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A workshop entitled Spectral Analysis Workshop on the Use of Vegetation as an 
Indicator of Environmental Contamination was held at the Desert Research Institute 
in Reno, Nevada in November 1994. The workshop was sponsored by the U.S. 
Navy NAVFAC Engineering Service Center and brought together researchers from 
Federal agencies, academic institutions, and industry- A list of attendees is shown 
in figure 1. The purposes of the workshop were to discuss present research 
efforts and issues in the use of vegetation spectra for environmental applications, 
and to explore ways to keep in better touch with colleagues in the geobotanicai 
remote sensing field for information exchange and possible collaborative work.

The first day of the workshop was primarily devoted to presentations of recent and 
ongoing research efforts. The agenda of the meeting (figure 2) shows the breadth 
of current research and the centers of teaching and applications of plant 
spectroscopy for environmental applications. The presentations may be generally 
grouped as follows:
  greenhouse studies of the effects on metal contamination on vegetation 

spectra
  analytical techniques to discriminate stressed vegetation, especially in 

hyperspectral data sets
  descriptions of field experiments using data from the Advanced Visible and 

InfraRed Imaging Spectrometer (AVIRIS) for identifying and mapping 
vegetation stress

Six of the presentations have been included in these proceedings as extended
abstracts with figures (appendix 2).
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Figure 2. Meeting agenda.

Spectral Analysis Workshop on the
Use of Vegetation as an Indicator of Environmental

Contamination

AGENDA

Wednesday. November 9

9:00am 

9:15am 

9:20am 

9:30am

9:50am

10:15am 

10:30am

10:50am

11:10am

11:50am

Assemble at DPI Maxey Conference Room

Welcome to DRI

Introduction

C. Fox

Differentiation of Effects of Various Stresses on Vegetation
Spectra
J. Zamudio, EG&G

The Spectral Effect of Varying Concentrations of Arsenic on 
Greenhouse-Grown Soybean and Loblolly Pine 
D. Mouat, ERA

***BREAK***

Development of Band Selection and Analysis Techniques to 
Improve Environmental Applications of Hyperspectral Data 
H. Foote, D. Beaver, Battelle PNL and T. Warner, W. Virginia 
Univ.

Comparison of Multivariate Statistical Techniques for Estimating
Vegetation Parameters
J. Pinzon et a(., Univ. of California, Oavis

Research Strategies in Developing Synoptic Indicators of Salt 
Marsh Functioning in San Pablo Bay, CA. 
Sanderson, et al. r University of California, Davis

Derivative-Based Green Vegetation Index (DGVI) Derived from 
Hyperspectral Data: Potential Use of Monitoring Vegetation 
Health with Higher Accuracy 
Z. Chen, Lockheed-Stennis Space Center and C. Elvidge



DRI/NOAA

12:15pm ***LUNCH***

Tour of Great Basin Environmental Research Laboratory

1:30pm Assessing Vegetative Indicators of Hazardous Waste Problems
Using Texture Analysis of Remotely Sensed Data 
J. Irvine, Environmental Research Institute of Michigan

1:50pm Using Hypertemporal Data to Assess Vegetation and
Environmental Change 
W. Jansen, WTJ Software

2:15pm Tour of DRI's Laboratory for Spatial Analysis

2:45pm Discussion Groups

5:00pm Adjourn

6:00pm Group Dinner at Olive Garden

Thursday. November 10

9:00am Assemble

9:15am Discussion Groups

11:15am Group 1 Presentation

11:30am Group 2 Presentation

11:45am Group 3 Presentation

12:00noon Workshop Summary N. Milton



At the conclusion of the presentations, the attendees selected three topics and 
divided into three groups to discuss each topic and the issues related to it. The 
topics selected were:
  software and analysis methods
  applying leaf chemistry studies to higher canopy and ecosystem scale, 

particularly for wetland and coastal studies
  hyperspectral data applications

The objectives of each work group were to identify current major issues and 
problems, define ways of solving these, and design some collaborative studies to 
compare and highlight methodologies (figure 3).

Figure 3. Discussion group objectives.

Identify major issues and problems
  e.g. how do we go from the lab to the field?

What improvements can be made
  what can we deliver?
  when?
  how will it help?
  who will it help?

How can data users communicate their needs and interests?
  do researchers have goals and priorities based on user needs?

Instrumentation
  what do we have?
  what do we need?

Ideas for case specific studies
  collaborative efforts
  proposal development



Each group discussed their topic, prepared viewgraphs highlighting the key points 
of the discussion, and presented their conclusions to the entire workshop 
{appendix 1).

The conclusions of the three work groups can be summarized in the following four 
points:
  we need to facilitate collaboration and communication among the

institutions and scientists who use vegetation spectra for monitoring 
contamination

  a common field site is needed to serve as a test case for methodologies and 
instrumentation

  we recognize that because of the subtle nature of spectral changes,
detection of plant stress resulting from contamination requires hyperspectral 
data

  scaling from laboratory to plant canopy to ecosystem levels requires 
additional technical developments

Nancy Milton closed the workshop with a brief summary of accomplishments of 
the workshop, two immediate action items, and a word of encouragement to 
maintain the momentum from this workshop. The two action items were:
  institute an email newsletter to share information, work in progress, and

meeting schedules. Judith Lancaster of DPI agreed to edit such a newsletter 
for the community

  implement an annual or biannual meeting of the geobotanical remote sensing
community

In addition to these two action items, participants strongly supported the 
establishment of a common field site for collaborative work. Members of the 
community who were not present at the meeting were to be contacted for 
inclusion in the email newsletter. Final comments focussed on the importance of 
communication and collaboration, especially on enhancing the dialogue among 
academia, government, and industry, both scientists and the user community.



Appendix 1

Summary of "Software Analysis Methods" Group Presentation 
Presenter: Quinn Hart

The group agreed that deciding what to do with the data is the critical issue; 
writing the software is easy. The first viewgraph (viewgraph 1-1) of the 
presentation depicted the key elements used to solve a problem with remotely 
sensed data, and the group discussed which of these elements need to be 
enhanced or are completely lacking. One of the most important gaps noted is that 
user goals do not necessarily feed directly into laboratory studies, experimental 
design, and analysis. Other weak areas include a potential lack of connection 
between management on the one hand and experimental design and data 
gathering on the other.

The group concentrated on designing a technique to help users and researchers 
decide what their goals should be, thereby enabling development of better 
experimental designs. The proposed technique uses a series of focussed 
workshops (viewgraph 1-2). The first workshop is a steering group meeting in 
which the problem is defined, participants and data are identified, and any 
constraints are examined. The second workshop brings together the appropriate 
scientists, managers, and regulators to jointly examine user needs, develop goals, 
and produce an experimental design. At the end of the project, a final review 
workshop is conducted to discuss successes and weaknesses, transfer 
technology, and provide recommendations to management.

Group 1 believed that this process would enhance communication among all 
participants, e.g. site managers and scientists, which in turn would help in the 
development of the best-suited experimental design, implicit in this collaborative 
effort are legal, technical, and transferability issues (viewgraph 1-3). For example, 
how do you share data? Are there legal constraints that will restrict sharing of 
data? How do you set standards, and how do you encourage adoption and 
implementation of these standards?

Viewgraph 1-1. Key elements in solving problems

User Goals
>4?       ̂      ̂     ^ -^ 

Lab Study -? Exp Design^>Analysis   > Recommend -*> Manage

Lab Data Remote Sensing Ground Truth    > Monitor
i<  -
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Viewgraph 1-2. Focussed Workshops

Identify User        
Problem, site, $ 
DOE, DOD, ERA, Indus,

Solve Problem

etc

Steering Group     
Data collection 
Problem definition 
Constraints 
Identify participants

Site Data

71
Vertical '
integration
proposals

-, T
-7 Design Workshop 

User needs 
Archival work 
New work

Lab, field, RS 
Monitor
Outline recommendations 
Management tactics

Review Workshop 
Identify: success,

weakness 
Tech transfer 
Continue

recommend
manage
monitor

Viewgraph 1-3. Implicit Collaboration

How do we share data?
  within the community
  outside the community

How do we set standards?
  adopt broad standards
  standardize data collection

How do we encourage standards?
  tie to funding
  tie to journals
  tie to workshops

Possible constraints
  Legal issues
  Technical issues
  Transfer issues
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Summary of "Applying Leaf Chemistry Studies" Group Presentation 
Presenter: Nancy Milton

This group developed a list of the key issues which need to be addressed to 
improve vegetation spectral studies. The group also developed a list of action 
items for the workshop participants. The key issues discussed (viewgraph 2-1} 
include availability of data, instrumentation, scaling, and the need for collaboration.

Data availability encompasses the availability of remote sensors such as AVIRIS, 
mid-scale data on canopy characteristics, and individual plant physiological, 
chemical, and spectral reflectance information. Expense is the primary reason that 
data availability is such a large issue. Analyses of vegetation chemistry, especially 
non-routine analyses, are costly. AVIRIS data sets have thus far been relatively 
inexpensive, because NASA has subsidized data collection. However, with the 
impending federal government cuts, AVIRIS data costs may well increase. Plant 
reflectance spectra are not widely available primarily because no one has initiated 
the development of this database.

Funding is also an issue for instrumentation. It is virtually impossible for any one 
research institution or contractor to own all of the equipment necessary to conduct 
leaf chemistry studies and apply them to remote sensing analysis of environmental 
contamination. Most researchers are fortunate if they have state-of-the-art 
computer workstations on which they can perform remote sensing data analyses. 
However, scientists or institutions can keep up-to-date and have access to unique 
equipment by leasing or renting. It is typically easier to get funding agencies to 
approve usage fees than equipment purchases. In addition, it is easier to upgrade 
leased equipment. Collaborative sharing is also a potential solution to this 
problem.

The scaling issue is not a single problem. Numerous factors must be considered 
when scaling leaf spectral and chemical data to the canopy or plant community 
level. A few groups are attempting to develop models that will account for effects 
such as canopy geometry, chemical composition, sun angle, shadows, cover 
mixes, and backgrounds. However, a significant amount of research still needs to 
be conducted to fully address scaling.

Collaboration is an issue only because researchers have not had to collaborate to 
get funding in the past, or have been too busy with their own research. The 
apparent scarcity or competitiveness of present funding programs plus the need for 
interdisciplinary expertise now almost mandate collaboration. In addition, there are 
some efforts that require collaboration in order to complete the effort, for example, 
the development of a plant spectral database. To improve collaboration and 
research in general, it is important to improve communication among researchers 
with common interests. In particular, communication between remote sensing 
scientists and plant- and eco-physiologists needs to be improved. During the first

12



day of the workshop, the U.C Davis participants presented initial research on 
coastal wetlands located near and within a former Naval base. This research may 
be an ideal collaborative effort between U.C. Davis and the U.S. Navy.

The list of action items developed by the group is shown in viewgraph 2-2. As 
shown, individuals and institutions were identified to be responsible for each of 
these action items.

Viewgraph 2-1. Issues

Availability of Data
  AVIRIS, etc.
  mid-scale
  chemistry
  plant reflectance database

Instrumentation
  leasing versus buying
  how to stay at state-of-the-art level

Scaling
  laboratory to image
  leaf to canopy to ecosystem

Collaborations
  database of plant spectra
  Navy and U.C. Davis on wetlands
  communications in general
  need expertise in plant- and eco-physiology

Viewgraph 2-2. Action Items

  Letter to NASA HQ regarding continuing availability of AVIRIS data (Lynn 
Shaulis)

  Get NASA and NSF to discuss joint funding of a plant spectral database 
(Susan Ustin & Nancy Milton)

  Workshop on data standards for plant spectra (followup from above)
  Make instrument/expertise/software list (everyone - DRI lead)
  email mailing list (DRI)

13
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Summary of "Hyperspectral Data Applications" Group Presentation 
Presenter: Bob Satterwhite

This group felt that the primary issue facing hyperspectral data applications was 
the lack of a study integrating laboratory and remotely acquired hyperspectral data. 
Therefore, they focussed on designing the ideal integrated study. The objective of 
this study would be an integration of ground spectra, geophysics, and plant 
geographical and physiological data with high spatial resolution hyperspectral data 
to detect environmental contamination. In particular the focus would be to detect 
early stress or premature senescence to permit mitigation prior to irreversible 
impacts.

The key to successfully completing this research is the selection of an appropriate 
site. Obviously, the site must be vegetated and in a high interest area. The 
environmental problem must be appropriate to or compatible with the sensor, and 
baseline characterization data must already exist for the site to reduce project cost. 
In addition, it would be easier if the site were not tied to any political problems. 
Once the site is identified, the major elements of the research would include:
  collection of hyperspectral data at various spatial and spectral resolutions
  additional field work and laboratory analyses as needed
  laboratory characterization of the contaminants if this has not been 

previously done
  an interdisciplinary team will be needed to address all aspects of the 

problem
  the robustness of existing models should be tested and models compared

Viewgraph 3-1. Objectives

Integration of ground level spectral, geophysical, and plant data with high spatial 
resolution for detection and location of environmental stressed areas

Detection of premature senescence of vegetation or other changes in healthy or 
stressed vegetation for possible mitigation

Viewgraph 3-2. Components

Hyperspectral data at various spatial and spectral resolutions 
Field work/laboratory analysis 
Laboratory characterization of contaminants 
Interdisciplinary collaboration effort at a demonstration site 
Test robustness of theoretical models

14



Viewgraph 3-3. Site Characteristics

Known site with high potential for success
Vegetated site
Problem consistent with sensor capability
High interest area
Not confounded by other problems
Baseline data available
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ASSESSING VEGETATIVE INDICATORS OF
HAZARDOUS WASTE PROBLEMS 

USING TEXTURE ANALYSIS OF REMOTELY SENSED DATA 1

Dr. John M. Irvine
Environmental Research Institute of Michigan

1101 Wilson Blvd, Suite 1100
Arlington, VA, 22209-2248

EXPANDED ABSTRACT

A major environmental concern today is the characterization, remediation, and 
monitoring of Federal waste sites, such as those operated by the Department of 
Energy. Remotely sensed imagery data offers a rich source of information for 
characterizing and monitoring these sites. This paper explores the use of texture 
analysis of the imagery data as a technique for identifying and classifying features 
within the sites. Texture measures are derived from the spatial covariances, higher 
order moments, and estimates of the fractal dimensions of the imagery data. 
Application of classification procedures to these texture measures offers a way to 
identify features of interest, such as vegetative stress, surface contaminants, 
subsidence, and soil moisture. This paper applies the procedures to two specific 
environmental waste problems:

Vegetation recovery at the Coal Ash Pond at Oak Rfdge National Labs: The 
texture analysis can be used to correctly classify features within the image, 
distinguishing recovering vegetation from unaffected vegetation with 
approximately 90 percent accuracy.

Surface contaminant effects at Savannah River: Although the surface oil 
patches at the site were not obvious based on visual inspection of the imagery, 
the texture analysis could correctly identify the oil features much of the time.

An additional area of study was the use of remote sensing for detection and 
location of buried waste trenches at the Solid Waste Storage Area 4 (SWSA-4) at Oak 
Ridge. The site contains a number of covered trenches where low-level radioactive 
waste was buried in the 1950s. The study indicated that three sources of information 
are valuable:

1 This project was supported under the Strategic Environmental Research and 
Development Program (SERDP). The Dystal artificial neural network was developed 
by ERIM under NIH grants NOINS02389 and NOINS32304 and ONR grants N00014- 
88-K-0659 and N00014-92-C-0018.
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  Historical aerial photography acquired during the period of burial activity 
can reveal the locations of specific trenches and may give some 
indications of burial practices.

  High resolution multispectral imagery collected by the Daedalus 1268 
indicates changes in vegetation vigor associated with the trench 
locations. These vegetative indicators may be attributable to differences 
in soil moisture caused by subsidence or altered drainage at the 
trenches.

  Thermal imagery collected by the Daedalus 1268 indicates differences 
in the apparent temperature of the trenches.

A composite map of the trench locations was constructed, using all three 
sources of data. This information is being used by the Environmental Restoration 
Program at Oak Ridge to plan remedial actions for the site.

The study demonstrates that imagery data are useful in the characterization and 
monitoring of various hazardous waste problems. Furthermore, it is evident that no 
single sensor provides all of the relevant information; a mix of sensors (including 
historical data) is desirable. We recommend that future study explore how widely 
these techniques can be applied, considering a variety of waste problems, climates, 
terrains, vegetative conditions, and soil types. Finally, it is imperative to develop 
studies in concert with ongoing clean-up activity to insure that the results are 
applicable in practice.

Direct comments or queries to: 
Dr. John M. Irvine
Environmental Research Institute of Michigan 
1101 Wilson Blvd., Suite 1100 
Arlington, VA, 22209 2248 
Tel. 703-528-5250, ext. 4131 
FAX: 703-524-3527 
email: jirvine@sbridge.erim.org



QUANTIFICATION OF VEGETATION STRESS USING CANOPY REFLECTANCE MODELS

S Jaequemoud and S.L. Ustin 

University of California. Department of I and. Air. and Water Resources. Davis. CA 95616 (USA)

Environmental contamination (air. -.oil. \\ater) may strongly disturb natural ecosystems, in particular 
vegetation by inducing stress phenomena Stress, defined by Jackson (1986) as any disturbance that adversely influences 
plant growth, results in physiological and anatomical changes within plants potentially detectable by remote sensing 
techniques. For example, air pollution (()-. SO:. N(K). ions (Na2SO4. CaCl2. NaCl) and heavy metal (Cu, Zn. Co, Ni, 
etc.) toxicities are usually exhibited through abnormal leaf color, leaf burning, or defoliation that are sometimes 
followed by plant death. In fact, these changes are the visible expression of changes in leal'pigment concentration, leaf 
water content, or canopy architecture \\hich arc all correlated with variations in canopy spectral and directional 
reflectance properties. Most studies that anah/e the effect of the above pollutants on leal'or canopy reflectance are 
rather descriptive. However, remote sensing offers the possibility of quantitatively assessing abiotic plant stress, for 
instance by using models.

Effects of stress on plant radiathe properties

plant stress

effects on piant - effects on piant 
leaves canopies _

changes in leaf pigments | changes in leaf orientation
changes in leaf water content J changes in leaf area index

changes in leaf anatomy _ changes in biomass allocation
senescence, necrosis, mortality taxonomic changes

Can we detect plant stress b\ remote sensing techniques? At leaf level, changes in leaf pigment concentration 
or leaf water content are correlated u ith \ anations in leaf optical properties. For instance, an increase of the ozone 
concentration leads to a destruction of chlorophyll and a loss of water, inducing an increase of reflectance in the whole 
spectrum (Runeckles and Resh. 1975. (Jausman el al.. 1978; Schutt et al.. 1984; Ustin and Curtiss. 1990; Carter et al.. 
1992). Heavy metals may change the cblorophxll a / b ratio and decrease the total chlorophyll content, inducing an 
increase of reflectance in the visible region and a blue shift of the red-edge (Horler et al.. 1980; Schwaller and Tkach, 
1985; Milton et al.. 1989. 1991) At canop> level, changes in canopy architecture are also correlated with variations in 
canopy spectral and directional properties I or example, atmospheric pollution (e.g., ozone) may accelerate senescence 
and abscission of plant leaves or needles (defoliation), producing a decrease of canopy reflectance due to the increasing 
parts of shadow and to the growing influence of the soil background (Koch et al.. 1990). In consequence, canopy 
reflectance changes resulting from an environmental contamination should be detectable by remote sensing techniques. 
The question is now: how to extract canopy biophysical parameters and therefore how to quantify these changes?

Extraction of canopy characteristics from remote sensing data

Two different approaches may be considered (Jacquemoud. 1993):

The semi empirical approach consists in using statistical techniques to obtain a correlation between the target 
and its spectral signatures. A first method, called spectral mixture analysis, reduces the spectral information of a 
complex target into independent sources of variability, the end-members, which can be chosen among a library of 
reference spectra acquired in the laboratory (leaves, mineral powders) or in the field on well knoun surfaces (vegetation 
types, rocks). The Forground/Background Analysis described by Pinzon et al.. (1995) is an alternative multivariate



statistical technique that has been used to determine leaf and canopy chemistry (Pinzon et al.. 1 995). Vegetation indices 
(NDVI. PVL SAVI. ISA VI. GEMI. MSI. etc.) built as combinations of broad band rellectances have been also related 
to some biophysical characteristics of the canopy lligh spectral resolution sensors permited the development of specific 
tools based on shape analyses of reflectance spectra: the spectral shift of the red edge, a region where the reflectance 
greatly increases from the red (650 nni) to the near infrared (800 nm). has given rise to a lot of literature.

A second approach consists, first, in describing the interactions between the sun light and the canopy 
(leaf+soil) through an analytical reflectance model. Second, that model is inverted using nonlinear optimization 
techniques (Figure 1). The use of a leaf- level radiative transfer model like the PROSPECT model, should help us to 
understand and quantify in terms of leal biochemistry (chlorophyll, water, nitrogen or carbon content) and leaf 
mesophyll structure. The coupling of that model with a canopy reflectance model (IAPI. Kuusk. Myneni. SAIL, etc.) 
should later permit the evaluation of other consequences of an environmental contamination such as a modification of 
canopy architecture. The input parameters of such a model are: the leaf structure parameter (N). the leaf biochemical

«M <»**»**» content - chlorophyll a+b (Cab), water (Cw), nitrogen (CN),
N.C«. c.. c«. PC  <!) . h. p and carbon content (Cc) - and the canopy architecture -

, Leaf Area Index (LAI), leaf orientation (61), and hot spot
,       _____ size parameter (Si). As seen before, these parameters may 

PROSPECT soLSpecT^ change, individually or all at once w hen a vegetation stress
appears. Model inversion is the only way to separate the 
specific effects of each of them and consequenth to betterr ^f(i )

><i ) rui.q.) ) characterize the type of stress.

1API / KUUSK / MYNENI / SAL
Figure 1: Schematic representation of model inversion.

The PROSPECT model
I LAJ.o.Si  kyKI). q. |

Leaf spectral reflectance and transinittance may be derived from the PROSPECT model (Jacquemoud and 
Baret. 1990: Jacquemoud et al., 1995) uhich idealizes the leaf as a stack of N identical elementary layers defined by 
their spectral refractive index n(A) and an absorption coefficient k(A). In the abstract, N relates to the cellular 
arrangement within the leaf: N ranging between 1 and 1.5 corresponds to monocotyledons with compact mesophyll; 
dicotyledons characterized by differentiated tissues - a compact palisade parenchyma and a spongy parenchyma with air 
cavities - have N values between 1 5 and 2 5 (Figure 2). The absorption coefficient depends on the leaf constituents 
concentrations: chlorophyll a-i-b concentration Cab expressed in ^g.cm"2. water depth Cw expressed in cm. protein Cp 
and cellulose+lignin Ce-t concentrations expressed in g.cm : . For simplicity, these constituents are assumed to be 
distributed homogeneously in the leaf The validation of PROSPECT was carried out using experimental data acquired at 
leaf level. The values estimated by the model inversion are plotted in Figure 3 against measured values: the high 
correlation for pigments and water shows that the procedure is successful in retrieving major leaf components whose 
effects predominate. Concerning minor ones, we notice that there is no sensitivity for protein but that cellulose+lignin is 
well estimated. In terms of reflectance and transmirtance reconstruction, we showed that the PROSPECT model was able 
to accurately synthesize the whole leaf spectrum for widely different kinds of plant leaves using only 5 parameters.



Figure 2: The PROSPECT model Figure 3: Comparison between measured and estimated leaf 
biochemical parameters

mopy reflectance models

The topic of this paper is not to describe in detail canopy reflectance models because an excellent review has 
been done by Goel (1987) Some geometrical models and turbid-medium models have been inverted using reflectance 
measurements in order to estimate the canop\ biophysical variables. Two methods of inversion can be distinguished: the 
first one uses directional data and allo\\ s emanation of physical variables describing the canopy architecture. The second 
one uses spectral data acquired for example at nadir and permits extraction of canopy biochemistry. Until now, the 
number of wavebands available on satellite sensors was smaller than the number of canopy parameters that determine 
the reflectance, making inaccurate am in\ crsion using nadir reflectances in several wavelength bands, but the 
development of imaging spectroscopv offered the prospect of using such a method. The best results would be obtained 
by combining both spectral and directional reflectance measurements on the same target.

Conclusions

The detection and quantification ot an environmental contamination are a tricky task. When affected by air. water 
or soil pollution, plant canopies tend to u iiher As compared to the multitude of possible attacks, the vegetation shows up 
a small number of physiological and morphological changes detectable by remote sensing. Detecting a stress and estimating 
die level of contamination may first invoke tcxrural analyses of the image: the spatial pattern of affected canopies differs 
from that of healthy canopies (Irvine. 1995). and the more its differs, the more the vegetation is affected. Using the 
radiometric properties of the target is another u ay characterize a plant stress: vegetation indices have been developed in the 
past to quantify some of the canop> variables but they are not specific. For instance, in areas of recent environmental 
contamination, architectural changes may be more important than changes of leaf reflectance or leaf area index: that situation 
requires bi-directional reflectance measurements and model inversion to detect. The next generation of satellites such as 
MISR or POLDER which combine both several wavebands and several measurement angles should allow us to extract by 
this way accurate information on plant canopies, therefore to quantify a plant stress.

However, remote sensing cannot do miracles. Plant stresses or taxonomic changes require sometimes a long time 
to develop: this means that temporal information is necessary and that implies a requirement to correct the canopy 
reflectance for atmospheric and the sun zenith angles effects. Further, there are no direct effects of air pollution or metallic 
elements on spectral reflectance but onh indirect influences related changes in chlorophyll or water content: detection may 
create possible confusion with other stress sources (Ex: O3 *» virus diseases. SO2   natural senescence). Finally, spectral 
detection of stress is often demonstrated when the vegetation is already very senescent or dead. Development of early stress 
detection methods and those related to detection of specific stress responses remains a challenge.
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Using Foreground/Hackyround Analysis to Determine Leaf and Canopy Chemistry
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I. ABSTRACT
SpectraJ Mixture Analysis (SMA) has become a well established procedure for analyzing 
imaging spectrometry data, however, the technique is relatively insensitive to minor sources of 
spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in 
canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear 
regression analysis to predict canopy chemistry. Grossman et al. (1994) reported that SMLR is 
sensitive to measurement error and that the prediction of minor chemical components are not 
independent of patterns observed in more dominant spectraJ components like water. Further, 
they observed that the relationships were strongly dependent on the mode of expressing 
reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or area basis 
(g/m ). Thus, alternative multivanatc techniques need to be examined. Smith ct al. (1994) 
reported a revised SMA that they termed Foreground / Background Analysis (FBA) and 
permits directing the analysis alone am .ms ol variance by identifying w vectors through the 
n-dimensional spectral volume orthonormai to each other. Here, we report an application of the 
FBA technique for the detection of canopv chemistry using a modified form of the analysis in 
which the projections of each spectra along the vector w are its respective chemistry content. 
The study used two datasets representing a wide range of species having divergent foliar 
adaptations and conditions. These daiascts were the LOPEx (Leaf Optical Properties 
Experiment) obtained from the Joint Research Centre in (Jacquemoud et al., 1994), and a 
similar but smaller dataset from the Jasper Ridge Biological Preserve at Stanford University 
(Grossman et al., 1994). The range of variation - several orders of magnitude - depended on 
the dataset and the specific chemistry (Jacquemoud ct al., 1995). The variance structure is 
especially critical for variables like nitrogen that are in low concentration and do not express a 
wide range of variance between species.
The FBA was performed to define the best vector for discriminating each chemistry measured 
on the JRC and Jasper Ridge fresh leal datascis. and on the JRC dry leaf dataset using R, -log 
R,and other non-standard transformations, like the squared reflectance (R ). We calculated 
the multiple correlation coefficient (r"). to compare the predicted values to the measured 
chemical concentrations. The best fit overall (0.94) was found for predicting water content 
(g/g), see Table 1.

These results show that the highest r" arc found for spectra having high chemical variance 
(Figure 1). Low r values correspond to chemistry variables that have limited variance. These

FUNCTION

DATA

R2
R

Lofld/R)
Filter(R)

CHEMISTRY
NITROGEN
JRC 
fl

0.69
0.68
0.60
0.62

JRC 
dl

0.60
0.54
0.34

NO

JR

0.33
0.31
0.30
0.32

CELLULOSE
JRC 
fl

0.38
0.31
0.20
0.50

JRC 
dl

0.29
0.27
0.22
NO

JR

0.81
0.79
0.64
0.65

CARBON
JRC 

fl
0.40
0.40
0.42
0.44

JRC 
dl

0.27
0.39
0.39
NO

JR

0.63
0.71
0.82
0.83

WATER
JRC 
fl

0.94
0.94
0.94
0.92

JR

0.91
0.89
0.87
0.90

results also show that spectra are dominated by the mean reflectance response (related to 
albedo) rather than variability due to minor absorptions. Clearly this is undesirable for



detection of canopy chemistry. We can try to improve detection by considering additional
transformations that reduce the effect of variance around the continuum reflectance and
maximize shape differences. Such transiormations might improve predictions and provide a
better basis for predicting canopy biochemistry of minor constituents.
The first operation was to normalize the spectra and remove albedo differences.
The next step applied a Discrete Fourier Transform (DFT) to the 211 band spectrum to remove
high frequency response (typically related 10 noise) and a low frequency filter to alleviate the
dc response. The best-fit predicted and measured chemistry is shown in Figure 2 and Table 1.
The effects of these operations are shown in Figure 3. Normalization of the reflectance
spectrum does not affect the shape although H does affect the wavelength dependent variance
structure. The DFT filtering step clearly changes the shape of the spectrum (mean reflectance
information is lost), but enhances other desirable characteristics of the variance structure. The 
2 2 r s of the FBA analysis on the normali/cd DFT dataset are shown in Table. The r s of the

chemistry variables that have low sample variance (e.g., nitrogen and cellulose) are improved 
using the squared spectrum, while those with high concentration or having high intra-sample 
variability (like water) maintain an acceptable level of prediction. Thus, these preliminary 
results support the possibility of developing direct detection of canopy chemistry using 
imaging spectrometry.
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The Arid Lands Ecology preserve (ALE) is a 312 square kilometer section of the 
Department of Energy's Hanford Site. Hanford is located in the semi-arid interior region 
of south central Washington, and the vegetation is dominated by sagebrush communities. 
ALE was set aside in 1967 to preserve shrub-steppe habitat and vegetation, and remains 
the largest Research Natural Area (RNA) in Washington State. Hyperspectral remote 
sensing is an important tool for monitoring and studying this large area. However, due to 
the complex and variable nature of the vegetation communities at ALE, it is difficult to 
develop automated methods to map the vegetation. A major cause of this problem is that 
there are few pure classes, most communities are mixtures. In addition, variability in plant 
architectures and rapid changes in plant phenological state make many of the spectral 
library-based methods developed for geological remote sensing inappropriate. Identifying 
the various community mixtures, and even small changes in these mixtures, is important in 
studying ecosystem response to the invasion of alien species, habitat changes for 
threatened species, or changes associated with stress from local contamination or regional 
climate change.

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery was collected over the 
Hanford Site on May 24, 1993. One of the tools we are using for mapping vegetation 
communities with this data is the n-Dimensional Probability Density Functions (nPDF), a 
suite of programs for data visualization, enhancement and classification (Cetin and 
Levandowski, 1991, Cetin et a/., 1993). The essence of the nPDF approach is in 
projecting the hyperdimensional data onto two-dimensional plots, which can be used to



display data distribution or relative class position. Each axis of the plot is the 
hyperspectral distance from selected corners in the potential data space to the 
measurement vector of each pixel These plots provide an excellent representation of the 
spectral distribution of cover types and can also be used as look-up tables for a non- 
parametric classification The only difficulty in using nPDF is in choosing the corners in 
the original data space from which the perspective plots are developed. For data sets of 
low spectral dimension, a combination of a knowledge of the spectral classes present and 
experimentation normally results in an adequate choice. However, with hyperspectral 
imagery this approach is generally not so successful. This is due to the large number of 
corners to select from. With each additional band the number of potential corners 
doubles, because hyperspectrai distances can be calculated from the origin (0 Digital 
Number, or DN) or the maximum (255 in 8 bit data) in each band.

One automated approach for corner selection is to use a variation on the spectral 
maximization method of Cetin and Levandowski (1991). In spectral maximization, 
corners are chosen such that they result in a maximum hyperspectral distance to a cover- 
class of interest, compared to the distance to some other chosen class, normally a class 
with which it is being confused This is done by comparing the average DN for the two 
classes for each band: if the class of interest has a higher DN than the other class, then the 
corner is determined by the origin of that band, 0 DN. Alternatively, if the class of interest 
has a lower DN than the other class, then the corner is determined by the maximum in that 
band. Remotely sensed data tends to be highly correlated, and the maximization approach 
will tend to favor corners that measure albedo (i.e. the origin in all bands) or the opposite 
of albedo (i.e. the maximum in all bands). However, often albedo/illumination geometry 
variations will cause the class variance to be greatest in this direction. Thus, even though 
the maximization approach will chose corners that give the maximum separation of the 
means of the two classes, it may be better to suppress a solution that is dominantly 
albedo/illumination geometry

Pouch and Campagna (1990) have shown that spectral information can be separated from 
albedo/illumination effects by projecting each measurement vector onto a hypersphere. 
The albedo/illumination geometry component is the radius vector, calculated by taking the 
square root of the sum of the squared DN values in each band. In nPDF terminology this 
is an nPDF component calculated from the corner which represents the origin in all bands. 
The spectral information is represented by the hyperspherical direction cosines, which are 
calculated by dividing each band by the radius vector. This is in effect a normalization to 
the average reflectance for that pixel. Figure 1. shows the Hyperspherical Direction 
Cosine (HSDC) spectra calculated for two cover types from the ALE AVIRIS scene. It 
must be emphasized that because the data were not calibrated to ground radiance, these 
spectra cannot be related directly to field spectra and can only be used for comparing data 
within this image. Although the two spectra exhibit many similar features, the 
cheatgrass/Sandberg's bluegrass has a lower HSDC value than hopsage over wavelengths 
shorter than 1140 nm, a small region near 2100 nm, and at long wavelengths greater than 
2260 nm. If we now choose a corner such that we calculate the hyperspectral distance 
from the maximum DN in these spectral regions, and from the minimum DN in the



remaining bands, the resulting hyperspectral distance will be greatest for the 
cheatgrass/Sandberg's bluegrass and give the largest separation of the two spectra.

The results of an nPDF plot for selected cover types using such a corner selection are 
shown in Figure 2. The horizontal axis of the figure is the hyperspectral distance from the 
origin, and the vertical axis is the distance from the corner which will maximize the 
cheatgrass/Sandberg's bluegrass community HSDC spectra. Although this corner was 
chosen based on HSDC spectra, the data plotted here are determined from the original 
spectra, since albedo/illumination differences may provide additional spectral information. 
In figure 2, three spectral classes have been plotted, including the two classes used in the 
corner selection process (the hopsage class, and the cheatgrass/Sandberg's bluegrass 
class). The third class, big sagebrush/hopsage/Sandberg's bluegrass, has elements of both 
of the first two classes, as well as an additional species, big sagebrush. The fact that the 
third class plots on a mixing line between the two classes despite the presence of big 
sagebrush suggests that this represents a good transformation for estimating mixed classes 
of the type chosen. Previous work has shown that such transformations can be used as 
empirical estimates of the compositions of mixed pixels (Cetin et al., 1993, Warner et al., 
1994).

Additional plots of mixing lines between other communities such as big sagebrush and 
bluebunch wheatgrass allow further investigation of the spectral separation of the various 
communities at ALE. Because nPDF is an absolute classifier, and therefore highly suited 
to multiple classifications with the different classes identified in different plots, we are able 
to combine the various classifications to produce a single map. This map includes both 
pure classes dominated by one cover type, as well as mixed classes.
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DERIVATIVE-BASED GREEN VEGETATION INDEX (DGVI) DERIVED
FROM HYPERSPECTRAL DATA: POTENTIAL USE FOR MONITORING

VEGETATION HEALTH WITH HIGHER ACCURACY

Environmental contamination may concentrate trace elements in 
soils. Plants that absorb these trace elements at higher-than- 
normal levels may display abnormal spectral signatures , such as 
"blue-shift". Moreover, contamination can change geochemical 
constituents and reactions in the soils. The change can directly 
influence the character and amount of nutrients available for 
overlying plant growth. Either insufficient nutrients caused by 
this geochemical process or absorbed damaging trace elements would 
influence plant health, therefore affect reflection characteristics 
of plants. Variations in cover density and vigor of plants can be 
monitored by remote sensing data.

Vegetation health or cover status is usually monitored by 
using the conventional broad-band vegetation indices (e.g. NDVI, 
PVI, RVI, and SAVI) . Our experiment, conducted by high spectral- 
resolution PS-2 data with bandwidth of ~4 nm, showed that the 
narrow-band conventional vegetation indices have higher accuracy 
than the corresponding simulated broad-band vegetation indices in 
quantifying vegetation cover, especially the low (^30% green cover) 
and very low (^10% green cover) green cover conditions. However, 
derivative-based green vegetation indices (DGVI) derived from 
continuous PS-2 spectra were proven to be the best among all of the 
tested broad- and narrow-band vegetation indices. The DGVI concept 
has been successfully applied to the AVIRIS datasets acquired at 
different seasons for mapping vegetation distribution variations 
and dynamic changes.

The derivative-based green vegetation indices (DGVI) were 
developed, by utilizing continuous spectra of the high spectral- 
resolution data, to minimize background impacts on green vegetation



signals centered at the chlorophyll red-edge. The derivative 
technique was applied to the smoothed reflectance to enhance the 
green vegetation signals and to suppress low frequency noise caused 
by background variations in brightness and slope. The derivative 
spectra were then integrated across the chlorophyll red-edge to 
derive derivative-based green vegetation indices (DGVT).

In the experiment, five gravel backgrounds with different 
colors were prepared. A systematic series of spectral measurements 
were made of a pinyon pine over the five backgrounds with the PS-2. 
Seven green cover levels of the pinyon pine canopy were 
artificially made by manually removing green leaves during the 
measurements. The green cover levels were ranging from level 1 
(Percent green cover: 17.75%, LAI: 0.2858) to level 7 (completely 
defoliated). The first order and second order derivative spectra 
were then derived from the smoothed PS-2 reflectance using the 
following equations:

(2)

In Equations 1 & 2, p(AJ is the smoothed PS-2 reflectance, and X± 
represents the ith spectral band. The reflectance and the 2nd order 
derivative spectra at green cover level 1 and level 6 are displayed 
in Figures 1 & 2 .

Among developed DGVTs, the 1st order DGVI-local was defined as 
the integration of the area under the 1st order derivative curve in 
reference to a local rock-soil baseline value set at Ax . The 2nd 
order DGVI-zero was calculated by integrating the absolute values 
of the 2nd derivatives of the reflectance spectra in reference to 
the zero baseline. The two types of the DGVTs can be expressed in 
the following equations :

1st Order DGVI-local = J^flp^.) - p'CA^IxAA,,] (3 )
A,

2nd Order DGVI-zero = [ | p /x(^) | x A A.] (4)

Figure 3 graphically illustrates a comparison between all 
tested broad- and narrow-band vegetation indices (VI) in terms of

32-



their predictive power. The predictive power of the Vis was 
determined by the standard error of estimate (SY x or dimensionless 
SY.X/^) in estimating green cover levels. The standard error of 
estimate (SYx) was calculated by the equation shown below:

(5)
71-2

Y is the actual green cover level. Y and Y represent the arithmetic 
mean Y and estimated green cover, respectively. Figure 3 exhibits 
that both the 1st DGVI-local and the 2nd DGVT-zero have lowest Sy x 
values. On the contrary, broad-band NDVI and RVI show worst 
performance for predicting either the LAI or percent green cover 
levels. By applying the 2nd order DGVT-zero concept to the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired on 
October 3, 1990 over a Monterey pine plantation in Jasper Ridge, 
CA, the pine cover conditions, which were ranging from 0 to 32%, 
were quantified by the 2nd DGVI values. According to the existing 
strong linear relationship between the pine cover density and the 
2nd order DGVI values, the percent green cover levels were 
inversely estimated and encoded in colors (Figure 4). Minor green 
cover variations in the Monterey pine plantation can be clearly 
identified in the 2nd DGVI map.

In summary, the high spectral-resolution data increased the 
detection limit of low-covered green vegetation based on the 
chlorophyll red-edge feature. The derivative-based green vegetation 
indices (DGVI) greatly enhanced green vegetation signals and 
optimally minimized background impacts. The 1st order DGVI-local 
and 2nd order DGVI-zero demonstrated the best performance for 
estimating green cover levels because of higher accuracy of 
estimate. Our inference is that the DGVI could be a useful method 
for monitoring vegetation health status with higher accuracy in 
arid and semi-arid regions.
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Figure 1. PS-2 reflectance and 2nd order derivative spectra of a 
pinyon pine with five backgrounds at green cover level 1. The 
reflectance value at 600 nm is provided for each reflectance 
spectrum. Two vertical lines at 625.7 nm and 794.9 nm indicate the 
integration interval for calculating the Derivative-based Green 
Vegetation Index (DGVT) . Curves have been offset vertically to 
avoid overlap.



puoosg

00
c

XOI

Figure 2. PS-2 reflectance and 2nd order derivative spectra of a 
pinyon pine with five backgrounds at green cover level 6. The 
reflectance value at 600 nm is provided for each reflectance 
spectrum. Two vertical lines at 625.7 nm and 794.9 nm indicate the 
integration interval for calculating the Derivative-based Green 
Vegetation Index (DGVI). Curves have been offset vertically to 
avoid overlap.
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Figure 3. Standard error of estimate for predicting percent green 
cover and Leaf Area Index (LAI) of a pinyon pine against red 
bandwidth. Reducing the bandwidth improved the performance of NDVI, 
PVI, RVI, and SAVI. The best results were obtained for the 1st 
order DGVI-local and the 2nd order DGVT-zero.



Monterey Pine Plantation (Jasper Ridge, CA)

AVIBIS
October 3,1990

Bed: 805 nm (CH. 46) 
Green: 557 nm (CH. 17) 
Bhie: 450 nm (CH. 6)
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Figure 4. TOP: Raw AVIRIS image of the Monterey pine plantation in 
Jasper Ridge, CA; BOTTOM: Percent green cover inverted from the 2nd 
order DGVI-zero values.
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Optical remote sensing applications have identified the relationship between 
biomass productivity and spectral signatures (Gross et al 1989) using a vegetation index 
based approach. Productivity in wetlands is of primary concern because of its potential as 
an indicator of ecosystem processes (Mahall and Park 1976). Health of intenidal wetlands 
is of concern for evaluating the sustainability of estuarine ecosystems, many of which are 
threatened by excessive nutrient loading from upstream agriculture and urban activities 
and from multliple sources of point pollution. Locating and assessing contaminated sites 
as well as defining general uetland condition is often difficult because of limited physical 
access into the habitat. Remote sensing applications provide an excellent tool for this 
purpose by using vegetation as an indicator for the enviornmental contamination and/or 
condition. Innovations using high spectral resolution optical remote sensing (e.g. 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)) have indicated that it may be 
further possible to detect relative concentrations of foliar biochemicals, particulary water, 
plant pigments, carbon and nitrogen (Grossman et al, 1994; Jacquemoud et al., 1995; 
Pinzon et al., 1995). This note describes our research approach to developing indicators 
of ecosystem health in salt marsh ecosystems and demonstrates some of the preliminary 
results. We are using a multi-scale program combining airborne hyperspectral remote 
sensing and ground based measurements at three sites which vary in terms of edaphic 
factors.

Methods

Simultaneous top-down and bottom-up approaches were used to scale traditional 
ecological measurements at submeter scale to pixels scales (approximately 400 sq m) and 
to the landscape scale, covering several kilometers. At three different wetland sites, 
measurements were made of canopy reflectance spectra, vegetation distribution, biomass, 
canopy structure and height, and of soil nitrogen levels and type (nitrate vs. ammonia), 
salinity and redox potential. Leaf samples from the field were analysed for major pigment 
concentrations and total carbon and nitrogen levels. Each measurement was located using 
Global Positioning System (GPS) technology and incorporated into a Geographical 
Information System (CIS) database of each site. Our sampling strategy is designed to 
allow exploration of different geostatistical techniques (Englund and Sparks 1988, Rossi 
et al 1992) for interpolation from small scale field measurments to remotely sensed pixels. 
Maps generated from the GIS will be compared to AVIRIS imagery to develop pixel scale 
relationships between spectra and ecological factors for use in ecosystem evaluation at the 
landscape level.



These comparisons are being made for three sites which differ in fresh water input 
and tidal flooding along the Petaluma River. Each site has unique features in terms of 
vegetation distribution and environmental gradients. They were chosen because they 
exhibit large variation in edaphic characteristics, including salinity, nutrients and soil water 
content. Three dominant species, Salicornia virginica, Spartina foliosa and Scirpus 
robutus are found under different conditions within the sites selected for study.

Preliminary Results and Discussion

Differences in dynamics of canopy structure and biomass result in differences in 
reflectance signatures of the vegetation. By developing indicators of foliar water content, 
relative pigment concentrations, and canopy architecture using remote sensing, and 
knowing how these parameters respond to the controlling influences of salinity and 
nitrogen, we hope to gain insight into overall wetland functioning on a landscape scale. 
We believe this research will have direct application for monitoring of natural and restored 
wetlands and for further ecological research on large scales.

Preliminary results showed that NDVI (Normalized Difference Vegetation Index) 
and VI (Vegetation Index) based on Landsat Thematic Mapper satellite band ratios of red 
and near infrared reflectances varied with biomass. These indices are related to the 
amount of green foliar biomass and indirectly to estimates of productivity. The correlation 
coefficient in our field data was found to be highest for the relationship between VI and 
green fresh weight (aboveground biomass). Therefore, it may be possible to use the VI to 
predict the green fresh weight from satellite image data for the salt marshes of San Pablo 
Bay. The regression equation of green fresh biomass and vegetation index indicated that 
51% of variation of green fresh biomass was explained by the vegetation index (Figure 1).

Rgure 1: The Relationship between Total Green Fresh Weight and Vegetation Index
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The water content varies between and within species. Salicornia dominated sites 
have the greatest water content, more than 86% water by fresh weight. Spartina and 
Scirpus foliage have lower water contents than Salicornia. Incident photons in the 
infrared portion of the solar spectrum are absorped by water in the leaves and changes in



water content can be detected by changes in spectral reflectance in these wavelength 
regions. One of these regions occurs between 900 to 1040 nm wavelengths. Therefore, 
the foliar water content can be estimated as a function of this reflectance. If the area of 
the absorption feature under the continuum spectral shape (i.e., the reflectance on both 
sides of the feature), can be calculated using a "continuum removal" analysis (Clark and 
Roush 1984) then the water content can be linearly related to the area (Figure 2). Using 
this relationship, we can estimate the spatial distribution of canopy water from remote 
sensing data if the scale is appropriately understood (Sanderson et al., 1995). Assuming 
an environmental contaminant could be related to variations in the vegetation water 
content, then the degree of the contamination could be indirectly predicted using remote 
sensing data. Other relationships between environmental conditions and canopy spectra 
can be derived in an anologous fashion and used to evaluate ecosystem health.
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