
U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

Remote Video Monitoring Systems

by

John W. Haines and Bill Townsley

Open File Report 9656

This report is preliminary and has not been reviewed for conformity with U.S. Geological
Survey editorial standards

U.S. Geological Survey, Center for Coastal Geology
St. Petersburg, Florida 33701

' ~'-" «-.. C'i
- p~;. : ,""

r/ i\y 7 q IGC» \t-\\ t 3 JvX'l

Remote Video Monitoring Systems

John W. Haines and William W. Townsley

SUMMARY

Remote Video Monitoring Systems are a cost effective means of acquiring video data from
remote locations and returning them to a central computer for processing and analysis. Video data
has proven to be a valuable source of information in a variety of coastal studies. Guidelines and
procedures used in developing Remote Video Monitoring (RVM) systems and the usefullness of
video data are described in this document including specific examples from the RVM sytem in
operation at the Center for Coastal Geology in St. Petersburg, FL.

REMOTE VIDEO MONITORING SYSTEMS
TABLE OF CONTENTS

Summary i

Table of Contents ii

List of Figures iii

List of Images iii

Introduction 1

Video Data 1

System Hardware 3

System Software 4

Networking 5

Deployment 6

Area Survey 7

Data Availability and Distribution 7

Viewing RVM Imagery 9

Data Processing 9

Conclusion 10

References 12

Appendix A. Frame Averaging C Code 22

Appendix B. Image Acquisition Perl Script 27

Appendix C. Data Storage Perl Script 28

11

LIST OF FIGURES

Figure 1, Schematic of Remote Field Station 2

Figure 2, Schematic of Laboratory Configuration 2

LIST OF IMAGES

Image 1, Swash Zone Pixel Intensity 13

Image 2a, Yaquina Head Snapshot 14

Image 2b, Yaquina Head Time Exposure 15

Image 3 a, Yaquina Head, Oregon Oblique View 16

Image 3b, Yaquina Head, Oregon Rectified View 16

Image 4. Painesville, Ohio Field Station Deployment 17

Image 5, Painesville, Ohio Area of Interest 18

Image 6, Duck, North Carolina Area of Interest 19

Image 7, La Jolla Shores, California Area of Interest 20

Image 8, Waimea Bay, Hawaii Area of Interest 21

111

INTRODUCTION

Remote Video Monitoring (RVM) Systems provide a means of automatically acquiring video
data from remote locations and returning them to a central location for processing and analysis. Since
1991, the U.S. Geological Survey's Center for Coastal Geology has been developing RVM
capabilities in cooperation with coastal researchers at Oregon State University (OSU). The Coastal
Imaging Lab (CBL) at OSU has pioneered the use of video data acquisition for studies of coastal
processes. Video monitoring systems, when used to observe beach and nearshore systems, have
successfully provided lengthy continuous records of change in a variety of coastal features such as
shorelines and offshore sand bars (Lippmann and Holman, 1989). Video data have also been utilized
in the study of a wide range of nearshore processes including wave propagation and breaking, and the
dynamics of the swash zone (Lippmann and Holman, 1991).

The USGS/OSU cooperative has focussed on further application of video methods to the
collection of continuous records in remote locations. The goal has been to provide an economical,
rugged, and reliable data collection and analysis package requiring minimal maintenance for use in
areas that are not suitable for frequent oversight. The results of this cooperative effort are described
in the following document.

The video data collection platform, or field station, is described in Figure 1. These low-cost,
PC-based data acquisition systems return digital video data (and data from other sensors) from the
monitoring location over commercial or cellular telephone links. Power is provided by either
commercial power or solar/battery systems. Field stations designed using the guidelines described in
this document have been in continual operation for several years through environmental extremes
ranging from sub-freezing temperatures to near hurricane storm conditions.

Data retrieval, archiving, and collection control is performed by the RVM central laboratory
computer, currently any Unix based workstation (Figure 2). The laboratory computer also provides a
flexible platform for the analysis and distribution of the resulting data. From the onset, the objectives
of this effort have included the development of streamlined data distribution paths and widely
available analysis tools. Combined, the lab computer and field station(s) form a wide area network
linked by standard communications protocols. This network provides many of the conveniences of
local computer networks and is much less expensive to implement.

The structure of the complete RVM system is based on a number of systems of specified
functionality, rather than on specific hardware products. Using general and specific examples from
the RVM system used by the USGS Coastal Center, this report will provide guidance to anyone
interested in either using available data from existing systems, or in developing similar systems for
specific applications, video data and its application to coastal research will be reviewed, hardware and
software solutions are discussed, and processing techniques described.

VIDEO DATA

Video provides a 2-dimensional image of a limited spatial region at a particular moment in
time. Any feature which has a visual signature is amenable to video monitoring (Holman et at, 1993).
Quantification of the data is based on the magnitude of the returned signal and on the location within

the field of view.

1

Figure 1: Central Laboratory Computer Schematic

PHONE
LINE

MODEM

CENTRAL LABORATORY
COMPUTER CONTROLLER

LONG TERM
DATA STORAGE

PERMANENT
DATASTORAGE

(CD-ROM)

Figure 2: Remote Video Monitoring Field Station Schematic

 it

OTHER
SENSORS

LOCAL IMAGE
PROCESSING

BOARD

COMPUTER
CONTROLLER

TEMPORARY
DATA STORAGE

MODEM PHONE ,
LINE '7

A digital image consists of a matrix of numeric values representing the individual picture
elements (pixels). The numeric value of each pixel represents the intensity (lightness/darkness or
color) of the captured feature. Thus features which exhibit high contrast, such as shorelines and
breaking waves, may be located and followed in time (Holman and Guza, 1984; Lippmann and
Holman, 1989). As an example, Image 1 shows the marked difference between the highly reflective
swash zone and the underlying sand on a barrier beach with a section of the swash limit marked by
the black diamonds. A series of such images allows the instantaneous shoreline position to be traced
as it varies with time.

Video imagery may also be averaged creating a digital "time exposure" that identifies
persistant features in the image frame. Images 2a and 2b show the contrasting information from the
video snapshots (single images) and time exposure images (averaged over 12 minutes). The time
exposure approach allows the identification the breaking wave zone, which corresponds to the
location of sand bars, submerged shoals and channels (Lippmann and Holman, 1989).

Mapping the video image to a meaningful coordinate system is accomplished by tranforming
the pixel (image) coordinates to a relevent ground coordinate system (e.g., Lippmann and Holman,
1989). The rectification of the image depends on the camera lens, camera position, local topography,
and control points visible in the scene. Specifiction of the appropriate geometry variables allows the
geometric transformation of the video image to a two-dimensional 'mapping1 in ground coordinates.
In practice, analagous to aerial photography analysis, ground control points with known locations
within the image field are used to solve for the transformation geometry. Three or more known
points permit a least squares solution for the transformation. Subsequently, image features may be
viewed in a plan or map view. The results of such image rectification are shown in Images 3a & 3b.
Successful transformation requires the specification of one coordinate dimension, thus mapping is
possible for 2-dimensional features where the third dimension is constant. For example, shorelines
and water surface features may be mapped provided the water level is known.

SYSTEM HARDWARE

Remote Video Monitoring field stations, called Argus stations, were originally developed at
Oregon State University's Coastal Imaging Lab (Holman et al, 1993). They include video cameras,
an IBM PC or PC clone with an add-on image processing circuit board, and a modem. Controlled by
the computer, images are acquired by the image processor from the video cameras and stored on the
PC's hard drive. Data transfer from the field station to the central laboratory computer is facilitated
by the modem.

The first Argus station deployed by the USGS Coastal Center, voyeur02, is still active and
utilizes a Dipix P360F Power Grabber installed in a 80486 PC clone. Two (2) Sony XC-77 compact,
black & white video cameras provide video input to the PC through the Dipix board*. A 120 MB
internal hard disk drive enables the station to store up to 3,000 images before data retrieval becomes
necessary. Communications with the outside world are facilitated by a Telebit T2500 modem
featuring automatic baud rate adjustment from 2400-19200 baud, error detection and correction, and
effective handling of data transfers. Eight (8) MB of memory accommodate the software tools which
allow the station to run automatically. Though none of the Argus stations presently in operation are

identical, they typically use Dipix P360F Power Grabber image processing cards. This allows the
exchange of image acquisition software and also simplifies trouble-shooting among the system
operators.

The central laboratory computer can be any Unix based workstation with ample on-line
storage and a modem. The laboratory computer located at the Coastal Center is a Sun
SPARCstation2 running the Solaris 2.0 operating system. Like the field station, this workstation
utilizes a Telebit modem for its aforementioned features and to take advantage of the low error/high
transfer rates possible between Telebit modems. Though not required, a real time Internet connection
allows the Internet community access to video data and related information. Four (4) GB of online
storage accommodate many months of video data and processed results. The Coastal Center uses a
Compact Disk - Write Once Read Many (CD-WORM) back-up unit so that data can be cycled onto
CD media for permanent storage and distribution.

SYSTEM SOFTWARE

There are many software products available to aid in automating and monitoring a RVM
system. A bulletin board system (BBS) program is an ideal method of controlling and automating a
field station. BBSs provide an interface for remote users connecting to the field station over
telephone lines and for the central laboratory computer when it connects to retrieve video data.
Waffle, the BBS used by the USGS, can schedule data acquisition, provide e-mail service, perform
system accounting, provide file upload/download capabilities, and maintain logs of station usage.
Waffle also provides an administrative environment to enable the system operator to manage system
resources, limit system access, and create user accounts. The BBS also enables the system operator to
reprogram the field station remotely to adapt to changing conditions and acquisition schemes.

Video image acquisition programs can be written using the image processing software that
generally comes bundled with add-on image processors. The image acquisition software used by the
USGS was originally developed at the CIL in the programming language C and draws upon a library
of image processing functions that provide control over the Dipix Power Grabber. The program,
called average.c (see Appendix A), allows 1 to 24000 video frames to be averaged together. During
the frame average, the pixel values in each successive video frame are added together. At the end of
the summation, these cumulative values are divided by the total number of frames acquired.
Averaging 1 frame produces the equivalent of a snapshot, while averaging multiple frames creates the
effect of a photographic time exposure (see Image 2b).

The images acquired by average, c must be named, compressed and then spooled by the
remote computer for retrieval by the laboratory computer. These functions are controlled by a
program named snapsend.pl (Appendix B) written in the public domain programming language Perl,
which permits manipulation of text strings and system commands. Snapsend.pl first executes
average.c, to which it supplies the command line arguments of which camera to use, the gain and
offset levels, the number of frames to average, and a 7 digit encoded output filename representing the
time of acquisition. The script then executes cjpeg4, a C program which applies the JPEG
compression algorithm to the image files produced by the system. Finally, snapsend.pl spools the
data for UUCP retrieval by the lab computer (see NETWORKING).

The field station PC is further equipped with a TurboC compiler, a Perl compiler, and a full
screen editor. These tools enable the system operator to create and compile new programs remotely
in order to adapt station operation to changing conditions and needs. The use of TurboC and Perl is a
common thread among Argus stations allowing the exchange of software tools among the system
operators.

The central laboratory computer is primarily responsible for data retrieval and processing.
Data retrieval can be automated using UUCP (described in the next section) or performed
interactively using the conventional X, Y, or Zmodem file transfer protocols. Once data are retrieved,
they are placed in an online storage location for processing. At the USGS, this storage location is also
the FTP directory allowing the Internet community immediate access to the data.

The FTP directory hierarchy is created dynamically when data are moved from the receiving
directory. A Perl script called voyeur02.move_data (see APPENDIX C) decodes the 7 digit encoded
image file names provided by snapsend.pl and creates more intuitive and descriptive file names. The
script then parses the long-term storage directory and creates a new sub-directory, named according to
the date and camera of acquisition, into which it moves the images (see DATA AVAILABILITY).

NETWORKING

The central computer and field station(s) can be viewed as a wide area network connected
using serial lines, modems, the telephone service, and the Unix feature UUCP. UUCP, which stands
for Unix to Unix CoPy, is an ensemble of programs that create a dial-up network between machines.
When one machine on the network requires data or services from another machine, it makes a UUCP
request for those data or services. The UUCP request is then processed when connections are
established between those machines via the telephone service. UUCP requests, such as to copy image
data from the field station to the lab computer or to send e-mail, are processed during those
connections. This process forms the basis for automated data retrieval from the field station. Though
a full explanation of configuring UUCP is beyond the scope of this report, a detailed description can
be found in O'Reilly and Associate's Managing UUCP and Usenet and in the Waite Groups UNIX
Communications. To put it simply, the field station is described to the lab computer in terms of a
telephone number, baud rate, login name, and password. The lab computer is then instructed to dial
that number at specified times, log into the field station, and access any UUCP requests waiting to be
processed. Though traditionally a UNIX feature, UUCP capabilities can be installed on a field station
PC and may be available as part of the BBS package. When a field station acquires images, the
acquisition programs make a UUCP request to copy the images to the central computer. The UUCP
program on the field station PC places the images in a special spooling directory where they await
transfer during the next connection made by the UUCP software on the lab computer. UUCP
provides e-mail service in the same fashion. When e-mail is sent from a user or process on one
machine to a recipient on another, the message is spooled until the next connection is made when it
will be transferred and routed to its final destination. In this fashion, logs of station usage can be e-
mailed to the system operator. Connections between lab computers and field stations typically occur
early in the morning to take advantage of lower long distance telephone rates. Other UUCP features,
such as 'tip' and 'cu' allow users of the central computer to quickly connect with the field station for an

interactive session. There is virtually no limit to the number of remote field stations that can be
UUCP-linked to the RVM network.

DEPLOYMENT

Once an area of interest has been selected, an appropriate location for the field station must be
chosen. Generally, it is advantageous to place the camera as high over the area of interest as possible
to increase the accuracy of image quantification algorithms. The location should have a clear
unobstructed view of the area and, if being deployed outdoors, flat space large enough for the field
station housings. Power and telephone connections are another concern. Direct power from a local
utility company is more reliable than solar power. Likewise, telephone land lines are more reliable
than cellular for data transfer.

The area of interest must be large enough to accomodate 2 or more ground control points
(GCPs). GCPs can be any permanent, stationary feature, such as a building, landform, or installed
marker, and are a necessary component of a RVM system. When attempting to quantify video
images, GCPs provide reliable, permanent image and ground coordinate markers.

The RVM field station voyeur02 was deployed by the USGS Coastal Center on the
southwestern shore of Lake Erie at Painesville, OH on August 17, 1993. Of primary concern was the
severe erosion that had resulted in the destruction of many homes along the stretch of coast and
threatened many more. After speaking with local home owners to get their approval and cooperation,
a location on the edge of a bluff overlooking the lake was selected.

The suburban location made it a simple matter for local utility companies to install power and
telephone connections. The site also permitted the cameras to be mounted in a position overlooking
the area of interest from a vantage point on top of the bluff. Additionally, the area of interest gathered
by the video cameras was large enough that three large, round, white signs could be installed within
the camera view so serve as ground control points. The white color ensures their visibility under
most conditions and the round shape enables their exact center to be accurately surveyed in the real
world and precisely located within the image for accuracy in the geometry correction algorithms.

The diverse weather conditions of the area combined with the well populated, suburban
setting required that Argus station be contained in rugged, secure housings. The main housing is a
liquid tight, lockable, aluminum alloy box measuring 3' by 4' by 1.3' and is secured to a concrete form
laid into the earth. A 1/4" aluminum shield fixed over and around the housing serves as a sun shield
and provides additional protection from tampering (Image 4). The housing contains the PC, monitor,
modem, power conditioner, and some tools used during site visits. Air vents and directional fans cool
the system in the hot summer months. During the winter, the vents are sealed, the fans turned off,
and heat is generated by the electronic components. The video cameras are contained in an
environmental camera housing measuring 1.5' by 6" by 8" mounted on a pole overlooking the area of
interest (AOI) (see Image 5). This commercially available housing features a thermostat controlled
heater, cooling fans, and a window defroster allowing it to operate in extreme environmental
conditions. Power, telephone, and video cables run through liquid tight conduit and fittings.

The Argus stations currently deployed are Yaquina Head, OR (Images 2a, 2b, 3a, 3b),
Painesville, OH (Image 5), Duck, NC (Image 6), La Jolla Shores Beach, CA (Image 7), and Waimea
Bay, HI (Image 8).

AREA SURVEY

A precise survey of the area of interest must be performed before any image quantification
can be performed. Subsequent surveys are also a good idea since the area may be geologically
dynamic. A survey is necessary to determine the angles and distances between the cameras and the
GCPs. These data are then used in the geometry correction algorithms. Precision in the survey is
extremely important to ensure the accuracy of the quantification algorithms. Sub-centimeter accuracy
is required. GCPs should be surveyed to their exact center and cameras to their focal point.
Benchmarks should be installed near the site for use in future surveys. Subsequent surveys of the area
must be performed each time the cameras or GCPs are moved and should be made in the event of
extreme change in the topography of the area of interest. Periodic surveys are also helpful to check
the integrity of the data produced by the quantification programs.

DATA AVAILABILITY AND DISTRIBUTION

Properly configured, a RVM system can make its data and services available to the user
community in ways that do not threaten the security of the system. When not acquiring data, the field
station voyeur02 will accept calls from remote users. After connecting to the field station using a
computer and modem, and entering a valid login name and password provided by the system
operator, a user can acquire and download video data, learn more about the station and its usage, and
send e-mail to recipients both on the field station as well as the Internet. The requirements are a
computer or terminal, a modem capable of running between 2400 and 19200 baud, and some type of
terminal program. All connections to the field station and the actions of the users are logged and
reported to the system operator.

The phone number for the Argus station voyeur02 on Lake Erie is (216)350-9126. After
dialing the number, wait about 30 seconds while the station's modem receives the call and adjusts to
the correct baud rate. Next, the station will issue a login prompt. Login with the name "guest" and
the password "video". At this point, a banner message will appear followed by a command line
prompt. Help is available on a variety of subjects by typing in the command "help". To acquire an
image, first read the help available on the "average" program by typing "help average". To execute
the average program type, for example, "average -c 1 -f 1 snapshot" on the command line. This will
instruct the image processing board to acquire one frame from camera #1 and write the image to disk
in a file named "snapshot", which will reside in the current working directory. The image will be in
SunRaster format and should be JPEG compressed before any file transfers take place. Do this by
typing the command "compress snapshot snapshot]pg". To download a file to your local machine,
enter the file download/upload area of the system by typing in the command "files". In this mode, all
commands are recognized by the first letter of the command. First, "L"og to the directory in which

the compressed image resides. Next select the "P"rotocol to use - "Z"Modem. Finally "S"end the file
to initiate the ZModem download. Transfer times vary based on baud rates and line conditions.
"Q"uit will exit the "files" mode. The command "bye" will log the user out of the station and break
the telephone connection.

If the central laboratory computer has a real-time Internet connection, the Internet community
can access video data via the ARPANET File Transfer Protocol (FTP). This is the most efficient way
to access video data. FTP software has been written for virtually every computer platform and is
freely available in the public domain.

A typical FTP session to access video data from the USGS laboratory computer, rocky, would
begin by executing FTP with the command "ftp rocky.er.usgs.gov" or "ftp 131.247.143.106." Log in
with usemame "anonymous" and use a valid Internet or e-mail address as the password. Once the
FTP session is started, users should change directory (cd) to the /pub directory, which contains
subdirectories for each of the field stations deployed by the Center, with the command "cd pub". Help
is available by tying in a question mark "?" and banner messages will guide the user as they peruse
the file system.

Image files are placed in a directory structure organized according to the date and camera of
acquisition. For example, images acquired by camera #1 of the RVM field station voyeur02, on
November 14, 1993 would be stored in the subdirectory "/pub/voyeur02/93/318_Nov.l4/cam_l".
The 318 proceeding the date is the Julian day of acquisition. Similarly, images acquired on the same
day, but from camera #2, would be in the subdirectory l7pub/voyeur02/93/318_Nov.l4/cam_2".

In each of the above examples, the subdirectories would contain image files named according
to the following convention:

UNIXT1ME.WDAY.MON.MDAY_TIME.ZONE.YEAR.TYPE.CAM.FORMAT

UNDtTIME, consisting of 9 digits, is a UNIX method of referring to time as the number of non-leap
seconds since January 1, 1970, the generally accepted inception date of the UNIX operating system.
Decoded, this number yields the date and time fields of the image file name. TYPE represents
whether the image is a snapshot (snap) or time exposure (timex). CAM symbolizes the camera
number used to acquire the image. FORMAT is a 3 character extension labeling the type of image
file format used.

eg. 753282056.Sun.Nov.l4_13:00:56.GMT.1993.snap.l.jpg

The above example is the filename of an image acquired at 13:00:56 Greenwich Mean Time on
Sunday, November 14, 1993. The image is a snapshot acquired from camera #1 and is in JPEG
image file format.

To download an image first change directory to the file structure location for the desired field
station, date and camera. Next, type "get filename" where filename is the name of the desired image
file. For example, to download the image in the above example, first type "cd
/pub/voyeur02/93/318_Nov.l4/cam_l" to move into the proper directory. Then type "get
753282056.Sun.Nov.l4_13:00:56.GMT.1993.snap.l.jpg". The command "bye" or "quit" will end
the FTP session. All FTP sessions are logged and reported to the system operator daily.

OSU maintains a database of image data from all Argus stations presently deployed. To
access this archive, ftp ruby.oce.orst.edu (128.193.64.54) with login name "anonymous" and a valid
e-mail address as a password. In the /pub directory are sub-directories called LakeErieArgus,
DuckArgus, etc. Within these directories, the directory structure follows the same conventions as
described above.

VIEWING RVM IMAGERY

Imagery downloaded from either the field station(s) or the FTP sites is in JPEG image file
format. This is currently the industry standard compression algorithm and many public domain,
shareware, and commercial image viewers for all computer platforms will readily decompress and
display JPEG images. Example shareware programs are LView for PCs running Microsoft
Windows, JPEGView for Macintosh computers, and xv for Unix workstations using XI1 based
interfaces (OpenLook, Motif, etc).

DATA PROCESSING

Image processing tasks will vary with the areas and processes being observed. There is a
large base of software available to lay a foundation for most image processing tasks. Processing of
the images returned by voyeur02 begins by converting the images to SunRaster image file format.
Though images on the field station are JPEG compressed to reduce storage space and increase data
transfer rates, the format is inappropriate for image processing. SunRaster's simple, uncompressed
image file format readily lends itself to image processing and is quite suitable for scientific analysis.
All data quantification and image processing tools developed for the RVM system are written
specifically around the SunRaster image file format.

The next processing step is to produce a solution file for the image geometry using a software
tool such as geomtool, which was developed at OSU's Coastal Imaging Lab. Geomtool is a graphical
software tool that allows the user to interactively select the image locations of GCPs. Geomtool then
solves for the image geometry using the topographical locations of the GCPs and produces a least
squares solution for photogrammetric coordinate transformation (Holman et a/, 1993).

Ideally, the cameras should be secured in a position that will not fluctuate. However,
voyeur02's camera positions are not constant due to buffeting winds, human interaction during site
visits, and the occaisional relocation of the camera housing. These events determine how frequently a
geometry solution needs to be produced. Generally, a geometry solution will have to be produced for
each week's worth of data though there have been cases were a unique solution was required for each
image acquired in a single day.

Geomtool produces a geometry solution which allows U,V image coordinates (U and V are
used in place of X and Y to avoid confusion) to be transformed to x,y,z ground coordinates provided
that the third dimension, z, is already known. For example, when transforming shoreline coordinates,
the z value can be assumed to be lake level. This dimensional coordinate is obtained from water level
data provided by the Great Lakes Water Level Database maintained by NOAA. Once the geometry

solution is known, the location or size of features within the image can be computed from their U,V
image coordinates.

A regular processing task for voyeur02's images is the digitization of the shoreline. This is
achieved by running a primitive edge detector on the images to determine the point where the water
and land meet in time exposure images (frame averages) provided by camera #2. Camera #2 is used
because its wider angle lens captures the entire shoreline of the area of interest. Time exposures are
desirable since they offer a more reliable "average shoreline location" than their snapshot counterparts
and also limit the pixel values representing the water to a predictable range. This range is the key to
determining shoreline location. For each row of the image, working from left to right, or from the
pixels representing water towards those representing the shore, each pixel is inspected for inclusion in
a range of pixel values encompassing the predicted pixel values for "average water brightness".
When a pixel is encountered that is not in this range it is assumed that it represents a feature other
than water and therefore is the location of the water's edge. The pixel's (x,y) image location is then
highlighted in the image and recorded in an ASCII file. Since edge detection is not 100% accurate,
visual inspection of the images and occasional editing of the ASCII image coordinates file is required.

Another processing task performed on the images is the digitization of the ice edge, as it
grows out from the shoreline during the winter months, in order to determine growth rates, ice
volume, and ice stability. A slightly different edge detecting algorithm than the one to locate
shorelines aids in determining where the water and ice edge meet. Again, frame averages from
camera #2 are used because camera #2 offers a view of the entire shoreline and because the frame
averages limit the range of pixel values representing water. The difference between the pixel
intensities of the white ice and the underlying brown water is the key to edge detection. For each row
of the image, starting with the pixels representing water and working towards the shore, each pixel
value is subtracted from the value of the pixel adjacent to it in the row. If the difference between the
2 pixels is greater than a defined threshold representing the predicted difference between the pixel
values representing white ice and those representing average water color it is assumed that the edge of
the ice has been found. The pixel's (x,y) location is then highlighted in the image and recorded in an
ASCII file. Again, visual inspection of the highlighted edges and editing of the ASCII coordinates
file is often required to ensure proper edge detection.

The image coordinates determined by the edge detecting programs can then be transformed to
ground coordinates using the geometry solutions produced by geomtool. This essentially allows
continuous digital surveys of the area without the need to physically visit the site.

CONCLUSION

Remote Video Monitoring systems are a cost effective means of collecting daily video
records of truly remote areas. Video data has proven to be useful in a variety of coastal studies and
offers many advantages over conventional sensing methods. RVM systems provide automatic data
acquisition, collection, processing, and archiving. Administration of the systems consists mainly of
monitoring daily system-generated status messages. The systems also provide several avenues of
distribution for both raw and processed video data and extend their services to the user community.
Agencies wishing to take advantage of Remote Video Monitoring systems can benefit from over a

10

decade of research and development which has resulted in a wholly complete and reliable data
system.

#

(References to specific products are made for identification purposes only and do not indicate an
endorsement on the part of the U.S. Geological Survey).

11

REFERENCES

Holland, K.T. and Holman, Rob .A., 1993, The statistical distribution of swash maxima on natural
beaches. Journal of'GeophysicalResearch, 98(C6), 10371-10278.

Holman, Rob A., and Guza, R.T., 1984, Measuring run-up on a natural beach. Coastal Engineering,
8, 129-140.

Holman, Rob A., Sallenger Jr., Asbury H., Lippmann, Tom C., Haines, John W., 1993, The
application of video image processing to the study of nearshore processes. Oceanography,
v.6, n.3, p. 78-85.

Lippmann, Tom C., and Holman, Rob A., 1989, Quantification of sand bar morphology: a video
technique based on wave dissapation. Journal of Geophysical Research, 94(C1), 995-1011.

Lippmann, Tom C., and Holman, Rob A., 1991, Phase speed and angle of breaking waves measured
with video techniques. In: Coastal Sediments, '91, N. Kraus, ed., ASCE New York, 542-556.

12

13

14

91

io Area of Interest

18

oz

21

APPENDIX A. Frame Averaging C Code

/* Average, c is a frame averaging program to average X number of frames
and store the resulting file to disk. Version 1.1 was produced by John
Stanley of OSU. Version 1.2 is a variation produced by Bill Townsley
of USGS to allow for multiple cameras. */

^include <stdio.h>
^include <stdlib.h>
^include <time.h>
include "stddefs.h"
^include "ptype.h"

tfdefme TAGFILE "C:\\P360F\\A.TAG"
#defme FN_LEN 80
#define HORIZ 640
#defme VERT 480
tfdefine CAM_PORTS 4
#defme VERSION "Frame Averaging Program Version 1.2 by Bill Townsley 2/25/93. \n"

/* Initialize struct with default gain, offset and framecount. */
/* No filename and bad camera number given for error checking */
/* since they must be specified by the caller anyway. */
struct arg_struct {

char outfile[FN_LEN];
int gain;
int offset;
int framecount;
int camera;

}args= {"",38,48,2400,9};

time_t now;

usage is called from parse_args and check_args and gives
information on how to use the program.

void usageQ
{

fprintf(stdout, "\nUsage: average [-g gain] [-o offset] ");
fprintf(stdout, "[-f framecount] [-c 1..2] filename\n");
fprintf(stdout, "\n -default switches are '-g 38 -o 48 -f 2400V);

fprintf(stdout, " -camera and filename must be specified\n");
exit(l);

/**

parse_args is called from main to parse the command line
argument list and acquire images accordingly.
********************************* ** ******************#*****/

void parse_args(argc, argv)
int argc;
char *argvQ;

{
int i = 1 ;

while (i < argc) {
if (*argv[i] = '-'){

switch(*(argv[i] + 1)) {
case 'o':

args. offset = atoi(argv[i++]);
break;

case '':

args.gain = atoi(argv[i++]);
break;

case'f :

args.framecount = atoi(argv[i++]);
break;

case'c1 :

args. camera = atoi(argv[i++]);
break;

default:
usageQ;

}
} else

strncpy(args.outfile, argv[i++], FN_LEN);

return;

23

check_args is called from main and checks to see that the
command line arguments are acceptable.

void check_args()
{

int i, namejength;

if (fopen(args.outfile, "r") !=NULL) {
fprintf(stdout, "\nFile(s) already exists: %s\n", args.outfile);
fprintf(stdout, "Filenames must be unique.\n");
usageQ;

}
if ((args. camera != 1) && (args.camera != 2)) {

fprintf(stdout, "\nBad or missing camera value.W);
usageQ;

}
if (strlen(args.outfile) < 1) {

fprintf(stdout, "\nMust specify output filenameW);
usageQ;

}
if (args.offset < 10 || args.offset > 63) {

fprintf(stdout, "\nBad offset value: %d\n", args.offset);
usageQ;

}
if (args.gain < 10 || args.gain > 63) {

fprintf(stdout, "\nBad gain value: %d\n", args.gain);
usageQ;

}
if (args.framecount <= 0 || args. framecount > 24000) {

fprintf(stdout, "\nBad framecount value: %d\n", args.framecount);
usageO;

}
return;

^* ***

load_init_dsp is called from acquire_images to load digital signal
processing (DSP) code and initialize DSP memory.
***/
void load_init_dsp()
{

init_dram();
load_tag_file(TAGFILE);

24

mn_dspO;
init_cbinding();
sleep(l);
return;

acquire_images is called from main and acquires images
according to the command line arguments.

void acquire_images()
{

char start[80], end[80];

load_init_dspO;
fprintf(stdout, "\n%s\n", VERSION);
fprintf(stdout, "Output: %s\n", args.outfile);
fprintf(stdout, "Gain: %d, Offset: %d, Frame: %d, Camera: %d\n", \
args.gain, args. offset, args.framecount, args. camera);
fprintf(stdout, "Average will take approx %d seconds\n", \
(int)(args .framecount/3 . 3));

set_gain_and_offset(args.gain, args. offset, TRUE);
set_grab_size(HORIZ, VERT, TRUE);
set_video_input(args . camera, TRUE);
frame_grab(0, TRUE);

time(&now);
strcpy(start, ctime(&now));
fprintf(stdout, "Starting average NO W!\n");
faverage(args.framecount, 0, TRUE);
time(&now);
strcpy(end, ctime(&now));
ras_image_buffer_to_disk(0, args.outfile);
fprintf(stdout, "Started at: %s\n", start);
fprintf(stdout, "Ended at: %s\n", end);

return;

void main(argc, argv)
int argc;
char *argv[];

25

if (argc < 4)
usageO;

parse_args(argc, argv);
check_argsQ;
acquire_imagesQ;
exit(O);

26

APPENDIX B. Image Acquisition Perl Script

snap a picture, UUCP it to the central lab computer

$now = time;
system("average -c 1 -f 1 -g 34 -o 50 Snow.snp");
system("cjpeg4 -quality 80 Snow.snp Snow.jpg");
system("uucp -c Snow.jpg wayback!~/receive/townsley/voyeur02/cam_2/$now.snap.2.jpg");
unlink "$now.snp";
unlink "$now.jpg";

Snow = time;
system("average -c 1 -f 600 -g 34 -o 50 $now.tmx");
system("cjpeg4 -quality 80 Snow.tmx Snowjpg");
system("uucp -c Snow.jpg wayback!~/receive/townsley/voyeur02/cam_2/$now.timex.2.jpg");
unlink "Snow.tmx";
unlink "Snow.jpg";

Snow = time;
system("average -c 2 -f 1 -g 35 -o 48 Snow.snp");
system("cjpeg4 -quality 80 $now.snp Snow.jpg");
system("uucp -c Snow.jpg wayback!~-/receive/townsley/voyeur02/cam_l/$now.snap.l.jpg");
unlink "Snow.snp";
unlink "Snow.jpg";

$now = time;
system("average -c 2 -f 600 -g 35 -o 48 Snow.tmx");
system("cjpeg4 -quality 80 $now.tmx Snow.jpg");
system("uucp -c $now.jpg wayback!~/receive/townsley/voyeur02/cam_l/$now.timex.l.jpg");
unlink "Snow.tmx";
unlink "$now.jpg";

27

APPENDIX C. Data Storage Perl Script

#!/net/rocky/rocl/local/bin/perl

This script moves RVM video data from staging directories on wayback to
the video archive directory structure on rocky.
#
USAGE: rvm_mv_data.pl [station_name]
#
The default is for all data from all cameras from all stations to be
moved. There is no harm if no data for any station is in the staging
area. Results of the creation of new archived sub-directories and the
movement of files is mailed to the SYSOP.
#
The text file rvm_data is REQUIRED for this script to work. Its
location is defined below.

required to decode time
require "ctime.pl";

some boolean values
$TRUE = 0;
$FALSE = 1;

a boolean variable
$FOUND = SFALSE;

location of mail utility
= "/usr/ucb/mail";

mail alias for the sysop
$SYSOP = "townsley";

arrays of daily monthly data
@DoW = ('SunVMonVTueVWed','Thu','Fri','Sat');
@MoY = ('JanVFeb','MarVApr','May','Jun',

'JulVAug','SepVOct','Nov','Dec');

location of the rvm data file
$RVM_FELE = "/net/rocky /roc l/home/townsley/rvm_scripts/rvm_data";

check for argument

28

if($#ARGV > 0) {
print "\nUSAGE: rvm_mv_data.pl [station_name]\n";
print " Function: moves data from staging area to storage areaW;
print " Default: move data from ALL field stations\n\n";
exit(O);}

open the rvm data base file
open(RVM_FILE, $RVM_FILE) || die "Can't open/find $RVM_FILE\n";

for each station described in the rvm_data file OR
for the single station listed on the command line.

LOOP1: while(($rvm_data = <RVM_FILE>) && (SFOUND == $FALSE)) {

get rid of the newline
chop($rvm_data);

a counter to specify camera
$counter=l;

break out station name, location, login name, password
telephone number, number of cameras, source directory, and
destination directory from current rvm data file line.
skip any comments
if($rvm_data =~ /A#/) {
next LOOP 1;}

else {
($Name,$Loc,$Login,$Passwd,$Number,$Cameras,$Src,$Dst) =
split(/,/,$rvm_data);}

if a single station was indicated check to see
if we've found it, if not move to next line
if($#ARGV == 0) {

if($Name eq $ARGV[$#ARGV]) {
$FOUND = $TRUE;}

else {
nextLOOPl;}

open a mail for for logging to the SYSOP
open(MAIL,"| $MAIL -s SName.data.files SSYSOP"),

29

it n ii n n ii it ii n n it it n n iiim n tin
for each camera the station has..
U-ttlLII IIII ILlLLLllJiiL-U-H-lllLLLLLU ll-IIM I4U-IIIIH HILLL1L1LLL1LLLLL

LOOP2: while($counter <= SCameras) {

create the source camera pathname
$src_cam_dir=sprintf("%s/cam_%01d",$Src,$counter);

open and read the source camera directory
opendir(SRC_CAM_DIR,$src_cam_dir);
@camfiles = grep(!/A\.\.?$/,readdir(SRC_CAM_DIR));
closedir(SRC_CAM_DIR);

indicate which station/camera we're on
print MAIL "\n $Name Camera #$counter file transfer log \n\n";

for every source file in the camera directory

LOOP3: while($_ = shift @camfiles) {

reset the time variable
$time=0;

if the filename begins with 9 digits, extract the 9
digit time variable and the image type from the filename
else move on to next file
if(/A(\d\d\d\d\d\d\d\d\d)/) {

($time, $type)=split(A./,$_,2);}
else {
nextLOOP3;}

break out time components from the 9 digit time code
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=gmtime($time);

convert yday into Julian day
$yday++;

create/open the base destination directory
$dst_base_dir=sprintf(((%s/%02d/%03d_%s.%02d11 ,

$Dst,$year,$yday,$MoY[$mon],$mday);
if(!opendir(DST_BASE_DIR, $dst_base_dir)) {

30

system("mkdir $dst_base_dir");
system("chmod 755 $dst_base_dir"); }

close(DST_BASE_DIR);

create/open sub directories for the current camera
and log results
$dst_cam_dir = sprintf("%s/cam_%01d",$dst_base_dir,$counter);
if(!opendir(DST_CAM_DIR, $dst_cam_dir)) {

system("mkdir $dst_cam_dirn);
system("chmod 755 $dst_cam_dir");
print MAIL "\ncreated $dst_cam_dir\n"; }

close(DST_CAM_DIR);

create source and destination filenames,
copy the file to the destination directory,
test that it actually was relocated
then delete the original file
$src_cam=sprintf(ll %s/%s",$src_cam_dir,$J;
$dst_cam=sprintf(M%s/%s.%s.%s.%02d_%02d:%02d:%02d.GMT.19%02d.%s",

$dst_cam_dir,$time,$PoW[$wday],$MoY[$mon],$mday,$hour,$min,
$sec,$year,$type);

system("cp $src_cam $dst_cam");
system("chmod 644 $dst_cam");
if(-e $dst_cam) {
unlink $src_cam;
print MAIL "\n$time.$type to $dst_cam\n";}

else {
print MAIL "\nERROR $src_cam not moved\n";}

} # END OF LOOP3

increment the camera counter variable
$counter++;

} #END OF LOOP2

close things down
close $RVM_FILE;
close MAIL;

}#ENDOFLOOP1

if a single station was indicated and

31

never found give an error message.
if(($#ARGV = 0) && (SFOUND != $TRUE)) {
print "\n$ARGV[$#ARGV] not valid selection\n";
print" run rvm_stations.pl or check rvm_data file\n\n";}

32

