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Abstract

A three-dimensional hydrodynamic model was developed as part of a coopera-
tive U.S. Geological Survey/Massachusetts Water Resources Authority program to
study contaminated sediment accumulation and transport in Massachusetts Bay.
This report details the development of the model and assesses how well the model
represents observed currents and water properties in the bay. It also summarizes
circulation and comparative effluent dilution simulations from existing and future
Boston sewage outfalls over a three-year period from October 1, 1989 to December
31, 1992.

The ECOM-si model, a semi-implicit version of the Blumberg and Mellor
(1987) Estuarine, Coastal and Ocean Model, is shown to reproduce many of the
important hydrodynamical features of Massachusetts Bay: the seasonal evolution
of the pycnocline, the mean flow pattern, and the strength of sub-tidal current
fluctuations. Throughout the simulation period, during both vertically well-mixed
and stratified conditions, the seasonal statistics of observed currents are well-
represented by the model. The model is therefore appropriate for studying the
average dilution of sewage effluent and other continuously discharged substances
over seasonal time scales.

The ability of the model to reproduce individual flow events varies with season
and location within the bay. Flow events during unstratified conditions in western
Massachusetts Bay are particularly well-represented, indicating that the model is
appropriate for studying processes such as the transport of suspended material
from the future outfall site due to winter storms. Individual flow events during
stratified conditions and in the offshore Stellwagen Bank region, however, are less
well-represented due to small length scales (caused by upwelling and river discharge
events) coupled with insufficient data to specify open boundary forcing from the
Gulf of Maine. Thus while the model might be used to answer issues such as
the frequency with which Gulf of Maine river plumes visit the new outfall site,
attempting to predict whether a particular plume would visit the outfall site could
be problematic.

Comparative simulations of effluent discharged from the existing and future
Boston outfalls show that the region of relatively high effluent concentrations (1
part effluent to 200 parts sea water) is significantly smaller with the future outfall
and is limited to Western Massachusetts Bay during both unstratified and stratified
seasons. The region of even higher concentration (1 part effluent to 50 parts sea
water) that covers much of Boston Harbor with the existing outfall is non-existent
in the future outfall simulation. Additional simulations of chlorination plant failure
predict that the offshore location of the future outfall will lead to dramatically
lower levels of pathogens at area beaches.
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generally quite similar except at Race Point, where there appears to be some
flow into Massachusetts Bay that is not apparent in the data.

The degree to which the model compares with data can be used to iden-
tify appropriate uses of the modeled hydrodynamics. For example, since the
current “climate” is well represented in western Massachusetts Bay through-
out the years, it is appropriate to use the model to study the near-continuous
release of effluent in this region by the existing and future outfalls. Likewise,
since individual events are well-represented in western Massachusetts Bay
during unstratified conditions, the model is well suited to studying the trans-
port of suspended material from this region during individual winter storms.
On the other hand, predicting the detailed evolution of a low-salinity plume
from a spring runoff event is not possible, at least partially due to inadequate
information about the large scale forcing from the Gulf of Maine.
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Chapter 4
Effluent Modeling

Since the hydrodynamic model represents the stratification and statistics of
low-frequency currents in the western part of Massachusetts Bay rather well,
it is appropriate to use the model to investigate the transport of efluent
from the existing and future outfalls over timescales of weeks to months. To
model the effluent, a conservative tracer was added to the code, modeled the
same as temperature and salinity, but with no dynamical effect. The effluent
concentration was set to 100 at the Nut and Deer Island diffusers for the
existing outfall run. For the future outfall run, the discharge from Nut and
Deer Islands was added together and introduced at the future outfall, again
with a concentration of 100. Along the open boundary, far from the sources,
the efHuent concentration was set to zero. Since the loading concentration is
arbitrary, the effluent concentrations were converted to effluent dilutions for
the purposes of presentation.

Since ECOM-si is a hydrostatic model with grid spacing of about 1 km in
the vicinity of the future outfall, it cannot represent the physics of the tur-
bulent entrainment process that occurs when the effluent is discharged from
the diffusers. By designing the grid so that the size of the diffuser grid cell is
comparable to the area of zone of initial dilution, however, it is possible to
dilute the efluent by approximately the same amount as predicted by near-
field models such as EPA’s ULINE. This allows ECOM-si to effectively model
the height to which the plume rises (Blumberg et al., 1994). Ph.D work by
Xue-Yong Zhang (in preparation) at MIT has shown that with the relatively
strong pycnocline observed in Massachusetts Bay there is considerable lati-
tude in choosing the size of the diffuser grid cell to produce approximately

57



the right trap height.

Effluent was discharged and tracked from the existing and future outfalls
from October 1989 to September 1991, and the results have been presented in
a variety of forms. Some animation clips comparing the two outfall locations
during winter and summer periods can be seen on the World Wide Web
at http://crusty.er.usgs.gov. The 200:1 dilution level is about the level at
which the nutrient signal from the outfall should become lost in background
variability, and thus is highlighted in presentations.

During the winter, highest efluent concentrations from both the existing
and future outfalls occur at the surface, since the initially diluted efluent
is lighter than the well-mixed, dense seawater (Figure 4.1). The existing
outfall, due to the shallow depth and confines of Boston Harbor, results in a
much larger region of poorly diluted effluent. There is very little difference
in the size of the 200:1 dilution region between 1990 and 1991, although the
size of the 800:1 dilution region changes considerably (Figures 4.1 and 4.2).

During the summer, the highest efluent concentrations from the existing
outfall are again found at the surface, since the effluent is effectively discharge
directly into the surface layer due to strong tidal mixing in Boston Harbor.
The 200:1 dilution region is very similar to the winter region (Figure 4.3).
At the future outfall, however, the efluent plume becomes trapped below
the pynocline since the seawater near the surface has warmed and freshened
to the point where it is lighter than the initially diluted efluent. At 16 m,
the depth of maximum areal extent of the 200:1 effluent surface, the region
affected by the future outfall is still considerably smaller than the surface
extent of the 200:1 region from the existing outfall (Figure 4.4). Average
dilution comparisons for other seasons are presented in Appendix C.

While the dispersion of efluent can be characterized by the plots of the
average effluent dilution, a residence time for effluent in Massachusetts Bay
and Boston Harbor can be determined by dividing the total amount of effluent
in the bay or harbor by the rate of loading. This calculation of residence time
assumes that both the input effluent and export from the system are relatively
steady. The boundary of Massachusetts Bay was specified as a straight line
between Cape Ann and Provincetown, and the boundary of Boston Harbor
was specified as a straight line across the harbor mouth. The residence times
for Massachusetts Bay are very similar for the existing and future outfall
scenarios, and show a distinct seasonal cycle (Figure 4.5).

Overall, the residence time for effluent in Massachusetts Bay is from 40-
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Chapter 5

Simulation of chlorination
breakdown at the existing and
future outfall locations

One of the design considerations for the future outfall site was that it should
be more than one tidal excursion offshore so that in the event of a chlorination
failure, untreated efluent would not be swept into Boston area beaches on
the incoming tide. Signell et al. (1992) showed that even at spring tide,
the future outfall location is well offshore of the region from which Boston
Harbor draws water on flood tide. To quantify the expected benefit of the
offshore locations, however, chlorination failures were simulated in ECOM-
si and the bacteria concentrations were monitored at beaches throughout
Massachusetts Bay. Chlorination failure was modeled as a breakdown that
releases concentrations of 5,000,000 cells/100 ml for a period of 1 day. A
e-folding decay timescale of 12 hours was used to simulate die-off of the
bacteria.

Since currents are variable, chlorination failures were simulated every 10
days over a one year period from October 1989 to October 1990, and the
observed concentration levels were monitored at 15 different beaches and
harbors along the coast (Table 5.1).

Two runs were conducted, one for the existing outfalls at Nut and Deer
Islands, and one for the future outfall near the Boston Buoy. For each loca-
tion, the number of events where the concentration (counts/100 ml) exceeded
various values were calculated, and are shown in Tables 5.2 and 5.3. Events
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Number Longitude Latitude Location
1  -70.6667 42.5833 Glouchester Harbor
2  -70.8333 42.4917 Marblehead Neck
3  -70.9333 42.4333 Nahant Beach
4  -70.9667 42.3833 Winthrop Beach
5 -71.0000 42.2750 Wollaston Beach
6 -70.8833 42.3000 Nantasket Beach
7  -70.7500 42.2333 N. Scituate Beach
8  -70.7000 42.1333 Humarock
9 -70.6333 42.0167 Duxbury Beach
10 -70.6333 41.9500 Plymouth Beach
11 -70.5167 41.8000 Sagamore Beach
12 -70.3333 41.7417 Sandy Neck
13 -70.0667 41.9000 Great Island
14  -70.2333 42.0667 Race Point

Table 5.1: Locations monitored in chlorination failure simulations.

were only counted if they occurred at least 5 days after the previous event.
The future outfall location obviously has a large beneficial effect, as the
the total number of events with concentrations greater than 5 counts/100 ml
dropping from 136 to 6 and the number of events greater than 10 counts/100
ml dropping from 130 to 0. The existing outfall caused 12 events greater
than 1000 counts/100 ml, whereas the highest concentration for the future

outfall was less than 10 counts/100 ml.

66



Counts/100 ml Nahant Winthrop Wollaston Nantasket N. Scituate

>3 19 35 37 33 7
> 10 15 33 37 31 4
> 25 7 24 37 28 2
> 50 4 20 37 19 1
> 125 0 11 37 9 0
> 250 0 6 30 7 0
> 500 0 2 23 3 0
> 1000 0 0 12 0 0
> 2500 0 0 2 0 0
> 5000 0 0 0 0 0

Table 5.2: Bacteria concentrations for breakdown of existing plant. Note:
Glouchester Harbor, Marblehead Neck, Humarock, Duxbury Beach, Ply-
mouth Beach, Sagamore Beach, Sandy Neck, Great Island, and Race Point
had no events that exceeded 5 counts/100 ml.

Counts/100 ml Nahant Winthrop Wollaston Nantasket N. Scituate

>5 0 0
> 10
> 25
> 50
> 125
> 250
> 500
> 1000
> 2500
> 5000

-
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Table 5.3: Bacteria concentrations for breakdown of future plant.
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Chapter 6

Summary

Comparison of model results with observations indicated that ECOM-si sim-
ulations are appropriate for studying the continuous release of effluent in
western Massachusetts Bay, as they reproduce the most important features
of the observed stratification and current regime in this region. The seasonal
development and breakdown of the thermocline occur within a few weeks of
the correct time, the vertical structure has the right top-to-bottom density
difference and about the right vertical profile (though the modeled pycnocline
is not quite as sharp as reality), and the currents responsible for transporting
material have about the right mean flow and level of variability. The fact
that the best comparisons are found on the western side of Massachusetts
Bay reflects the strong effect of local wind driving in this region, an effect
that can be directly modeled rather than parameterized by boundary condi-
tions. Further offshore, near Stellwagen Bank for example, the currents and
water properties are largely determined by Gulf of Maine conditions, and
the model does not compare as well. Although significant improvements to
salinity boundary conditions were obtained by including an adjunct model
to model the western Gulf of Maine, boundary conditions remain one of the
largest roadblocks to obtaining more realistic simulations. In the future,
improvement of boundary condition information may be obtained from a
time-varying coarser scale model of the entire Gulf of Maine or possibly from
data collected from sensors at strategic locations and assimilated into model
runs.

The effluent simulations show that with either the existing or future out-
fall, the region of Massachusetts Bay that experiences relatively high effluent
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concentration (1 part effluent: 200 parts sea water) is relatively small and
confined to western Massachusetts Bay. The region of high concentration
(1:50) that covers much of Boston Harbor with the existing outfall is com-
pletely eliminated with the future outfall scenario. This is consistent with
the results of the two-dimensional modeling conducted as part of the outfall
siting process (MWRA, 1988). The subsurface areal extent of the bottom
trapped summertime plume is about the same size as the winter plume for
the future outfall scenario. Although the initial vertical mixing of the effluent
is confined to the lower half of column during the summer, this effect is off-
set by stronger currents and shears during the summer that act to increase
dispersion. The total amount of effluent in the bay obtained from the fu-
ture outfall is within 10% of that obtained from the existing outfall, and the
time series track each other closely. Effluent levels build up over the winter,
reaching their peak in March before being greatly reduced by the increased
flushing of the system in April.
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Appendix A

Model/Data Comparison of
Time Series Velocity at the
Boston Buoy
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Figure A.1: Boston Buoy velocity comparison: Jan 1, 1990 — Feb 26, 1990.
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Figure A.6: Boston Buoy velocity comparison: Oct 8, 1990 — Dec 3, 1991
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Figure A.10: Boston Buoy velocity comparison: May 20, 1991 — Jul 15, 1991.
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Figure A.11: Boston Buoy velocity comparison: Jul 15, 1991 — Sep 9, 1991.
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Figure A.12: Boston Buoy velocity comparison: Sep 9, 1991 — Nov 4, 1991.
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Figure A.13: Boston Buoy velocity comparison: Nov 4, 1991 - Dec 30, 1991.
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Figure A.14: Boston Buoy velocity comparison: Dec 30, 1991 — Feb 24, 1992.
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Figure A.15: Boston Buoy velocity comparison: Feb 24, 1992 — Apr 20, 1992.

85



o Wind Stress at BB i
£ 2
(3]
% 0 W
c
&-2f \\ -
1 1 1 AN - 1 1l
-4 \ 1 mil/
1 1 1 T N f . 1 1 HH
10¢ ‘ A:5m ‘ !) \'.,f \: / "/'l
q N\ '
g o } 9;\\; \ - } [\ ’h.\ [ I/\\ %,Vﬂ"«' ~ , ‘l »\‘ |
- //1 ‘ >,
(3] \ \\\VI//’ J
10} N -
i 1 4\ 1 i 1 1
\\ AN .
1 \\I \ 1 T T L] T
10t MODEL: 5m \ g
Y N | )
g 01 . m v, m //// 3 ,\Q{\ N ///Z\‘!\\ i y/l \\\ 4‘?’/‘.'\ Mm '.\.\\\!1& K/_
X .\ \:\.\:\ 7."’-’ \\a'\‘y.” y :\ / I/ ‘I/“"' 1‘1" ! \‘\\t i
(&) \\\\!\ \} ), 7/ N o
-10f N\ J N
10} DATA:23m §
(4
g 0
(5]
~10+
10 MODEL: 23 m
0
£ Oh
o
~10
L 1 1 i L 1 1 i i
20 27 4 11 18 25 1 8 15
Apr May Jun
1992

Figure A.16: Boston Buoy velocity comparison: Apr 20, 1992 — Jun 15, 1992.
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Figure A.17: Boston Buoy velocity comparison: Jun 15, 1992 — Aug 10, 1991.
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Figure A.18: Boston Buoy velocity comparison: Aug 10, 1992 — Oct 5, 1992.
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Figure A.19: Boston Buoy velocity comparison: Oct 5, 1992 — Nov 30, 1992.
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Appendix B

Mean Currents by Season
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