution. This shaping filter 
can be considered as a post-deconvolution spectral shaping filter. The reasonable choice of 7 
depends upon the interpretability of the processed section.
5) When the frequency content is less than about 80 Hz, conventional spiking deconvolution is 
adequate.
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