HYDROGEOLOGIC, SOIL, AND WATER-QUALITY DATA FOR J-FIELD, ABERDEEN PROVING GROUND, MARYLAND, 1989-94

By Daniel J. Phelan, Elizabeth H. Marchand, Martha L. Cashel, Michael T. Koterba, Lisa D. Olsen, and Peggy R. Nemoff

U.S. GEOLOGICAL SURVEY

Open-File Report 96-128

Prepared in cooperation with the

U.S. ARMY GARRISON, ABERDEEN PROVING GROUND ENVIRONMENTAL CONSERVATION AND RESTORATION DIVISION ABERDEEN PROVING GROUND, MARYLAND

Towson, Maryland

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 208 Carroll Building 8600 LaSalle Road Towson, MD 21286 Copies of this report can be purchased from:

U.S. Geological Survey
Branch of Information Services
Box 25286
Denver, Colorado 80225-0286

CONTENTS

	rage
Abstract	1
Introduction	1
Purpose and scope	3
Description of study area	3
Previous investigations	5
Description of observation-well network	6
Borehole drilling and well construction	6
Exploratory boreholes	6
Observation wells	6
Location and numbering system of wells	9
Acknowledgments	9
Hydrogeologic data	11
Geologic data	11
Geophysical data	11
Hydrologic data	12
Soil data	13
Soil-gas data	13
Soil-quality data	14
Water-quality data	14
Surface-water samples	14
Ground-water samples	14
Evaluation of quality-assurance data	15
Quality assurance of soil data	17
Inorganic analytes	17
Organic analytes	17
Quality assurance of surface-water data	18
Inorganic analytes	18
Organic analytes	18
Quality assurance of ground-water data	19
Inorganic analytes	20
Organic analytes	21
Summary of data evaluation	24
References cited	25
ILLUSTRATIONS	
	Page
Figure 1. Map showing location of J-Field study area, Aberdeen	
Proving Ground, Maryland	2
2-4. Maps showing location at J-Field, Aberdeen Proving	
Ground, Maryland, of:	
 Solid-waste-management units, the Prototype 	
Building, South Beach, and land-cover types	4
3. Wells	7
4. Boreholes where geophysical logging has been	
performed	8

ILLUSTRATIONS--Continued

		Page
5.	Diagram showing construction of typical observation well at J-Field, Aberdeen Proving Ground, Maryland	10
6.	Graphs showing geophysical logs from J-Field, Aberdeen	
	Proving Ground, Maryland, for:	
	(a) borehole B-1	170
	(b) borehole B-2	171
	(c) borehole B-3	172
	(d) boreholes B-4, B-5, B-6, and B-7	173
7.	Maps showing electromagnetic-induction sampling grids	
	for J-Field, Aberdeen Proving Ground, Maryland, at the:	
	(a) toxic-materials disposal area	174
	(b) riot-control-agent disposal area	175
	(c) Prototype Building area	176
	(d) white-phosphorus disposal area	177
8.	Hydrographs showing daily mean water levels at J-Field,	
	Aberdeen Proving Ground, Maryland, for calendar years	
	1989-94, in wells:	
	(a) JF11 and JF13	178
	(b) JF21 and JF23	179
	(c) JF31 and JF33	180
	(d) JF41 and JF43	181
	(e) JF61 and JF63	182
	(f) JF91 and JF93	183
	(g) JF111 and JF113	184
9.	Hydrograph showing tidal fluctuations of the Chesapeake	
	Bay at the Robins Point tide gage, Aberdeen Proving	
	Ground, Maryland, November 2 to December 15, 1989	185
10-13.	Maps showing location at J-Field, Aberdeen Proving	
	Ground, Maryland, of:	
	10. Soil-gas sampling sites at the	
	(a) toxic-materials disposal area, Phase I	186
	(b) white-phosphorus disposal area, Phase I	187
	11. Soil-gas sampling sites at the	
	(a) toxic-materials disposal area, Phase II	188
	(b) riot-control-agent disposal area, Phase II.	189
	12. Soil-quality sampling sites	190
	13. Surface-water sampling sites	191

TABLES

			Page
Table	1.	Well-construction data for observation wells installed by the U.S. Geological Survey at J-Field, Aberdeen	
		Proving Ground, Maryland	26
	2.	Lithologic logs for well cluster 12 and wells JF133, JF143, JF153, and JF163 at J-Field, Aberdeen Proving Ground, Maryland	27
	3.	Relative percentages of minerals in core samples from	
		wells JF41 and JF91, and borehole B4, J-Field,	
		Aberdeen Proving Ground, Maryland	29
	4.	Percentage of major elements in core samples from	
		wells JF41 and JF91, and borehole B4, J-Field,	
		Aberdeen Proving Ground, Maryland	30
	5.	Concentrations of trace elements in core samples from	
		wells JF41 and JF91, and borehole B4, J-Field, Aberdeen	
		Proving Ground, Maryland	31
	6.	Percentage of pollen types in core samples from wells	
		JF61 and JF81, and borehole B3, J-Field, Aberdeen	
		Proving Ground, Maryland	32
	7.	그들의 회사의 집 집에 가는 선생님이 있는 것이 없는데 이렇게 되었다면 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하다면 하는데	
		Aberdeen Proving Ground, Maryland, at the:	
		(a) toxic-materials disposal area	33
		(b) riot-control-agent disposal area	36
		(c) Prototype Building area	37 38
		(d) white-phosphorus disposal area	20
	8.	Measured ground-water levels at J-Field, Aberdeen Proving	
		Ground, Maryland, October 1989 through September 1994	40
	9.	Daily mean ground-water elevations at J-Field,	
		Aberdeen Proving Ground, Maryland,	
		October 1988 through September 1990	57
	10.	Slug-test data from J-Field, Aberdeen Proving Ground,	
		Maryland, January 1990	82

TABLES--Continued

11-12.	Soil-gas data from J-Field, Aberdeen Proving Ground, Maryland, for:	Page
	11. Phase I, March 1989	83 85
13-14.	Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland, for:	
	13. Inorganic constituents, April 1991	
15-16.	Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland, for:	
	 Inorganic constituents, spring and fall 1993 Organic constituents, spring and fall 1993 	
17-18.	Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland, for:	
	17. Inorganic constituents, Phase I, May-June 1990 18. Organic constituents, Phase I, May-June 1990	
19-20.	Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland, for:	
	19. Inorganic constituents, Phase II, November 1992 through January 1993	141
	20. Organic constituents, Phase II, November 1992 through January 1993	147
21.	Percentage of recovery for volatile organic compounds detected in field matrix spikes of ground-water samples, compared to laboratory matrix spikes and spike duplicates,	
	Phase II, December 1992 and January 1993	169

HYDROGEOLOGIC, SOIL, AND WATER-QUALITY DATA FOR J-FIELD,

ABERDEEN PROVING GROUND, MARYLAND, 1989-94

By Daniel J. Phelan, Elizabeth H. Marchand, Martha L. Cashel, Michael T. Koterba, Lisa D. Olsen and Peggy R. Nemoff

ABSTRACT

J-Field is located at the southernmost tip of the Gunpowder Neck Peninsula on the western shore of the Chesapeake Bay in the Edgewood Area of Aberdeen Proving Ground, Maryland. J-Field has been used by the U.S. Army to test munitions filled with chemical-warfare agents and to dispose of toxic chemicals, chemical-warfare agents, and explosives by open-pit burning. This report presents data collected by the U.S. Geological Survey from November 1989 through September 1994 as part of a remedial investigation of J-Field, Aberdeen Proving Ground, Maryland, in response to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Hydrogeologic data, soil-gas and soil-quality data, and water-quality data are included.

INTRODUCTION

J-Field is located at the southernmost tip of the Gunpowder Neck Peninsula on the western shore of the Chesapeake Bay in the Edgewood Area of Aberdeen Proving Ground, Maryland (fig. 1). J-Field has been used by the U.S. Army to test munitions filled with chemical-warfare agents and to dispose of toxic chemicals, chemical-warfare agents, and explosives by openpit burning. Testing and disposal began shortly after World War I and continued into the 1970's. Presently (1996), only emergency disposal operations are conducted at J-Field.

In 1986, J-Field was placed under the regulations described by the Resource Conservation and Recovery Act (RCRA) that govern operations at hazardous-waste disposal sites. In 1987, the U.S. Army contracted with the U.S. Geological Survey (USGS) to conduct a Hydrogeologic Assessment (HGA) of J-Field. The USGS began a study to determine the hydrogeologic framework and the extent of ground-water contamination at J-Field. In 1990, all of the Edgewood Area of Aberdeen Proving Ground, including J-Field, was added to the National Priority List (NPL) and therefore was subject to the regulations described by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), also known as Superfund. In order to complete all of the CERCLA requirements, a Remedial Investigation (RI) and Feasibility Study (FS) were required. This report presents results from part of that data-collection effort.

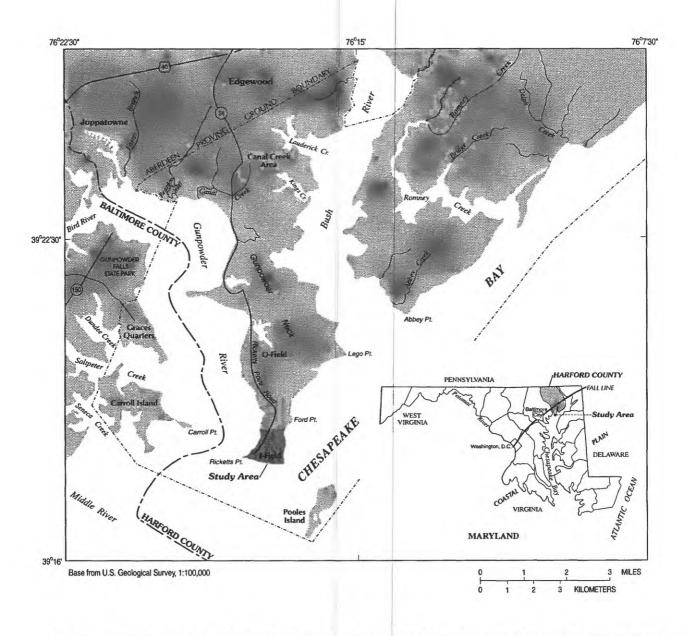


Figure 1.--Location of J-Field study area, Aberdeen Proving Ground, Maryland.

Purpose and Scope

The purpose of this report is to present data collected by the USGS from November 1989 through September 1994 as part of the CERCLA remedial investigation of J-Field, Aberdeen Proving Ground, Maryland. Hydrogeologic data, soil-gas and soil-quality data, and water-quality data are presented. All illustrations (except for figs. 1-5) and tables are located at the back of the report. This report summarizes data used to describe the hydrogeologic framework and soil gas (Hughes, 1993), ground-water flow, and possible effects of remedial actions at J-Field (Hughes, 1995).

Description of Study Area

The topography of J-Field is relatively flat. Uplands located along the western side of the study area are approximately 15 ft above sea level and gently slope either toward shores of the surrounding estuaries or toward marsh areas. Tidal estuaries surround J-Field on three sides: the Gunpowder River is to the west and the Chesapeake Bay is to the south and east. Vegetation at J-Field ranges from open fields and second-growth forest to nontidal marsh.

Four major hydrogeologic units were identified beneath J-Field by Hughes (1993). From land surface downward these are (1) the surficial aquifer [unit A of the Talbot Formation], (2) the confining unit [unit B of the Talbot Formation], (3) the confined aquifer [unit C of the Talbot Formation], and (4) the confining units and confined aquifers in the Patapsco Formation.

Investigations at J-Field by the USGS focused on the three solid wastemanagement units (SWMU's): the toxic-materials disposal area, the white-phosphorus (WP) disposal area, and the riot-control-agent disposal area (fig. 2). The immediate vicinities of the toxic-materials and WP disposal areas are clear of trees and brush and are usually mowed once a year. At both the toxic and WP disposal areas, there are two parallel disposal pits that are approximately 15 ft apart. Each pit is 10 ft deep and approximately 200 ft long by 15 ft wide. Remnants of older pits extend approximately 100 ft into the marsh southeast of the existing pits at the toxic-materials disposal area. The riot-control-agent disposal area contains a single pit, approximately 500 ft long, and is now in a wooded area. All of the pits were originally designed so that any precipitation that collected in them would drain into the adjacent marsh or river.

The South Beach demolition area was used primarily for the detonation of high-explosive munitions. Because of the high rates of shoreline erosion in this part of J-Field, the area is now offshore in the Chesapeake Bay. Its presence is marked only by the abundant fragments of munitions that can be observed at low tide (Hughes, 1993).

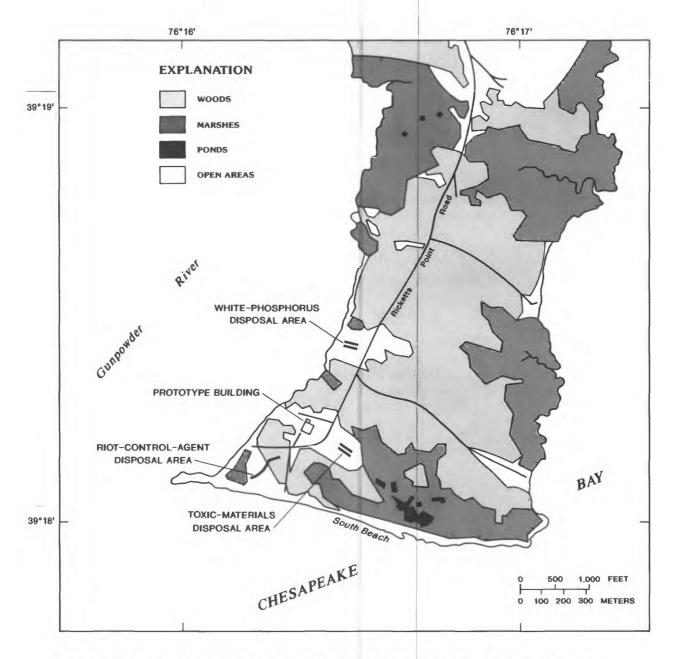


Figure 2.--Location of solid-waste-management units, the Prototype Building, South Beach, and land cover types at J-Field, Aberdeen Proving Ground, Maryland.

The most prominent structure at J-field is the Prototype Building (fig. 2). The building is a three-story, open concrete structure that was probably used to store chemicals, although there are no known records of such use. The building was designed to test the effectiveness of weapons on German building construction during World War II. There are no pits or other obvious signs of disposal activities in the vicinity of the building (Hughes, 1993).

Previous Investigations

The first environmental survey of J-Field was conducted during 1977-78 by the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) (Nemeth and others, 1983). The study involved conducting a records search; collecting hydrogeologic data; and sampling soil, sediment, ground water, and surface water for chemical analysis. Wells installed for the study were screened from approximately 6 to 20 ft below land surface. Nemeth and others (1983) concluded that deposits of interbedded sand and clay encountered during test-hole drilling belonged to the Cretaceous Potomac Group. Water levels measured in observation wells indicated that lateral ground-water flow was from the upland areas toward the adjacent rivers or marsh, and that the surface of the water table generally followed the configuration of the land surface. Soil, borehole sediment, and surface-water samples collected during the study did not contain any contaminants. Ground-water samples contained low concentrations of volatile organic compounds. On the basis of low or undetectable concentrations, Nemeth and others (1983) concluded that the concentrations of contaminants at J-Field were not a threat to the environment and that future monitoring was not necessary.

Munitions disposal was studied in 1983 by Princeton Aqua Science (1984) to evaluate the environmental effects of the disposal operations at J-Field. The study involved site inspections, interviews with appropriate siteoperations personnel, and field investigations. Nine observation wells were installed and screened from 5 to approximately 20 ft below land surface. During drilling, borehole samples were collected and analyzed for chemical constituents. Borehole-sediment samples at the toxic-materials disposal area were found to contain concentrations of arsenic, cadmium, lead, and mercury that were higher than those in adjacent areas. After installation of the wells was completed, ground-water samples were collected and analyzed for chemical constituents. Ground-water samples collected from wells at the toxic-materials disposal area exceeded the 1983 USEPA Maximum Contaminant Levels (MCL's) for nitrates, coliform bacteria, and gross-beta radiation. Secondary Maximum Contaminant Levels (SMCL's) for chloride, iron, manganese, and sulfate also were exceeded. At the WP disposal area, the primary MCL for coliform bacteria was exceeded and the SMCL's for iron and sulfate were exceeded. The study concluded that the burning operations were not adversely affecting ground-water quality, however, and the disposal practices did not need to be substantially altered (Princeton Aqua Science, 1984).

The RCRA Facility Assessment (Nemeth, 1989) contains the most comprehensive information available on the disposal of chemicals in the study area. The report reviews and summarizes previous work at J-Field and recommends continued investigations of the toxic-materials disposal area,

the WP disposal area, the riot-control-agent disposal area, the Prototype Building, and the South Beach area (fig. 2).

Hughes (1991) used marine-seismic profiling to define paleochannels in the surficial deposits at J-Field. Hughes (1993) defined the hydrogeology and the results of soil-gas sampling at J-Field. Several possible remedial actions were simulated using a ground-water-flow model (Hughes, 1995).

Description of Observation-Well Network

In 1989, 38 observation wells were drilled as part of this study and were used in conjunction with 20 existing wells to establish a water-level and ground-water-quality sampling network (fig. 3). Methods used for the drilling and construction of the wells, and the numbering system for the wells, are described in the following sections.

Borehole Drilling and Well Construction

Exploratory boreholes

Seven exploratory boreholes were drilled by the USGS to define the subsurface hydrogeologic framework (fig. 4). The boreholes were drilled with a mud-rotary technique to depths of approximately 300 ft below land surface. Drill cuttings were collected with a sieve from the mud returning at the top of the borehole. Split-spoon samples were collected when formation changes were determined on the basis of well cuttings or when changes occurred in the drill-rig response, such as a change in the penetration rate or bouncing of the drill string. After completion of the drilling, borehole geophysical logs were run in each of the exploratory boreholes (see section entitled "Geophysical Data"). Five of the exploratory boreholes were then filled to land surface with cement grout. Observation wells JF1 and JF2 were constructed in boreholes 6 and 7, respectively.

Observation wells

Thirty-six additional wells were installed in shallow 10-in.-diameter boreholes that were drilled with a hollow-stem auger rig. Undisturbed core samples were collected as each 5-ft section was drilled. Samples of the core were collected at selected intervals to determine the mineralogy and palynology of the geologic sediments. Because the auger flights served as a temporary well casing, drilling mud was not used. Construction records for the USGS wells are shown in table 1.

All wells were constructed using 4-in. polyvinyl chloride (PVC) well casing. Well screens were made of 4-in. wire-wrapped stainless steel, which was used because of concern about the resistance of PVC screen to various organic compounds that might be present in the aquifers. The casing and well screen were threaded so that no glues or solvents were used in the well construction. A filter pack of medium-sized quartz sand was installed by tremie pipe from the bottom of the borehole to 1 ft above the top of the well screen. A 2-ft-thick layer of bentonite clay pellets was added to prevent grout penetration into the filter pack. Cement grout containing

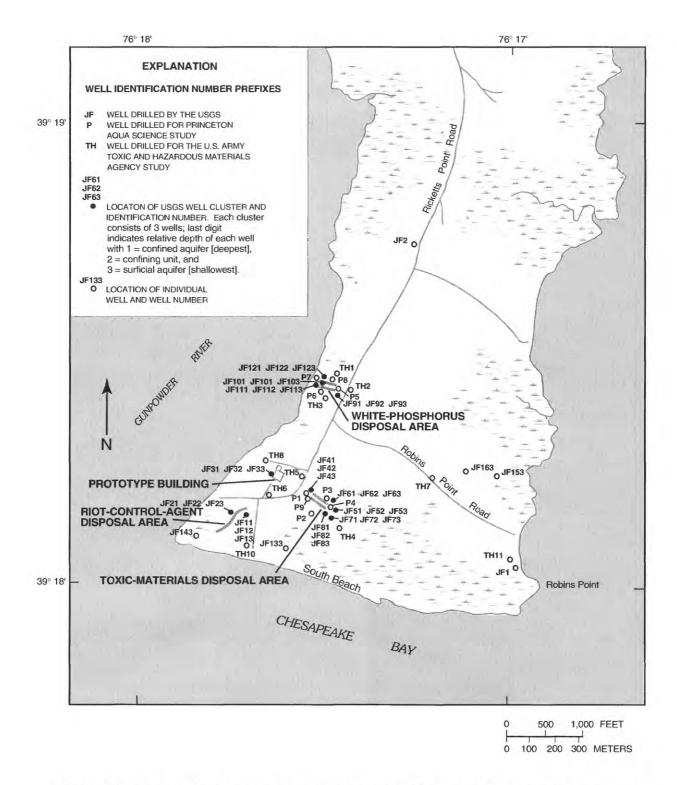


Figure 3.--Location of wells at J-Field, Aberdeen Proving Ground, Maryland.

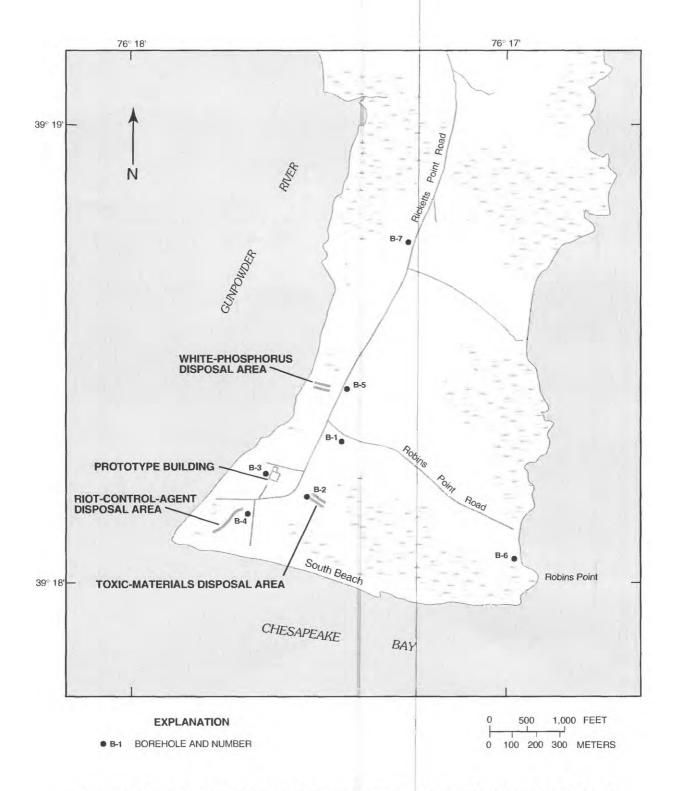


Figure 4.--Location of boreholes where geophysical logging has been performed at J-Field, Aberdeen Proving Ground, Maryland.

5-percent bentonite was then added through a tremie pipe, filling the annular space between the borehole and casing from the bentonite seal to land surface. If the grout subsided more than a few feet below land surface after drying, more of the cement-bentonite mixture was added to bring the grout surface closer to land surface. A 6-in. by 6-in. square steel protective pipe was placed around the well casing and embedded in a bentonite slurry. The bentonite prevents water from leaking around the well casing but is not destroyed by frost heaving. A 4-ft by 4-ft cement pad was placed around all finished wells. Typical construction of an observation well at J-Field is shown in figure 5.

The wells were developed with an airlift system until either clean water was pumped from the well, or, for extremely low-yielding wells, three well volumes of water were removed. Water levels in wells screened in the confining unit were lowered to the screen and pumping was stopped to allow the water levels in the wells to recover. Development of these wells may not have been as complete as in the wells with higher yields. The water pumped from the wells was sampled for volatile organic compounds and then taken to the Edgewood sewage treatment facility for disposal.

Location and Numbering System of Wells

Wells constructed for the Princeton Aqua Science study are numbered P1 to P9, and the wells constructed for the USATHAMA study are numbered TH1 to TH11 (fig. 3). For the USGS work, observation wells numbered JF1 and JF2 were constructed in two exploratory boreholes. Clusters of three observation wells each were constructed at 12 sites in J-Field. These are referred to as USGS well-cluster sites 1 to 12. The numbers for the individual wells at the cluster sites begin with the prefix JF, followed by the cluster-site number and a number that indicates the relative depth of the well. This last number is "1" for the confined aquifer well at each site, "2" for the well screened in the confining unit, and "3" for the shallowest (unconfined aquifer) well. For example, the deepest well at USGS well-cluster site 9 is JF91, the intermediate-depth well is JF92, and the shallowest well is JF93. Observation wells numbered JF133, JF143, JF153, and JF163 are single wells drilled into the surficial aquifer and there are no associated deeper wells.

Acknowledgments

The authors thank the following U.S. Army personnel: John Wrobel of the Directorate of Safety Health and Environment for logistical support; Maynard Geisler and Kenneth Deptol, safety technicians at Range Control for their courtesy and care in controlling and coordinating site access for all workers at J-Field; and Roxanne Diehl of the Army Environmental Center and Robert Brown of Potomac Research for extensive data retrievals. Thanks also to Julie Kramer and Karen German of Quanterra (formerly Rocky Mountain Analytical Laboratory) for assistance in data retrievals. The authors thank Lou Martino of Argonne National Laboratories (ANL), whose help and cooperation in coordinating data collection efforts between the USGS, ANL, and other contractors at the site was crucial to this study. The Publications Section of the Maryland-Delaware-D.C. District of the USGS Water Resources Division, particularly G. Jean Hyatt and Sheryl Protani, is thanked for its support in the preparation of this document.

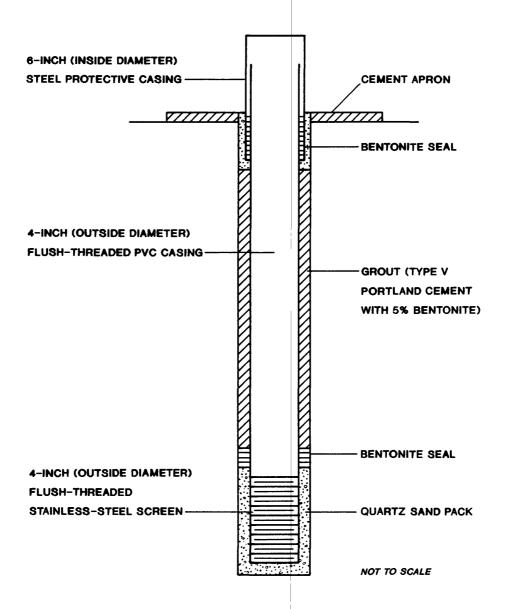


Figure 5.—Construction of typical observation well at J-Field, Aberdeen Proving Ground, Maryland.

HYDROGEOLOGIC DATA

Geologic, geophysical, and hydrologic data collected during the USGS hydrogeologic investigations at J-Field from 1989 through 1994 are presented in this section.

Geologic Data

Geologic data were collected from the borings for the 38 observation wells and the 7 exploratory borings. Thirteen core samples collected during the drilling were analyzed for their mineralogic and elemental compositions, and 16 samples were analyzed for their pollen content. Grain-size distributions were determined for 21 core samples.

Lithologic logs for well clusters 1 to 11 and borehole sites 1 to 7 are given in Hughes (1993). Lithologic logs for well cluster 12 and wells JF133, JF143, JF153, and JF163 are shown in table 2. Percentages of minerals in core samples from wells JF41 and JF91, and borehole B4 are shown in table 3. Percentages of major elements in core samples from wells JF41 and JF91, and borehole B4 are shown in table 4. Concentrations of trace elements in core samples from wells JF41 and JF91, and borehole B4 are shown in table 5. Pollen types in core samples from wells JF61 and JF81, and borehole B3 are shown in table 6.

Geophysical Data

Borehole geophysical logging was performed in each of the seven exploratory borings. The locations of the boreholes are shown in figure 4; the logs are shown in figure 6a-d. Natural gamma logs were run in each of the seven boreholes. Spontaneous potential, resistance, and resistivity logs were run in boreholes B1, B2, and B3.

Surface electromagnetic-induction (EM) surveys were performed between December 1987 and July 1988 using terrain-conductivity equipment (Geonics EM-34¹) in areas of known or suspected ground-water contamination. Surveys were performed at the toxic-materials, riot-control agent, and the WP disposal areas, and in the vicinity of the Prototype Building. The EM surveys included 10- and 20-meter coil spacings with both vertical and horizontal dipole measurements. The locations of the surveys are shown in figure 7a-d. The electromagnetic-induction values are presented in table 7a-d.

The objectives of the EM survey were to delineate possible conductive contaminant plumes and to search for variations in the stratigraphy of the surficial aquifer. The grids were planned to give an areal coverage of areas of suspected contamination. The sample points on the grids are located at the center point of the coil spacing used.

Use of brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

The EM sampling grid on the northeast side of the toxic-materials disposal area (fig. 7a) was set up along a baseline perpendicular to a line connecting wells P3 and P4, and beginning 43.5 ft from well P4 at site number 72. Sample points were spaced 50 ft apart along the baseline, and at 50-ft intervals along lines perpendicular to the baseline at the sample points.

The EM sampling grid on the south side of the the toxic materials disposal area is aligned parallel with and perpendicular to a line between wells P9 and P2. Sample points started at the midpoint of the line between the wells at sample point number 106, and were 50 ft apart.

The EM sampling grid at the riot-control agent disposal area is oriented perpendicular to a line connecting wells TH10 and TH6 (fig. 7b). The sample points began 60 ft from well TH6 at sample point number 4, along the line to TH10, and continued with 50-ft spacing with a break near well TH10 of 100 ft between the two lines.

The EM sampling grid near the Prototype Building started at a point 50 ft southwest of the south corner of the building, along a line continuous with the southeast face of the building (fig. 7c). A 100-ft square grid began from that point, along lines parallel and perpendicular to the southeast face of the building.

The EM sampling grid at the WP disposal area was oriented along a baseline between wells TH1 and TH3 (fig. 7d). The sampling sites in the area northeast of the disposal area began at the spacing along the baseline, and along lines perpendicular to sample locations on the baseline. The sample sites southwest of the disposal area started at well TH3, and continued with 50-ft spacing along the baseline, and along lines perpendicular to sample points on the baseline.

Hydrologic Data

Continuous water-level data were collected using analog to digital recorders (ADR's) that were installed on wells TH1, TH3, TH6, TH7, and TH8 in 1987. When the USGS wells were installed in 1989, 18 additional wells were instrumented with ADR's. The ADR's were removed from wells TH1, TH3, and TH7 after the USGS wells were instrumented.

Synoptic water-level measurements were made at least biannually from 1990 through 1994 in 17 wells that were constructed before this study and in the 38 USGS observation wells. Some wells were measured more frequently. In October 1992, four additional observation wells (JF133, JF143, JF153, and JF163) were drilled and were added to the synoptic water-level measurement network.

Hydrographs showing daily mean water-level data in the surficial and confined aquifers at each of the well cluster sites are shown in figure 8a-g. Ground-water-level measurements in each observation well at J-Field are shown in table 8. Daily mean ground-water levels measured between October 1988 and September 1990 in wells with continuous recorders are shown in table 9. Ground-water levels measured in wells after October 1990 have been

published in the annual USGS Water Resources Data reports for 1991-94 (U.S. Geological Survey, 1991-94).

Slug-tests were performed on 11 wells in January 1990 to determine hydraulic conductivity values for the surficial aquifer, the confining unit, the confined aquifer, and the Patapsco Formation. The Hvorslev (1951) and Cooper and others (1967) methods were used to calculate the hydraulic conductivity. Results of the slug tests are shown in table 10.

A tide gage was operated from November 1988 through January 1989 in the Chesapeake Bay adjacent to J-Field at Robins Point. The purpose of the gage was to determine the effects of tides on ground-water levels in observation wells at J-Field. The tidal range in the Chesapeake Bay is shown in figure 9.

SOIL DATA

Soil-gas and soil-quality sampling were performed at J-Field to aid in delineation of areas of surface contamination, and the data were used in conjunction with hydrogeologic data to identify likely areas of surface— and ground-water contamination.

Soil-Gas Data

Soil-gas samples at J-Field were collected by a static technique (Hughes, 1993 p. 13), which yields semi-quantitative results. Open-ended glass tubes that were 6 in. in length and contained a carbon-coated steel wire were buried in the soil at a depth of approximately 10 in., with the open end at the bottom. The tubes were retrieved after several days and sent to a laboratory for analyses of volatile organic components. Concentrations of volatile organics that had adsorbed onto the wires were identified by mass spectrometry and expressed as ion counts or relative-flux values. The results of these analyses can only be used to determine areas of relative soil-gas contamination and not to determine the actual concentration of contaminants in soil or ground water.

Soil-gas samples were obtained in February 1989 (Phase I) from the toxic-materials and the WP disposal areas using 72 collectors (fig. 10a-b). The first phase of sampling was conducted to assist in locating observation wells. An additional 62 soil-gas collectors were deployed in April 1990 (Phase II) at the toxic-materials and the riot-control-agent disposal areas (fig. 11a-b). The second phase of sampling was conducted to (1) determine the extent of contamination identified in the toxic-materials disposal area, (2) search for contamination plumes at the riot-control-agent disposal area, and (3) determine if contaminated ground water is migrating beneath and possibly discharging into the Gunpowder River or Chesapeake Bay. Maps showing the distribution of relative flux rates for trichloroethylene, tetrachloroethylene, alkanes, combined hydrocarbons, and simple aromatics are presented in Hughes (1993). The data that these distribution maps are based on are shown in tables 11 and 12.

Soil-Quality Data

After soil-sampling sites were chosen, checked with magnetometers to ensure safety shallow (6-in. deep and approximately 1-ft wide) hole was dug at each site with a stainless steel shovel, and surface debris was removed. Soil samples were then taken from the bottom of the hole milliliter (mL) amber vials for volatile organic carbon analysis. After the 40-mL vials were filled, the soil in the bottom of the hole was homogenized in place. A 250-mL and a 1-liter (L) bottle were filled with the homogenized soil sample for the remaining analyses. All samples were packed on ice and shipped by overnight express to the laboratory for analyses.

In April 1991, 36 soil samples were collected adjacent to the J-Field disposal areas (fig. 12). Results of the inorganic and organic soil-quality data are shown in tables 13 and 14, respectively.

WATER-QUALITY DATA

Between May 1990 and September 1993, surface- and ground-water samples were collected at J-Field to determine the effects of contamination from the disposal areas on the water quality of the area. The following sections describe the methods used to collect the data, which are summarized in tables.

Surface-Water Samples

Surface-water samples were collected by directly submerging sample bottles into the surface-water body and capping them while still underwater. Field parameters (specific conductance, pH, temperature, dissolved oxygen, and alkalinity) were measured at the sampling site.

During April 1993, 20 surface-water samples were collected from marsh sites within J-Field and analyzed for inorganic and organic constituents. The locations of those sites are shown in figure 13. In September 1993, the same 20 sites were to be sampled, but water was found at only 5 of the sites. Concentrations of inorganic constituents are shown in table 15 and concentrations of organic constituents from the surface-water sampling are shown in table 16. Concentrations of dissolved and total recoverable parameters are also shown in table 16. Samples for dissolved parameters were filtered through a 0.45-micron filter to remove suspended material. Samples for total recoverable parameters were not filtered; therefore, the concentrations include both dissolved and suspended phases.

Ground-Water Samples

Ground-water samples were collected from 55 wells during May-June 1990 (Phase I), and 48 wells were sampled during December 1992 and January 1993 (Phase II). All environmental samples were analyzed for volatile organic compounds, semi-volatile compounds, polychlorinated biphenyls, pesticides, and metals. Selected samples were also analyzed for explosive compounds, chemical-warfare-agent degradation products, cyanide, total organic carbon, total dissolved solids, and total organic halogens. Because the 1990

sampling was not subject to CERCLA regulations and quality-control criteria, and the 1992-93 sampling was, the results are presented in different tables. Tables 17 and 18 present the inorganic and organic constituents from Phase I, respectively. Tables 19 and 20 present the inorganic and organic constituents from Phase II, respectively.

Ground-water samples were collected from wells after they had been purged of at least three well volumes, and field parameters had stabilized. Teflon bailers and/or compressed-air piston pumps (stainless steel and Teflon) that did not introduce air into the well water were used to purge the wells. All purging was done from the top of the water column and the pump was lowered as the water level dropped.

Water-quality samples in Phase I were then collected from the discharge of the low-flow (less than 1 gal/min) stainless-steel and Teflon sampling pumps. Six gallons of tap water, followed by 6 gallons of distilled water were flushed through the pump and hoses between samples from different wells to prevent cross contamination of the samples. During Phase II, the same purging procedures were used, but samples were collected from clean, dedicated Teflon bailers. All samples were packed in ice and shipped in coolers by way of overnight express to the laboratory.

After each well had been purged and sampled, dissolved oxygen (DO) was measured with a DO meter with a 50-ft-long probe cable. A stirrer was attached to the probe to allow proper waterflow past the membrane. In the surficial aquifer wells, DO was measured at the well screen. DO in wells screened deeper than 50 ft could not be measured at the well screen, but was measured as deep as was possible.

EVALUATION OF QUALITY-ASSURANCE DATA

Assessment of the quality of the soil-, surface-water-, and ground-water-quality data is an important step in data interpretation. In this report, data quality is assessed in relation to two types of data measurement error--reproducibility, and bias. The quality of data is considered good when analyte concentrations are reasonably reproducible and unbiased.

Reproducibility of data measurements can be determined using duplicate and field-spiked samples. In this study, duplicate samples were used to estimate the relative percent difference (RPD) between two theoretically similar measurements, and were calculated as follows:

$$|(C1-C2)|$$
 x 100% = relative percent difference, $(C1+C2)/2$

where C1 is the concentration in the first sample, and C2 is the concentration in the duplicate sample.

Field-spiked samples can also be used to assess reproducibility in relation to an expected concentration. Field-spiked samples are

environmental samples to which known amounts of selected analytes have been added in the field during data collection. The percent recovery, relative to the expected concentration and corrected for background concentration, is calculated as follows:

Cs-Cu x 100% = relative percent recovery,

where Cs is the concentration of the analyte detected in the spiked sample, Cu is the concentration of analyte detected in the unspiked sample, and Ce is the expected concentration calculated for the spiked sample.

Bias in data measurements can occur as a result of contamination from a variety of sources; for example, during well installation, field sampling, in transit, and while handling samples in the laboratory. If samples are contaminated, a positive bias can be introduced in the measurement of one or more analytes. Contamination bias can be assessed by the incorporation of blank samples into the sample-collection and analysis process.

In this study, the following types of blanks were used to assess contamination bias--trip, field, ambient, and laboratory blanks. Trip blanks measure potential contamination of unopened vials during the field and shipping process. Trip blanks included sample vials for volatile organic compounds (VOC's) and semivolatile organic compounds (SVOC's) that were filled with VOC and SVOC-free water by the contract laboratory, and were sent along with empty VOC or SVOC bottles. These blank vials remained unopened and accompanied the empty sample vials into the field and then accompanied the filled sample vials when shipped back to the laboratory. If the trip blank was not contaminated before it was shipped from the laboratory, then the analysis provided an indication of whether contamination of a closed vial occurred during field activities, during shipment of the sample to the laboratory, or in the laboratory during analysis. Trip blanks were used to assess contamination for VOC's during surface- and ground-water sampling and for SVOC's during ground-water sampling.

Field blanks were used to assess whether ambient or equipment conditions caused sample contamination. Field blanks consisted of VOC and SVOC-free water [either from the USGS National Water Quality Laboratory (NWQL) in Denver, Colo., or from the USGS Quality of Water Service Unit in Ocala, Fla.,] that was passed through previously cleaned sampling equipment in the field, and then into VOC and SVOC sample vials. In this study, field blanks were used during ground-water sampling for VOC's and SVOC's.

Ambient blanks indicate whether a brief exposure of a sample to ambient conditions and handling in the field could have led to sample contamination. Ambient blanks consisted of VOC-grade water poured into VOC or SVOC vials while at selected field sites. The water was supplied by the NWQL. Ambient blanks were used for VOC's and SVOC's during surface-water sampling.

Laboratory blanks were used to evaluate analytical processes. Results of blank analyses were provided in some cases by the laboratory, primarily when it appeared that blank contamination occurred in the laboratory.

Contamination bias also can be determined by comparing the concentrations of selected analytes to those in previous samples. Cross-contamination of samples is likely if samples with high concentrations of one or more analytes are chronologically followed by a series of samples that indicate a progressive decline in concentrations for those same analytes. In this study, checks on chronological analyses (date and time of collection) were used to determine if cross-contamination had occurred.

Quality Assurance of Soil Data

Quality-control samples for soils consisted of duplicate samples collected from homogenized soil samples. The RPD data from these samples were used to estimate measurement variability for inorganic and organic analytes. The quality of the inorganic and organic data for soils are described below for each analyte group on the basis of the duplicate-sample results.

Inorganic Analytes

Four pairs of duplicate samples were analyzed for trace metals (table 13). A summary of the RPD values for nine analytes are presented in the following table.

	Relativ	e percent di:	fference
Analyte	Median	Minimum	Maximum
Arsenic	*	7	11
Calcium	11	0	18
Chromium	10	0	18
Copper	19	5	48
Iron	7	7	26
Magnesium	20	6	52
Manganese	5	0	29
Lead	18	8	34
Zinc	33	8	34

^{*} Only two pairs of duplicates had detectable concentrations of arsenic

Median RPD values for duplicate samples for these trace metals ranged from 5 percent (manganese) to 33 percent (zinc). A chronological analysis of soils collected after the most contaminated site (JS29, table 14) indicated no cross-contamination occurred between this site and subsequent sites.

Organic Analytes

There were few detections of VOC and SVOC analytes in soils (table 14). The only analyte detected in duplicate sample pairs was acetone, which was found at low levels in three of the four pairs of duplicate samples, and possibly is an introduced contaminant. There were few spurious detections.

For example, only two SVOC's (benzyl butyl phthalate and benzoic acid) were detected at very low levels in one sample, but were not detected in the corresponding duplicate sample. No RPD data are available for organic analytes in soils because of the lack of meaningful detectable concentrations in duplicate samples.

Overall, the quality of soil data appear good. Measurement reproducibility for inorganic analytes is within reason given the sample media. There is little evidence of contamination bias for organic analytes, and few spurious detections.

Quality Assurance of Surface-Water Data

The quality-control samples shown in the following table were collected for surface water.

Sampling	Analyte	Duplicate	VOC	bl anks
period	group	pairs	Trip	Ambient
1003				
1993				
Spring	Organics	3	1	1
	Inorganics	3 2		
n-11	0	0	1	1
Fall	Organics	U	1	1
	Inorganics	s 0		

Inorganic Analytes

The quality of surface-water data for inorganic analytes (major ions and trace metals) generally appears to be good. Although only two duplicate pairs of samples were collected for inorganic analytes, the RPD for major ions [total recoverable calcium, magnesium, sodium, and potassium; dissolved sulfate and chloride; and total nitrate (as nitrogen)] ranged from 0 to 10 percent, but the RPD for total iron was 42 percent. The RPD for trace metals (total recoverable aluminum, barium, copper, lead, manganese, and zinc) ranged from 0 to 29 percent.

Organic Analytes

Surface-water analyte measurements were generally reproducible and unbiased for VOC and SVOC concentrations reported as "less than 10 micrograms per liter ($\mu g/L$)". Measurements of detectable concentrations often are less reliable because of inconsistencies in measurement reproducibility and possible contamination bias. A clear understanding of the limitations of these measurements is essential for proper interpretation and use of these data.

Estimates of measurement reproducibility for the surface-water VOC and SVOC data are limited because the duplicate sample pairs seldom contained measurable concentrations of VOC's and SVOC's. Of the three pairs of

duplicate samples, only one sample pair (JFSW10, table 16) had measurements above the reporting limit. The three VOC compounds detected in JFSW10 samples are shown in the following table.

			1,1,2-Tri- chloro-	
Sample		Acetone	ethane	Trichlorethene
No.		(µg/L)	(μg/L)	(µg/L)
JFSW10		32	93	44
JFSW10d		110	97	40
	RPD	110%	4%	10%

On the basis of these data, the reproducibility of a VOC measurement in surface water varies by as little as 4 percent up to as much as 110 percent. Spurious detections of VOC's below the reporting level of 10 μ g/L also indicate a lack of measurement reproducibility. For example, there were nine cases in which an analyte was detected below the reporting level in one sample of a duplicate pair, but not in the corresponding sample of that duplicate pair. Due to these inconsistencies, calculations of RPD were not performed for analytes below concentrations of 10 μ g/L.

Blank data indicate that VOC and SVOC contamination of surface-water samples probably occurred. Four VOC's--acetone, methylene chloride, methyl isobutyl ketone, and methyl ethyl ketone--and one SVOC, N-nitrosodi-phenylamine, were detected at low concentrations (less than 10 $\mu g/L$) in at least one trip blank, one ambient blank, and several laboratory blanks. The laboratory reported that acetone and methylene chloride are common contaminants in the laboratory methods used for these analyses. No evidence of cross-contamination of surface-water samples was found for VOC's or SVOC's on the basis of a chronological evaluation of the data.

Because of the data-quality problems described for VOC's and SVOC's, two types of data qualifiers are included with the surface-water-quality data (table 16). A "v" next to a concentration value indicates that the analyte was also found in an associated blank. This qualifier infers that the concentration could be biased. A "j" next to a value indicates an estimated value that is less than the reporting limit for that analyte. The analytical values should be considered a detection, perhaps spurious, rather than considered to be actually present in the surface-water sample at the stated concentration.

Quality Assurance of Ground-Water Data

Phase I and II ground-water quality data are described separately in this report. Phase I and II samples were collected with different equipment (see Ground-Water Samples section) and during different years. Samples for Phase I and II were analyzed by different laboratories. Changes in field and laboratory procedures were due to changes in regulatory requirements.

Duplicate and blank samples for inorganic analytes were collected as shown in the following table.

Hydrologic	Duplicate	Bla	anks
unit	pairs	Trip	Field
Surficial aq	uifer 5	1	2
Confining un	it 1		
Confined aqu	ifer 1		
Surficial ag	uifer 3		3
Confining un	it 1		
Confined aqu	ifer 1		
	unit Surficial aq Confining un Confined aqu Surficial aq Confining un	• • •	unit pairs Trip Surficial aquifer 5 1 Confining unit 1 Confined aquifer 1 Surficial aquifer 3 Confining unit 1

Duplicate, blank, and field-spiked samples for VOC's and SVOC's were collected as shown in the following table.

Sampling	Analyte	Hydrologic	Duplicate	Bl	anks	Sp	ikes
phase	group	unit	pairs	Trip	Field	Field L	aboratory
I	voc/svoc	Surficial aqui Confining unit Confined aquif	. 1	1	2		
II	VOC	Surficial aqui Confining unit Confined aquif	. 1	9	3	4	5
	svoc	Surficial aqui Confining unit Confined aquif	. 1		3	4	5

The above samples were sufficient to assess the quality of the data in each phase, but were not sufficient to assess the changes in data quality between sampling phases that could have been caused by changes in field procedures or laboratories used. Some general observations, however, about possible differences in data quality between following sections.

Inorganic Analytes

In Phase I data, median RPD values for most major ions [dissolved calcium, magnesium, manganese, sodium, potassium, sulfate, chloride, bromide, and iron; and total nitrogen plus organic and nitrogen—nitrate (as nitrogen), table 17] were below 10 percent. Median RPD values for trace elements also were below 10 percent for dissolved arsenic, barium, and boron. The median RPD values for aluminum and total phosphorus were between 10 and 20 percent, and the highest RPD was for fluoride (29 percent). The measurement variability for inorganic data typically is smaller than the variability in concentrations among sites for most of the analytes.

Reproducibility of measurements for Phase I inorganic data therefore does not appear to be a problem for data interpretation.

Ambient blanks and field blanks were collected for inorganic analytes in Phase I. One field blank shows evidence of possible carryover of inorganic analytes at low levels (field blank 2, table 17). This field blank had low levels (less than or equal to 1.5 mg/L) of calcium, sodium, and nitrogen (ammonia plus organic), and trace amounts (less than 20 μ g/L) of phosphorus and barium. With the exception of perhaps phosphorus, sample concentrations for these analytes are often at least an order of magnitude higher than the concentrations found in the field blank. This low-level contamination of one field blank was not considered significant enough to warrant qualifying the data as biased. A chronological check of the data revealed no consistent pattern that would indicate cross-contamination among successively collected samples.

Although the results of the blank analyses did not indicate that significant contamination bias is a problem, certain wells installed in the confining unit and confined aquifer show potential contamination bias as a result of well-installation problems. During well drilling, crews were forced to evacuate the site due to emergency ordnance disposal activities at J-Field. Because sequential-casing techniques had not yet been incorporated in this study, the deep boreholes could have provided a temporary pathway for contaminants in the surficial aquifer to enter the confining unit and the confined aquifer. Boreholes for wells JF51, JF61, JF71, and JF81 in the confined aquifer were open to the surficial aquifer from 1 to 4 days. These well numbers in tables 17 and 19 are qualified with a "v" denoting possible contamination bias.

Median RPD values for Phase II inorganic analytes (major ions or trace metals) were less than 10 percent. These results are similar to the Phase I inorganic results. As in Phase I, field blanks indicated some equipment carryover or laboratory contamination. Total calcium, magnesium, sodium, iron, manganese, and zinc appeared in at least two of the three field blanks. These concentrations of calcium, magnesium, and iron were less than concentrations found in ground-water samples. Manganese and zinc concentrations in blanks, however, sometimes exceeded those found in the ground-water samples. These data have been qualified to reflect possible bias ("v" remark, table 19).

Organic Analytes

Phase I data for VOC's and SVOC's are generally good based on measurement variability from duplicate samples. Six pairs of duplicate samples were analyzed. Four of the six sample pairs had detectable concentrations of at least one analyte in both the sample and the duplicate. Analyte concentrations span five orders of magnitude, and the RPD for each pair is shown in the following table.

Well	Analyte	Sample concen- tration	Duplicate concen- tration	Relative percent difference
		(μg/L)	(μg/L)	
P9	RDX	0.521	0.471	10
JF2	Trichloroethene	10	3	108
JF13	Benzene	1,500	1,100	31
JF13	Methyl isobutyl ketone	640	1,100	53
JF82	Acetone	90	110	20
JF82	Chloroform	6.3	4.9	25
JF82	Cyanide	92	84	9
JF82	1,1-Dichloroethene	35	26	30
JF82	1,2-Dichloroethene	240	150	46
JF82	Tetrachlorethene	54	41	27

These RPD values range from 8 to 108 percent. Most of the RPD's, however, are in the range of 20 to 50 percent. There only were two instances when an analyte was detected in excess of the reporting level (above 10 μ g/L) in one of the duplicate samples but not reported in the other. The analyses performed by the laboratory during Phase I generally were reproducible.

Although measurement reproducibility appears to be good for Phase I VOC and SVOC data, some of the measurements might be biased. Although sampling equipment was cleaned between samples, contamination could have occurred at low levels (less than 20 $\mu g/L$) in a few samples as a result of carryover from wells with high VOC concentrations. The only apparent instance of such carryover was in the field blank taken after sample JF83. A comparison of analytes in JF83 and the subsequent field blank, and the percent carryover of each analyte are shown in the following table.

Date	Time	Sample	1,1,2,2-Tetra- chloroethene $(\mu g/L)$	Tetrachloro- ethene (μg/L)	Trichloro- ethene (µg/L)
6/12/90	0900	JF83	250	1,000	4,900
6/12/90	0930	Field Blan	k 17	6.2	21
Percent	(%) carı	ryover	6.8%	.06%	.4%

Although no other blanks showed evidence of carryover, it is not possible to determine whether any other samples were affected by this type of bias.

As noted for Phase I inorganic data, there could be an additional bias in VOC and SVOC data for specific wells in the confining unit and confined aquifer near the toxic-materials-disposal area. The quality of water in these wells could be influenced by water introduced from the surficial aquifer and might not represent a contaminant source in either the confining unit or the confined aquifer.

Phase I VOC and SVOC data appear to be good from the standpoint of measurement variability. From the standpoint of data interpretation, however, some of these data appear biased. Where bias is suspected, concentration values or well numbers are qualified with a letter "v" (tables 18 and 20).

Measurement variability for organic analytes in Phase II indicate the data are of fair to good quality. The RPD for Phase II organic duplicate sample data range from 0 to 17 percent, as shown in the following table.

Well No. Analyte		Sample concen- tration (µg/L)	Duplicate concen- tration (µg/L)	Relative percent difference
JF53	1,1,2,2-Tetrachloroethane	4,900	5,000	2
JF53	1,1,2-Trichloroethane	290	300	3
JF53	Trichloroethene	4,200	4,200	0
JF53	Vinyl Chloride	95	110	15
JF61	Carbon Disulfide	6	7	15
JF61	Phenol	26	22	17
JF73	1,2-Dichloroethene	920	820	12
JF73	1,1,2,2-Tetrachloroethane	9,000	8,000	12
JF73	Trichloroethene	5,100	4,800	6

On the basis of RPD values, the reproducibility of Phase II organic measurements appears to be good. Phase II RPD estimates, however, do not reflect the fact that data collected during this period are limited by a higher reporting level than most Phase I data. Measurement variability typically decreases as concentrations increase beyond the lowest reporting level.

Reporting levels for a given Phase II analyte differ from one sample to another because some samples were diluted to accommodate high concentrations of one or more analytes. Phase II RPD values also do not reflect that duplicate sample data contain numerous instances where an analyte was detected in one sample of a duplicate pair but not in the other. A number of analytes were excluded from RPD estimates because of contamination bias.

Recovery data from laboratory or field-spiked samples provide another measure of variability. Laboratory and field-spike data were only available for Phase II ground-water data (table 21). Recoveries for laboratory spikes were generally between 80 and 100 percent. With the exception of trichloroethene in one sample (P7), laboratory recoveries for the analytes listed were within the U.S. Environmental Protection Agency (EPA) guidelines (U.S. Environmental Protection Agency, 1985). The unacceptable recovery for trichloroethene could be due to a high (310 $\mu \rm g/L)$ background concentration before the sample was spiked.

With the exception of samples with high background concentrations, field-spike recovery data appear to have a high bias in relation to

laboratory recoveries. They also indicate that at least some compounds (for example, vinyl chloride) undergo greater losses than others. Actual ground-water-sample recoveries for Phase II data probably are somewhere in-between recoveries for field spikes and laboratory spikes.

Phase II ground-water data also appear to be biased for certain VOC and SVOC analytes. Analyses of trip, field, and laboratory blank data indicate that at least 50 percent of these blanks were contaminated with one or more of the following eight analytes:

Acetone
Methyl ethyl ketone
Methyl n-butyl ketone
Di-n-octyl phthalate

Methylene chloride Methyl isobutyl ketone Bis(2-ethyl-hexyl) phthalate N-nitrosodiphenylamine.

Analyte concentrations in blanks seldom exceeded 10 to 20 μ g/L. Because contamination was frequent, however, Phase II concentration data for these eight analytes have been qualified with a "v" (table 20).

Summary of Data Evaluation

The following major conclusions are based on an examination of the quality of soils, surface-water, and ground-water data collected for this study: (1) Soils data generally are of good problems warranted qualifying surface-water and ground-water data. The latter included poor reproducibility in measured values for some analytes, particularly for analyses conducted by one contract laboratory, and potential bias in data for some analytes because of possible contamination during well installation or laboratory analysis. The data that are most suspect have been qualified with remark codes in the corresponding data tables. These codes include a "v" next to a well number or concentration value that denotes that the concentration value(s) for a sample reflect, in whole or in part, contamination bias, and a "j", which denotes that the reported concentration should be considered merely a detection rather than a quantified estimate of concentration.

REFERENCES CITED

- Cooper, H.H., Bredehoeft, J.D., and Papadopulos, I.S., 1967, Response of a finite-diameter well to an instantaneous charge of water: Water Resources Research, v. 3, no. 1, p. 263-269.
- Hughes, W.B., 1991, Application of marine-seismic profiling to a ground-water contamination study, Aberdeen Proving Ground, Maryland: Ground Water Monitoring Review, v.11, no. 1, p. 97-102.
- ______ 1993, Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland: U.S. Geological Survey Water-Resources Investigations Report 92-4087, 83 p.
- 1995, Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland: U.S. Geological Survey Water-Resources Investigations Report 95-4075, 39 p.
- Hvorslev, M.J., 1951, Time lag and soil permeability in groundwater observations: Vicksburg, Miss., U.S. Army Corps of Engineers Waterways Experimental Station Bulletin No. 36, 50 p.
- Munsell Color, 1975, Munsell soil color charts: Macbeth, a division of Kollmorgen Instruments Corporation, Baltimore, Maryland, 21 p.
- Nemeth, Gary, 1989, RCRA facility assessment report, Edgewood Area: Aberdeen Proving Ground, Maryland, U.S. Army Toxic and Hazardous Materials Agency Project No. 39-26-0490-90, 929 p.
- Nemeth, Gary, Murphy, J.M., and Zarzycki, J.H., 1983, Environmental survey of the Edgewood Area of Aberdeen Proving Ground, Maryland: Aberdeen Proving Ground, Maryland, U.S. Army Toxic and Hazardous Materials Agency Report No. DRXTH-AS-FR-82185, 265 p.
- Princeton Aqua Science, 1984, Munitions disposal study: Aberdeen Proving Ground, Maryland, Environmental Management Office, 44 p.
- U.S. Environmental Protection Agency, 1985, Statement of work for organics analyses: Contract Laboratory Program, attachment A, table 5.2, p. E-34.
- U.S. Geological Survey, 1991-94, Water resources data--Maryland and
 Delaware, water years 1991-94; Volume 2. Ground-Water data: U.S.
 Geological Survey Water-Data Report MD-DE-91-2 to MD-DE-94-2
 [published annually].

Table 1. Well-construction data for observation wells installed by the U.S. Geological Survey at J-Field, Aberdeen Proving Ground, Maryland

[U.S.Geological Survey (USGS) site identification number = latitude and longitude plus a 2-digit sequence number; --, data not available; ft A.S.L. = feet above sea level; ft B.L.S. = feet below land surface; AUG = well installed using hollow-stem auger; MUD = well installed using mud rotary; C = surficial aquifer; B = confining unit; A = confined aquifer; K = aquifers in Patapsco Formation]

Well Number	USGS site identification number	Maryland permit number	Altitude of land surface (ft A.S.L.)	Drilling method	Depth of boring (ft)	Screened interval (ft B.L.S.)	Unit screened
JF1 JF2	391806076165301 391845076171401	HA-88-1036 HA-88-1035	4.95	MUD MUD	190 300	185 -190 208 -213	K K
JF11	391809076174301	HA-88-1037	7.42	AUG	90	85 - 90	A
JF12 JF13	391809076174302 391809076174303	HA-88-1038 HA-88-1039	7.30 7.18	AUG AUG	55 25.5	50 - 55 20.5- 25.5	B C
JF21	391809076174601	HA-88-1040	2.99	AUG	71	68 - 71	A
JF22 JF23	391809076174602 391809076174603	HA-88-1041 HA-88-1042	2.99 3.10	AUG AUG	52.5 19	47.5- 52.5 16 - 19	B C
JF31	391814076173801	HA-88-1043	7,67	AUG	81.3	73.8- 78.8	A
JF32	391814076173802	HA-88-1044	7.70	AUG	54.4	49.4- 54.4	В
JF33	391814076173803	HA-88-1045	7.79	AUG	20	15 - 20	Ċ
JF41	391812076173101	HA-88-1046	10.22	AUG	90	85 - 90	Ā
JF42 JF43	391812076173102 391812076173103	HA-88-1047 HA-88-1048	10.30 10.63	AUG AUG	62 35	57 - 62 30 - 35	B C
JF51	391808076172701	HA-88-1050	5.02	AUG	115	110 -115	A
JF52	391808076172702	HA-88-1049	5.27	AUG	65	60 - 65	В
JF53	391808076172703	HA-88-1051	5.10	AUG	19.2	14.2- 19.2	С
JF61	391810076172801	HA-88-1052	4.29	AUG	100	95 -100	A
JF62 JF63	391810076172802 391810076172803	HA-88-1053 HA-88-1054	4.08 4.10	AUG AUG	65 19	60 - 65 16 - 19	B C
JF71	391807076172801	HA-88-1055	7.26	AUG	125	120 -125	A
JF72	391807076172802	HA-88.1056	8.28	AUG	81	76 - 81	В
JF73	391807076172803	HA-88-1057	7.48	AUG	18	15 - 18	С
JF81	391808076173001 391808076173002	HA-88-1059 HA-88-1058	10.01	AUG AUG	123	120 -123 70 - 75	A
JF82 JF83	391808076173002	HA-88-1060	10.39 10.42	AUG	75 20	70 - 75 15 - 20	B C
JF91	391825076172601	HA-88-1061	10.18	AUG	79	74 - 79	A
JF92	391825076172602	HA-88-1062	10.60	AUG	55.5	50.5- 55.5	В
JF93	391825076172603	HA-88-1063	10.28	AUG	2 5	20 - 25	С
JF101 JF102	391826076173104 391826076173105	HA-88-1064 HA-88-1065	5.36 5.70	AUG AUG	76 55	73 - 76 52 - 55	A B
JF102 JF103	391826076173105	HA-88-1066	5.41	AUG	28	25 - 28	Ĉ
JF111	391826076173101	HA-88-1067	6.51	AUG	75	69.1- 75	A
JF112	391826076173102	HA-88-1068	6.19	AUG	50	47 - 50	В
JF113	391826076173203	HA-88-1069	6.77	AUG	25	22 - 25	С
JF121	391827076173001	HA-88-1070	4.16	AUG	70	67 - 70	A
JF122 JF123	391827076173002 391827076173003	HA-88-1071 HA-88-1072	4.42 4.15	AUG AUG	55 28	52 - 55 25 - 28	B C
JF133	391806076173501	HA-88-1423	3.0	AUG	10	5 - 10	С
JF143	391808076174401	HA-88-1415	4.9	AUG	10	5 - 10	С
JF153	391815076170301	HA-88-1425	5.9	AUG	10	5 - 10	C
JF163	391815076170601	HA-88-1422	8.7	AUG	12	5 - 12	С

Table 2. Lithologic logs for well-cluster 12 and wells JF133, JF143, JF153, and JF163 at J-Field, Aberdeen Proving Ground, Maryland

[vcU = very coarse upper; vcL = very coarse lower; cU = coarse upper; cL = coarse lower; mU = medium upper; mL = medium lower; fU = fine upper; fL = fine lower; vfU = very fine upper; vfL = very fine lower; lower and upper refer to the finest and coarsest grain sizes within each category, respectively; Codes enclosed in parentheses refer to the Munsell Soil Color Charts (Munsell Color, 1975)]

Relat	abund commo minor trace
ize ns)	350 250 177 125 88
Grain size (microns)	250- 177- 125- 88- 62-
Term	# fu fr vfu vfl
Grain síze (microns)	1,410-2,000 1,000-1,410 710-1,000 500- 350- 500-
Term	いっている

Relative abundance descriptors	abundant >30% common >15% and <30% minor >1% and <15% trace <1%
-----------------------------------	---

	Lithology	Depth (ft)	Thickness (ft)
Wellc	Well cluster site 12		
Soil,	silt loam, predominantly sand, quartz, fine (fU), subrounded, dark brown (10 YR 3/3);	0.3	0.3
Sand, Sand,	quartz, very fine (vfU), olive brown (2.5 Y 4/4); silt, trace; abrupt boundary. quartz, very fine (vfU), mottled brown (10 YR 5/3) and yellowish-brown (10 YR 5/6);	1.5	1.2
Sand,	ctay, common; graduat boundary. quartz, very fine (vfL), mottled light gray (10 YR 7/2); and yellowish-brown (10 YB 5/8): clear boundary	3.8	1.4
Sand, Sand,	quartz, medium (mL), grayish brown (2.5 Y 5/2); clear boundary. quartz, medium (mL), strong brown (7.5 YR 5/6); mica, common; interbedded	5.5	3.5
Sand, Sand,	dustic Lones. dust (vfU), light olive gray (5 Y 6/2); silt, common; abrupt boundary quartz, very fine (vfU), dark gray (5 Y 4/1); silt, common.	11.3	2.73
Sand	quartz, fine (fL), subrounded, dark gray (5 Y 4/1); mica, minor; gradual boundary. quartz, fine (fL), subrounded, olive gray (5 Y 5/2).	75.00.00 75.00.00	14-r
clay,	quartz, very fine (VIU), dark gray (2 f 4/1). ery dark gray (5 f 3/1); silt, abundant; wood fragments, minor (1.0-2.0 cm at 33.0');	34.0	0.0
clay, clay, clay,	dark gray (5 Y 4/1); silt, minor; massive; abrupt boundary. olive gray (5 Y 5/2); shells, whole and fragments, abundant; very hard. dark gray (5 Y 4/1); silt, common; 40-43.0 highly fractured, sample crumbles into	38.5 39.0 44.0	۰.۶ د.5 0.0
clay, clay, clay, sand,	dark gray (5 Y 4/1); silt, common; massive. dark gray (5 Y 4/1); silt, common; massive. dark gray (5 Y 4/1); silt, abundant; massive. silt, minor.	6,500 6,300 6,000	ນທູນ4 ວ່ວວ່າບໍ່ນໍ້

Table 2. Lithologic logs for well-cluster 12 and wells JF133, JF143, JF153, and JF163 at J-Field, Aberdeen Proving Ground, Maryland--Continued

Lithology	Depth (ft)	Thickness (ft)
Sand, silty, medium, dark brown (10 YR 3/3); abundant roots; organic soil horizon. Sand, clayev, fine, gray (10 YR 6/1) and brownish-yellow (10 YR 6/6). Sand, silty, fine, same color as 1.3' - 2.5'. Sand, silty, fine, same color as 1.3' - 2.5'. Sand, medium, gray (10 YR 6/1) and brownish-yellow (10 YR 6/6). Clay, sandy, light gray (10 YR 7/1) with yellowish-brown (10 YR 5/6) mottles; Recovered .8'. Sand, quartz, medium, gray (10 YR 6/10).	7.74.00 6.00.00	
Sand, silty, fine, dark yellowish-brown (10 YR 3/4), organic soil zone. Lost sample. Lost sample. Sand, quartz, medium, with 0.05'-diameter to 0.2 ft-diameter quartz pebbles, rounded, very pale brown (10 YR 7/3) and brownish-yellow (10 YR 6/6). Sand, clayey, fine, light gray (10 YR 7/10) with brownish-yellow (10 YR 6/6). Sand, medium, light brownish-gray (10 YR 6/2) and brownish-yellow (10 YR 6/6). Sand, medium, light yellowish-brown (10 YR 6/4) with yellowish-brown (10 YR 5/6) mottles. Sand, quartz, medium, mottled light gray (10 YR 7/1) and very pale brown (10 YR 7/3). Sand, medium, brown (10 YR 4/3).	ก 2000 44 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-0- 0000 0000
Sand, silty, fine, (5 Y 5/3); gradual contact. Sand, silty, fine, (10 YR 6/4); gradual contact. Sand, silty, fine, mottled brownish-yellow (10 YR 5/6) and (10 YR 6/3). Sand, silty, fine, brownish-yellow, (10 YR 6/6). Sand, medium, dark yellowish-brown (10 YR 4/6). Sand, medium, dark yellowish-brown (10 YR 4/6). Sand, silty, fine, interbedded adual boundary. Sand, clayey, gray, (7.5 YR 6/0) with mottles of silt, strong brown (7.5 YR 5/8). No sample No sample Sand, interbedded, medium-grained, light gray (10 YR 7/1) and brownish-yellow (10 YR 6/6).	20-5/24.2 20-5/2	0.7 0.7 7.0 7.0 0.1 0.1
Sand, silty, fine, yellowish-brown (10 YR 5/6) with few mottles of reddish-brown (5 YR 5/6); gradual boundary. Sand, clayey, fine very pale brown (10 YR 7/3). Sand, medium, brownish-bellow (10 YR 6/6); abrupt boundaries above and below 0.15 ft-diameter quartz rounded pebble. Sand, fine, silty and clayey, brownish-yellow (10 YR 6/6), very hard, fractured. Sand, fine, silty and clayey, brownish-yellow (10 YR 6/6), below 5' is strong fine-grained to 5', light yellowish-brown (10 YR 6/4); below 5' is strong brown (7.5 YR 5/8), color change is gradual. Lost most of sample; recovered medium sand, light brownish-gray (10 YR 6/2) with yellowish-brown (10 YR 5/6) mottles. Sand, fine, interbedded pale brown (10 YR 6/3) and yellowish-brown (10 YR 5/6).	1.4 2.3 3.9 6.0 8.0	1.4 0.9 0.4 1.2 2.0 2.0

Table 3. Relative percentages of minerals in core samples from wells JF41 and JF91, and borehole B4, J-Field, Aberdeen Proving Ground, Maryland

ial aquifer;	Montmoril- lonite	151111	; °	∇!!	::
C = surfic	Marcasite	111111	::	:::	12
s than;	Pyrite	:::::	99	۱: ۵	50
d; < = les	Hematite	111111	; ;	:::	~ :
detecte	Gypsum	:::::	-:	:::	::
e; = not	Geothite	111111	::	:::	4 :
and surface	Feldspar	immila	; 15	-24	::
et below la K = Patapso	Aragonite	:::::	50	:::	::
[Values are percentages of total minerals detected; depths are in feet below land surface; = not detected; < = less than; C = surficial aquifer; B = confined aquifer of the Talbot Formation; K = Patapsco Formation]	Kaolinite Plagioclase Aragonite Feldspar Geothite Gypsum Hematite Pyrite Marcasite	-เพพงผน	40	ผพผ	∇:
tected; dep f the Talbo	Kaolinite	101224	40	-~~	10
erals det quifer o	Illite	200224	48	-45	∞~
otal min	Quartz Illite	85 95 85 85 85 85 85 85 85 85 85 85 85 85 85	60 65	888 8988	70 6 5
recentages of total minerals defining unit; A = confined aquifer or	Lithologic	ပပပပပ	60 60	444	$\mathbf{x}\mathbf{x}$
are perce	Depth (feet)	104 51 81 81 81 81 81 81 81 81 81 81 81 81 81	45 55	78 88 20	161 241
[Values B = co	Well No.	JF41 JF41 JF91 JF91	JF91 JF41	JF41 JF91 84	94 84

Table 4. Percentage of major elements in core samples from wells JF41 and JF91, and borehole B4, J-Field, Aberdeen Proving Ground, Maryland

[Values are reported as percentage of total sample; depths are in feet below land surface]

Lithologic Unit	<u> </u>	ements
A = confined aquifer	Al = aluminum	Mg = magnesium
B = confining unit	Ca = calcium	Na = sodium
C = surficial aquifer	Fe = iron	P = phosphorus
K = Patapsco Formation	K = potassium	Ti = titanium

Well No.				<u>Elements</u>						
	Depth (feet)	Lithologic unit	Al	Ca	Fe	K	Mg	Na	P	Ti
JF41	1	С	1.68	0.07	0.84	0.46	0.12	0.24	0.01	0.19
JF41	3	С	5.27	.19	2.55	1.29	.40	.53	.03	.34
JF91	4	С	6.61	.08	1.92	1.46	.34	.27	.01	.30
JF41	10	C	2.03	.07	0.84	.55	.16	.29	.01	.16
JF91	11	С	1.51	.07	0.57	.44	.13	.26	.01	.18
JF41	18	С	5.54	.09	1.96	1.53	.50	.50	.02	.30
JF91	45	В	5.57	6.38	4.25	1.62	.56	.48	.04	.26
JF41	55	В	6.53	.57	4.07	1.90	.66	.49	.04	.35
JF41	78	A	2.46	.17	2.01	.75	.26	.25	.01	.19
JF91	88	A	2.75	.28	1.33	.82	.25	.27	.01	.18
B4	102	A	1.39	.10	1.08	.43	.14	.29	.01	.08
В4	161	K	8.39	.06	6.64	1.63	.25	.09	.07	.37
B4	241	K	3.51	.07	12.4	.72	.14	.09	.01	.21

Table 5. Concentrations of trace elements in core samples from wells JF41 and JF91, and borehole B4, J-Field, Aberdeen Proving Ground, Maryland

than]
less
V
surface;
and
are feet below
feet
are
depths
_
Έ
per million
parts
<u>-</u>
are
rations
cent
Ξ
ដ

	of ion n	Zn	25 54 45 4 83 5 5 6 4 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22	38 24	23
its:	surficial aquifer confining unit confined aquifer of the Talbot Formation Patapsco Formation	Yb	-00-5w	мм	<u>^</u>	M0
i S	al aquing and aquing pot bot For	>	25. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	57	009	12
Lithologic units:	surficial confining confined the Talbo Patapsco	>	22 23 23 77	23	37 44 18	227 63
Lit	K ABB IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Тh	<u> </u>	55	N44	48
		Sr	27 59 31 826 62	566 94	422 342 342	325
		Sc	ონროინ	13.	ហហ	22
	un Diom Diom	Pb	25 8 8 8 5 7	16 17	စ ဉ်က	17 46
	yttrium ytterbium zinc	Νĵ	9 10 10 10 10 10 10 10 10 10 10 10 10 10	37	550	12
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ΡN	22 34 18 37 37	35	119 119	20 50
		NB	<u> </u>	~ 0	ռռ ֆ	17
	scandium strontium thorium vanadium	¥o	333333	% %	%%%	\$2 ~
	25.4.2 2 4.5	Mn	50 50 65 48 149	1,070	466 158 114	64
	En.	Li	37 58 25 53	25 60	25 13	18
	niobium neodymium nickel lead	La	21 37 20 22 37	36 40	₹ 2	646
	N N N O D N	Са	455~45	51	2×3	25
	E	Cu	24 7 18 18	15	۰ <u>5</u> 3	23
	thanum hium ganese ybdenum	Cr	25 25 25 26 26 26	69 88	40 39 27	102 50
	= lanth = lithi = manga = molyb	CO	~80 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56	50 9	311
	Li Mo Mo	Ce	47 753 763 760 760	69 83	33 33 33 33	101
	5 F	Be	<u>^</u> ~~ <u>^</u> ~	77	2-2	w←
	cobalt chromium copper gallium	Ва	108 315 123 320	211 107	155 196 132	335 19
	07700 	As	000000	410 10	555	10
		Litho- logic unit	ပပပပပ	∞ ∞	444	77
Trace elements:	arsenic barium beryllium cerium	Depth (feet)	- x 4 0 T &	45 55	78 88 102	161 241
Trace (As a second seco	Well no.	JF41 JF41 JF91 JF91	JF91 JF41	JF41 JF91 B4	84 84
		31				

Table 6. Percentage of pollen types in core samples from wells JF61 and JF81, and borehole B3, J-Field, Aberdeen Proving Ground, Maryland

[Unit B = confining unit; Unit A = confined aquifer; --, not detected]

Stratigraphically higher ----> Stratigraphically lower

Well No.

Pollen type	JF61 (Unit B)	JF81 (Unit B)	B3 (Unit B)	JF81 (Unit A)
Acer (maple)	1.8	2.5	1.4	5.3
Alnus (alder)		1.2		
Ambrosia (ragweed)			9.6	7.9
Amaranthaceae				
(amaranth)	.9			-
Betula (birch)	1.8		1.4	400m 400m
Carya (hickory)	8.2	16.2	21.9	31.6
Cephalanthus				
(buttonbush)			1.4	-
Chenopodium (pigweed)		1.2	1.4	-
Cornus (dogwood)			1.4	
Dryopteris (wood-fern)			5.5	
Fagus (beech)	2.7		4.1	7.9
Fraxinus (ash)	.9	1.2	1.4	-
Juglans (walnut)	4.6	2.5	12.3	5.3
Juniperus (red cedar)		2.5		1.3
Liquidambar (sweet gum)			2.7	1.3
Lycopodium (club moss)	1.8	1.2	2.7	2.6
Nyssa (black gum)	11.0	13.7	2.7	6.6
Pinus (pine)	41.3	22.5	8.2	7.9
Prunus (cherry)	1.8	1.2		
Quercus (oak)	18.3	30.0	17.8	17.1
Sarracenia				
(skunk cabbage)				1.3
Selaginella (spikemoss)			1.2	
Small tricolpate grain			2.5	
Sparganium (burreed)	-			1.3
Stellaria (chickweed)	1.8			
Thalictrum (meadow-rue)		1.4		
Tsuga (hemlock)	.9	1.4		2.6
Ulmus (elm)	.9	1.4		

Table 7a. Electromagnetic-induction data collected at the toxic-materials disposal area at J-Field, Aberdeen Proving Ground, Maryland

		10-meter spacir		20-meter	spacing
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole
1 2 3 4 5 6 7 8 9	2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88	17 15 18 18 15 16 16 17 19	23 28 22 17 10 18 20 20 20	14 19 19 18 18 22 18 19	26 18 22 19 20 14 21 24 17
11 12 13 14 15 16 17 18 19 20	2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88	16 15 15 14 16 16 19 21 19	16 20 16 20 20 18 18 21 17 20	18 17 16 17 18 18 19 21 19	17 21 20 21 22 21 18 22 16 23
21 22 23 24 25 26 27 28 29 30	2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/8/88 2/9/88	22 15 14 15 8 19 22 11	7 18 19 21 20 19 16 17 43	17 14 15 16 11 16 20 16 14	17 24 18 23 23 22 18 6
31 32 33 34 35 36 37 38 39	2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88	12 13 14 15 17 17 11 13 14	18 18 17 20 21 17 3 18 16 20	16 16 16 18 19 15 14 16 16	21 18 21 21 23 23 17 24 21 20
41 42 43 44 45 46 47 48 49	2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88	15 17 14 14 14 16 19 26 26	18 23 24 52 52 20 22 21 22 25	17 19 22 16 17 19 20 22 26 30	19 28 23 26 26 27 28 26 25 33
51 52 53 54 55 56 57 58 59 60	2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88 2/9/88	24 25 27 30 25 30 33 38 38 38	26 31 34 30 32 40 44 40 44	27 27 32 32 26 34 38 38 38 38	25 30 28 25 34 39 28 26 36
61 62 63 64 65 67 68 69 70 71	2/9/88 2/9/88 2/9/88 2/9/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88	36 33 36 37 34 28 26 40 34 40	18 38 39 32 42 34 31 16 27	26 34 42 30 33 25 29 34 29 34	22 34 31 36 25 32 36 32 24 38

Table 7a. Electromagnetic-induction data collected at the toxic-materials disposal area at J-Field, Aberdeen Proving Ground, Maryland-Continued

Continued						
		10-meter spacing		20-meter	spacing	
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole	
73 74 75 76 77 78 79 80 81 82	2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88 2/10/88	64 70 43 39 40 38 39 35 60 36	47 43 37 32 68 51 38 34 27	52 53 45 37 35 32 31 33 47	28 12 48 51 50 40 43 20 44	
83 84 85 86 87 88 89 90 91	2/10/88 2/10/88 2/10/88 2/10/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88	36 26 25 66 15 14 14 13 12	19 30 38 8 16 17 17 15 18	36 23 24 31 16 16 16 15 15	35 28 25 21 16 19 20 18 21	
93 94 95 96 97 98 99 100	2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88	11 11 14 16 16 15 10 13 14	12 14 17 18 23 20 19 17 18	14 14 16 17 16 16 16 17 15	17 16 20 18 23 22 23 17 20 21	
103 103 104 105 106 107 108 109 110	2/3/88 2/5/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88 2/3/88	15 15 14 15 15 20 15 15 17	20 18 20 19 22 25 22 17 23 35	18 18 19 19 22 20 19 22 30	24 22 20 25 26 31 19 26 25	
112 112 113 113 114 114 115 116 116	2/3/88 2/5/88 2/3/88 2/5/88 2/3/88 2/5/88 2/3/88 2/3/88 2/5/88 2/3/88	15 19 15 17 16 19 23 14 18	20 20 19 22 23 26 30 19 24	19 21 19 21 21 24 24 16 22 18	22 28 22 25 27 31 25 18 27 22	
117 118 118 119 119 120 120 121 121	2/5/88 2/3/88 2/5/88 2/3/88 2/5/88 2/3/88 2/5/88 2/3/88 2/5/88 2/3/88	17 15 17 17 20 18 25 12 18 8	18 22 25 30 33 19 25 16 24 8	22 18 22 19 23 0 21 2	21 23 30 30 34 3 29 3	
122 123 124 125 126 127 128 129 130 131	2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88	15 16 20 34 20 15 15 18 26 16	21 24 27 19 18 22 18 25 26 20	19 20 24 33 24 20 20 24 28 22 19	28 32 32 27 27 25 23 31 26 30 25	

Table 7a. Electromagnetic-induction data collected at the toxic-materials disposal area at J-Field, Aberdee Proving Ground, Maryland-Continued

		10-meter spacing		20-meter spacing		
ite No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole	
33	2/5/88	21	31	23	34	
34 35	2/5/88 2/5/88	16 16	21 22	23 21	38 31	
35	2/10/88	34	22 27	34	38	
36	2/5/88	14	19	20	27	
36	2/10/88	34	16	29	24	
7	2/5/88	15	18	19	24	
7 8	2/10/88 2/5/88	40 16	31 20	3 4 20	32 30	
8	2/10/88	26	34	29	36	
9	2/5/88 2/10/88	 28	 42	 25	 32	
9	2/10/88	20 29	42 15	25 25	32 24	
ĭ	2/5/88	17	24	25	30	
1	2/10/88	39	32	37	48	
2	2/5/88	17	24	18	26	
2 3	2/10/88 2/5/88	43 14	37 18	45 19	12 2 6	
ა 3	2/10/88	70	43	53	26 	
4	2/5/88	17	20	20	25	
4	2/10/88 2/5/88	64	47 25	52	28	
5 5	2/5/88	20 40	25 37	22 42	34 48	
6	2/5/88	22				
7	2/5/88	16	22	22	26	
8	2/5/88	15 16	2 2 19	20	21	
9	2/5/88 2/10/88	16 35	19 34	19 33	28 43	
ó	2/5/88	16	18	20	26	
0	2/10/88	39	38	33	40	
1 1	2/5/88 2/10/88	17 38	18 5 1	22 32	30 50	
2	2/5/88	17	26	26	36	
2	2/10/88	40	68	35	51	
3	2/5/88	16	18	19	25	
3	2/10/88	36	19	36	35	
4 4	2/5/88 2/10/88	15 36	22 37	21 37	26 44	
5	2/10/88	17	18	21	26	
5	2/10/88	60	27	47	20	
5	2/5/88	19	22	24	25	
7 8	2/5/88 2/5/88	17 16	18 19	21 21	2 4 29	
8	2/10/88	66	8	31	21	
9	2/5/88	19	20	22	27	
9	2/10/88	25	38	24	25	
0	2/5/88	19	18	24	27	
) 1	2/10/88 2/8/88	26 22	30 23	23 28	28 31	
2	2/8/88	17	23	24	33	
3	2/8/88	18	17	22	25	
4	2/8/88 2/8/88	18 19	21	23	27	
5 6	2/8/88 2/8/88	19 27	21 34	24 34	26 38	
7	2/8/88	20	24	25	35	
8	2/8/88	19	21	24	28	
9	2/8/88	19	23	24	25	
0 1	2/8/88 2/8/88	20 27	25 33	26 3 6	28 33	
2	2/8/88	32	31	35	33 42	
3	2/8/88	23	26	28	39	
4	2/8/88	22	26	28	36	
5 6	2/8/88 2/8/88	28 48	31 31	36 48	37 35	
7	2/8/88	46 79	30	48 60	35 25	
8	2/8/88	40	43	46	49	
9	2/8/88	27	33	40	40	
)	2/8/88	35 56	37	44	48	
1 2	2/8/88 2/8/88	56 39	32 44	54 52	38 6 2	
3	2/8/88	43	45	52 49	52	
4	2/8/88	62	49			

Table 7b. Electromagnetic-induction data collected at the riot-controlagent disposal area at J-Field, Aberdeen Proving Ground, Maryland

		10-meter spacing		20-meter	spacing
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	rizontal dipole	Vertical dipole
1 2 3 4 5 6 7 8 9	7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88	10 12 12 13 16 13 12 12 12 13 14	15 14 15 15 12 16 12 11 13	11 11 12 13 13 14 12 13 13 13	14 13 15 13 14 16 13 15 15
11 12 13 14 15 16 17 18 19 20	7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88 7/1/88	15 17 17 14 11 11 11 14 14 15	19 13 15 18 15 17 15 10 17	14 15 16 13 11 12 12 13 14	12 14 16 18 13 15 13 13 18 15
21 22 23 24 25 26 27 28 29 30	7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88	19 13 11 12 14 16 13 12 12 16	9 14 15 14 16 19 17 12 17	16 14 13 12 14 16 14 13 13	10 16 15 13 14 17 13 11 17
31 32 33 34 35 36 37 38 39	7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88 7/7/88	19 11 12 14 25 27 22 18 11	16 15 12 18 12 15 21 16 15	15 13 13 16 19 21 18 16 12	12 15 14 16 9 10 15 15 12
41 42 43 44 45	7/7/88 7/7/88 7/7/88 7/7/88 7/7/88	15 17 19 23 22	20 20 21 19 14	14 15 17 19	15 18 17 11 11

Table 7c. Electromagnetic-induction data collected at the Prototype Building area at J-Field, Aberdeen Proving Ground, Maryland

		10-meter spacing		20-meter spacing		
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole	
1	5/19/88	14	16	15	19	
2	5/19/88	17	16	10.5	22	
3	5/19/88	12	19	14	19	
4	5/19/88	12	12	13	16	
5 6	5/19/88 5/19/88	13 14	13 17	14 16	18 18	
7	5/19/88	18	16	17	17	
8	5/19/88	14	17	15	17.5	
9	5/19/88	13	18	15	18	
10	5/19/88	15.5	16	18	19	
11	5/19/88	11	16	13.5	18	
12	5/19/88	13	17	19	23	
13 14	5/19/88 5/19/88	15 13	16 17	15 14	16	
15	5/19/88	13	14	15	19 16	
16	5/19/88	15	17	15	14	
17	5/19/88	12	14	14	19	
18	5/19/88	18	20	22	28	
19	5/19/88	17	20	16	19	
20	5/19/88	12	15	14	17.5	
21	5/19/88	16	20	17	20	
22	5/19/88	24	23	25	26	
23	5/19/88	23	23	22	21	
24 25	5/19/88 5/19/88	18 12	21 15	15 16	16 19	
26	5/19/88	20	21	16 19	19 17	
27	5/19/88	18	21	18	21	
28	5/19/88	15	18	17	20	
29	5/19/88	18	21	18	19	
30	5/19/88	16	21	16	21	
31	5/19/88	16	20	18	21	

Table 7d. Electromagnetic-induction data collected at the white-phosphorus disposal area at J-Field, Aberdeen Proving Ground, Maryland

	.,,,,,				
		10-meter	spacing	20-meter	spacing
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole
1 2 3 4 5 6 7 8 9	12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88	21 9 7 7 7 12.5 53 6	70 22 16 15 12 105 110	17 9 9 9 8.5 22.5 170 200 19	53 28 24 22 17 275 58
11 12 13 14 15 16 17 18 19	12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88	10.5 10 10 10 95 12.5 10 9	15 15 16 18 22 19.5 14 12 13	11.5 12 12 12 12 9 12 12 12 11 11	22 21.5 27 40 55 12 17 16.5 17
21 22 23 24 25 26 27 28 29 30	12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88 12/11/88	11 9 7.5 7 14 11 9 8 9.5	12.5 11 12 11 0 15 11.5 8 12	 12.5 11 11 10 11.5 10 11 11	13.5 15 16 17 17.5 16 15 13
31 32 33 34 35 36 37 38 39	5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88	15 5 3.1 7.5 11 16 12 12 15 24	 6 13 12 16 16 14 17	 7 11 15 14 13 15 16	1.3 2.9 13 11 14 12 20 21
41 42 43 44 45 46 47 48 49	5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88 5/20/88	34 12 17 18 18 11.5 20 50 62 53	14 3 22 17 15 11 23 11.5 18 27	24 19 15 13 15 14.5 19 24 26 36	15 7 12.5 15 17 21 13 12.5
51 52 53 54 55 56 57 58 59	5/20/88 5/20/88 5/20/88 5/20/88 12/4/88 12/4/88 12/4/88 12/4/88 12/4/88	40 58 70 56 17 44 150 13 5	16 49 18 30 150 250 0 23.0 3.8 15.5	25 42 40 39 72 84 50 40 11	11 15 1.0 19 0 6 21 23
61 62 62 63 64 65 66 67 68	12/4/88 12/3/88 12/4/88 12/3/88 12/3/88 12/3/88 12/3/88 12/3/88 12/3/88 12/3/88	9 7.5 10.5 9 9 9.5 9.5 9.5 9.5	12.5 12 14 11 13 14 14 11.5 12	10 10 12 10 10 11 11 11 11 11 10.5	14 13 16 12.5 14.5 17 13 13

Table 7d. Electromagnetic-induction data collected at the white-phosphorus disposal area at J-Field, Aberdeen Proving Ground, Maryland--Continued

		10-meter	10-meter spacing		spacing
Site No.	Date (mo/day/yr)	Horizontal dipole	Vertical dipole	Horizontal dipole	Vertical dipole
70	12/3/88	10	12.5	11,	14
71	12/3/88	10	12.3	11	13.5
72	12/3/88	10.5	14	1/1.5	17
73	12/3/88	10.5	11	11	13.5
74	12/3/88	11.5	12	12	13
75	12/3/88	12	12.5	12	16
76	12/3/88	13	13	13	14
77	12/3/88	12	15	13	17
78	12/3/88				
79	12/3/88	14	14	14.5	19
80	12/3/88	14	16	15	18.5
81	12/3/88	13.5	16.5	15	18
82	12/3/88	15	16.5	16	21.5
83	12/3/88	15	15	15.5	16.5
84	12/3/88	14.5	16	12.5	18
85	12/3/88	14	14	15	18
86	12/3/88	16	15	18	6.7
87	12/3/88	16	18		
88	12/3/88	14.5	17	16	16
89	12/3/88	14	16.5	15	17.5
90	12/3/88	14	16	15	18.5
91	12/3/88	16.5	15	15.5	17.5
92	12/3/88	18	17		
93	12/3/88	13.5	16	15	17
94	12/3/88	14	15	15	17.5
95	12/3/88	17	15	16.5	14
96	12/3/88	18	19	18	17.5
97	12/3/88	19	19	18	16
98	12/3/88	15.5	18	15.5	19
99	12/3/88	14	16.5	14	17
100	12/3/88	13	19	14	20.5
101	12/3/88	13.5	19	14.5	22
102	12/3/88	18	14	16.5	18.5

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994

[Measuring point elevation is in feet above sea level, water levels in feet above or below (-) sea level; screen interval from land surface; lat: latitude; long: longitude; latitude and longitude: degrees (°), minutes ('), seconds ("); RCADA: Riot control agent disposal area; for location of observation wells, see figure 3; for hydrographs of selected wells, see figures 8a-g]

Lat: 39°18'27" Long: 76°17'27"

Measuring point elevation: 7.66

Highest water level: 4.57 feet on APR 17, 1990 and on MAR 11, 1994

Lowest water level: -0.72 feet on NOV 02, 1988

Location: White phosphorus pits Measuring point: top of well casing Screen interval: unknown

	Water	Water			Water	
Date	level Date		te level Date		level	
NOV 02. 1988	-0.72	APR 17, 1990	4.57	JUN 10, 1993	3.05	
JAN 31. 1989	2.05	JUL 10	1.11	AUG 19	64	
MAR 02	3.87	JAN 28, 1991	4.37	NOV 22	02	
APR 10	4.40	JUL 09	. 45	MAR 11. 1994	4.57	
MAY 03	4.46	MAY 20, 1992	2.86	•		
NOV 16	4.41	AUG 12	17			

Well TH2

Well TH2 Lat: 39°18'26" Long: 76°17'24" Measuring point elevation: 13.07 Highest water level: 8.38 feet on APR 17, 1990 Lowest water level: 0.42 feet on AUG 19, 1993

Location: White phosphorus pits Measuring point: top of well casing

Screen interval: unknown

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988		MAY 03, 1989	7.96	JUN 10, 1993	3.61
JAN 31, 1989		NOV 16	6.96	AUG 19	.42
MAR 02	5.79	APR 17, 1990	8.38	MAR 11, 1994	7.43
APR 10	7.90	JAN 28, 1991	6.86	AUG 22	.71

Well TH3

Date

NOV 02, 1988

JAN 31, 1989

Lat: 39°18'24" Long: 76°17'30"

Measuring point elevation: 9.99
Highest water level: 6.23 feet on MAR 11, 1994
Lowest water level: -0.58 feet on NOV 02, 1988

Date

JUL 10

JUL 09

AUG 12

APR 17, 1990

JAN 28, 1991

MAY 20, 1992

Water

level

-0.58

2.11

5 22

5.93

6.11

5.55

Location: White phosphorus pits Measuring point: top of well casing Screen interval: unknown

Water Water Date level Level JUN 10, 1993 2.70 AUG 19 -.08 -.36 5.17 NOV 22 1.18 MAR 11, 1994 2.72

Well TH4

MAR 02

APR 10

MAY 03

NOV 16

WeII TH4 Lat: 39°18'10" Long: 76°17'26" Measuring point elevation: 8.09 Highest water level: 4.89 feet on MAR 11, 1994 Lowest water level: -0.76 feet on AUG 19, 1993

Location: Toxic pits

. 4

Measuring point: top of well casing

Screen interval: unknown

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	-0.07	APR 17, 1990	4.10	JUN 10, 1993	2.51
JAN 31, 1989	3.14	JUL 10	1.40	AUG 19	76
MAR 02	3.64	JAN 28. 1991	3.51	NOV 22	.26
APR 10	4.06	JUL 09	.86	MAR 11. 1994	4.89
MAY 03	4.57	MAY 20, 1992	2.33	AUG 22. 1994	1.62
NOV 16	3.34	AUG 12	04	,	

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well TH5 Lat: 39°18'12" Long: 76°17'33" Measuring point elevation: 12.68 Highest water level: 8.43 feet on MAR 11, 1994 Lowest water level: 0.44 feet on NOV 02, 1988

Location: Prototype Building Measuring point: top of well casing Screen interval: unknown

	Water		Water	Water	
Date	level	Date	level	Date	level
NOV 02. 1988	0.91	APR 17, 1990	7.89	AUG 19, 1993	1.85
JAN 31, 1989	4.23	JUL 10	3.70	NOV 22	1.11
MAR 02	5.71	JAN 28, 1991	6.56	MAR 11, 1994	8.43
APR 10	7.72	JUL 09	3.07	AUG 22	3.36
MAY 03	7.89	MAY 20, 1992	4.14		
NOV 16	5.71	JUN 10. 1993	4.78		

Well TH6
Lat: 39°18'17" Long: 76°17'37"
Measuring point elevation: 12.44
Highest water level: 9.01 feet on MAR 11, 1994
Lowest water level: 0.55 feet on NOV 02, 1988

Location: Prototype Building Measuring point: floor of shelter Screen interval: unknown

	Water		Water		Water
Date	level	Date	level	Date	level
NOV 02, 1988	0.55	SEP 25	3.60	MAR 09	8.26
DEC 13	2.09	OCT 31	3,32	31	8.76
JAN 31, 1989	3.63	JAN 15, 1991	8.48	MAY 06	6.23
FEB 01	2.81	28	6.69	JUN 07	4.45
MAR 02	5.82	MAR 06	5.43	10	4.36
APR 10	8.47	MAY 20, 1991	4.89	JUL 08, 1993	3.09
MAY 03	8.83	JUL 09	2.85	AUG 10	1.91
JUN 14	7.42	AUG 07	1.99	19	1.68
JUL 27	5.74	DEC 05	2.11	SEP 17	1.06
AUG 24	3.78	FEB 04, 1992	3.48	OCT 28	.68
OCT 25	5.76	MAR 18	6.17	NOV 22	.79
NOV 16	5.30	MAY 13	4.39	DEC 06	2.05
DEC 14. 1989	4.12	20	4.07	MAR 08, 1994	8.44
FEB 05, 1990	6.87	JUN 30	2.98	11	9.01
28	5.53	AUG 12	1.95	APR 14	8.65
APR 17	8.57	SEP 29	1.32	MAY 13	4.85
JUN 26	4.80	OCT 29	1.50	JUL 05	5.05
JUL 10	3.73	DEC 04, 1992	2.53	AUG 16	2.04
AUG 08	3.50	JAN 29, 1993	5.76	22	2.30

Well TH7

Lat: 39°18'14" Long: 76°17'10"

Measuring point elevation: 8.76

Highest water level: 5.14 feet on MAY 03, 1989 Lowest water level: -1.54 feet on NOV 02, 1988

Location: Demolition area Measuring point: top of well casing Screen interval: unknown

	Water			Water	
Date	level	Date	level	Date	level
NOV 02, 1988	-1.54	APR 17, 1990	5.03	JUN 10, 1993	3.41
JAN 31, 1989	3.31	JUL 10	1.02	AUG 19	-1.08
MAR 02	4.60	JAN 28, 1991	4.57	NOV 22	-1.21
APR 10	5.00	JUL 09	.64	MAR 11. 1994	4.96
MAY 03	5.14	MAY 20, 1992	3.46	AUG 22	.88
NOV 16	4.74	AUG 12	40		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994 -- Continued

Well TH8 Lat: 39°18'16" Long: 76°17'38"

Measuring point elevation: 8.94 Highest water level: 4.17 feet on JUN 16, 1989 Lowest water level: 0.69 feet on NOV 22,1993

Location: Prototype Building Measuring point: floor of shelter Screen interval: unknown

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	1.02	JUN 26	1.97	OCT 29	1.17
DEC 13	1.17	JUL 10	1.61	DEC 04	1.19
JAN 31, 1989	1.38	AUG 08	1.94	JAN 29, 1993	2.29
FEB 01	1.34	SEP 25	1.52	FEB 26	2.66
MAR 02	2.14	OCT 31, 1990	1.77	MAR 31, 1993	3.31
03	2.22	JAN 15, 1991	2,96	MAY 06	2.45
10	3.24	28	2.43	JUN 07	2.04
APR 10	3.16	MAR 06	2.29	10	1.93
MAY 03	3.47	JUL 09	1.52	JUL 08	1.42
JUN 16	4.17	AUG 02	1.34	AUG 10	1,22
JUL 27	2.25	OCT 25	1,38	19	1.45
AUG 24	1.62	DEC 05	1.37	SEP 17	1.12
SEP 07, 1989	1.68	JAN 05, 1992	3.06	NOV 22, 1993	.69
OCT 25	2.34	FEB 04	1.64	MAR 08, 1994	2.77
NOV 16	2.73	MAR 18	1.98	11	3.26
DEC 14	1.70	MAY 13	1.96	MAY 13	1.42
FEB 05, 1990	2.59	MAY 20, 1992	1.75	27	1.95
28	1.97	JUN 30	2.06	JUL 05	1.36
APR 17	3.11	AUG 12	1.35	AUG 22	1.89
MAY 01	2.54	SEP 29	1.32		

Well TH9 Lat: 39°18'11" Long: 76°17'47"

Measuring point elevation: 8.23 Highest water level: 2.00 feet on APR 17, 1990 Lowest water level: 0.80 feet on MAR 02, 1989

Location: RCADA (now off shore) Measuring point: top of well casing Screen interval: unknown

Date	Water level	Date	Water level	Date	Water level
MAR 02, 1989 APR 10 MAY 03	0.8 1.5 1.8	NOV 16, 1989 APR 17, 1990 JUL 10	1.29 2.00 .95	JAN 28, 1991	1.49

Well TH10 Lat: 39°18'05" Long: 76°17'40"

Measuring point elevation: 9.68

Highest water level: 4.80 feet on MAR 11, 1994 Lowest water level: -0.12 feet on AUG 19, 1993

Location: South beach

Measuring point: top of well casing

Screen interval: unknown

	Water	Water			Water
Date	level	Date	level	Date	level
NOV 02, 1988 JAN 31, 1989	0.07 2.67	APR 17, 1990 JUL 10	4.03 .85	AUG 12, 1992 JUN 10, 1993	0.27 1.67
MAR 02 APR 10 MAY 03	3.35 3.94 4.03	JAN 28, 1991 JUL 09 AUG 12	3 . 24 . 78 . 27	AUG 19 NOV 22 MAR 11. 1994	12 .55 4.80
NOV 16	2.88	MAY 20, 1992	1.66	AUG 22	1.05

Well TH11

Lat: 39°18'06" Long: 76°16'52" Measuring point elevation: 8.30

Highest water level: 2.06 feet on APR 17, 1990

Lowest water level: 0.26 feet on AUG 12, 1992

Location: Robins Point

Measuring point: top of well casing Screen interval: unknown

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	0.97	JUL 10, 1990	0.53	AUG 19. 1993	1.48
JAN 31, 1989	.57	JAN 28, 1991	1.12	NOV 22	.48
MAR 02	.56	JUL 09	1.10	MAR 11, 1994	1.44
APR 10	1.50	MAY 20, 1992	1.31	AUG 22	.69
MAY 03	1.62	AUG 12	.26		
APR 17, 1990	2.06	JUN 10, 1993	1.48		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well P1 Lat: 39°18'11" Long: 76°17'32"

Measuring point elevation: 14.15 Highest water level: 9.21 feet on MAR 11, 1994 Lowest water level: 1.07 feet on NOV 02, 1988

Location: Toxic pits

Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

Date	Water level	Date	Water 1eve1	Date	Water Level
Dace	TEAGT	Date	rever	Date	Tevel
NOV 02. 1988	1.07	APR 17. 1990	8.10	JUN 10, 1993	5.06
JAN 31, 1989	4.43	JUL 10	4.08	AUG 19	2.09
MAR 02	7.16	JAN 28, 1991	6.96	NOV 22	1.31
APR 10	7.76	JUL 09	3.28	MAR 11, 1994	9.21
MAY 03	7.56	MAY 20, 1992	4.36	AUG 22	3.89
NOV 16	5.39	AUG 12	2.41		

Well P2

Lat: 39°18'09" Long: 76°17'30" Measuring point elevation: 11.16

Highest water level: 7.58 feet on MAR 11, 1994 Lowest water level: 0.40 feet on NOV 02, 1988

Location: Toxic pits

Measuring point: top of well casing Screen interval: 5.0 -20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	0.40	APR 17, 1990	6.49	AUG 19, 1993	1.24
JAN 31, 1989	4.74	JUL 10	3.49	NOV 22	1.13
MAR 02	5.64	JAN 28, 1991	5.88	MAR 11, 1994	7.58
APR 10	6.27	JUL 09	2,63	AUG 22	3.28
MAY 03	6.02	MAY 20. 1992	4.19		
NOV 16	4.60	JUN 10. 1993	4.51		

Well P3

Lat: 39°18'12" Long: 76°17'29"

Measuring point elevation: 10.27 Highest water level: 6.60 feet on AFR 10, 1989 Lowest water level: 1.33 feet on NOV 22, 1993

Location: Toxic pits

Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

	Water		Water	Water	
Date	level	Date	level	<u>Date</u>	<u>level</u>
MAR 02, 1989	5.81	JUL 10, 1990	3.20	JUN 10, 1993	4,62
APR 10	6.60	JAN 28. 1991	5.92	AUG 19	1.36
MAY 03	6.09	JUL 09	3. 5 5	NOV 22	1.33
NOV 16	5,27	MAY 20, 1992	3.92	AUG 22, 1994	3.65
APR 17, 1990	6.38	AUG 12	1.85	-	

Well P4

Lat: 39°18'11" Long: 76°17'28"

Measuring point elevation: 10.19

Highest water level: 6.53 feet on MAR 11, 1994 Lowest water level: -0.01 feet on AUG 19, 1993

Location: Toxic pits

Measuring point: top of well casing Screen interval: 5.0 - 17.0 feet

	Water	Water		er Water			Water
	level	Date	level	<u>Date</u>	level		
NOV 02, 1988	0.41	APR 17, 1990	6.49	JUN 10, 1993	3,66		
JAN 31, 1989	6.16	JUL 10	2.15	AUG 19	01		
MAR 02	6.13	JAN 28, 1991	6.20	NOV 22	2.00		
APR 10	6.07	JUL 09	1.56	MAR 11, 1994	6.53		
MAY 03	5.95	MAY 20, 1992	3.77	AUG 22	5.79		
NOV 16	6.44	AUG 12	.50				

Well P5 Lat: 39°18'25" Long: 76°17'25"

Measuring point elevation: 13.03

Highest water level: 8.03 feet on APR 11, 1990 Lowest water level: -0.92 feet on NOV 02, 1988

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	-0.92	APR 17, 1990	8.03	JUN 10. 1993	3.50
JAN 31, 1989	2.03	JUL 10	2.47	AUG 19	. 48
MAR 02	5.90	JAN 28. 1991	6.56	NOV 22	52
APR 10	7.36	JUL 09	1.74	MAR 11. 1994	7.38
MAY 03	7.52	MAY 20, 1992	3.97	AUG 22	.97
NOV 16	6.67	AUG 12	1.00		• • •

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well P6 Lat: 39°18'25" Long: 76°17'30"

Measuring point elevation: 10.88 Highest water level: 5.97 feet on APR 17, 1990 Lowest water level: -0.89 feet on NOV 02, 1988

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988	-0.89	APR 17, 1990	5.97	JUN 10, 1993	2.87
JAN 31, 1989	2.57	JUL 10	1.51	AUG 19	.54 .15
MAR 02	4.33	JAN 28, 1991	4.67	NOV 22	. 15
APR 10	4.63	JUL 09	1.51	MAR 11, 1994	5.70
MAY 03	4.87	MAY 20, 1992	3.77		
NOV 16	5.17	AUG 12	90		

Well P7

Lat: 39°18'26" Long: 76°17'30" Measuring point elevation: 7.77

Highest water level: 3.18 feet on APR 17, 1990 Lowest water level: 0.01 feet on NOV 02, 1988

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988 JAN 31, 1989 MAR 02 APR 10 MAY 03	0.01 2.18 1.93 2.30 2.27	APR 17, 1990 JUL 10 JAN 28, 1991 MAY 20, 1992 AUG 12	3 18 1 05 2 30 1 90 51	JUN 10, 1993 AUG 19 NOV 22 MAR 11, 1994	1.88 1.07 .24 2.38

Well P8

Lat: 39°18'27" Long: 76°17'28" Measuring point elevation: 8.48

Highest water level: 4.62 feet on APR 17, 1990 Lowest water level: -0.29 feet on NOV 02, 1988

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 02, 1988 JAN 31, 1989 MAR 02 APR 10	-0.29 2.21 3.72 4.06	APR 17, 1990 JUL 10 JAN 28, 1991 JUL 09	4 62 50 4 05 1 15	JUN 10, 1993 AUG 19 NOV 22 MAR 11, 1994	2.80 .53 .36 4.23
MAY 03 NOV 16	4.12	MAY 20, 1992 AUG 12	2 55	11, 1777	,,20

Well P9

Lat: 39°18'10" Long: 76°17'31"

Measuring point elevation: 11.12 Highest water level: 7.66 feet on MAR 11, 1994 Lowest water level: 0.76 feet on NOV 02, 1988

Location: Toxic pits Measuring point: top of well casing Screen interval: 5.0 - 20.0 feet

	Water		Water		
Date	level	Date	level	Date	level
NOV 02, 1988 JAN 31, 1989 MAR 02	0.76 4.21 6.16	APR 17, 1990 JUL 10 JAN 28, 1991	6.95 3.53 6.02	JUN 10, 1993 AUG 19 NOV 22	4.87 1.37 1.20
APR 10 MAY 03 NOV 16	6.62 6.59 5.01	JUL 09 MAY 20, 1992 AUG 12	2.89 4.27 1.96	MAR 11, 1994 AUG 22	7.66 3.39

Well JF1 Lat: 39°18'06" Long: 76°16'53"

Measuring point elevation: 8.01

Highest water level: 2.40 feet on NOV 16, 1989 Lowest water level: -0.44 feet on MAR 11, 1994

Location: Robins Point

Measuring point: top of well casing Screen interval: 185.0 - 190.0 feet

Water			Water		Water
Date level	level	Date	level	Date	level
APR 10, 1989	1.03	JUL 10, 1990	0.82	AUG 19, 1993	1.75
MAY 03	1.01	JAN 28, 1991	.91	NOV 22	.41
NOV 16	2.40	JUL 09	1,.28	MAR 11, 1994	-,44
APR 17, 1990	1.91	JUN 10, 1993	1.33	AUG 22	1.20

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF2 Lat: 39°18'06" Long: 76°16'53"

Measuring point elevation: 13.47 (estimated) Highest water level: 2.16 feet on AUG 22, 1994 Lowest water level: 0.95 feet on MAR 11, 1994

Location: J-Field gate

Measuring point: top of well casing Screen interval: 208.0 - 213.0 feet

Date	Water level	Date	Water level	Date	Water level
JUL 27, 1989 NOV 16	1.01 2.03	JUL 09, 1991 MAY 20, 1992	1.20 1.17	NOV 22, 1993 MAR 11, 1994	1.45 .95
APR 17, 1990 JUL 10	1.59 1.08	JUN 10, 1993 AUG 19	1.13 1.54	AUG 22	2.16

Lat: 39°18'09" Long: 76°17'43"

Measuring point elevation: 10.35 Highest water level: 1.88 feet on MAY 20, 1991 Lowest water level: -1.44 feet on NOV 07, 1993

Location: RCADA

Measuring point: floor of shelter Screen interval: 85.0 - 90.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16 1000	1.84	DEC 05, 1991	-0.17	AUG 19, 1993	1.69
NOV 16, 1989					
FEB 05, 1990	.02	FEB 04, 1992	1.11	SEP 17	1.10
28	. 90	MAR 18	. 13	OCT 08	1.09
APR 17	1.31	MAY 13	1.39	28	1.79
MAY 01	1.23	20	1.30	NOV 07	-1.44
JUN 26	1.58	JUN 30	1.62	22	.67
JUL 10	1.07	AUG 12	1.03	DEC 06	.90
AUG 08	1.43	SEP 29	.92	JAN 10, 1994	93
SEP 25	1.05	OCT 29	. 96	MAR 08	.86
OCT 31	1.18	DEC 04	. 42	11	17
JAN 14, 1991	1.59	JAN 29, 1993	.94	APR 14	1.43
28	. 80	MAR 09	.70	MAY 13	.27
MAR 06	1.80	31	1.49	23	1.06
MAY 20	1.88	MAY 06	.94	JUL 05	.81
JUL 09	. 92	JUN 07	1.09	AUG 16	.50
AUG 07	. 99	10	1.42	22	1.33
OCT 25	.84	JUL 08	1.16		

Well JF12 Lat: 39°18'09" Long: 76°17'43"

Measuring point elevation: 9.90 Highest water level: 3.49 feet on MAR 31, 1993 Lowest water level: 0.44 feet on OCT 29, 1993

Location: RCADA

Measuring point: top of well casing Screen interval: 50.0 - 55.0 feet

_	Water	_	Water	_	Water
Date	level	Date	level	Date	level
NOV 16, 1989	1.94	OCT 25, 1991	0.64	JUN 10, 1993	2.10
FEB 05, 1990	1.93	DEC 05	.95	JUL 08	1.53
28	1.92	FEB 04, 1992	1.32	AUG 10	1.08
APR 17	2.20	MAR 18	1.82	19	. 95
MAY 01	2,24	MAY 13	2.02	SEP 17	. 56
JUN 04	2.33	20	1.90	OCT 29	.44
JUL 10	1.65	JUN 30	1.70	NOV 22	. 46
AUG 08	1.60	AUG 12	1.18	DEC 06	. 65
SEP 25	1.79	SEP 29	.79	JAN 10. 1994	.94
OCT 31	1.52	OCT 29	1.30	MAR 08	1.92
JAN 14, 1991	1,85	DEC 04	1.37	11	1.98
28	2.17	JAN 29, 1993	2.97	APR 14	2.30
MAR 06	2.15	MAR 09	3.43	MAY 13	2.08
MAY 20	2.22	31	3.49	JUL 05	1.14
JUL 09	1.63	MAY 06	2.55	AUG 16	1.03
AUG 07	1.26	JUN 07	2.18	22	1.09

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF13
Lat: 39°18'09" Long: 76°17'43"
Measuring point elevation: 10.24
Highest water level: 3.95 feet on MAR 31, 1993
Lowest water level: -0.09 feet on SEP 17, 1993

Location: RCADA

Measuring point: floor of shelter Screen interval: 20.5 - 25.5 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2.81	DEC 05, 1991	1.02	AUG 10, 1993	0.41
FEB 05, 1990	3.35	FEB 04. 1992	2.01	19	.38
28	1.65	MAR 18	2.74	SEP 17	09
APR 17	3.71	MAY 13	2.42	OCT 28	.70
MAY 01	3.50	20	1.90	NOV 22	.25
JUN 26	1.88	JUN 30	1.48	DEC 06	1.04
JUL 10	1.21	AUG 12	. 52	JAN 10, 1994	1.60
AUG 08	1.48	SEP 29	.67	MAR 08	3.72
SEP 25	1.45	OCT 29	.77	11	3.76
OCT 31	1.68	DEC 04	1.17	APR 14	3.83
JAN 14. 1991	3,91	JAN 29, 1993	2.93	MAY 13	2.22
28	3.19	MAR 09	3.70	23	2.28
MAR 06	3.09	31	3.95	JUL 05	. 87
MAY 20	2.51	MAY 06	3.30	AUG 16	.59
JUL 09	1.02	JUN 07	1.91	22	1.14
AUG 07	.54	10	2.16		4.47
OCT 25	.73	JUL 08	1.07		

Well JF21 Lat: 39°18'09" Long: 76°17'46" Measuring point elevation: 6.01 Highest water level: 1.84 feet on NOV 16, 1989 Lowest water level: -0.92 feet on JAN 10, 1994

Location: RCADA Measuring point: floor of shelter Screen interval: 68.0 - 71.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	1.84	AUG 08, 1991	1.11	AUG 10, 1993	1.04
FEB 05, 1990	02	OCT 25	. 86	19	1.63
28	.93	DEC 05	-1.19	SEP 17	1.07
APR 17	1.36	FEB 04. 1992	1.07	OCT 28	1.74
MAY 01	1.10	MAR 18	. 16	NOV 22	.66
JUN 26	1.49	MAY 13	1.28	DEC 06	.96
JUL 10	1.06	20	1.29	JAN 10. 1994	92
AUG 08	1.43	JUN 30	1.53	MAR 08	.87
SEP 25	1.08	SEP 29	.94	11	19
OCT 02	1.23	OCT 29	. 99	APR 14	1.42
31	1.23	DEC 04	. 33	MAY 13	.26
JAN 14, 1991	1.50	JAN 29, 1993	1.02	27	1.19
28	.77	MAR 16	.35	JUL 05	.76
MAR 06	1.82	31	1.61	AUG 16	.53
MAY 20	1.84	MAY 06	.90	22	1.34
JUN 07	.98	JUN 10		22	1.54
			1.38		
JUL 09	. 89	JUL 08	1.21		

Well JF22

Lat: 39°18'09" Long: 76°17'46"

Measuring point elevation: 5.63 Highest water level: 1.80 feet on MAY 06, 1993 Lowest water level: 0.41 feet on AUG 19, 1993

Location: RCADA Measuring point: top of well casing Screen interval: 47.5 - 52.5 feet

Date	Water level	Date	Water level	Date	Water level
Date	TEAGT	Date	TEAGT	Date	Tever
NOV 16, 1989	1.53	OCT 25, 1991	0.72	JUN 07, 1993	1.39
FEB 05, 1990 APR 17	1.33 1.47	DEC 05 FEB 04, 1992	.83 .91	10 AUG 19	1.34 .41
MAY 01	1.50	MAR 18	1.23	OCT 29	.79
JUN 26 JUL 10	1.41 1.20	MAY 13 20	1.52 1.37	NOV 22 DEC 06	.65 1.00
AUG 08	1.19	JUN 30	1.27	JAN 10, 1994	. 69
SEP 25 OCT 31	1.34 1.34	AUG 12 SEP 29	. 92 . 88	MAR 08 11	1.27 1.32
JAN 14, 1991	1.45	OCT 29	. 86	APR 14	1.49
28	1.48	DEC 04	1.07	MAY 13	1.31
MAR 06 MAY 20	1.50 1.52	JAN 29, 1993 MAR 16	1.17 1.59	JUL 05 AUG 16	.97 .82
JUL 09	1.30	31	1.58	22	. 93
AUG 08	. 88	MAY 06	1.80		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF23 Lat: 39°18'09" Long: 76°17'46"

Measuring point elevation: 5.86 Highest water level: 2.93 feet on MAR 31, 1993 Lowest water level: 0.14 feet on SEP 17, 1993

Location: RCADA

Measuring point: floor of shelter Screen interval: 16.0 - 19.9 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2.53	DEC 05, 1991	0.55	AUG 10, 1993	0.35
FEB 05, 1990	2.08	FEB 04, 1992	1.60	19	1.09
28		MAR 18	1.80	SEP 17	.14
	1.89				
APR 17	2.80	MAY 16	1.85	OCT 28	1.04
MAY 01	2.54	20	1.59	NOV 22	. 16
JUN 26	1.36	JUN 30	1,28	DEC 06	1.57
JUL 10	.90	AUG 12	.50	JAN 10. 1994	.87
AUG 08	1.07	SEP 29	.66	MAR 08	2.60
SEP 25	1.37	OCT 29	.73	11	2.31
OCT 31	1.31	DEC 04	.66	APR 14	2.88
JAN 14, 1991	2.84	JAN 29. 1993	2.18	MAY 13	1.34
28	2.32	MAR 16	1.98	27	1.64
MAR 06	2.54	31	2.93	JUL 05	. 63
MAY 20	2.01	MAY 06	2.44	AUG 16	. 29
JUL 09	.68	JUN 07	1.38	22	1.06
				22	1.00
AUG 08	. 52	10	1.73		
OCT 25	.63	JUL 08	.79		

Well JF31

Lat: 39°18'14" Long: 76°17'38"

Measuring point elevation: 10.65 Highest water level: 1.83 feet on NOV 16, 1989 Lowest water level: -1.02 feet on JAN 10, 1993

Location: Prototype Building Measuring point: floor of shelter Screen interval: 73.8 - 78.8 feet

Date	Water level	Date	Water level	Date	Water level
	0.00		4 15	TVV 40 4000	4 00
MAR 02, 1989	0.23	AUG 02, 1991	1.15	JUN 10, 199 3	1.32
APR 10	.75	OCT 25	.85	JUL 08	1.11
NOV 16	1.83	DEC 05	25	AUG 10	.90
FEB 05, 1990	. 69	FEB 04, 1992	. 97	19	1.58
28	.32	MAR 18	.18	SEP 17	1.04
APR 17	1.27	MAY 13	1.15	OCT 27	1.29
MAY 01	1.22	20	1.19	NOV 22	.54
JUN 26	1.47	JUN 30	1.73	DEC 02	.86
JUL 10	.98	AUG 12	1.00	JAN 10, 1994	-1.02
AUG 08	1.23	SEP 29	.83	MAR 08	.69
SEP 25	. 96	OCT 29	. 81	11	24
OCT 31	.90	DEC 04	. 16	APR 14	1.28
JAN 14, 1991	1.21	JAN 29, 1 9 93	. 97	MAY 13	. 15
28	.58	MAR 09	.78	23	.96
MAR 06	1.62	31	1,31	JUL 05	. 75
MAY 20	1.67	MAY 06	1.05	AUG 16	.37
JUL 09	.81	JUN 07	1.16	22	1,25

Well JF32 Lat: 39°18'14" Long: 76°17'38" Measuring point elevation: 10.57

Highest water level: 3.54 feet on APR 10, 1989 and on MAR 31, 1993 Lowest water level: 0.62 feet on NOV 22, 1993

Location: Prototype Building Measuring point: top of well casing Screen interval: 49.4-54.4 feet

Water	Water Water			Water	
Date	level	Date	level	Date	1evel
MAR 02, 1989	2.73	AUG 02, 1991	1.20	JUL 08, 1993	1.56
APR 10	3,54	OCT 25	1.05	AUG 10	1.03
NOV 16	2.51	DEC 05	1.14	19	1.07
FEB 05. 1990	2.83	FEB 04, 1992	1.52	SEP 17	. 78
28	2.26	MAR 18	2.49	OCT 29	.74
APR 17	3.00	MAY 13	2.22	NOV 22	.62
JUN 26	2.31	20	1.98	DEC 02	. 87
JUL 10	1.83	JUN 30	1.66	JAN 10, 1994	1.27
AUG 08	1.84	AUG 12	1.14	MAR 08	3.14
SEP 25	1.84	SEP 29	1.09	11	3.09
30	2.72	OCT 29	1.00	APR 14	3.08
OCT 31	1.74	NOV 23	1.26	MAY 13	2.24
JAN 14, 1991	3.14	JAN 29. 1993	1.42	JUL 05	1.31
28	2.95	MAR 31	3.54	AUG 16	1.17
MAR 06	2.42	MAY 06	3.07	22	1.35
MAY 20	2.38	JUN 07	2.16		
JUL 09	1.66	10	2.15		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF33
Lat: 39°18'14" Long: 76°17'38"
Measuring point elevation: 10.87
Highest water level: 6.85 feet on MAR 11, 1994
Lowest water level: 1.35 feet on SEP 17, 1993
and on NOV 22, 1993

Location: Prototype Building Measuring point: floor of shelter Screen interval: 15.0 - 20.0 feet

D .	Water	D .	Water	D-+-	Water
Date	level	Date	level	Date	<u>level</u>
MAR 02, 1989	4.69	AUG 02, 1991	2.07	JUL 08, 1993	2.50
APR 10	5.92	OCT 25	2.18	AUG 10	1.82
NOV 16	4.26	29	1 87	19	1.79
FEB 05, 1990	5.48	DEC 05	2 52	SEP 17	1.35
28	3.96	FEB 04, 1992	2.90	29	2.13
APR 17	5.72	MAR 18	4 36	OCT 27	1.39
MAY 01	5.27	MAY 13	3 44	NOV 22	1.35
JUN 26	3.47	20	3 17	DEC 02	2.08
JUL 10	2,63	JUN 30	2 69	JAN 10, 1994	3.29
AUG 08	3.25	AUG 12	1.96	MAR 08	5.99
SEP 25	3.00	DEC 04	2 51	11	6.85
OCT 31	2.99	JAN 29, 1993	4 28	APR 14	6.42
JAN 14. 1991	6.24	MAR 09	5 86	MAY 13	3.55
28	4.86	31	6.37	23	3.37
MAR 06	4.34	MAY 06	4 74	JUL 05	2.20
MAY 20	3.76	JUN 07	3[38	AUG 16	2.03
JUL 09	2.46	10	3 62	22	2.83

Well JF41 Lat: 39°18'12" Long: 76°17'31"

Measuring point elevation: 13.28 Highest water level: 1.99 in feet on NOV 16, 1989 Lowest water level: -0.85 in feet on JAN 10, 1994

Location: Toxic pits Measuring point: floor of shelter Screen interval: 85.0 - 90.0 feet

	Water	_	Water		Water
Date	level	Date	level	Date	level
NOV 16, 1989	1.99	DEC 05, 1991	-0.11	AUG 10, 1993	1.13
FEB 28, 1990	.32	FEB 06, 1992	1.07	19	1.71
APR 17	1.43	MAR 18	.18	SEP 17	1.05
MAY 01	1.42	MAY 20	1.22	OCT 27	1.54
JUN 26	1.61	JUN 30	1.25	NOV 22	.67
JUL 10	1.07	AUG 11	1 . 41	24	. 40
AUG 08	1.30	12	1,31	DEC 02	.98
SEP 25	1.09	SEP 29	. 87	JAN 10. 1994	85
OCT 31	1.24	OCT 29	1.05	MAR 08	.92
JAN 14, 1991	1.62	DEC 04	. 15	11	12
28	.82	MAR 16. 1993	. 54	APR 14	1.34
MAR 06	1.85	31	1.66	MAY 13	.24
MAY 20	1.89	MAY 06	1.46	JUL 05	.78
JUL 09	.96	JUN 07	1.50	AUG 16	.54
AUG 08	1.09	10	1,45	22	1.26
OCT 25	.84	JUL 08	1.32		

Well JF42 Lat: 39°18'12" Long: 76°17'31" Measuring point elevation: 13.28 Highest water level: 3.83 feet on MAR 31, 1993 Lowest water level: 0.53 feet on SEP 12, 1993

Location: Toxic pits

Measuring point: top of well casing Screen interval: 57.0 - 62.0 feet

Date	Water level	Date	Water level	Data	Water
Date	Tevel	Dare	Tevel	Date	level
NOV 16, 1989	3.07	FEB 04, 1992	2.23	AUG 10, 1993	1.14
FEB 28, 1990	3.27	MAR 18	2.92	19	.99
APR 17	3.56	MAY 20	2.84	SEP 12	. 53
MAY 01	3.61	JUN 30	2.30	OCT 29	. 66
JUN 06	3.56	AUG 11	1.38	NOV 22	.81
JUL 10	2.59	12	1.39	DEC 02	. 81
AUG 08	2,41	SEP 29	1.27	JAN 10. 1994	1.67
OCT 31	2.25	OCT 29	1.46	MAR 08	3.08
JAN 15, 1991	3.21	DEC 04	1.87	11	3.13
28	3.53	JAN 29, 1993	3.17	APR 14	3.73
MAR 06	3.36	MAR 16	3.59	MAY 13	3.36
MAY 20	3.23	31	3.83	JUL 05	1.84
JUL 09	2.08	MAY 06	3.80	AUG 16	1.52
AUG 08	1.46	JUN 07	3.26	22	1.60
OCT 25	1.36	10	3.15		
DEC 25	1.64	JUL 08	2.21		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF43 Lat: 39°18'12" Long: 76°17'31"

Measuring point elevation: 12.78 Highest water level: 6.33 feet on MAR 31, 1993 Lowest water level: 0.20 feet on SEP 17, 1993

Location: Toxic pits Measuring point: floor of shelter Screen interval: 30.0 - 35.0 feet

Date	Water level	Date	Water level	Date	Water Level
NOV 16, 1989	4.62	OCT 25, 1991	1.87	JUL 08, 1993	2.23
FEB 28, 1990	4.49	DEC 05	2.51	AUG 10	1.06
APR 17	5.75	FEB 04, 1992	3.34	19	.86
MAY 01	5.24	MAR 18	4.83	SEP 17	.20
JUN 26	3.62	MAY 20	3.48	OCT 27	.47
JUL 10	2.72	JUN 30	2.27	NOV 22	.88
AUG 08	3.17	AUG 11	1.38	DEC 02	1.35
SEP 25	3.21	SEP 29	1.73	JAN 10, 1994	3.49
OCT 31	3.21	OCT 29	1.81	MAR 08	5.93
JAN 14, 1991	6.13	DEC 02	3.14	11	6.33
28	5.22	JAN 29, 1993	4.91	APR 14	5.96
MAR 16	4.73	MAR 16	5.59	MAY 13	4.31
MAY 20	3.97	31	6.33	JUL 05	1.85
JUL 09	2.18	MAY 06	4.88	AUG 16	2.13
AUG 08	1.30	JUN 07	3.58	22	2.66
		10	3.94	22	2.00
12	1.37	10	3.94		

Well JF51 Lat: 39°18'08" Long: 76°17'27"

Measuring point elevation: 7.21 Highest water level: 2.09 feet on APR 17, 1990 Lowest water level: -0.30 feet on JUL 10, 1990

Location: Toxic pits

Measuring point: top of well casing Screen interval: 110.0 - 115.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	1.85	JUL 09, 1991	1.75	AUG 19, 1993	1.51
APR 17, 1990 JUL 10	2.09 30	MAY 20, 1992 AUG 12	1.63 1.07	NOV 22 MAR 11, 1994	1.12 1.57
JAN 28, 1991	1.95	JUN 10, 1993	1.85	AUG 22	1.37

Well JF52 Lat: 39°18'08" Long: 76°17'27" Measuring point elevation: 8.13 Highest water level: 3.70 feet on JAN 28, 1991 Lowest water level: 0.50 feet on NOV 22, 1993

Location: Toxic pits
Measuring point: top of well casing
Screen interval: 60.0 - 65.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 APR 17, 1990	3.01	JUL 09, 1991 MAY 20, 1992	2.07	AUG 19, 1993 NOV 22	0.87 .50
JUL 10 JAN 28, 1991	1.76 3.70	AUG 12 JUN 10, 1993	1.32 3.19	MAR 11, 1994 AUG 22	3.45 1.59

Well JF53
Lat: 39°18'08" Long: 76°17'27"
Measuring point elevation: 8.07
Highest water level: 5.28 feet on JAN 28, 1991
Lowest water level: -0.41 feet on AUG 19, 1993

Location: Toxic pits

Measuring point: top of well casing Screen interval: 14.2 - 19.2 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	3.64	JUL 09, 1991	1.21	AUG 19. 1993	-0.41
APR 17, 1990	4.35	MAY 20, 1992	2.62	NOV 22	.58
JUL 10	1.72	AUG 12	.30	MAR 11, 1994	5.08
JAN 28, 1991	5.28	JUN 10, 1993	2.87	AUG 22	2.01

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF61 Lat: 39°18'10" Long: 76°17'28"

Measuring point elevation: 6.99
Highest water level: 1.60 feet on MAY 06, 1993
Lowest water level: -0.13 feet on AUG 12, 1992

Location: Toxic pits
Measuring point: floor of shelter
Screen interval: 95.0 - 100.0 feet

Date	Water level	Date	Water level	Date	Water level
Date	Tever	Dace	TEAGT	Date	TEAGT
NOV 16, 1989	1.48	JUL 01, 1992	1.48	AUG 19, 1993	1.29
APR 17, 1990	1.21	AUG 11	1.09	SEP 17	1.11
JUL 10	1.20	12	13	OCT 27	.93
JAN 15. 1991	1.22	SEP 29	1.14	NOV 22	.71
28	1.25	OCT 29	. 99	DEC 02	. 87
MAR 06	1.36	DEC 04	. 82	JAN 10. 1994	1.41
MAY 20	1.51	JAN 25, 1993	1.17	MAR 08	1.12
JUL 09	1,48	MAR 16	. 56	11	.91
AUG 08	1.09	31	1.43	APR 14	1.16
OCT 25	.90	MAY 06	1.60	MAY 13	1.15
DEC 05	.89	JUN 07	1.20	AUG 16	. 89
FEB 06, 1992	1.00	10	1.32	22	1.27
MAR 18	.85	JUL 08	1.34		
MAY 20	.96	AUG 10	1.15		
			1		

Well JF62 Lat: 39°18'10" Long: 76°17'28" Measuring point elevation: 7.09 Highest water level: 4.43 feet on JAN 28, 1991 Lowest water level: -0.34 feet on AUG 12, 1992

Location: Toxic pits Measuring point: top of well casing Screen interval: 60.0 - 65.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2.89	AUG 12, 1992	-0.34	OCT 29, 1 9 93	0.36
APR 17, 1990	3.30	OCT 29	1.69	NOV 22	.65
JUL 10	1.68	DEC 04	2.21	DEC 02	.75
JAN 28, 1991	4.43	JAN 25. 1993	3.16	JAN 10, 1994	1.92
MAR 06	3.32	MAR 16	3.84	MAR 08	3.14
MAY 20	3.15	31	3.59	11	3.15
JUL 09	2.06	MAY 06	3.54	APR 14	3.49
AUG 08	1.66	JUN 07	3.17	MAY 13	3.18
OCT 25	1.28	10	3.13	JUL 05	1.45
DEC 05	1.81	JUL 08	2.27	AUG 16	1.58
FEB 06, 1992	2,60	AUG 10	1.13	22	1.66
MAR 18	3.03	19	. 94		
MAY 20	2.86	SEP 17	. 16		

Well JF63 Lat: 39°18'10" Long: 76°17'28"

Measuring point elevation: 6.98 Highest water level: 4.7 feet on MAR 31, 1993 Lowest water level: -0.9 feet on SEP 17, 1993

Location: Toxic pits Measuring point: floor of shelter Screen interval: 16.0 - 19.0 feet

Water			Water		
Date	level	Date	level	Date	level
NOV 16, 1989	4.1	JUL 01, 1992	1.5	AUG 10, 1993	0.3
APR 17. 1990	4.6	AUG 11	. 7	19	. 1
JUL 10	1.9	12	. 7	SEP 17	9
JAN 28, 1991	4.2	SEP 29	2.3	OCT 27	.7
MAR 06	4.0	OCT 29	2.0	NOV 22	1.2
MAY 20	3.3	DEC 04	3.2	DEC 02	1.9
JUL 09	1.6	JAN 29, 1993	4.0	MAR 08. 1994	4.6
AUG 08	. 7	MAR 16	4.4	11	3.4
OCT 25	1.9	31	4.7	APR 14	4.6
DEC 05	2.9	MAY 06	4.1	MAY 13	3.6
FEB 06. 1992	3.2	JUN 07	2.9	JUL 05	1.3
MAR 18	4.0	10	3.5	AUG 16	2.1
MAY 20	3.0	JUL 08	1.6	22	2.9

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF71

Well Jr/1 Lat: 39°18'07" Long: 76°17'28" Measuring point elevation: 10.01 Highest water level: 1.67 feet on NOV 16, 1989 Lowest water level: 0.54 feet on JUL 10, 1990

Location: Toxic pits Measuring point: top of well casing Screen interval: 120.0 - 125.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	1,67	MAY 20, 1992	1.37	MAR 11, 1994	1.02
APR 17, 1990	1.65	JUN 10, 1993	1.61	AUG 22	1.19
JUL 10	. 54	AUG 19	1.35		
JAN 28, 1991 1.53	1.53	NOV 22	1.07		

Well JF72 Lat: 39°18'07" Long: 76°17'28"

Measuring point elevation: 11.08 Highest water level: 3.24 feet on MAR 11, 1994 Lowest water level: -1.14 feet on JUL 10, 1990

Location: Toxic pits
Measuring point: top of well casing
Screen interval: 76.0 - 81.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 APR 17, 1990 JUL 10 JAN 28, 1991	2.24 3.04 -1.14 2.79	MAY 20, 1992 AUG 12 JUN 10, 1993 AUG 19	2.49 1.76 2.83 1.70	NOV 22, 1993 MAR 11, 1994 AUG 22	0.79 3.24 1.36

Well JF73

Lat: 39°18'07" Long: 76°17'28"

Measuring point elevation: 10.03 Highest water level: 5.56 feet on MAR 11, 1994 Lowest water level: -0.62 feet on AUG 19, 1993

Location: Toxic pits Measuring point: top of well casing Screen interval: 15.0 - 18.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	3.64	MAY 20, 1992	2.55	NOV 22, 1993	0.37
APR 17, 1990	4.66	AUG 12	.12	MAR 11, 1994	5.56
JUL 10	1.60	JUN 10, 1993	2.75	AUG 22	1.86
JAN 28, 1991	3.94	AUG 19	62		

Well JF81

Lat: 39°18'08" Long: 76°17'30"

Measuring point elevation: 12.80 Highest water level: 2.11 feet on NOV 16, 1989 Lowest water level: -0.09 feet on MAR 11, 1994

Location: Toxic pits
Measuring point: top of well casing
Screen interval: 120.0 - 123.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 APR 17, 1990 JUL 10 JAN 28, 1991	2.11 1.43 .98 .74	JUL 09, 1991 MAY 20, 1992 JUN 10, 1993 AUG 19	0.93 1.31 1.45 1.71	NOV 22, 1993 MAR 11, 1994 AUG 22	0.65 09 1.30

Well JF82

WeIl Jroz Lat: 39°18'08" Long: 76°17'30" Measuring point elevation: 13.09 Highest water level: 4.95 feet on APR 17, 1990 Lowest water level: -3.33 feet on JUL 10, 1990

Location: Toxic pits

Measuring point: top of well casing Screen interval: 70.0 - 75.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2.16	JUL 09, 1991	2.32	AUG 19, 1993	1.71
APR 17, 1990	4.95	MAY 20, 1992	2.82	NOV 22	1.01
J UL 10	-3.33	AUG 12	.84	MAR 11, 1994	2.81
JAN 28, 1991	4.70	JUN 10, 1993	2.97	AUG 22	1.42

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF83

Lat: 39°18'08" Long: 76°17'30"

Measuring point elevation: 13.18 Highest water level: 6.60 feet on MAR 11, 1994 Lowest water level: 0.01 feet on AUG 19, 1993

Location: Toxic pits

Measuring point: top of well casing Screen interval: 15.0 - 20.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	4.24	JUL 09, 1991	1.57	AUG 19, 19 93	0.01
APR 17, 1990	5.39	MAY 20, 1992	3 11	NOV 22	.62
JUL 10	2.21	AUG 12	. 66	MAR 11, 1994	6.60
JAN 28, 1991	4.76	JUN 10, 1993	3.35	AUG 22	2.41

Well JF91 Lat: 39°18'25" Long: 76°17'26" Measuring point elevation: 13.08 Highest water level: 9.17 feet on MAR 11, 1994 Lowest water level: -0.69 feet on JAN 10, 1994

Location: White phosphorus pits Measuring point: floor of shelter Screen interval: 74.0 - 79.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	1.91	DEC 05. 1991	0.04	JUL 08, 19 93	1.20
MAR 01, 1990	. 56	FEB 04, 1992	1.22	AUG 10	1.11
APR 17	1.63	MAR 18	. 58	19	1.62
MAY 01	1.51	MAY 13	1.36	SEP 17	1.08
JUN 26	1.50	20	1.13	OCT 27	1.09
JUL 10	1,01	JUN 26	1.19	NOV 22	2.49
AUG 08	2.16	AUG 11	1,22	DEC 02	1.03
SEP 25	. 97	SEP 29	. 95	JAN 10. 1994	69
OCT 31	1.19	OCT 29	.98	MAR 08	.92
JAN 14, 1991	1.16	DEC 04	. 36	11	.08
28	.87	JAN 29. 1993	1.02	APR 14	1.40
MAR 06	1.81	MAR 09	1.23	MAY 13	.41
MAY 20	1,53	31	1.63	JUL 05	1.07
JUL 09	1.08	MAY 06	1.65	AUG 22	1.34
AUG 02	1.18	JUN 07	1.33	1100 22	1.54
OCT 25	1.08	10	1.18		

Well JF92

Well JF92
Lat: 39°18'25" Long: 76°17'26"
Measuring point elevation: 13.67
Highest water level: 4.07 feet on APR 17, 1990
and on MAR 31, 1993
Lowest water level: 0.04 feet on NOV 22, 1993

Location: White phosphorus pits
Measuring point: top of well casing
Screen interval: 50.5 - 55.5 feet

Water Water Water Date level Date level Date level NOV 16, 1989 MAR 01, 1990 OCT 31, 1990 JAN 14, 1991 3.60 JUN 26, 1990 2.91 1.69 3.48 JUL 10 2.16 3.68 APR 17 4.07 AUG 08 1.93 2.8 3.93 MAY 01 SEP 25 3.89 2.17 MAR 06 3,65 OCT 29, 1993 NOV 22 .21 MAY 20, 1991 JUL 09 3.34 OCT 29, 1992 1.64 DEC 04 1.17 .04 3.41 AUG 02 1.07 JAN 29, 1993 DEC 02 MAR 09 OCT 25 . 59 JAN 10, 1994 .59 DEC 05 78 4.07 3.10 31 MAR 08 3.93 MAR 18, 1992 2.62 MAY 06 3.20 11 3,29 JUN 07 2.91 MAY 13 APR 14 3.89 20 2.88 10 2.62 MAY 13 3.20 JUN 26 2.18 JUL 08 1.65 JUL 05 AUG 22 1,20 .69 AUG 11 1.06 AUG 10 .91 .98 SEP 29 .73 SEP 17 .29

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF93 Lat: 39°18'25" Long: 76°17'26" Measuring point elevation: 13.56

Highest water level: 5.90 feet on MAR 31, 1993 and on APR 14, 1994 Lowest water level: -0.43 feet on OCT 27, 1994

Location: White phosphorus pits Measuring point: floor of shelter Screen interval: 20.0 - 25.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16 1000	4 00	TED 0/ 1003	2 (5	TUT 00 1002	1 41
NOV 16, 1989	4.98	FEB 04, 1992	2.65	JUL 08, 1993	1.41
MAR 01, 1990	4.52	MAR 18	4.73	AUG 10	. 44
APR 17	5.85	MAY 04	3.84	19	.06
MAY 01	5.53	20	3.28	SEP 17	38
JUN 26	3.02	JUN 26	1.96	OCT 27	43
JUL 10	1.92	AUG 11	.78	NOV 22	32
AUG 08	2.14	12	.71	DEC 02	.01
SEP 25	2.11	SEP 29	.49	JAN 10. 1994	1.38
OCT 31	2,21	OCT 29	. 45	MAR 08	5.43
JAN 14. 1991	5.69	DEC 04	1.37	11	5.64
28	5.10	JAN 29, 1993	4.88	APR 14	5.90
MAR 06	5.19	MAR 09	5.57	MAY 13	4.15
JUL 09	1.47	31	5.90	JUL 05	1.06
AUG 02	.85	MAY 06	4.94	AUG 22	1.00
OCT 25	. 64	JUN 07	2.68	22	
DEC 05	1.12	10	3.06		

Well JF101

Lat: 39°18'26" Long: 76°17'31"

Measuring point elevation: 8.06 Highest water level: 2.17 feet on NOV 16, 1989 Lowest water level: -0.04 feet on MAR 11, 1994

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 73.0 - 76.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2,17	JUL 09, 1991	1.06	NOV 22, 1993	0.57
APR 17, 1990	1.64	MAY 20, 1992	1.20	MAR 11, 1994	04
JUL 10	.96	JUN 10, 1993	1.16	•	
JAN 28, 1991	.79	AUG 19	1.61		

Well JF102

Lat: 39°18'26" Long: 76°17'31"

Measuring point elevation: 8.00

Highest water level: 2.14 feet on APR 17, 1990

Lowest water level: 0.64 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 52.0 - 55.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 APR 17, 1990	1.94 2.14	JUL 09, 1991 MAY 20, 1992	1.39 1.85	AUG 19, 1993 NOV 22	0.92
JUL 10 JAN 28, 1991	1.66	AUG 12 JUN 10. 1993	1.05	MAR 11, 1994	1.89

Well JF103 Lat: 39°18'26" Long: 76°17'31" Measuring point elevation: 8.24 Highest water level: 3.15 feet on APR 17, 1990 Lowest water level: 0.27 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 25.0 - 28.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	2.79	JUL 09, 1991	1.19	AUG 19, 1993	0.59
APR 17, 1990	3.15	MAY 20, 1992	1.91	NOV 22	.27
JUL 10	1.25	AUG 12	.70	MAR 11. 1994	2.93
JAN 28, 1991	2.76	JUN 10, 1993	1.85		

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Lat: 39°18'26" Long: 76°17'31"

Measuring point elevation: 9.69 Highest water level: 2.14 feet on NOV 16, 1989 Lowest water level: -0.95 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: floor of shelter Sqreen interval: 72.0 - 75.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 MAR 01, 1990 APR 17 MAY 01 JUN 26 JUL 10 AUG 08 SEP 25 OCT 31 JAN 14, 1991 28 MAR 06 MAY 20 JUL 09 AUG 02	2.14 .63 1.65 1.51 1.51 .95 1.11 .95 1.45 1.20 .80 1.83 1.50 1.05	OCT 25, 1991 DEC 05 MAR 18, 1992 MAY 13 20 JUN 26 AUG 11 12 SEP 29 OCT 29 DEC 04 JAN 29, 1993 MAR 09 31 MAY 06	1.07 05 .45 1.35 1.39 1.17 1.10 .43 .95 .99 .50 .94 1.14 1.31	JUN 07, 1993 10 10 JUL 08 AUG 10 19 SEP 17 OCT 27 NOV 22 JAN 10, 1994 MAR 08 11 APR 14 MAY 13 23 JUL 05	1.29 1.15 1.24 1.15 1.66 1.13 1.24 95 76 .82 06 1.37 .33 1.14

Well JF112 Lat: 39°18'26" Long: 76°17'31" Measuring point elevation: 9.61 Highest water level: 3.80 feet on MAR 09, 1993 Lowest water level: -2.82 feet on JUL 05, 1994

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 47.0 - 50.0 feet

	Water		Water		Water
Date	level	Date	level	Date	level
NOV 16, 1989	2,10	DEC 05, 1991	2.25	JUL 08, 1993	1.45
JAN 14, 1990	2.67	MAR 18, 1992	3.14	AUG 10	.98
APR 17	3.77	MAY 13	2.23	19	. 92
MAY 01	3.20	20	2.07	SEP 17	. 85
JUN 26	3.38	JUN 26	1.69	OCT 29	.70
JUL 10	-1.09	AUG 11	1.13	NOV 22	. 59
AUG 08	1.34	12	1.11	DEC 02	1.28
SEP 25	1.82	SEP 29	. 84	JAN 10. 1994	2.38
OCT 31	1.55	OCT 29	. 91	MAR 08	92
JAN 28, 1991	2.59	JEC 04	2,29	11	3.25
MAR 06	3.37	JAN 29. 1993	3.15	APR 14	13
MAY 20	2.56	MAR 09	3.80	MAY 13	82
JUL 09	1.40	31	3.10	JUL 05	-2.82
AUG 02	1.14	JUN 07	2,23		
OCT 25	1.23	10	2.12		

Well JF113 Lat: 39°18'26" Long: 76°17'31" Measuring point elevation: 9.44 Highest water level: 3.20 feet on APR 17, 1990 Lowest water level: -0.01 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: floor of shelter Screen interval: 22.0 - 25.0 feet

	Water		Water		Water
Date	level	Date	level	Date	level
NOV 16, 1989	3,11	DEC 05, 1991	0.48	JUN 07, 1993	1.74
JAN 14, 1990	2.75	FEB 04, 1992	1.73	10	1.75
MAR 01	1.99	MAR 18	2.03	JUL 08	1.14
APR 17	3.20	MAY 13	2.14	AUG 10	.73
MAY 01	2.92	20	1.90	19	. 93
JUN 26	1.95	JUN 26	1.19	SEP 17	. 43
JUL 10	1,04	AUG 11	. 79	OCT 27	. 53
AUG 08	1.46	12	. 39	NOV 22	01
SEP 25	1.14	SEP 29	.72	DEC 02	.79
OCT 31	1.50	OCT 29	. 26	JAN 10, 1994	.51
JAN 28, 1991	2.21	DEC 04	.62	MAR 08	2.45
MAY 20	2.18	JAN 29, 1993	. 82	11	2.11
JUL 09	. 93	MAR 09	1.58	APR 14	3.02
AUG 02	. 74	31	1.72	MAY 13	1.49
OCT 25	. 90	MAY 06	2.81	JUL 05	.87

Table 8. Measured ground-water levels at J-Field, Aberdeen Proving Ground, Maryland, October 1989 through September 1994 -- Continued

Well JF121 Lat: 39°18'27" Long: 76°17'30" Measuring point elevation: 6.99

Highest water level: 2.16 feet on NOV 16, 1989 Lowest water level: -0.04 feet on MAR 11, 1994

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 67.0 - 70.0 feet

	Water		Water		Water
Date	level	Date	level	Date	level
NOV 16. 1989	2.16	JUL 09, 1991	1.07	NOV 22, 1993	0.63
APR 17, 1990	1.63	MAY 20, 1992	1.24	MAR 11, 1994	04
JUL 10	. 98	JUN 10, 1993	1.16		
JAN 28, 1991	. 79	AUG 19	1.67		

Well JF122 Lat: 39°18'27" Long: 76°17'30"

Measuring point elevation: 6.75 Highest water level: 1.95 feet on JAN 28, 1991 Lowest water level: 0.67 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 52.0 - 55.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989	1.85	JUL 09, 1991	1.39	AUG 19, 1993	0.97
APR 17, 1990	1.76	MAY 20, 1992	1.61	NOV 22	. 67
JUL 10	1.39	AUG 12	. 98	MAR 11, 1994	1.54
JAN 28, 1991	1.95	JUN 10, 1993	1.58		

Well JF123 Lat: 39°18'27" Long: 76°17'30"

Measuring point elevation: 7.01 Highest water level: 3.57 feet on APR 17, 1990 Lowest water level: 0.09 feet on NOV 22, 1993

Location: White phosphorus pits Measuring point: top of well casing Screen interval: 25.0 - 28.0 feet

Date	Water level	Date	Water level	Date	Water level
NOV 16, 1989 APR 17, 1990 JUL 10	3.52 3.57 1.22	JUL 09, 1991 MAY 20, 1992 AUG 12	0.54 2.19 .44	AUG 19, 1993 NOV 22 MAR 11, 1994	0.69 .09 2.83
JAN 28, 1991	2.81	JUN 10, 1993	2.07	that 11, 1774	2.0

Well JF133

Lat: 39°18'06" Long: 76°17'35"

Measuring point elevation: 6.06 Highest water level: 1.65 feet on JUN 10, 1993 Lowest water level: 0.43 feet on NOV 22, 1993

Location: South beach

Measuring point: top of well casing Screen interval: 5.0 - 10.0 feet

Date	Water level	Date	Water level
JUN 10, 1993	1.65	AUG 19	0.88
NOV 22	0.43	AUG 22, 1994	1.43

Well JF143 Lat: 39°18'08" Long: 76°17'44"

Measuring point elevation: 7.89

Highest water level: 1.37 feet on JUN 10., 1993

Lowest water level: -0.10 feet on AUG 22, 1994

Location: South beach

Measuring point: top of well casing Screen interval: 5.0 - 10.0 feet

Date	Water level	Date	Water 1evel	
JUN 10, 1993	1.37	AUG 19	-1.46	
NOV 22	29	AUG 22,	199410	

Table 8. Measured ground-water levels at J-Field, Abjerdeen Proving Ground, Maryland, October 1989 through September 1994--Continued

Well JF153 Lat: 39°18'15" Long: 76°17'03" Measuring point elevation: 8.98 Highest water level: 4.82 feet on AUG 22, 1994 Lowest water level: 0.55 feet on AUG 19, 1993

Location: Demolition area Measuring point: top of well casing Screen interval: 5.0 - 10.0 feet

Date	Water level	Date	Water level
JUN 10, 1993	4.35	AUG 19	0.55
NOV 22	2.23	AUG 22, 1994	4.82

Well JF163 Lat: 39°18'15" Long: 76°17'06" Measuring point elevation: 11.76 Highest water level: 4.33 feet on JUN 10, 1993 Lowest water level: 1.25 feet on NOV 22, 1993

Location: Demolition area Measuring point: top of well casing Screen interval: 7.0 -12.0 feet

Date	Water level	Date	Water level
JUN 10, 1993	4.33	AUG 19	1.41
NOV 22	1.25	AUG 22, 1994	3.0

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990

[Elevation in feet above sea level; --- = data not available]

WELL TH6, STATION NUMBER 391817076173701; LATITUDE 39° 18' 11" LONGITUDE 76° 17' 39" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP	3.34 3.23 3.13 3.16	23.08 2.08 2.08 2.09 2.09	2.95 2.94 2.88 2.85 82	2.78 2.78 3.87 3.14	3.28 3.28 3.28 3.28	25.25.5 2.82.5 2.82.5 2.82.5 3.62.5 3	3.17 3.75 3.15
	AUG	5.25 5.19 5.00 6.90	4.81 4.71 4.59 4.48	4.35 4.28 4.22 4.16	4.06 3.98 3.89 3.85	3.73 3.66 3.66	3.554 3.554 3.47 3.47	4.15 3.37 4.06
	JUL			!!!!!	!!!!!	!!!!!	55.23	::::
	NOL	6.73 6.21 6.21 5.94	8.63 9.06 8.94 9.00	8.65 8.22 7.93 7.66 8.63	!!!!!	!!!!!		::::
1080	MAY	6.37 8.65 8.81 8.43 8.47	9.20 9.12 8.82 8.47	9.02 8.77 8.42 8.13 7.85	8.27 8.58 8.11 7.68	7.17 6.89 7.64 9.05 8.78	8.40 8.22 8.04 7.55 6.97	8.18 9.20 6.37 8.40
DAILY MEAN VALUES DATED YEAR OFTOBER 1088 TO SEPTEMBER 1080	APR	8.60 8.35 8.49 8.45	8.94 8.87 9.00 8.81 8.53	8.23 7.88 7.61 7.53	8.08 7.92 7.73 8.38 8.46	8.10 7.72 7.35 7.11 6.93	6.25 6.36 6.23 6.23	7.82 9.00 6.23 8.00
ILY MEAN	MAR	6.05 6.46 6.72 6.52 6.50	7.46 8.41 8.35 8.35	8.26 7.99 7.61 7.49 7.37	6.91 6.83 6.59 6.59	7.58 7.70 7.54 8.53 8.94	8.71 8.54 8.38 8.06 7.84	7.61 8.94 6.05 7.61
DA OCTOO	FEB FEB	2.75 2.77 2.83 2.95	3.04 3.09 3.13 3.14 3.18	3.20 3.17 3.79 3.79	4.06 4.32 4.52 4.61	5.19 6.69 7.15 6.87	6.18	4.34 7.15 2.75 3.79
O I VI	JAN	22.13 22.13 22.15 16	2.22 2.22 2.25 32 32	2.38 2.48 2.56 2.67 3.07	3.25 3.43 3.48 3.55	33.54 3.64 3.64 3.64	3.70 3.70 3.70	2.95 3.70 3.16
	DEC		1.86 1.90 1.92	1.93 1.94 1.98 1.99	2.02 2.02 2.02 2.02	2.03 2.03 2.05 2.05	2.04 2.05 2.06 2.09 1.09	2.00 2.10 2.02
	NOV		!!!!!		!!!!!	!!!!!	::::::	!!!!
	OCT				!!!!!	!!!!!		::::
	DAY	-0M4v	9 <u>7</u> 890	<u> </u>	20 20 20	288357	200 200 300 300 300	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL TH6, STATION NUMBER 391817076173701

<u> </u>	SEP	5.29 4.98 4.78 4.78	4.69 4.44 4.37 4.37	4.21 4.14 4.07 3.98	3.82 3.77 3.68	3.57 3.57 3.52 3.48	3.45 3.36 3.33 3.33	5.29 3.31 3.94
	AUG	3.82 3.74 3.71 3.66	3.67 3.49 4.06	4.63 4.99 5.02 5.04	5.00 4.91 4.71 4.56	4.49 6.16 8.39 7.76	7.38 6.93 6.47 5.74 5.74	5.11 8.39 3.39 4.88
	יוטר	4.38 4.24 4.124 4.139	4.07 3.96 3.92 3.88	3.93 5.13 5.10 5.06	4.98 4.86 4.79 4.77	4,53 4,45 4,53 4,53 4,53 4,53 4,53 4,53	4.18 4.06 4.01 3.95 3.95	4.35 5.13 3.86 4.24
	N	7.44 7.21 7.43 7.03	6.54 6.58 6.13 5.93	5.5.5.5 5.33.4.1 5.33.4.1	5.38 5.27 5.27 5.10	5.03 4.97 4.84 4.74	4.68 4.56 4.51 4.51 1.44	5.58 7.44 4.44 5.33
BER 1990	MAY	6.37 6.26 6.56 6.50	6.28 6.11 8.27 8.13	7.90 7.67 7.30 7.09 6.98	6.73 6.22 6.22 5.82 5.82	7.5.5.7 7.5.5.4 2.55.7 2.55.7	7.11 7.02 8.85 8.61 8.16	6.541 6.541
ALUES TO SEPTEM	APR		!!!!!	!!!!!		:::::	!!!!!!	::::
Y MEAN V	MAR		:::::	:::::		!!!!!	::::::	::::
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	FEB	7.42 7.24 6.74 7.07 6.81	6.78 6.64 6.36 6.40 6.61	6.98 6.84 6.73 6.57 6.44	6.47 5.99 5.79 5.79	5.72 5.93 5.74 5.74	5.35	6.36 7.42 5.35 6.44
WATER	JAN	3.73 3.93 4.02 4.02	4.06 4.13 4.45 4.45	4.87 4.93 4.75 4.77	4.70 4.69 4.67 4.47 4.52	4.54 4.28 4.28 4.73	7.04 7.54 7.42 7.67	5.00 7.67 3.73 4.67
	DEC	7.75 4.74 4.74 7.36 7.36	4.30 4.18 4.16 4.13	4.10 4.07 4.05 4.01	3.85 3.84 3.82 3.77	3.73 3.67 3.58 3.58 3.56	33.53 33.35 33.35 35.35 35.35 35.35	3.90 4.48 3.32 3.95
	NOV	4.94 4.93 4.91 4.78	7.73 2.75 5.08 5.09	5.22 5.22 5.17 5.17	5.18 4.99 4.95 5.07	4.87 4.72 4.60 4.62	4.62 4.54 4.62 4.51	4.86 5.22 4.48 4.86
	100	3.83 4.26 4.76 4.76	4.68 4.68 4.61 4.49	4.34 4.27 4.15 4.15	4.05 3.96 4.34 5.45	6.40 6.11 5.78 5.65	50.05 50.05 50.05 50.05	4.82 6.40 3.83 4.68
	DAY	~0M4r0	ar805	55245	14 17 19 20	25225	227 237 330 310	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL THB, STATION NUMBER 391816076173801; LATITUDE 39° 18'16" LONGITUDE 76° 17' 40" GEOLOGIC UNIT; SURFICIAL AQUIFER

	SEP	1.71 1.51 1.59 1.59	1.60	1.57 1.41 1.58 1.58	1.39 1.78 1.50 2.20	2.01 2.31 2.60 1.46	2.06 1.86 2.10 2.07 1.69	::::
	AUG	2.08 1.75 1.78 1.86	1.57	35.1. 27.7.55.1.	1.61 1.67 1.96 1.86	86. 86. 86. 87.	1.68	1.72 2.08 1.40 1.72
	JUL	2.35 2.25 2.25 2.75	3.25 2.94 2.77 2.69	2.23 2.23 2.23 2.23	2.39 2.55 3.09	2.370 2.24 2.21 2.23	2.27 2.17 2.24 2.24	2.47 3.49 1.87 2.36
	NOF	2.36 2.38 2.38 2.36	3.77 4.08 3.78 3.92 4.18	3.16 3.79 3.79 3.68	3.88 3.75 3.17 3.10	3.30 3.30 3.59 3.59	2.28 2.36 2.28	3.17 4.18 2.22 3.16
BER 1989	MAY	2.22 3.88 3.32 2.81 3.15	3.94 3.37 3.63	3.56 3.25 2.01 2.01	3.29 3.29 2.97 2.88	2.51 3.96 3.96 3.42	2.94 2.63 2.67 2.84 2.48	3.17 4.35 2.22 3.15
DAILY MEAN VALUES WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989	APR		:::::	2.064 2.064 2.067 2.064 2.064	3.27 3.27 3.27 3.27	2.53 2.53 2.29 2.29	2.24 2.21 2.42 2.42	1.72 2.60 1.18 1.60
LY MEAN V BER 1988	MAR	2.25 2.58 3.19 3.15	3.59		!!!!!	!!!!!	!!!!!!	::::
DAI YEAR OCTO	FEB	1.62 1.34 1.45	1.66 1.76 1.57 1.46	1.35 1.29 1.24 1.96	2.02 1.93 1.93	2.79 2.79 2.79 2.79	2.34	3.10 1.24 1.93
WATER	JAN	0.99 1.18 1.33 1.07	1.23 1.54 1.64 1.48	1.39 1.50 1.43 1.92	1.86 1.73 1.68 1.68	1.42 1.38 1.30 1.36	1.55	1.45 1.92 1.43
	DEC	1.45 1.30 1.12 1.12	1.16 1.24 1.09 1.15	1.11 .89 1.07 1.43	1.05 1.01 1.27 1.15	1.02 .95 1.13	. 92 1.29 1.39 1.13	1.10 1.45 1.11
	NOV	0.81 .98 .50 .50	1.35 1.02 .80 .86 .86	.54 .81 .77	63 80 80 1.24	1.05	1.25	0.1.00 .50 .50 .50 .50
	OCT	0.97 1.09 .88 .79 1.16	.98 .69 .58 1.17	1.07 .63 .44 .45 .65	1.00 1.00 77	91 1.02 1.16 89.	98 172 175	.86 1.45 .44 .88
	DAY	-0M4v	27.89.T	-5524 5	16 17 19 20	28222	26 28 30 31 31 31	MEAN MAX MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL TH8, STATION NUMBER 391816076173801

		SEP	2.31 2.18 1.90 2.02 2.31	2.10 2.02 1.72 2.14 2.14	1.76 1.79 1.93 2.00	1.76	1.54 2.01 1.72 1.53	1.50	1.82 2.31 1.35
		AUG	1.32	1.68	2.26 2.49 2.46 2.37 2.21	2.21 2.09 2.11 2.10 1.83	2.04 3.14 3.37 2.97	2.76 2.49 2.23 2.23	2.31 3.79 1.32 2.24
		JUL	1.62 1.51 1.83 1.90	1.30 1.56 1.72 1.34	1.38 1.57 2.08 2.21 2.38	2.01 1.73 2.73 2.73 2.73	1.65 1.84 1.53	1.48	1.68 1.30 1.65
		NOC	2.80 2.67 2.61	!!!!!	!!!!!		!!!!!	1.86	!!!!
	BER 1990	MAY	2.58 2.38 2.22 2.22 2.61	2.33 2.28 3.02	3.48 3.02 2.56 2.56	2.49 2.28 2.28 2.22	2.39 2.41 2.10 2.10	2.7.80 3.52.81 3.652 0.852	2.58 2.52 2.49
LUES	DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	2.59 2.70 3.30 3.18	2.54 2.96 2.72 2.88	2.20 2.38 3.23 3.22	3.12 3.01 2.36 2.32 2.48	2.33 2.33 2.26 2.23	2.21 2.14 2.20 2.44	2.57 3.30 2.08 2.46
	LY MEAN V BER 1989	MAR	1.63 1.90 1.65 1.47	1.65 1.67 1.74 1.56	1.59	1.81 2.17 2.18 2.06	1.75 2.03 2.15 1.78 2.05	2.06 2.00 2.00 2.92 2.31	1.83 2.31 1.47 1.78
	DAI YEAR OCTO	FEB	2.73 2.69 2.41 2.82						: : : : :
	WATER	JAN	1.65 1.46 1.42 1.47	1.53 1.60 1.97 2.21	2.03 2.03 1.79 1.68	1.75 1.75 1.85 1.55	1.77 1.80 1.94 1.87 2.15	2.26 2.57 2.53 2.37 2.33	3.37 1.42 1.79
		DEC	1.45 1.72 1.32 1.52	1.52 1.48 1.32 1.35	1.59 1.44 1.37 1.61	1.53 1.12 1.08 1.20	1.24 1.03 1.25 1.23	1.16	1.33
		NOV	2.09 1.84 2.02 1.85 2.02	2.21 2.01 2.49 2.53	2.31 2.16 1.89 2.05 2.02	2.40 1.96 1.97 1.63 2.03	1.61 1.44 1.50 1.72 2.07	1.75	1.94 1.44 1.99
		00.7	1.69 2.62 2.58 2.06 1.92	2.02 1.80 1.82 1.78 2.01	1.94 1.85 1.79 1.76 1.76	1.75 1.83 2.23 3.31	3.12 2.50 2.16 2.38 2.22	2.16 2.01 1.97 2.11	2.09 3.31 2.01
		DAY	-C8430	97.89.01	-55245	17 17 19 20 20	22 23 24 25 24 32 32 32 32 32 32 32 32 32 32 32 32 32	26 27 28 29 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued WELL JF11, STATION NUMBER 391809076174301; LATITUDE 39° 18' 09" LONGITUDE 76° 17' 43" GEOLOGIC UNIT: CONFINED AQUIFER

1								
	SEP	1.52 1.01 1.38 1.80	1.57	1.23	1.39 0.86 1.03 1.41	1.79	£85555	1.33 1.80 1.31
	AUG	0.95 1.19 1.66	1.15	1.27	1.22	1.41 1.85 1.73 1.55	1.27	1.33 1.85 1.24
	JUL	12.1	91 1.27 1.49 89	.92 1.27 1.52 1.52		1.05		1.21 1.76 1.89
	NOS	1.19	1.31 .92 1.25 1.09	.54 1.51 1.39 52	1.53	1.58	1.24	12.1.28
3ER 1990	MAY	1.38 .84 1.01	1.13 1.02 1.19 1.80	1.16 .83 1.54 1.76	1.23	1.20 1.63 1.54 1.31	1.78 1.68 1.73 1.73 7.73	1.23 1.80 1.20
ALUES TO SEPTEM	APR	1.02	1.04	1.05	4.5.5 4.6.5 4.6.5 4.6.6 5.6.6 6.6 6.6.6 6.6.6 6.6.6 6.6.6 6.6.6 6.6.6 6.6.6 6.6.6 6.	23.82.24		
LY MEAN V/	MAR	0.75 .78 .78 .70 .81		%;%;%;£	1.59 1.60 1.52 1.09	28.428	%%%%%% %%%% %%% % % % % % % % % % % %	
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	FEB	0.39 .54 .28 .85			!!!!!	!!!!!	::::::	::::
WATER	JAN	0.78 08 29	44. 1.61 1.08 1.06		.38 .46 .62 .30	299. 28. 28. 28.	288 200 200 200 200 200 200 200 200 200	1.06
	DEC		:::::	11111		-0.39 54 71	8. 40. 8. 1. 8. 1. 8. 1. 8.	::::
	NON		:::::	!!!!!	111111	:::::		::::
	100			!!!!!	!!!!!	!!!!!		
	DAY	-0M4v	67 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	16 17 19 20	22 23 24 25 24	26 28 30 30 31 31	MEAN MAX MED

Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground. Maryland, October 1988 through Table 9.

			i							
rough			SEP	1.90 1.88 8.88	1.86 1.89 1.88 1.88	1.84 1.83 1.83 1.85	1.88 1.86 1.85 1.83		555.55 56.55	1.83 1.90 1.67
	43"		AUG	1.64 1.63 1.60 1.59	1.59 1.62 1.59 1.59	1.61 1.61 1.62	1.62 1.62 1.63 1.64	49:1:65 1:67:57:57:	7.7.1. 1.85 1.99 1.99	1.59
	76° 17′		JUL	1.57 1.63 1.67 1.70	1.72 1.69 1.67 1.67	1.67 1.68 1.68 1.68	1.69 1.68 1.67 1.67	865555 865555	7.5.5. 1.65.4.	1.68 1.57 1.58
, Maryland	LONGITUDE		NUL	2.32	!!!!!		:::::	11111	1.53	
ng Ground,	WELL JF12, STATION NUMBER 391809076174302; LATITUDE 39° 18' 09" L GEOLOGIC UNIT: CONFINING UNIT	IBER 1990	MAY	2.22 2.22 2.22 2.21	2.28 2.28 2.28 2.29	2.32 2.33 2.39 2.39	2.29 2.34 2.36 2.36	22.33 22.33 30.33 30.33	2.29 2.29 2.30 2.31 2.34 2.34	2.36
leen Provi		ALUES TO SEPTEM	APR	1.87 1.92 1.98 2.06 2.13	22.22.2 22.18 2.18 4.18	2.20 2.20 2.19 2.16	2.18 2.20 2.17 2.17	22.22.2	2.22	2.24 1.87 2.17
d, Aberde	02; LATIT NIT: CONF	LY MEAN VIBER 1989	MAR	1.89 1.89 1.89 1.88	2.5.2.5.5 5.2.5.5 5.2.5.5 5.5 5	11.1.1 25.7.58 1.88	1.79 1.86 1.86 1.86	1.86 1.86 1.85 1.85	1.83 1.82 1.80 1.80 83	1.83
at J-Fie	090761743 EOLOGIC U	DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	FEB	1.87 1.90 1.93	1.93 1.95 2.04	2.13 2.13 13 13 13	2.13 2.13 2.09 2.09	2.05 2.10 2.10 2.10	1.96	2.02 2.16 1.82 2.05
levations ed	1BER 3918 G		JAN	1.35 1.33 1.33 1.33	1.35 1.38 1.43 1.43	1.53 1.60 1.65 1.63	1.59 1.59 1.59 1.59	1.66 1.68 1.69 7.7	1.77	1.57 1.84 1.31 1.60
-water el -Continue	TATION NUN		DEC	::::::	!!!!!	111111		1.54	1.38 1.32 1.32 1.32	::::
an ground Iber 1990-	. JF12, SI		NOV	::::::				::::::		::::
Daily me Septem	MELL		OCT	:::::	!!!!!	!!!!!		:::::	!!!!!!	
Table 9.			DAY	←NW4N	2 2 8 5 0 1	12224	16 17 20 20 20	25,22,2	26 28 29 31 31	MEAN MAX MED MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF13, STATION NUMBER 391809076174303; LATITUDE 39° 18' 09" LONGITUDE 76° 17' 43" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP	2.23 2.14 1.91 1.87 2.09	2.03 1.94 1.67 1.88 1.97	1.73 1.73 1.83 1.81	1.63 1.38 1.57 1.52	1.41	1.39	1.68 1.86 1.68
	AUG	2.00 1.98 1.93 2.12	2.32 1.72 1.40	2.19 2.19 2.18 2.06	2.07 1.98 1.95 7.75	2.43 3.09 3.03 3.03	2.2.3. 2.3.6.7 2.3.6.7 2.5.6.7	2.22 3.17 1.40 2.09
	JUL	1.67 1.60 1.72 1.87 1.58	1.47 1.57 1.69 1.76	1.60 1.77 2.17 2.59 2.86	2.67 2.37 2.37 2.37 2.32	2.24 2.32 2.32 2.02	2.25 2.25 2.25 2.25	2.03 2.86 1.47 2.02
	NOF	3.39 3.25 3.16 2.73	2.95 2.80 2.54 2.62 2.47	2.17 2.22 2.24 2.34	2.51 2.42 2.44 2.42 2.13	2.12 2.02 2.14 2.05 1.87	1.77	2.34 3.39 1.71 2.24
BER 1990	MAY	3.31 3.09 3.10 3.40	3.22 3.15 2.92 3.28	3.58 3.33 3.258 3.258	3.26 3.21 2.81 2.72	2.67 2.67 2.44 2.35	3.54 3.54 3.55 3.54	3.11 2.35 3.19
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR		!!!!!	!!!!!	!!!!!	!!!!!	::::::	::::
LY MEAN V BER 1989	MAR			!!!!!	:::::	!!!!!	::::::	::::
DAI YEAR OCTO	FEB	3.51 3.51 3.55 3.37	3.28 3.28 3.28 3.28	2.33.15 2.06 2.64 69	2.62 2.62 2.52 2.52 0.52	2.07 2.28 2.01 1.52	1.12	2.73 3.55 1.12 3.04
WATER	NAL	2.24 2.23 2.20 2.28 2.41	2.39 2.43 2.73 3.02	2.55 2.50 2.45 2.55 2.55	2.55 2.70 2.36 2.40	2.65 2.67 2.67 2.76 76	33.33.23 3.66.4.139	2.20 2.20 2.61
	DEC				:::::	1.28	1.51	::::
	NOV		!!!!!		!!!!!	:::::	!!!!!!	::::
	OCT		!!!!!		!!!!!	!!!!!	!!!!!!	::::
	DAY	-0x45	9 <u>7</u> 890	1527 5	16 17 19 20	28232	22 22 33 34 31 31 31 31	MEAN MAX MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF21, STATION NUMBER 391809076174601; LATITUDE 39° 18' 09" LONGITUDE 76° 17' 46" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP		!!!!!		:::::	:::::	!!!!!!	::::
	AUG	0.98 1.20 1.20 1.13	1.67	!!!!!!	:::::	!!!!!	!!!!!!	!!!!
	JUL	1.19 1.06 1.57 1.56	91 1.26 1.47 1.47	93 1.26 1.50 1.72	1.19 1.08 1.15	1.07 1.42 1.98 1.02	1.27 1.27 1.50 1.50	1.21
	NOF			03 13 .84 .97		1.34 1.38 1.25	1.22	.86 1.40 1.00
BER 1990	MAY	0.84 .83 .99 1.26		1.10 80 1.47 1.08	1.26 1.01 1.03	1.11	1.64	1.13 1.71 1.68 1.10
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR		!!!!!			!!!!!		!!!!
LY MEAN V. BER 1989	MAR	0.53 .86 .47 .26 .82	.36 .36 .83 .69	.94 .83 .80 .87	! ! ! ! !	!!!!!	!!!!!!	!!!!
DAII YEAR OCTOI	FEB	0.72 .87 1.16	1.29 .86 .91 1.30 1.18	22.1. 22.1.25 33.00 34.00 35.00 36.0	1.40	:::::		!!!!
WATER	JAN	0.85 .06 .06 .72 .54 .56	.58 .74 .72 .97 1.18	1.00 .85 .29 .42 .52	.59 .84 .12	.90 .1.13 1.04 1.07		
	DEC	!!!!!			:::::	-0.35 47 63		::::
	NON		!!!!!	::::::		:::::		
	130					!!!!!	!!!!!!	!!!!
	DAY	L0842	97.89.01	15232	20 20 20	25 23 22 22 23 25 24 25 25 25 25 25 25 25 25	228 228 310 310	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through

		_										
rough			SEP	1.56 1.55 1.54 1.51	1.50 1.52 1.50 4.68	1.47	1.50 1.48 1.39 1.37	1.35	1.32	1.56		
. 1988 th	4e ₁		AUG	1.08 1.07 1.05 1.04	1.08	1.23 1.23 2.1.25 2.1.25	1.26 1.26 1.27 1.28	1.30	1.50 1.58 1.58 1.58	1.27 1.58 1.02 1.26		
, October	76, 17, 46		JUL	1.29 1.24 1.22 1.22	1.21	1.10	71.17 81.11 81.11	24.00	1.06	1.15		
Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990Continued	LONGITUDE		NOL	1.69 1.67 1.68 1.68		:::::	!!!!!	!!!!!	1.37	::::		
ig Ground,	60	ER 1990	MAY	1.50 1.50 1.49 1.53	25.1.1.55 25.1.1.55 83.1.1.55		1.63 1.63 1.63 1.63	1.62 1.61 1.60 1.60	1.62 1.65 1.65 1.73 2.73	1.60		
en Provin	DE 39° 1 NING UNIT	LUES O SEPTEMB	APR	1.28 1.33 1.49 1.55	1.57 1.57 1.55 1.50	1.51 1.52 1.48 1.42	1.46 1.48 1.43 1.38	1.38 1.40 1.40 1.40	1.41	1.45 1.28 1.44		
d, Aberde	WELL JF22, STATION NUMBER 391809076174602; LATITUDE 39° 18' GEOLOGIC UNIT: CONFINING UNIT	DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	MAR	1.02 1.02 1.05 1.05	1.02 .98 .95 .97	1.00	1.15 1.28 1.28 1.29	1.27 1.23 1.19 1.18	81.1.1. 23.0.1.18	1.12		
at J-Fiel			FEB	1.25 1.27 1.31 1.17	1.15 1.15 1.26	1.35 1.35 1.35 1.37	1.39 1.38 1.35	1.28 1.27 1.32 1.32	1.21	1.27 1.41 1.05		
evations a			JAN	0.0 22 25 25 25 25 25 25 25 25 25 25 25 25	.77 .82 .88 .95	1.02 1.13 1.06	1.02	1.06	1.26 1.26 1.26 1.26	1.28		
-Water el -Continue					DEC		!!!!!		!!!!!	0.85 77 .67 .61	6 6 6 6 6 6 6 6 6 6 6 7 6 8 6 8 8 8 8 8	::::
an ground ser 1990-			NON									
Daily me Septemi			OCT				:::::	:::::		::::		
Table 9.			DAY	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27.89.01	-52 5	278478	28838	27 28 28 30 31	MEAN MAX MED		

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF23, STATION NUMBER 391809076174603; LATITUDE 39° 18' 09" LONGITUDE 76° 17' 46" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP			:::::			2.48 2.30 2.27 2.23	::::
	AUG	0.71 .75 .68 1.05	1.34 1.06 1.02 1.21	1.50 1.68 1.68 1.48	1.55	:::::		!!!!
	JUL	1.06 1.12 1.40 1.40		89 1.13 1.44 1.87 2.13	1.42	1.17 1.16 1.34 .89	.83 .89 .87 .97 1.16	2.13 2.76 1.16
	NOC	2.46 2.36 2.20	1.73 1.73 1.88 1.88	1.29 1.72 1.70 1.88	1.85 1.89 1.51	1.59	1.26	1.69 2.46 1.71
3ER 1990	MAY	2.68 2.25 2.33 2.33	2.28 2.22 2.22 2.20 2.72	2.35 2.35 2.34 2.37	2.49 2.38 2.15 2.01	2.10 2.09 1.77 1.74	2.33 2.64 2.56 2.56 61	2.35 2.85 1.74 2.35
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	2.62 2.75 2.75 2.74 2.74	2.54 2.54 2.74 2.74	2.60 2.04 2.41 2.69	2.70 2.08 2.29 2.48	2.39 2.43 2.35 2.35	2.25 2.25 2.25 2.25 2.64	2.46 2.80 2.02 2.46
LY MEAN V. BER 1989	MAR	1.60 1.91 1.64 1.34	1.59	1.80 1.68 1.69 1.78	2.03 2.15 2.24 2.04	2.18 2.26 1.30 2.26	2.22 2.15 2.15 2.03 2.03 3.09	2.39 1.27 1.80
DAI YEAR OCTO	FEB	2.45 2.54 2.30 2.71 2.37	2.80 2.50 2.41 2.69 2.70	2.54 2.54 2.54 2.51	2.69 2.21 1.87 2.39 1.72	2.05 2.34 1.95	1.08	2.25 2.80 1.08 2.38
WATER	JAN	1.59	1.77 1.86 1.89 2.22 2.42	2.27 2.13 1.72 1.74	1.86 2.02 1.51 1.74	2.12 2.12 2.22 2.22	2.36 2.38 2.74 2.74 49	2.01 2.70 1.47 1.99
	DEC		!!!!!	!!!!!		0.71 .54 .50	1.34 984 1.01 1.10	!!!!!
	NOV		!!!!!	! ; ! ; ;		!!!!!		
	DCT					!!!!!		
	DAY	-0 M 40	97.89.01	122245	16 19 20 20	25 23 22 22 25 25 25 25 25 25 25 25 25 25 25	26 27 28 28 30 31	MEAN MAX MIN MED

Table 9. Daily mean ground-Water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF31, STATION NUMBER 391814076173801; LATITUDE 39° 18' 14" LONGITUDE 76° 17' 38" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP	1.42 1.33 1.28 1.69	1.47 1.40 1.64 1.65	1.14 1.32 1.50 1.54	1.30	11.15	1.158	1.24 1.71 1.23
	AUG	0.85 1.07 1.07 1.53	1.57	1.16 1.23 1.03	1.12	1.62	1.27	1.22 1.73 1.15
	TOF	1.07 .93 1.45 1.47	1.13 1.35 1.36	.80 1.14 .93 1.38 1.63	1.08 .87 .94 1.02 1.03	1.93 1.30 88 88	. 98 . 98 1.13 1.38	1.08 1.63 1.02
	NOL	1.07 1.15 77.	1.21 .87 .1.16		1.23 1.18 1.41 1.35 .96	1.24	1.129	1.09
IBER 1990	MAY	1.15 .78 .78 .94 1.22	1.06 1.06 1.11 1.70	1.09 .74 1.45 1.05	1.24	1.09	1.65	1.13
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	1.15 1.19 1.18 1.21	.80 .80 .81 1.19	.89 .30 .42 1.04	1.09 .10 .62 .93	53989	1.07	1.39
LY MEAN V	MAR	0.39 .83 .43 .13	.53 .73 .60 .60		1.08 1.27 .79 .84 .38	03 .92 .89 .42 1.00	825 88 82 88 88 88	1.27 03 79
DAI YEAR OCTO	FEB	0.67 .82 .58 1.14	1.20 .76 .81 1.21 1.09		1.32 .48 .32 .95	.53 .53 .53		1.32 1.32 70
WATER	JAN		!!!!!	0.25			499 989 989 989 989	::::
	DEC				!!!!!	!!!!!	::::::	::::
	NOV			!!!!!	!!!!!	!!!!!		::::
	OCT		!!!!!		:::::	:::::	::::::	!!!!
	DAY	-0W4W	67 8 9 01	<u> </u>	20 20 20 20 20	3843357	25 27 30 31 31 31	MEAN MIN MED MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF32, STATION NUMBER 391814076173802; LATITUDE 39°18'14" LONGITUDE 76°17'38" GEOLOGIC UNIT: CONFINING UNIT

	SEP	2.59 2.59 2.53 2.44 2.41	2.38 2.33 2.28 2.27	2.23 2.20 2.18 2.16	2.14 2.03 2.00 1.99	1.97	1.92 1.85 1.85 1.81	2.15 2.64 2.15 2.15
	AUG	1.83 1.79 1.76 1.72	1.85 1.84 1.84 1.87	1.93 2.05 2.13 2.13	2.21 2.20 2.20 2.17	2.20 2.30 2.46 2.61	2.74 2.76 2.80 2.76 2.76	2.18 2.80 1.72 2.16
	JUL	2.15 2.10 2.06 2.06	1.98 1.89 1.88 1.88	1.90 1.94 2.08	2.15 2.15 2.15 2.13	2.10 2.03 2.03 1.97	1.88 1.88 1.82 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	2.00 1.82 1.99
	NOC		2.66 2.63 2.65 2.65	2.58 2.45 2.45 2.45	2.45 2.49 2.51 2.49	2.43 2.44 2.44 2.36	2.32 2.26 2.22 2.122	2.45 2.66 2.19 2.45
IBER 1990	MAY	2.78 2.77 2.75 2.75 2.78	2.79 2.82 2.80 2.79 2.84	2.86 2.89 2.99 3.01	3.02 3.03 3.00 2.95 2.95	2.85 2.78 2.73 2.68	2.73 2.84 3.02	2.86 2.03 2.68 2.84
ALUES TO SEPTEM	APR	2.41 2.52 2.64 2.77 2.88	2.91 2.93 2.93 2.93	3.01 2.95 2.87 2.83 2.83	2.99 2.95 2.93 2.93	2.85 2.85 2.84 2.84	2.78	3.01 2.41 2.87
LY MEAN V BER 1989	MAR	2.24 2.26 2.26 2.22 2.19	2.15 2.07 2.07 2.09	22.22.2	2.15 2.23 2.25 2.25	2.27 2.30 2.33 2.28 2.30	2.29 2.28 2.30 2.31 2.31	2.21 2.35 2.06 2.24
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	FEB	3.33 3.39 3.40 3.43 3.43	3.43 3.42 3.42 4.22	3.36 3.37 3.35 3.25 3.25	3.28 3.21 3.07 3.04 2.92	2.32 2.73 2.63	2.41	3.11 3.45 2.28 3.30
WATER	JAN		; ; ; ; ;	!!!!!	2.66	2.68 2.72 2.73 78 78 78	2.85 3.03 3.24 3.24	::::
	DEC		!!!!!	!!!!!			::::::	::::
	NON	1 1 1 1 1		:::::		:::::	::::::	!!!!
	100		!!!!!					!!!!
	DAY	L0W47	6 8 9 10	152245	16 17 18 20 20	25 25 25 25 25 25	26 27 28 28 30 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF33, STATION NUMBER 391814076173803; LATITUDE 39° 18' 14" LONGITUDE 76° 17' 38" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP	4.08 3.97 3.78 3.71 3.79	3.71 3.62 3.50 3.50	3.28 3.28 3.28 3.29	3.16 2.03 3.05 3.05	3.27 3.27 3.09 3.02	2.92	3.30 3.28 3.26
	AUG	2.83 2.81 2.79 2.73 2.82	3.15 3.20 3.17 3.89	4.22 4.75 4.52 4.51 4.51	4.11 3.95 3.78 3.60	3.65 4.99 6.14 5.97 5.61	5.43 4.83 4.16 4.16 4.16	4.10 6.14 4.11
	יחר	3.20 3.12 3.19 2.21 2.98	2.94 2.98 2.98 2.98 2.83	3.00 4.03 4.20 4.25	4.00 3.79 3.63 3.63	3.45 3.22 3.22 3.13	25.00 25.00 20.00	3.30 2.83 3.13
	NOL	5.34 5.12 5.02 5.32 4.82	4.85 4.62 4.39 4.29	3.96 3.78 3.93 4.25	4.30 4.12 4.07 3.77	3.73 3.67 3.65 3.51 3.51	MMWW W.2465 1259	4.11 3.25 3.98
IBER 1990	MAY	5.30 4.72 4.69 5.23	5.01 4.83 4.50 5.16	5.08 5.59 5.67 5.14	5.10 5.03 4.81 4.60	4.35 4.27 4.09 3.99	6.30 6.30 6.30	4.98 6.30 3.99 5.01
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	5.14 5.98 6.03 5.79	5.43 5.90 5.59 5.59 5.59	5.51 4.86 4.92 5.86	6.07 5.88 5.36 5.16 5.16	5.15 5.14 5.06 4.88 4.77	4.69 4.57 4.55 4.55 4.99	5.29 6.07 4.46 5.15
LY MEAN V BER 1989	MAR	3.85 3.66 3.66 3.73	3.67 3.62 3.68 3.58	3.64 3.58 3.57 3.58	3.61 3.76 4.56 4.63 4.51	4.23 4.31 4.31 4.04	4.34 4.23 4.21 4.16 4.14	3.97 3.51 3.85
DAI YEAR OCTO	FEB	5.67 5.60 5.31 5.73 5.86	6.40 6.15 5.95 6.15	6.26 6.08 5.91 5.75	4.94 5.10 4.66	4.54 4.72 4.72 4.08	34.38	5.27 6.40 3.86 5.60
WATER	JAN		!!!!!	4.03 3.91 3.94	3.91 3.92 3.70 3.70	3.88 3.83 3.84 4.31	55.73 5.550 5.550 5.550 86	!!!!
	DEC				!!!!!	!!!!!	!!!!!!	:::::
	NON		1 1 1 1 1	!!!!!	!!!!!	::::::		:::::
	OCT		!!!!!	!!!!!				
	DAY	-NW45	27.88.00 10	1125	16 17 18 20 20	25 23 23 23 23	26 27 28 30 31	MEAN MAX MED MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF41, STATION NUMBER 391812076173101; LATITUDE 39° 18' 12" LONGITUDE 76° 17' 32" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP		1.56 1.48 1.07 1.43	1.62 1.08 1.79 1.80	1.29 1.39 1.47 1.65	1.45	1.26 1.37 1.00 1.14	1.37	1.87 1.39 1.38
	AUG		0.97 1.20 1.12 1.66	1.70	1.29	1.25	1.44	1.25	1.87 1.35 1.29
	JUL		1.20 1.06 1.60 1.50	1.50 1.50 0.50 0.50	93 1.05 1.53 1.76	1.20	1.06 1.43 1.96 1.00		1.76 1.22 1.15
	NOS		1.20 1.23 1.29 .85 .37	 .96 1.28 1.12	.58 .69 1.53 1.42	1.35	1.37 1.35 1.60 1.24	1.23	1.22
	3ER 1990 MAY		1.27 .90 .89 1.05	75 1.18 1.22 1.82	1.22 1.58 1.58 1.51	1.126	1.22 1.63 1.35 1.31	1.78 1.59 1.27 1.27	1.82 1.25 1.25
N I I E S	O SEPTEME		1.26 1.30 1.31 1.31	.90 .90 .90 .90 .90	.99 .40 .52 1.14	1.19 1.19 1.01 1.01	1.00 1.00 1.01	1.08	1.50 1.01 1.03
WEAN V	WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990 JAN FEB MAR APR MAY		0.94 .53 .87	49: 28: 27: 27:	1.00 .89 .19:11:1	1.19	1.03	.84 .965 .90 .90 .09	1.39 .07 0.82 .86
1140	EAR OCTOB	-	0.77 .93 .69 1.26	1.40 94 1.39	1.30		.56 1.17 .60 .35	 62:	1.51 47 0.83
 	WATER Y			:::::	0.32			1.00 5.55 1.04 1.74	
	DEC						!!!!!		
	>ON								::::
	00.1		:::::	!!!!!					::::
	DAY		24357	27.89.01	12 13 15 15	16 17 19 20	22 2 3 2 5 25 25	26 28 20 30 31	MAX MIN MEAN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF42, STATION NUMBER 391812076173102; LATITUDE 39° 18' 12" LONGITUDE 76° 17' 32" GEOLOGIC UNIT: CONFINING UNIT

	SEP					:::::	2.51 2.48 2.44 2.44	::::
	AUG							
	JDF .	33371						
	NO.	3.50 3.50 3.54 3.54	!!!!!		!!!!!	!!!!!	2.90 2.97 3.01 3.06	!!!!
ER 1990	MAY	3.57 3.57 3.52 3.52	3.60 3.62 3.61 3.60 3.60	3.65 3.59 3.59 3.57	3.56 3.64 3.65 3.65	3.64 3.63 3.57 3.53	33.52 33.52 33.53 57	3.59
LUES O SEPTEMB	APR	3.25 3.33 3.43 5.51	3.54 3.53 3.46 3.46	3.49 3.53 3.46 3.47	3.52 3.55 3.51 46	3.56 3.56 3.56 3.56	33.58 33.60 3.61 1.61	3.49 3.61 3.51
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	MAR	3333333	3.25 3.09 3.09 3.09	25.25.00 01.	3.23 3.23 3.23 3.23	33.18 3.17 1.74 1.74	мимими 1000 1000 1000 1000 1000 1000 100	3.17 3.33 3.07 3.16
DAIL EAR OCTOE	FEB	3.10 3.22 3.22 3.27	33.33 3.33 3.40 3.40	33.45 4.49 4.49 4.49 4.49 4.49	33.50	33.42 33.51 33.53	33.42	3.53 3.10 3.41
WATER	JAN	11111	!!!!!	!!!!!	2.85	2.93 2.93 2.94 2.98	3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	DEC		!!!!!	::::::	!!!!!	!!!!!	!!!!!!	
	NOV		!!!!!	!!!!!	:::::	!!!!!	!!!!!!	
	0CT		!!!!!	!!!!!	!!!!!	!!!!!	!!!!!!	! ; ; ; ;
	DAY	~0M4N	4 8 9 10 10	<u> </u>	17 17 20 20 20	28,23,22	26 27 28 29 30 31	MEAN MIN MED MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF43, STATION NUMBER 391812076173103; LATITUDE 39° 18' 12" LONGITUDE 76° 17' 32" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP	4.24 4.12 4.00 3.83 3.75	3.72 3.66 3.42 3.42	3.23 3.23 3.21 3.24	3.06	3.27 3.27 3.22 2.22	3.17 3.01 2.97 2.96	3.35 4.24 2.96 3.23
	AUG		3.43	3.92 4.25 4.52 4.52	4.38 4.08 3.96 3.83	3.82 4.05 5.37 5.37	52.29 44.887 466 422	4.43 4.43 4.42
	JUL	;;;;;	!!!!!	!!!!!		;;;;;	::::::	::::
	NOC	5.43 5.25 5.21 5.21 5.21	!!!!!	4.31 4.14 3.96 4.02	4.37 4.24 4.29 4.19	3.92		!!!!
MBER 1990	MAY	5.23 5.27 5.08 5.97	5.32 5.17 4.97 4.80	55.40 5.44 5.32 5.32	5.19 5.16 5.09 4.87	4.57 4.47 4.37 4.125	5.65 5.65 5.65	5.01 5.05 5.09
ALUES TO SEPTE	APR	5.24 5.24 5.67 5.67	5.53 5.53 5.55 5.57 5.57	5.60 5.46 5.22 5.23 5.29	5.72 5.72 5.35 5.35 5.35	55.33	5.01 4.79 4.71 4.71	5.33 5.72 4.71 5.34
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	MAR	4.44 4.50 4.50 4.25	4.21 4.10 4.07 4.23	4.26 4.26 4.24 1.20 1.40	4.13 4.18 4.57 4.85 4.91	4.84 4.72 4.53 4.58	4.76 4.65 4.63 4.63 8.	4.46 4.91 4.07 4.45
YEAR OCTO	FEB	5.50 5.51 5.42 5.47 5.54	5.48 5.35 5.35 5.39	55.52	5.26 4.96 4.98 4.98	4.73 4.92 4.73 4.75	4.43 4.41 4.50	5.15 5.54 5.28
WATER	JAN		:::::	4.36	4.37 4.35 4.39 4.24	4.38 4.37 4.29 4.35	4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	!!!!!
	DEC					!!!!!	!!!!!!	::::
	NOV			11111	:::::	!!!!!		;;;;;
	OCT	11111	!!!!!	11111	: : : :	:::::		:::::
	DAY	-0M40	27.89.01 0	122245	16 118 119 20	25,23,22,2	22 22 22 33 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued WELL JF61, STATION NUMBER 391810076172801; LATITUDE 39° 18' 10" LONGITUDE 76° 17' 28" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP	1.48 1.53 1.49 1.49	1.55	1.57 1.51 1.50 1.50	1.60 1.46 1.27 1.32 1.45	1.35 1.48 1.57 1.47	1.61 1.82 1.98 2.21	1.55 2.21 1.27 1.50
	AUG		1.38	1.40 1.34 1.41 1.41	1.35	1.27	1.55	1.45 1.27 1.40
	JUL		::::::	:::::	!!!!!	!!!!!		::::
	NOL			:::::	!!!!!	:::::	::::::	::::
BER 1990	ΜΑΥ		:::::		:::::	!!!!!		
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR		:::::	:::::	!!!!!		::::::	
LY MEAN V BER 1989	MAR		::::::		;;;;;	!!!!!	!!!!!!	!!!!
DAI YEAR OCTO	FEB		:::::	!!!!!	!!!!!	!!!!!		
WATER	JAN		:::::		:::::	!!!!!		
	DEC		::::::	!!!!!				::::
	NOV		;;;;;	!!!!!	!!!!!	!!!!!		!!!!
	100		:::::		11111			::::
	DAY	-0m4v	37.89.01	17777	14 17 19 20 20	25 23 25 2 25 43	26 27 28 29 30 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued WELL JF62, STATION NUMBER 391810076172802; LATITUDE 39° 18' 10" LONGITUDE 76° 17' 28" GEOLOGIC UNIT: CONFINING UNIT

				,	DAI	LY MEAN V	ALUES					
DAY	100	NOV	DEC	WATER	YEAR OCTO	WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990 JAN FEB MAR APR MAY	TO SEPTEM APR	BER 1990 MAY	NOS	JUL	AUG	SEP
-							1		:	:	;	:
- ヘ	:	: :	, ,	:		;	:	1		:	:	;
M	:	!	;	:	;	;	:	:	:	:	:	;
7	i : :	:	:	:	:	:	:	:		:	:	:
2	;	:	:	:	:	;	:	:	;	:	:	;
4	;	:	;	1	;	;	;	:	1	;	;	;
· ~		:	!	:	:	;	!	:	:	:	;	:
. ∞	:	:	!	:	:	;	:	:	;	;	: :	:
م د	: :	: :	: :	: ;	; ;	: :	: :	: :	: :	: :	: :	; ;
2												
_	;	:	:	:		;	:	1 .	:	:	:	;
2	;	:	:	:	:	;	;	:	!	;	:	:
23	:	:	:	:	:	;	:	:	:	:	:	
4	:	:	;	:	:	;	:) !	;	:	:
Ŋ	:	:	;	:	:	;	:	:	:	1 1	:	:
9	:	:	:	:		:;			;	1	:	:
· ~	;	:	:	:	;	;	:	:	;	:	:	:
&	1	:	:			;	:	:	!	1	:	;
6	:	:	:	:	:	;	;	:	:	;	:	:
20	:	:	:	;	:	;	;	:	;	:	:	:
_	:	;	;	;	:	;	:	;	:	;	;	;
٧.	:	:	:	:	;	;	:	:::	::	:	:	:
M	:	:	:	:	:	:	:	:	:	:	:	:
4	:	;	:	:	:	;	:	:	:	:	:	;
25	:	:	:	;	:	:	;	:	:	:	:	:
9	;	:	;	;	;	;	;	;	;	:	:	2.52
2		:	: :	!	::	: ;	!	;	:	:	:	2.51
œ.	:	:	:	:	:	:	:	i i	:	:	:	2.50
53	:	:	:	:	:	;	:	:	:	:	:	5.48
0	:	;	:	:	:	;	:	:		:	:	2.48
=	:	:	;	:	i	;	:	:	;	;	:	:
AN	1	:	;	:	;	;	;	:	;	;	;	;
MAX	!!!	:	:	:	:	!	:	:	:	:	:	:
z	:	: :	:	:	:	;	:	:	:	:	:	:
۵	1 1	:	:	:	:	;	:	:	:	:	;	:

at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through Daily mean ground-water elevations

rable 9.	Daily me Septem	an ground ber 1990-	d-water e	levations ed	Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990Continued	i, Aberde	en Provir	ng Ground,	Maryland	, October	1988 th	-ough
	WELL	JF63, SI	FATION NU	4BER 39181 GE	WELL JF63, STATION NUMBER 391810076172803; LATITUDE 39° 18' 10" GEOLOGIC UNIT: SURFICIAL AQUIFER	S; LATITU	DE 39°1 CIAL AQUI		LONGITUDE	76° 17′	28"	
				WATER	DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	MEAN VA	LUES 0 SEPTEME	SER 1990				
DAY	100	NOV	DEC	JAN	FEB	MAR	APR	МАХ	NOC	JUL	AUG	SEP
_	:	;	:	:	:	:	:	:	-:-	:	1	3.41
2	!	:	:	:	:	:	!!	:	:	1 1	:	3.35
ν,	:	:	:	:	:	:	:	:	:	;	:	3.22
41√	: :	: :	: :	; ;	: :	; ;	1 1	: :	: :	s s	f	3.06
9	:	1 - 1	:	;	1	:	;	;	;	•	:	3.03
7	:	;	:	:	:	:		;	:	1 1		2.99
ဆ	:	:	:	:	:	:	:	!	!!!	1	:	2.81
۰,	:	:		:	:	1 1	1 1 1	:	: :	:	2.85	2.75
9	:	;	;	:	:	:	:	:	:	:	3.28	2.73
7	;	;	;	;	;	:	:	;	;	:	3.50	2.68
12	:	:		:	:		:	: :		:	3.66	5.64
13	:	!	:	:	:	!	:	:	:	;	3.70	29.2
14	:	:	:	:	:	:	:	:		1 1	3.77	2.67
15	:	:	:	:	:	:	:	:	:	:	3.70	5.69
16	;	;	;	;	;	;	;	;	;	:	3.58	2.56
17	;	:	:	;	:	:	:	:	:	::	3.46	2.63
81	;	:	:	1	1	!	:	:	:	1	3,33	2.57
19	;	;	:	:	:	:	:	:	:	:	3.22	29.2
2	;	;	;	:	•	:	;	:	:	:	3.14	;
7	;	:	;	:	;	;	:	;	;	;	7 31	:
55	:	;	:	:	;	:	;	:	;	;	3.66	:
53	:	:		:	:	1 1	::	:	:		4.19	
2 4	;	:	:	:	:	:	:	!	:	:	4.24	:
S	;	:	:	:	:	:	:	:	!	:	4. اه	, ,
56	;	;	:	;	;	:	:	;	;	:	4.19	;
27	:	;	:	:	:	:	:	:	:	:	4.16	:
88	:	;	:	:	:	:	:	:	:	:	4.0 6.0	:
25	• •	• •		• •	: :	: ;		. !	: ;		 7.2	: :
35		:	:	:	:	:	:	;	;	;	3.55	3
MEAN	;	;	:	;	:	;	;	;	;	:	2 67	:
AAX	;	:	:	:	;	:	:	;	;	;	4.24	:
N.	;	:	:	:	:	:	;	:	:	:	2.85	:
Œ.	;	:	:	;	;	:	1	;	:	:	3.66	;

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued WELL JF91, STATION NUMBER 391825076172601; LATITUDE 39° 18' 24" LONGITUDE 76° 17' 27" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP	1.51 1.42 1.26 1.72	1.59 1.08 1.64 1.82	1.30 1.43 1.56 1.68	1.35	1.14	1.35	1.35 1.82 1.35
	AUG	1.77 1.98 2.01 1.95 2.46	2.58 2.08 1.57 1.12	1.20	1.15	1.29 1.70 52.1 52.1	1.28 1.51 1.58 1.40	1.50 2.58 .97 1.38
	JUL	1.30 1.68 1.78 1.12	1.11	1.26 1.58 1.44 1.86 2.14	1.68	1.59 1.99 1.58 1.63	1.62 1.76 1.95 2.22 2.32	1.64 2.34 1.11 1.63
	NOS	1.22 1.26 1.30 .93	1.34		1.53	1.38 1.59 1.25	1.27	1.24
BER 1990	MAY	1.28 .97 .92 1.07	1.19	1.18	1.15	1.59	1.35 1.68 1.75 1.03	1.29
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	1.24 1.30 1.32 1.32	.92 .89 .89 1.26	1.04 1.09 1.16	1.03	85. 97. 99. 99.	1.05	1.00
LY MEAN V BER 1989	MAR	0.48 .91 .54 .24		.97 .88 .84 .89	1.17	.07 .01 .51 .51		1.34 1.34 .88
DAI YEAR OCTO	FEB	0.78 .95 .72 1.25	1.39 .97 .98 1.38	1.03 1.26 1.09 7.79	1.48	.56 .1.17 .65		
WATER	NAN		!!!!!	!!!!!	0.92	.95 1.20 1.11	1.05	
	DEC			!!!!!		!!!!!		::::
	NOV			!!!!!		!!!!!	:::::::	::::
	100		:::::	:::::		:::::	!!!!!!	
	DAY	-0M4V	67 8 9 01 01	174321	16 17 18 20 20	28838	26 27 28 29 30 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF92, STATION NUMBER 391825076172602; LATITUDE 39° 18' 24" LONGITUDE 76° 17' 27" GEOLOGIC UNIT: CONFINING UNIT

SEP		!!!!!		:::::		2.18 2.05 2.00 2.00	::::
AUG	2.21 2.15 2.09 2.09	2.06	!!!!!!	!!!!!	::::::		::::
JUL	2.72 2.72 2.62 2.58 2.58	2.27 2.27 2.28 2.23	2.18 2.16 2.25 2.25	2.23 2.24 2.25 2.25	25.25 25.25 25.25 25.25	22.23.24.68	2.31 2.79 2.25
NUL	:::::	!!!!!				22.88	:::::
MAY		!!!!!	:::::		:::::	!!!!!!	
APR	3.98 3.94 3.86 3.89	4.07 4.00 3.87 3.85 3.95	3.97 3.91 3.80 3.81	3.95 3.97 3.98 3.98	3.38 3.98 3.98 3.94	!!!!!!	3.94 3.80 3.95
MAR	3.66 3.29 3.29	3.34 3.40 3.42 3.42 3.41	3.40 3.50 3.45 3.45	3.47 3.51 3.47 3.47 3.48	3.51 3.50 3.50 3.55	3.66 3.83 3.93 4.03 4.03	3.53 3.21 3.48
FEB	3.72 3.79 3.78 3.73	3.80 3.84 3.95 3.95	3.85 3.92 3.97 3.97 85	3.82 3.68 3.90 3.87 3.50	:::::	!!!!!!	:::::
JAN		:::::	!!!!!	3.31	3.45 3.47 3.53 4.1	3.44 3.58 3.58 3.70	::::
DEC		!!!!!	:::::		:::::	1111111	:::::
NON	:::::		:::::	:::::		::::::	
ОСТ	1 1 1 1 1	!!!!!	:::::	:::::		::::::	:::::
DAY	− 0845	97.89.01	12221	16 17 19 20	%%%%	26 28 29 31 31	MEAN MAX MED MED
	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 3.72 3.98 2.72 2.16 3.73 3.29 3.86 2.72 2.16 3.74 3.29 3.89 2.58 2.09 3.75 3.24 4.07 2.51 2.06 3.76 3.34 3.36 4.07 2.51 2.06 3.77 3.89 3.40 3.34 4.07 2.51 2.06 3.78 3.95 3.41 3.95 2.25 2.26 3.79 3.81 3.89 2.26 3.70 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.4	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 3.72 3.98 2.79 2.21 3.72 3.66 3.94 2.79 2.16 3.73 3.29 3.86 2.62 2.09 3.74 3.89 2.56 2.09 3.84 3.36 4.07 2.56 2.06 3.87 3.40 3.87 2.56 3.98 3.40 3.97 2.18 3.99 3.40 3.97 2.26 3.90 3.40 3.97 2.26 3.90 3.40 3.97 2.26 3.90 3.40 3.97 2.18 3.91 3.92 3.40 3.91 3.92 3.45 3.89 3.80 3.93 3.89 3.20 3.80 3.93 3.89 3.80 3.94 3.91 2.16 3.95 3.45 3.89 3.97 3.91 2.16 3.98 3.45 3.89 3.99 3.40 3.90 3.90 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90 3.40 3.90	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 3.72 3.98 3.94 2.79 2.21 3.73 3.24 3.86 2.85 2.16 3.77 3.29 3.80 2.56 2.16 3.80 3.34 4.07 2.56 2.06 3.80 3.34 4.07 2.56 2.06 3.80 3.34 4.07 2.51 2.06 3.90 3.40 3.97 2.19 3.90 3.40 3.97 2.19 3.91 3.82 3.49 3.95 2.16 3.92 3.40 3.97 2.16 3.93 3.40 3.97 2.16 3.94 3.95 2.16 3.95 3.40 3.97 2.16 3.95 3.40 3.97 2.16 3.97 3.99 3.80 3.91 3.98 3.47 3.99 3.81 3.99 3.51 3.87 3.79 3.99 3.51 3.87 3.47 3.99 3.52 3.53 3.50 3.51 3.50 3.52 3.50 3.51 3.50 3.52 3.50 3.51 3.50 3.52 3.50 3.51 3.50 3.52 3.50 3.51 3.50	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF93, STATION NUMBER 391825076172603; LATITUDE 39° 18' 24" LONGITUDE 76° 17' 27" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP	3.56 3.37 3.12 3.12	3.13 2.80 2.70 2.76	2.57 2.46 2.42 2.52	2.36 2.24 2.09 2.17 2.21	2.22 2.32 2.19 2.19	2.07 2.01 2.01 2.02	2.53 3.69 2.01 2.39
	AUG	2.18 2.04 1.99 1.92	2.27 2.27 2.19 2.16 2.56	3.76 3.76 3.66	3.50 3.39 3.10	3.09 4.65 5.04 5.02	4.94 4.64 4.47 3.85	3.36 5.04 3.45
	JUL	2.63 2.51 2.44 2.46 2.31	2.17 2.10 2.14 2.05	2.22 2.22 3.30 3.63	3.45 3.45 3.28 3.28	3.18 3.07 2.83 2.64	2.35 2.35 36 36 36 36	2.68 2.05 2.49
	NOL	5.26 5.10 5.01 5.16 4.97	4.90 4.76 4.48 4.42 4.22	3.66 3.66 3.59 3.59 55	3.98 3.98 4.00 3.81	3.56 3.52 3.24 3.21	2.99 2.88 2.76 2.77	3.94 5.26 3.87
IER 1990	МАУ	5.52 5.27 5.27 5.23	5.58 5.20 5.22 5.22	5.34	5.28 5.25 5.06 7.79 7.61	4.48 4.35 4.07 3.89	4.14 5.01 5.26 5.56 5.43	5.01 3.89 5.21
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	5.67 5.75 5.92 5.97 5.86	5.62 5.70 5.59 5.59	5.20	5.75 5.78 5.31 5.32	5.40 5.39 5.39 5.39	5.21 4.98 4.90 5.19	5.48 5.97 5.48 5.48
Y MEAN VA ER 1989 T	MAR	4.55 4.66 4.70 4.36	4.32 4.11 4.36 4.41	4, 75 4, 55 4, 55	4.53 5.05 5.23 5.32	5.15 5.21 5.21 5.02	5.26 5.24 5.14 5.14 7.24	4.79 5.42 4.11 4.66
DAIL EAR OCTOB	FEB	5.56 5.63 5.63 5.63	5.59 5.57 5.41 5.60	5.58 5.58 5.50 5.20	5.30 4.90 5.12 7.94	4.77 7.73 7.73	4.37	5.24 5.63 4.37 5.41
WATER Y	JAN		!!!!!		5.02 4.80 4.75	5.01 4.98 4.91 4.87	5.57 5.57 6.73 6.73	::::
	DEC		:::::	:::::				
	NOV							! ! ! !
	OCT					!!!!!		
	DAY	-0M45	67 8 9 01	15227	16 17 19 20	25,23,22,2	26 27 30 30 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF111, STATION NUMBER 391826076173101; LATITUDE 39° 18' 26" LONGITUDE 76° 17' 31" GEOLOGIC UNIT: CONFINED AQUIFER

	SEP	1.37 1.28 1.20 1.62	1.40 1.33 1.55 1.58	1.07 1.16 1.24 1.41	1.20 .71 .84 1.21 1.03		1.25	1.19
	AUG	1.03 1.25 1.18 1.70	1.77	1.08	1.17	1.26	1.24 1.28 1.138 1.11	1.25 1.25 1.22
	JUL	1.21 1.60 1.63 1.63		97 1.30 1.11 1.55	1.26	1.10 1.03 1.05	20.1.1.03 20.1.1.33 20	1.73
	NUL	1.20 1.24 1.28 .87	1.35 1.29 1.14	.61 .68 1.52 1.42	1.36 1.53 1.48	1.33	1.28	1.22
BER 1990	MAY	1.25 .91 1.04 1.33	74 1.17 1.21 1.80	1.22 1.56 1.15	1.35	36.77.56	1.32 1.67 1.28 1.28	1.25 1.25 1.22
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	1.24 1.48 1.29 1.26	.93 .88 .88 .1.26	1.00 .39 1.11 1.15	1.01 1.18 1.70 86.	.82 .97 .93	1.03	1.48 1.00
Y MEAN V	MAR	0.49 .93 .54 .24 .86	482825	88. 88. 99. 90.	1.18 1.37 .88 .93	%	.88 .90 .88 .80 1.05	7.1.37 7.86 88.
DAII YEAR OCTOI	FEB	0.78 .95 1.26	1.41 1.00 1.30	2.1.5 2.05 2.05 2.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3	1.52 .49 1.15	.30 .30 .30	. 78 . 58 	48:
WATER	JAN				0.90 118 .58	.92 1.21 1.12 1.15	1.02 57 55 1.06	
	DEC	11111		!!!!!	!!!!!		::::::	
	NOV		!!!!!	::::::	:::::	::::::	!!!!!!	!!!!
	OCT	!!!!!		!!!!!!	!!!!!		::::::	
	DAY	− 0%45	97.89.01 10.89.01	12224 1545 1545	16 17 20 20	3833 2	26 28 30 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF112, STATION NUMBER 391826076173102; LATITUDE 39° 18' 26" LONGITUDE 76° 17' 31"

		SEP	2.20 2.19 2.17 2.15	2.12 2.09 2.07 2.06	2.04 2.02 2.00 1.99	1.97 1.96 1.92 1.90	1.88 1.87 1.86	1.82	2.20 2.20 1.80
		AUG		!!!!!		1.62	1.62 1.76 1.90 2.02	22.21 22.21 22.22 22.21	::::
		JUL						::::::	::::
		NOL	:::::	:::::	:::::		!!!!!		::::
	3ER 1990	MAY	3.19 3.29 3.26 3.26	3.46 3.40 3.31 3.31	3.55 3.55 3.57 3.57	3.45	:::::	!!!!!!	
GEOLOGIC UNIT: CONFINING UNIT	DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	3.51 3.68 3.87 4.03 4.06	3.97 3.98 3.98 3.98	3.87 3.75 3.42 3.45	3.74 3.74 3.57 3.57	3.40 3.39 3.25 3.27	3.20 3.05 3.05 3.02	3.58 4.06 3.57
VIT: CONF	Y MEAN V/ 3ER 1989	MAR	2.68 2.67 2.69 2.64 2.56	2.51 2.36 2.37 2.39	2.45 2.48 2.50 2.50	2.52 2.56 2.82 3.11 3.26	3.24 3.24 3.07	3.20 3.20 3.17 3.13	2.81 2.36 2.68
OLOGIC UN	DAII FAR OCTOR	FEB	3.98 3.94 3.84 3.91	3.90 3.90 3.75 3.75 3.75	3.95 3.88 3.85 3.72	3.61 3.42 3.35 3.25	3.03 3.03 3.09 3.09 10.09	2.75	3.73
5	WATER	JAN		!!!!!		3.25	3.08 3.07 3.05 3.10	3.54 3.82 3.91 4.00 4.00	
		DEC			!!!!!	:::::	:::::		::::
		NOV		:::::	!!!!!	:::::	!!!!!	::::::	
		0CT		:::::	!!!!!		!!!!!		::::
		DAY	~284s	97.89.D	-5554	20 20 20 20	28232	26 28 29 31 31	MEAN MAX MIN MED

Table 9. Daily mean ground-water elevations at J-Field, Aberdeen Proving Ground, Maryland, October 1988 through September 1990--Continued

WELL JF113, STATION NUMBER 391826076173103; LATITUDE 39° 18' 26" LONGITUDE 76° 17' 32" GEOLOGIC UNIT: SURFICIAL AQUIFER

	SEP			!!!!!	!!!!!	!!!!!	1.48	::::
	AUG	1.00 1.10 1.00 1.45	1.58	:::::	:::::		!!!!!!	!!!!
	JUL	1.46 1.31 1.70 1.07	1.04 1.34 1.47 1.47	1.11 1.54 2.12 2.39	1.93 1.68 1.72 1.67	1.54	1.21 1.27 1.36 1.53	1.50 2.39 .96 1.51
	NUL	2.47 2.41 2.37 2.16	2.49	1.52 1.47 2.12 1.98 2.15	2.15 2.25 1.82 82	2.11 2.11 1.98 1.75	1.71	1.97 2.49 1.46 1.98
4BER 1990	MAY	2.72 2.49 2.39 2.46 2.76	2.35 2.63 2.44 2.47 2.94	2.70 2.37 2.34 2.54	2.66	2.07 2.27 1.93	2.38 2.33 2.71 2.80 2.37	2.45 2.94 1.93 2.44
DAILY MEAN VALUES WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990	APR	2.80 2.97 2.86 2.86 2.86	2.54 2.58 2.54 2.54	2.59 2.10 2.54 2.64	2.65 2.78 2.32 2.50	2.35 2.16 2.53 2.45 2.45	2.42 2.37 2.34 2.36 2.69	2.52 2.97 2.01 2.53
1LY MEAN V 38ER 1989	MAR	1.85 2.18 1.88 1.64 2.06	1.86 1.54 1.94 1.90	2.16 2.07 2.07 2.21	2.26 2.29 2.42 2.42	1.81 2.44 2.00 2.47	2.36 2.22 2.42 2.35 2.28 58	2.14 2.58 1.54 2.16
DA] YEAR OCTO	FEB	2.52 2.64 2.41 2.86	2.98 2.57 2.57 2.86 2.86	2.55 2.65 2.61 2.33	2.89 2.33 2.03 1.81	2.00 2.53 2.13 1.65	1.40 2.14 1.98	2.40 2.98 1.40 2.53
WATER	JAN				2.38	2.37 2.39 2.55 2.42 2.48	2.63 2.47 2.36 2.30 2.81	!!!!
	DEC			!!!!!				!!!!
	NOV					!!!!!		!!!!
	DCT			!!!!!	!!!!!		!!!!!!	!!!!
	DAY	-0 m 4v	97.89.01	55545	20 20 20 20 20 20	25 232 23	26 27 28 30 31 31	MEAN MEAN MED MED

Table 10. Slug-test data from J-Field, Aberdeen Proving Ground, Maryland, January 1990

[--, could not be determined; <, less than]

	Length	Screen	Hydraulic cor		
Well No.	of screen (feet)	opening (inches)	Hvorslev method ¹ (feet/day)	Cooper method ² (feet/day)	Hydrologic unit
JF33	5	0.001	0.70	1.04	Surficial
JF93	5	.01	.29		aquifer
JF113	3	.01	.69	.58	-
	_				
JF32	5	.001	.05	.09	
JF42	5	.06	<.01	.02	Confining
JF92	5	.06	.20		unit
JF31	5	.001	13.6	51.8	
J F41	5	.01	272.	932.	Confined
JF91	5	.001	3.16	7.41	aquifer
JF111	5	.01	111.	508.	-
JF2	5	.01	.61	.06	Patapsco Formation

¹ Hvorslev, M.J. (1951)

² Cooper, H.H., Bredehoeft, J.D., and Papadopulos, I.S. (1967)

Table 11. Soil-gas data from J-Field, Aberdeen Proving Ground, Maryland, Phase I, March 1989

[TCE = Trichloroethene; PCE = Tetrachloroethene]

	Relativ	cive Flux		
Site No.	TCE (ion counts)	PCE (ion counts)		
1	13	12		
2	0	34		
3	0	12		
4	13	18		
5	0	0		
6	355	656		
7	0	10		
8	25	67		
9	0	18		
10	20	33		
11	125	363		
12	0	0		
13	11	27		
14	0	40		
15	2,561	311		
16	242	320		
17	53	14		
18	14,514	7,968		
19	1,684	1,000		
20	0	80		
21	11	42		
22	0	26		
23	0	0		
24	0	31		
25	29	33		
26	0	0		
27	84	104		
28	0	18		
29	0	12		
30	O	0		
31	22	286		
32	108	1,700		
33	0	44		
34	0	0		
35	0	261		
36	28	28		
37	149	56		

Table 11. Soil-gas data from J-Field, Aberdeen Proving Ground, Maryland, Phase I, March 1989-Continued

[TCE = Trichloroethene; PCE = Tetrachloroethene]

	Relativ	e Flux
Site	TCE	PCE
No.	(ion counts)	(ion counts)
38	387	766
39	1,101	1,624
40	0	14,500
41	1,582	1,559
42	10,074	16,603
43	20,058	7,372
44	10,298	1,421
45	9,207	3,052
46	10,143	5,045
47	17,185	10,822
48	19,414	11,968
49	22,204	12,285
50	16,382	2,358
51	299	62
52	13,279	768
53	137	188
54	34	23
55	0	51
56	17,569	14,122
57	20,002	9,673
58	21	0
59	312	184
60	11,274	14,918
61	14,483	13,398
62	23,163	16,163
63	20,919	5,994
64	1,019	143
65	427	421
66	40	21
67	164	288
68	261	226
69	0	16
70	782	2,545
71	200	1,814
72	3,608	3,459

Table 12. Soil-gas data from J-Field, Aberdeen Proving Ground, Maryland, Phase II, May 1990

[TCE = Trichloroethene; PCE = tetrachloroethene;
DCE = Dichloroethene; TCA = Trichloroethane]

Rol	ative	Fluv	(ion	counts)

Site No.	Combined TCE & PCE	Heavy aromatic hydrocarbon	Pthalates	Combined DCE & TCA						
1	1,913	281	0	2,786						
2	142,166	1,465	0	55,161						
3	1,598	207	0	31,183						
4	2,478	685	0	1,865						
5	7,171	213	0	3,937						
6	38,780	1,491	0	9,586						
7	204,960	2,925	702	22,190						
8	829	487	0	4,421						
9	483,788	5,171	982	197,283						
10	49,209	911	0	8,656						
11	172,765	1,472	0	13,610						
12	249	227	0	1,627						
13	387,078	9,125	334	255,681						
14	138,658	3,457	341	8,731						
15	2,925	6,926	584	1,641						
16	1,765	11,025	923	6,510						
17	251,994	10,942	2,662	73,338						
18	265,300	1,398	0	49,943						
19	394	2,655	0	2,641						
20	0	3,130	208	5,721						
21	32,387	139,910	84,678	15,725						
22	96,030	1,944	371	59,024						
23	3,139	795	22 7	27,832						
24	4,909	4,183	528	83,238						
25	17,208	257,566	40,748	14,191						
26	67 , 795	1,275	0	79,423						
27	3,017	3,826	1,036	10,729						
28	5,206	5,573	6,418	65,662						
29	0	834	224	410						
30	0	1,281	233	5,607						
31	1,521	2,433	2,911	4,100						
32	620	3,778	967	2,143						
33	1,148	5,729	848	128,231						
34	233,752	615	1,024	59,110						
35	100,212	7,008	579	60,408						
36	452	2,230	272	59,971						
37	148,400	7,472	11,324	25,943						

Table 12. Soil-gas data from J-Field, Aberdeen Proving Ground, Maryland,
Phase II; May 1990--Continued

Site No.	Combined TCE & PCE	Heavy aromatic hydrocarbons	Pthalates	Combined DCE & TCA	
38	1,674	3,817	470	79,678	
39	326	2,730	246	48,657	
40	18,786	161,583	51,978	11,078	
41	2,864	2,263	212	16,222	
42	796	2,344	0	23,582	
43	3,981	85,517	8,508	4,390	
44	0	2,036	0	313	
45	2,067	2,181	252	16,617	
46	777	5,575	686	1,759	
47	437	1,907	0	3,035	
48	6,561	6,022	14,176	15,643	
49	0	9,688	978	659	
50	7,490	1,823	238	7,882	
51	247	0	0	828	
52	1,109	402	519	4,742	
53	7,013	4,947	722	5,779	
54	784	571	0	1,391	
55	672	37	206	941	
56	0	1,475	332	972	
57	4,306	2,038	454	1,299	
58	5,960	2,398	261	2,043	
59	990	325	0	2,924	
60	3,618	3,302	990	3,308	
61	708	1,543	0	1,137	
62	1,994	839	0	970	
101	13,283	42,162	344,222	17,700	
102	7,082	26,219	16,565	17,969	
103	0	3,427	480	1,584	
104	6,686	1,045	282	9,117	
105	14,275	2,892	811	5,743	
106	2,008	13,303	4,470	3,694	
107	3,226	18,858	5,028	33,794	
108	3,722	15,079	5,279	44,105	
109	0	4,030	543	1,532	
110	1,177	10,163	1,541	4,780	
111	26,922	100,295	74,212	12,406	
	,		656	7,201	

Table 13. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, April 1991

[μ g/g = micrograms per gram; < = less than; -- = no data; > = greater than]

NOTE: Sample No. ending in "d" represents duplicate analyses.

Sample No.	Station number	Date	Time	An- timony (μg/g)	Arsenic (μg/g)	Boron (μg/g)	Cadmium (µg/g)	Calcium (μg/g)	Carbon di- sulfide (µg/g)	Chro- mium (µg/g)
JS1 JS2 JS3	391827076173101 391828076173001 391827076172702	04-16-91 04-16-91 04-16-91	1130 1115 1425	<7.9 <7.9 <7.9	4.2 2.7 2.8	<7.4 <7.4 <7.4	<0.4 <.4 <.4	<1,300 310 500	<0.005 <.005 <.005	16 12 12
JS4 JS5	391827076172802 391827076172601	04-16-91 04-16-91	1100 1415	<7.9 <7.9	2.3	<7.4 <7.4	< . 4 < . 4	110 200	<.005 <.005	8.9 9.5
JS6 JS7 JS7d JS9 JS10	391824076172801 391824076172901 391825076173101 391825076173201	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	1400 1320 1324 1155 1145	<7.9 <7.9 <7.9 <7.9 <7.9	<2.2 <2.2 <2.2 <2.9 2.9	<7.4 <7.4 <7.4 <7.4	<.4 <.4 <.4 <.4	570 800 800 820 370	<.005 <.005 <.005 <.005 <.005	8.8 11 9.7 13 10
JS11 JS11d JS13 JS14 JS15	391815076173901 391815076174001 391813076173801 391814076173501	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	1100 1104 1050 1020 1040	<7.9 <7.9 <7.9 <7.9 <7.9	<2.2 3.5 <2.2 3.5 3.6	<7.4 <7.4 <7.4 <7.4	<.4 <.4 <.4 <.4	960 800 2,100 <1,300 <1,300	<.005 <.005 <.005 <.005 <.005	12 10 12 12 19
JS16 JS17 JS17d JS19 JS20	391811076174401 391810076174602 391808076174402 391807076174701	04-12-91 04-12-91 04-12-91 04-11-91 04-11-91	1000 0930 0934 1345 1400	<7.9 <7.9 <7.9 <7.9 <7.9	4.4 3.8 3.4 2.9 3.7	<7.4 <7.4 <7.4 <7.4	<.4 <.4 <.4 <.4	1,300 390 450 320 370	<.005 <.005 <.005 <.005 <.005	11 8.6 8.6 7.5 11
JS21 JS22 JS23 JS24 JS25	391807076174301 391806076174201 391805076173801 391806076173601 391804076173401	04-11-91 04-11-91 04-11-91 04-11-91 04-11-91	1330 1320 1245 1230 1215	<7.9 <7.9 <7.9 <7.9 <7.9	3.3 <2.2 3.7 3.2 <2.2	<7.4 <7.4 <7.4 <7.4	<.4 .8 <.4 <.4	240 130 380 290 130	<.005 <.005 <.005 <.005 <.005	8.8 7.4 11 6.6
JS26 JS26d JS28 JS29 JS30	391813076173101 391812076172801 391810076172603 391809076172702	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	1240 1244 1300 1340 1320	<7.9 <7.9 <7.9 1,200 <7.9	4.5 4.2 7.8 49 21	<7.4 <7.4 <7.4 120 <7.4	<.4 <.4 2.4 16 <.4	580 540 5,900 410 560	<.005 <.005 <.005 <.005 <.005	16 15 37 120 46
JS31 JS32 JS33 JS34 JS36	391807076172804 391805076172601 391807076173101 391809076173101 391810076173302	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	1355 0935 1010 0950 1025	<7.9 <7.9 <7.9 <7.9 <7.9	2.6 3.3 3.5 6.6 3.2	<7.4 <7.4 <7.4 <7.4 <7.4	<.4 <.4 <.4 <.4	1,600 3,100 660 730 790	<.005 <.005 <.005 <.005 <.005	12 13 13 17 17
JS37 JS38 JS39 JS40 JS41	391814076170401 391815076170401 391816076170501 391815076170602 391816076170701	04-11-91 04-11-91 04-11-91 04-11-91 04-11-91	1000 1025 1040 1055 1110	<7.9 <7.9 <7.9 <7.9 <7.9	3.7 3.7 <2.2 2.5 <2.2	<7.4 <7.4 <7.4 <7.4 <7.4	<.4 <.4 <.4 <.4	<130 210 <130 <130 91	<.005 <.005 <.005 <.005 <.005	16 8.6 7.8 9.8 12

Table 13. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, April 1991--Continued

Sample No.	Date	Copper (µg/g)	Fluor- ene (μg/g)	Iron (μg/g)	Lead (μg/g)	Mag- nesium (μg/g)	Man- ganese (μg/g)	Mercury (μg/g)	Sele- nium (µg/g)	Sodium (μg/g)	Zinc (µg/g)
JS1	04-16-91	42	<0.33	13,000	<11,000	1,400	110	0.044	<5.8	75	940
JS2	04-16-91	3.8	<.33	13,000	25	1,500	69	<.026	<5.8	<52	<80
JS3	04-16-91	20	<.33	12,000	41	1,000	110	<.026	<5.8	<52	<800
JS4	04-16-91	3.5	<.33	9,800	<5.3	1,400	47	<.026	<5.8	<52	18
JS5	04-16-91	5.0	<.33	8,900	19	880	63	<.026	<5.8	<52	<80
JS6	04-16-91	4.7	<.33	8,000	18	940	110	<.026	<5.8	<52	<80
JS7	04-16-91	10	<.33	12,000	15	1,900	130	<.026	<5.8	<52	<80
JS7d	04-16-91	6.1	<2.0	9,200	18	1,400	97	<.026	<5.8	<52	<80
JS9	04-16-91	6.3	<.33	13,000	15	1,200	100	<.026	<5.8	<52	<80
JS10	04-16-91	9.9	<.33	11,000	17	1,300	58	<.026	<5.8	<52	26
JS11	04-12-91	6.8	<.33	14,000	12	1,700	130	<.026	<5.8	<52	26
JS11d	04-12-91	5.4	<.33	13,000	17	1,000	140	.145	<5.8	<52	22
JS13	04-12-91	36	<.33	11,000	25	1,400	330	.039	<5.8	<52	<80
JS14	04-12-91	34	<.33	12,000	45	1,400	360	.040	<5.8	<52	<80
JS15	04-12-91	48	<2.0	27,000	93	1,300	350	<.026	<5.8	<52	160
JS16 JS17 JS17d JS19 JS20	04-12-91 04-12-91 04-12-91 04-11-91 04-11-91	9.5 10 9.5 5.4 7.0	<.33 <.70 <.33 <.33 <.33	12,000 9,300 8,700 6,900 12,000	68 41 34 2.1	1,300 1,100 1,200 1,000 1,200	250 110 110 140 150	.118 .045 .039 .065 .039	<5.8 <5.8 <5.8 <5.8 <5.8	95 85 99 <52 150	160 <80 <80 <80 <80
JS21	04-11-91	7.2	<.33	8,200	1.7	1,100	80	<.026	<5.8	<52	<80
JS22	04-11-91	15	<.33	6,400	22	970	87	.059	<5.8	<52	<80
JS23	04-11-91	21	<.33	13,000	17	1,300	100	<.026	<5.8	<52	<80
JS24	04-11-91	50	<.33	9,700	40	1,300	61	.165	<5.8	<52	<80
JS25	04-11-91	10	<.33	5,300	13	550	56	<.026	<5.8	<52	20
JS26	04-12-91	22	<.33	14,000	41	1,700	66	<.026	<5.8	62	96
JS26d	04-12-91	19	<.33	13,000	38	1,600	65	<.026	<5.8	<52	160
JS28	04-12-91	230	<.33	12,000	660	2,300	120	.324	<5.8	130	<800
JS29	04-12-91	790	<.33	8,300	87,000	1,600	300	>.500	<5.8	<520	<8,000
JS30	04-12-91	480	<.33	20,000	950	1,600	87	.407	<5.8	200	<800
JS31	04-12-91	4.2	<.33	12,000	15	1,700	100	<.026	<5.8	<52	25
JS32	04-16-91	11	<.33	16,000	17	2,000	190	.045	<5.8	<52	<80
JS33	04-16-91	15	<.33	10,000	29	1,200	170	.058	<5.8	<52	<80
JS34	04-16-91	40	<.33	11,000	42	1,300	110	<.026	<5.8	<52	<800
JS36	04-16-91	17	<.33	18,000	19	1,600	170	<.026	<5.8	62	<80
JS37	04-11-91	76	<.33	15,000	13	1,400	130	<.026	<5.8	<52	<80
JS38	04-11-91	7.9	<.70	6,800	20	1,000	52	<.026	<5.8	<52	<80
JS39	04-11-91	3.3	<.33	7,700	<5.4	1,100	60	<.026	<5.8	<52	23
JS40	04-11-91	8.2	<.33	9,800	8.6	1,400	59	<.026	<5.4	<52	<80
JS41	04-11-91	2.6	<.33	11,000	6.9	1,300	51	<.026	<5.8	<52	22

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991

[mg/kg = milligrams per kilogram , < = less than , -- = no data]
WOTE: Sample No. ending in a "d" represents duplicate analyses.</pre>

1,1-Di- chloro- ethane (mg/kg)		<pre></pre>		02 02 02 002		· · · · · · · · · · · · · · · · · · ·		002 002 002 002	
Chloro- methane (mg/kg)		000000	050505	052525	65666	855555	888888	888888	052555
Chloro- form (mg/kg)		60.002 6.002 6.002 6.002 6.002						 	
Chloro- ethane (mg/kg)		6.03 6.03 6.03 6.03	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
Carbon- tetra- chlor- ide (mg/kg)		0.00 0.006 0.006 0.006 0.006					 	* * * * * * * * * * * * * * * * * * *	* · · · · · · · · · · · · · · · · · · ·
Bromo- methane (mg/kg)	pounds	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	22222	22222	22222	22222	22222	20000	22222
Bromo- form (mg/kg)	organic compounds	0.02 0.02 0.02 0.03 0.03 0.03	 922223 0223	050505	050505		050505	050505	
Benzene (mg/kg)	Volatile o	<pre>< 0.003</pre> < 0.003 < 0.003 < 0.003 < 0.003 < 0.003							
Acetone, (mg/kg)	>	6 · · · · · · · · · · · · · · · · · · ·	22000	.002 .005 .01 .03	.007 .009 .007	.02 .00. .01 .00.	.007 .01 .02 .03		800. 000. 000. 000. 000.
Time		1130 1115 1425 1100	1400 1320 1324 1155	1100 1104 1020 1040	1000 0930 0934 1345 1400	1330 1320 1245 1230 1215	1240 1244 1300 1320	1355 0935 1010 0950 1025	1000 1025 1040 1055 1110
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Station number		391827076173101 391828076173001 391827076172702 391827076172802 391827076172802	391824076172801 391824076172901 391825076173101 391825076173201	391815076173901 391815076174001 391813076173801 391814076173501	391811076174401 391810076174602 391808076174402 391807076174701	391807076174301 391806076174201 391805076173801 391806076173601 391804076173401	391812076173101 391812076172801 391810076172603 391809076172702	391807076172804 391805076172601 391807076173101 391809776173101 391810076173302	391814076170401 391815076170401 391816076170501 391815076170502
Sample No.		181 182 183 184 185	186 187 187 189 1810	1811 1813 1814 1815	JS16 JS17 JF17d JS19 JS20	JS21 JS22 JS23 JS24 JS25	JS26 JS26d JS28 JS29 JS30	1831 1832 183 3 1834 18 3 6	1837 1838 1839 1840 1841

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

Vinyl- chlor- ide (mg/kg)		60.02 6.02 6.02 6.02 6.02	0.02000				050000	050000	050000
Tri- chloro- fluoro- methane (mg/kg)		<pre></pre>	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	<pre></pre>	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×
Tri- chloro- ehtyl- ene (mg/kg)		40.00, 4.004,	. 004 . 004 . 004 . 004 . 004	. 004 . 004 . 004 . 004 . 004			.004.004.001.004.004		
1,12- fri- chloro- ethane (mg/kg)		0.02 0.02 0.03 0.03 0.03 0.03			· · · · · · · · · · · · · · · · · · ·		05.05	05.05	05.05
1,1,1- fri- chloro- ethane (mg/kg)	-	0.004 0.004 0.004 0.004 0.004							
Toluene (mg/kg)	-Continued	0000 0000 0000 0000 0000 0000 0000 0000 0000			*.008 *.008 *.008 *.008	**************************************	**************************************	**************************************	× × × × × × × × × × × × × × × × × × ×
Tetra- chloro- ethene (mg/kg)	-spunoduo	0.002 0.002 0.002 0.002 0.002	× · · · · · · · · · · · · · · · · · · ·	× · 002 × · 002 × · 002 × · 002	· .002 · .002 · .002 · .002 · .002	× · · · · · · · · · · · · · · · · · · ·	× · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	V V V V V V V V V V V V V V V V V V V
Ethyl- benzene (mg/kg)	organic	<pre></pre>	.003.003.003.003	003003003003003	.003.003.003.003.003	· .003 · .003 · .003 · .003			
1,2-Di- chloro- propane (mg/kg)	Volatile	40.002 4.002 4.002 4.002	002 002 002 002	<pre>.002 .002 .002 .002 .002</pre>	.002.002.002.002.002.002				
1,2-Di- chloro- ethene (mg/kg)		0.002	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0002	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0000.000	000000
1,1-Di- chloro- ethene (mg/kg)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02222 0.0222 0.0222 0.0222	052525	% ·	V V V V	000000	052525	052525
1,2-Di- chloro- ethane (mg/kg)		<pre></pre>	003003003003003	<pre></pre>	003003003003003	× · · · · · · · · · · · · · · · · · · ·	<pre></pre>	× .003 × .003 × .003	<pre></pre>
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 183 184 185	386 387 387 989 389	JS11 JS13 JS13 JS14 JS15	JS16 JS17 JS174 JS20	JS21 JS22 JS23 JS24 JS24	1826 1826 1828 1829 1830	JS31 JS32 JS33 JS34 JS36	JS37 JS38 JS39 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

1/ (6)		MMM	MM 1010	××××	MOMM	MMM 12	MMM	10 10 10 10 10 10	MOMMM
Benzyl alcohol (mg/kg)		8	^ ^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	* * * * * * * * * * * * * * * * * * *	^ ^ ^ ! ^ WWW W		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
Benzoic acid (mg/kg)		6 71 71	 71.8 71.5 71.5		3.0 10 1.8 0.95	3.7 3.7 7.0 7.0 1.5	171717170.420.42	 	0.67 0.33 0.17 17
Benzo- [k]- fluor- anthene (mg/kg)		88888	8. 8. 8. 8. 8. 8. 8. 8.	8 8 8 8 9 9 9		88888	88888	88888	%.5.0 8.88 8.88 8.88
Benzo- [ghi]- pery- lene (mg/kg)		0.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	**************************************		25.25 25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	****** *****	****** ******	****** ******	\$5.55 \$4.55
Benzo- [b] - fluor- anthene (mg/kg)	*	0.36 3.36 3.36 3.36 3.36 3.36	2.36 2.36 3.36 3.36 3.36	.36 .36 .36 .36 .20	<.36 <.70 <.36 <.36	.36 .36 .36 .36 .36 .36	0.68 0.36 0.68	%%%% %%%% %%% %	%5. %5. %5. %%. %.
Benzo- [a]- pyrene (mg/kg)	punodino o	0.38 0.38 0.38 0.38 0.38	38 38 38	<pre> .38 .38 .38 .38 .28 .28 .28 .28 .28 .38</pre>	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	× × × × × × × × × × × × × × × × × × ×	* * * * * * * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×
Benzo- [a]- anthra- cene (mg/kg)	le organi	60.30 6.30 6.30 6.30 6.30	.30 .30 .30 .30	×.30 ×.30 ×.30 ×.30 ×.30 ×.30 ×.30 ×.30	33333	2000 2000 2000 2000 2000 2000 2000 200	×.30 ×.30 ×.30 ×.30	30000	30000
Anthra- cene (mg/kg)	ni-volati	0.0 2.5 2.5 2.5 2.5 3.5 3.5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5			 	****** *******	****** ******	, , , , , , , , , , , , , , , , , , ,	,
Aldrin (mg/kg)	Sem	6.29 6.29 6.29 6.29	7.29 7.29 7.29 7.29	29 4.29 4.09	. 29 2.29 2.29 2.29		23.23 23.23 23.23 23.23 23.23	. 23 23 23 23 23 23 23 23	23.55 25.55 25.55 26.55
Ace- naph- thene (mg/kg)		00.00.00.00.00.00.00.00.00.00.00.00.00.	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^			* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *	<pre></pre>
T ime		1130 1115 1100 1415	1400 1320 1324 1155	1100 1104 1020 1040	1000 0930 0934 1345 1400	1330 1320 1245 1230 1215	1240 1244 1300 1340	1355 0935 1010 0950 1025	1000 1025 1040 1110
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 183 184 185	186 187 187 d 189 1810	1811 1813 1814 1815	1816 1817 1817d 1819 1820	JS21 JS22 JS23 JS24 JS24	JS26 JS26d JS28 JS29 JS30	JS31 JS32 JS33 JS34 JS36	JS37 JS38 JS39 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

Chloro- nap- thalene (mg/kg)		0 32 32 32 32 32 32 32 32 32	<pre></pre> <pre>< .32 < .32 < .32 < .32 </pre>	× × 32 × × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	25 25 25 25 25 25 25 25 25 25 25 25 25 2	******* ******* *******	> > > > > > > > > > > > > > > > > > >	× × × × × × × × × × × × × × × × × × ×
2-4- Chloro- 3-methyl phenol (mg/kg)		0	<pre></pre>	<pre></pre>	.33.33.33.33.33	× × × × × × × × × × × × × × × × × × ×	**************************************		******
Bis(2- chloro- iso- propyl) ether (mg/kg)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre> </pre>	\$5.5 \$33 \$0.5 \$0.5	**************************************	* * * * * * * * * * * * * * * * * * *	******	* * * * * * * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×
2- Chloro- ethyl vinyl ether (mg/kg)		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	* * * * * * 80.050.05	× × × × × × × × × × × × × × × × × × ×
Bis(2- chloro- ethyl) ether (mg/kg)	Continued	0.3 .33 .33 .33 .33 .33 .33	2.33 2.0 33 33 33 33 33		33333	*******	EEEEE		2.5.3.3
Bis(2- chloro- ethoxy) methane (mg/kg)	compoundsContinued	0 333 333 333 333 333 333 333 333 333 3		22.0 23.33 22.0		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	**************************************	× × × × × × × × × × × × × × × × × × ×
Chloro- benzene (mg/kg)	organic c	<pre>< 0.003 < 0.003 < 0.003 < 0.003 </pre>	<pre></pre>	· · · · · · · · · · · · · · · · · · ·	003003003003003	<pre></pre>	<pre></pre>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Chlor- dane (mg/kg)	-voaltile	22222	22 <u>8</u> 22 00000	22.22 0.0000	7.2.0 7.2.0 0.0.0	22222 00000	2222 66666	22222 00000	77777 0.0000
2-Buta- none (mg/kg)	Semi	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	22222	22222	20000	22222	 22222	22222	22222
4- Bromo- phenyl phenyl ether (mg/kg)		6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.33 .33 .33 .33		3333	**************************************	******	******	.33 .33 .33 .33
Benzyl- butyl phthal- ate (mg/kg)		0 5 5 5 5 5 5 5 5 5 5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		<pre></pre>	<.33 <.70 .53 .53	£. £. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		* * * * * * * * * * * * * * * * * * *	0.38 0.38 0.38
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-11-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		182 183 183 184 185	186 187 1874 189 1810	JS11 JS13 JS13 JS14 JS15	JS16 JS17 JS174 JS19 JS20	JS21 JS22 JS23 JS24 JS24 JS25	JS26 JS28d JS28 JS29 JS30	JS31 JS32 JS33 JS34 JS34 JS36	JS37 JS38 JS39 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

3,3-Di- chloro- benzi- dine (mg/kg)		0.20 0.20 0.20 0.20 0.20 0.20 0.20			2,500.5	22222	22222	22222	2,2000
1,4-Di- chloro- benzene (mg/kg)		0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	* * * * * * 6000000000000000000000000000	***** 68689 68689	***** 66666 66666
1,3-Di- chloro- benzene (mg/kg)		<pre></pre>	2005 2005 2005 2005 2005 2005	2005 2005 2005 2005 2005 2005	<pre></pre>	· 005 · 005 · 005 · 005 · 005 · 005	<pre></pre>	005 005 005 005 005 005	× × × × × × × × × × × × × × × × × × ×
1,2-Di- chloro- benzene (mg/kg)	-	0 · · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	***** 99999 2000	****** 60000000000000000000000000000000	****** 8888 2288	****** 99999
Di- bromo- chloro- methane (mg/kg)	-Continued	6 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	20000	20000	22222	55555	22222	22222	· · · · · · ·
Di- benzo- furan (mg/kg)	spunoduo	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× × × × × × × × × × × × × × × × × × ×	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× × × × × × × × × × × × × × × × × × ×	* * * * * * * * * * * * * * * * * * *	******	******	333333
Di- benzo- [ah]- anthra- cene (mg/kg)	organic compounds-	22.22				22222	22222	22.22	20000
Delta- benzene hexa- chlor- ide (mg/kg)	Semi-volatile	62.59 62.59 62.59 62.59 62.59	29 29 29 29 29	29 29 29 29 29	\$3,50 \$2,50	8,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	62.50	\$2,5 \$2,5 \$2,5 \$2,5 \$2,5 \$2,5 \$2,5 \$2,5	
Chry- sene (mg/kg)	Semi-	0.45 45 45 45	<pre></pre>	<pre></pre>			, , , , , , , , , , , , , , , , , , ,		
4- Chloro- phenyl phenyl ether (mg/kg)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 33.33 5.33 5.33 5.00 5.00 5.00 5.00	33 33 33 33 33	3333	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	******	333333333333333333333333333333333333333
2- Chloro- phenol (mg/kg)		0 2.333 2.33	22.33 2.33 333 333	2.33 2.33 2.33 2.03	333393	******	******	******* KKKKK	× × × × × × × × × × × × × × × × × × ×
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 183 184 185	186 187 1874 189 1810	JS11 JS13 JS13 JS14 JS15	JS16 JS17 JS17d JS19 JS20	JS21 JS22 JS23 JS24 JS24 JS25	JS26 JS28d JS28 JS29 JS30	JS31 JS32 JS33 JS34 JS34	1837 1838 1839 1840 1841

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

2,4-Di- nitro- toluene (mg/kg)		<pre><4.9 <0.39 <.74 <.35 <.74 <.74 <.74 <.74 <.74 <.74 <.74 <.74</pre>	******* *******	3.393.393.743.74	398074747439	.74.74.74.74.74.74	4.395353		\$33.55 \$4.55
2,4-Di- nitro- phenol (mg/kg)		~~ ~~	7.12 8.0 7.15 7.15	\$2.7.7. 8.0.0	7.17 7.17 7.17	 	 	~~~~~ ~~~~~	75.25. 7.7.7.
4,6- Di- nitro- o- cresol (mg/kg)		22222 22222	7.1.7 7.1.7 7.7.7	2.1.7.7.7. 8.0.7.7.7.	7.25.0 7.7.7.	22222 22222	22222 77777	~~~~ ~~~~	7.0.7.7. 7.0.7.7.
Di-n- butyl- phthal- ate (mg/kg)		60.33 6.33 6.33 6.33 7.33	\$2.0 \$33 \$33 \$33	33 33 33 33		<pre> </pre>	<pre> </pre>	******	333333
Di- methyl- phthal- ate (mg/kg)	Continued	0 33333333 333333333333333333333333333		2.033 2.033 2.033	33333	3333333	******	3333333	3333
2,4-Di- methyl- phenol (mg/kg)	spunodiio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× × × × × × × × × × × × × × × × × × ×	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	333.0 335.0 355.0 355.0	******	333333	*******	333303
Di- ethyl- phthal- ate (mg/kg)	organic co	0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		\$2.0 \$2.33 \$2.03	33.03.3	333333	* * * * * * * * * * * * * * * * * * *	SESSES SESSES	22.22.25 22.25 22.
Diel- drin (mg/kg)	volatile o	0, 0, 30 0,	\$2.0 \$2.0 \$30 \$30 \$30 \$30 \$30	\$2.30 \$2.30 \$2.00	300000	000000 000000 000000000000000000000000	%	000000 00000 00000 00000 00000	00000 00000 00000 00000
trans- 1,3-Di- chloro- propane (mg/kg)	Semi-v	0.005 0.005 0.005 0.005 0.005	<pre></pre>	<pre></pre>	005005005005005005	<pre></pre>	<pre></pre>	. 005 . 005 . 005 . 005 . 005	<pre></pre>
cis- 1,3-Di- chloro- propane (mg/kg)		<pre><0.005 <.005 <.005 <.005 <.005 </pre>	005 005 005 005		.005.005.005.005.005	.005.005.005.005	.005.005.005.005.005	.005.005.005.005.005	.005.005.005.005.005.005
2,4-Di- chloro- phenol (mg/kg)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.33 23.33 33.33 33.33		2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33	*******	*******	******	**************************************
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		182 182 184 185 185	386 387 387 389 3810	1817 1818 1818 1818 1818	JS16 JS17 JD17d JS19 JS20	JS21 JS22 JS23 JS24 JS24	JS26 JS28 JS28 JS29 JS30	J831 J832 J833 J834 J836	JS37 JS38 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

Hexa- chloro- benzene (mg/kg)		6.28 6.28 6.28 6.28 6.28 6.28			% % %	%;% %;% \$,		%%%% %%%% *****	%. %. %. %. %. %. %. %. %. %. %. %. %. %
Hepta- chlor epoxide (mg/kg)		60.36 6.36 6.36 6.36 6.36	.36 .36 .36 .36 .36 .36 .36	363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636<	36 36 36 36 36	\$5.5.3 \$5.36 \$5.36 \$5.36	\$5.5.5 \$5.36 \$5.36 \$5.36	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×
Hepta- chlor (mg/kg)		0.28 .28 .28 .28 .28	<pre><.28 <1.0 <1.0 <.28 <.28 <.28 <.28 </pre>		× × × × × × × × × × × × × × × × × × ×	888888	\$2.58 \$2.58 \$2.58 \$2.58 \$2.58	\$38.88 \$4.58 \$4.58	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Fluor- anthene (mg/kg)		0.52 .52 .52 .52 .52 .52	<pre><.52 <3.0 <5.52 <.52 <.52 <.52 </pre>		.52 .52 .52 .53 .53	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * 525,525,52	.52 .52 .52 .52 .52
2-Ethyl hexyl- phthal- ate bis (mg/kg)	Continued	40.394.394.394.394.394.39		<.39 <.39 <.39 <2.0	39 39 39 39	× × × 33 33 33 33 33 33 33 33 33 33 33 33 33	39 39 39	39 4 39 39 39 39	× × × 39 × × 39 × × 39 × × 39
Endrin (mg/kg)	1 !	0. 14. 14. 14. 14. 14.	2.5.0 14.5.0 14.5.0 14.5.1			 44444	****** ******	44444 44444	
Endo- sulfan sulfate (mg/kg)	rganic compounds	0.20 0.20 0.20 0.20 0.20			200000	2,2,2,0	22222	22,22,2	22222
Endo- sulfan II (mg/kg)	-volatile o	\$20,50 \$2,50	× × · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<.20 <.20 <.20 <.20	2,2000	22222	\$\$\$\$\$\$ \$\$\$\$\$\$\$	0,0000
Endo- sulfan I (mg/kg)	Semi-v	22222 00000	22822 00000	2222& 00000	22.0000	22222	22222	22222 00000	2 <u>2222</u>
Di-n- octyl- phthal- ate (mg/kg)		60.59 6.59 6.59 6.59	4.59 4.59 4.59 5.59	59595959595959	<pre><.59 <1.0 <.59 <.59 <.59 <.59 </pre>	59 59 59 59			
2,6-Di- nitro- toluene (mg/kg)		60.83 6.83 6.53 6.53			× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×		* * * * * * * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 184 185	186 187 187 189 181	JS11 JS13 JS14 JS15	JS16 JS17 JS17d JS19 JS20	JS21 JS23 JS23 JS24 JS24	JS26 JS28 JS28 JS29 JS30	JS31 JS32 JS33 JS34 JS36	JS37 JS38 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

2- Methyl- nap- thalene (mg/kg)		0 4,33 4,33 4,33 4,33 4,33		\$		* * * * * * * * * * * * * * * * * * *	******	**************************************	****** *******************************
Methyl- ene- chlor- ide (mg/kg)		<pre></pre>					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	% · · · · · · · · · · · · · · · · · · ·	\$ 500,000 \$ 500,000 \$ 500,000 \$ 500,000
4- Methyl- 2- penta- none (mg/kg)		0 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 22222	22222	22222	22222	22222	22222
Meth- oxy- chlor (mg/kg)		77777	77.5.2. 0.0.0.0.	22228 200000	22.0 22.0 0.0 0.0 0.0	22222 00000	22222 00000	22222 00000	20000
Mala- thion (mg/kg)	-Continued	87. 84. 84. 84. 84. 84. 84. 84.	<pre>48 <2.0 <4.48 <4.</pre>	48 48 48 48 48		87. 84. 84. 84. 84. 84. 84.	87. 84. 84. 84. 84. 84. 84. 84.	**************************************	<pre></pre>
Iso- phorone (mg/kg)	spunodu	0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		\$2.33 \$2.33 \$0.33		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	zzizziz zzizzizzi	33330
Indeno [1,2,3- C,D]- pyrene (mg/kg)	organic compounds-	0 2.2.2.2 2.2.2.2 2.2.2.2 3.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2.2.2 5.2 5	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	~~~~~ ~~~~~	~~~~~ ~~~~~	· · · · · · · · · · · · · · · · · · ·
2-Hexa- none (mg/kg)	wolatile c	6 ^ ^ ^ ^ ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222	22222	22222	22222	22222	22222	22222
Hexa- chloro- ethane (mg/kg)	Semi-	04.0 04.0 04.0 04.0 04.0			07. 07. 07. 07. 07.	04 04 04	04; 04; 04; 04; 04; 04;	04; 04; 04; 04; 04; 04; 04;	04. 04. 04. 04. 04. 04.
Hexa- chloro- cyclo- penta- diene (mg/kg)		0 < 33 < 3	<pre><.33 <2.0 <.33 <.33 <.33 <.33 <.33 <.33 <.33 <.</pre>	<pre></pre>	× × × × × × × × × × × × × × × × × × ×	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×
Hexa- chloro buta- diene (mg/kg)		0.42 .42 .42 .42 .42 .42 .42		<pre></pre>			. 4.2 . 5.2 . 5.2		. 4.2 . 4.2 . 4.2 . 4.2 . 4.2 . 4.2
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 183 184 185	186 187 1874 189 1810	1817 1813 1814 1815	JS16 JS17 JS174 JS20	JS21 JS22 JS23 JS24 JS25	JS26 JS286 JS28 JS29 JS30	1832 1832 1833 1834 1836	JS37 JS38 JS40 JS41

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland-Organic constituents, April 1991--Continued

+		2222 2	22222 2	22222	22222	22222	22222	22222	22222
Ortho + para- xylene (mg/kg)		98988	98888	· · · · · ·	· · · · · ·	*****	× · · · · · · · · · · · · · · · · · · ·	*****	*****
4- Nitro- phenol (mg/kg)		~~~~ ~~~~	41.7 68.0 7.1.7 7.1.7 7.1.7	7.1.7 7.1.7 68.0	\$3.7 \$1.7 \$1.7 \$1.7	~~~~~ ~~~~~	*****	~~~~ ~~~~	7.05.0 7.7.7.
2- Nitro- phenol (mg/kg)		0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2	£ £ £ 6.0.	#	************	**************************************	#####	#2### #2###
Nitro- benzene (mg/kg)		4.4.4.4.3 4.33.4.4.4.4.4.4.4.4.4.4.4.4.4	<pre><.33 <.2.0 <2.0 <1.0 </pre>	<pre><.33 <1.0 <1.0 <2.0 </pre>	<pre></pre> <pre><</pre>	**************************************	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* * * * * * * * * * * * * * * * * * *	<pre></pre> <pre><</pre>
4- Nitro- aniline (mg/kg)	ontinued	~~~~ ~~~~	7.1.7 68.0 7.1.7	7.1.7 7.1.7 8.0		~~~~ ~~~~	~~~~ ~~	~~	7.55.0 7.7.7.
3- Nitro- aniline (mg/kg)	organic compoundsContinued	~~~~~ ~~~~~	68.0 68.0 61.7	7.1.7 7.1.7 8.0	7.1.7 7.1.7 7.7.7	~~~~ ~~~~	~~	~~	7.53.0 7.7.7.
2- Nitro- aniline (mg/kg)	organic co	~~ ~~	7.1.7 68.0 7.1.7	7.1.7 7.1.7 8.0	\$3.0 \$1.7 \$1.7	~~~~ ~~~~	~~~~~ ~~~~~	~~	7.1.2 7.1.2 7.1.2
Naph- thalene (mg/kg)	volatile	0.42 .42 .42 .42 .42 .42 .42	24. 24. 24. 24. 24. 24. 24. 24. 24. 24.	× .42 × .42 × .42 × .42 × .42 × .42 × .42	. 42 . 42 . 42 . 42 . 42 . 42 . 42	77.77.77.77.77.77.77.77.77.77.77.77.77.	77.77. 74.77. 74.77. 74.77.	77.77	75.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
Nitro- sodi- phenyl- amine (mg/kg)	Semi-	0 4.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	22.0 23.33 33.33 33.33 33.33	33 33 33 33 33	\$333 \$333 \$333 \$333 \$333 \$333 \$333 \$33	*******	******* ********	******	#2### #2###
4- Methyl- phenol (mg/kg)		0 8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	22.0 23.33 33.33 33.33	2.33 2.33 2.033	**************************************	**************************************	* * * * * * * * * * * * * * * * * * *	**************************************	#5###
2- Methyl- phenol (mg/kg)		0 8.8.8.8.8 8.8.8.8.8		233 233 233	#2.5. #3.3.3.	**************************************	**************************************	**************************************	#ERRR
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		182 183 183 184 185	JS6 JS7 JS7d JS9 JS10	JS11 JS13 JS14 JS14 JS15	1816 1817 1817d 1819 1820	JS21 JS23 JS24 JS24 JS25	1826 1828 1828 1829 1830	JS31 JS32 JS33 JS34 JS34	1837 1838 1839 1840 1841

Table 14. Soil-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, April 1991--Continued

Total xylene (mg/kg)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	005 005 005 005 005 005 005	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<pre></pre>
Vinyl- acetate (mg/kg)		6 · · · · · · · · · · · · · · · · · · ·	22222	22222	22222	22222	22222	22222	20000
2,4,6- fri- chloro- phenol (mg/kg)		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	\$	* * * * * * * * * * * * * * * * * * *	***********	**************************************	*******	× 33 × 33 × 33 × 33
2,4,5- Tri- chloro- phenol (mg/kg)	pan	~~~~~ ~~~~~	68.0 7.7 7.7 7.7	27.7.7.8 8.7.7.7.8	23.0 7.7.7.	~~~~~ ~~~~~	~~~~~ ~~~~~	~~~~~ ~~~~~	23.7 2.7.7 7.7.7
1,2,4- fri- chloro- benzene (mg/kg)	Semi-volatile organic compoundsContinued	6 8 8 8 8 8 8 8 8 8 8 8	%, .^ <u>^</u>		\$2,50 \$2,50	2,2,2,2,2	8,8,8,8	\$3.8.8.8 \$4.4.4.4	<pre><.29 <.29 <.29 <.29 <.29 <.29 <.29 <.29</pre>
Styrene (mg/kg)	ic compoun		· · · · · · · · · · · · · · · · · · ·					 	.005.005.005.005
Pyrene (mg/kg)	tile organ	0° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °				77777 77777 77777	77.7.7. 7.7.7.7.	227777 24777 27777	42 42 42 42
Phenol (mg/kg)	Semi-vola	0 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	**************************************	**************************************	ដំបូងដំដ	ំ ដំប់ដំប់ ដំ	ំសំ សំសំសំ ដំបំ <mark>ង់ដំង់</mark>	ង់ដំដង់ ដ	× × × × × × × × × × × × × × × × × × ×
Phenan- threne (mg/kg)		0 14. 14. 14. 14. 14. 14.				* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****** *******	<pre><.41 <.80 <.41 <.41 <.41 <.41 </pre>
Penta- chloro- phenol (mg/kg)		22.2.2.2 2.2.2.2.2	2.1.7 2.1.7 2.1.7	2.1.7.1.7.0.8 6.0.7.7.7.0	23.22 7.7.7.	22222 22222	~~~~~ ~~~~~	22222 22222	7.7.7. 7.7.7.
Date		04-16-91 04-16-91 04-16-91 04-16-91 04-16-91	04 - 16 - 91 04 - 16 - 91 04 - 16 - 91 04 - 16 - 91 04 - 16 - 91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-12-91 04-12-91 04-11-91	04-11-91 04-11-91 04-11-91 04-11-91	04-12-91 04-12-91 04-12-91 04-12-91 04-12-91	04-12-91 04-16-91 04-16-91 04-16-91 04-16-91	04-11-91 04-11-91 04-11-91 04-11-91 04-11-91
Sample No.		181 182 184 184 185	386 387 3874 389 3810	1811 1813 1814 1815	JS16 JS17 JS17d JS19 JS20	JS21 JS22 JS23 JS24 JS25	1826 1826d 1828 1829 1830	JS31 JS32 JS33 JS34 JS34	JS37 JS38 JS39 JS40 JS41

Table 15. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, spring and fall 1993

[μ S/cm = microsiemens per centimeter; mg/L = milligrams per liter; °C = degrees Celsius; μ g/L = micrograms per liter; -- = no data]

NOTE: Sample No. ending in "d" represents duplicate analyses.

Sample No.	Station Number	Date	Time	Spe- cific con- duct- ance (µS/cm)	pH, water whole field (stand- ard units)	Oxygen, dis- solved (mg/L)	Temper- ature, water (°C)	Temper- ature, air (°C)	Calcium, total recov- erable (mg/L)
			Field par	rameters a	nd major i	ons			
JFSW 01	391858076171101	04-07-93	1030	7,640	7.0		7.0		17
JFSW 02	391830076172101	04-06-93	1345	122	4.9		12.5		3.5
JFSW 03	391829076172801	04-06-93	1315	682	5.9		13.0		11
JFSW 04	391822076173101	04-06-93	1230	200	6.5			11.5	13
JFSW 05	391807076174801		1100	1,590	6.3			8.0	14
JFSW 06	391808076173401	04-05-93	0945	710	6.4		6.5	8.0	28
JFSW 07	391806076173201		1030	957	6.4		5.5	8.0	34
JFSW 07	0,10000,01,0101	09-30-93	1330		3.7	3.5	14.5	16.0	210
JFSW 08	391804076172801		1345	2,350	6.7		9.5		120
JFSW 09	391807076172201		1345	1,100	7.9		8.5		64
JFSW 10	391808076172401	04-05-93	1330	930	7.6		10.0		79
JFSW 11	391809076172701		1500	1,000	8.1		12.0		44
JFSW 12	391810076172702		0944	-,					24
JFSW 12d	0,10100,01,01	04-06-93	0945	808	7.3		7.5		24
JFSW 13	391810076172602		1545	470	6.8		7.5		19
JFSW 14	391803076171801	04-07-93	1030	940	7.3		5.0		22
JFSW 14		09-30-93	1430	865	7.1	7.9	19.5	16.0	100
JFSW 15	391801076171501		1100	1.010	7.3		12.5		17
JFSW 15		09-30-93	1500	859	7.3	8.9	18.0		100
JFSW 16	391802076175801		1100	640	6.6		13.0		5.4
JFSW 17	391814076165801	04-06-93	1430	640	6.3		11.0		5.7
JFSW 18	391815076170101		1445	33	5.7		11.5		1.8
JFSW 18		09-30-93	1045	63	5.1	7.4	16.5	14.0	1.8
JFSW 19	391816076165701		1500	1.330	6.9		13.5		12
JFSW 20	391758076172701		1130	162	7.3		10.0		11
JFSW 20d		04-07-93	1134						11
JFSW 20		09-30-93	1530	1,080	7.9	9.4	19.5	16.0	87

Table 15. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, spring and fall 1993--Continued

Sample No.	Date	Magne- sium, total recov- erable (mg/L)	Iron, total recov- erable (µg/L as Fe)	Sodium, total recov- erable (mg/L as Na)	Potas- sium, total recov- erable (mg/L)	Sulfate (mg/L as SO4)	Chlo- ride, dis- solved (mg/L as Cl)	Fluo- ride, total (mg/L as F)	Phos- phate, total (mg/L as PO4)	Nitro- gen, nitrate total (mg/L as N)
		F	ield para	meters and	l major i	ons-Cont	inued			
JFSW 01	04-07-93	32	260	290	11.0	81	520	1.2	<0.5	<0.50
JFSW 02	04-06-93	3.4	690	9.3	0.84	29	12	<0.5	<.5	<.50
JFSW 03	04-06-93	21	11,000	150	4.9	36	270	<.5	<.5	<.50
JFSW 04 JFSW 05	04-06-93 04-06-93	4.9 28	1,500 10,000	18 230	2.7 12.3	27 15	30 390	<.5 1.1	<.5 <.5	<.50 <.50
JFSW 06	04-05-93	20	18,000	99	3.4	41	130	<.5	<.5	<.50
JFSW 07	04-05-93	25	3,700	160	49.7	90	450	1.0	<.5	<.50
JFSW 07	09-30-93	230	100,000	960	38.7	1,700	2,600	6.0	<.5	1.50
JFSW 08	04-05-93	52	3,000	420	7.4	170	840	2.2	<.5	. 57
JFSW 09	04-05-93	25	460	110	4.0	45	210	. 6	<.5	<.50
JFSW 10	04-05-93	16	1,200	97	3.5	60	140	. 6	<.5	<.50
JFSW 11	04-05-93	58	1,000	59	8.3	43	150	. 6	<.5	<.50
JFSW 12	04-06-93	50	2,100	56	6.0	25	110	<.5	<.5	<.50
JFSW 12d	04-06-93	50	3,200	56	5.9	24	120	< . 5	<.5	<.50
JFSW 13	04-05-93	16	1,900	75	4.0	16	140	<.5	<.5	<.50
JFSW 14	04-07-93	23	460	130	5.5	34	240	.5	<.5	<.50
JFSW 14	09-30-93	220	2,900	1,500	53.9	490	2,600	5.0	<.5	1.80
JFSW 15	04-07-93	20	310	150	5.8	34	270	. 5	<.5	<.50
JFSW 15	09-30-93	220	1,300	1,600	61.3	490	2,700	4.9	<.5	1.90
JFSW 16	04-07-93	9.3	8,100	96	7.2	21	150	<.5	<.5	<.50
JFSW 17	04-06-93	11	6,400	85	5.3	20	130	<.5	<.5	<.50
JFSW 18	04-06-93	1.3	570	3.9	2.2	6.0	2.9	<.5	<.5	<.50
JFSW 18	09-30-93	1.4	380	1.1	6.7	14	3.2	< . 5	<.5	<.50
JFSW 19	04-06-93	22	1,000	200	10.4	19	350	.8	<.5	<.50
JFSW 20	04-07-93	3.8	3,000	8.6	1.9	18	15	<.5	<.5	1.00
JFSW 20d	04-07-93	3.9	3,000	9.2	1.8	18	16	<.5	<.5	1.00
JFSW 20	09-30-93	250	710	2,000	76.2	480	3,600	5.6	<.5	2.40

Table 15. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, spring and fall 1993--Continued

Sample No.	Date	Time	Alumi- num, total recov- erable (µg/L)	Arsenic, total (µg/L as As)	Anti- mony, total (µg/L as Sb	Beryl- lium, total recov- erable (µg/L)	Barium, total recov- erable (μg/L as Ba)	Cadmium, total recov- erable (µg/L)	Chro- mium, total recov- erable (µg/L)	Cobalt total recov- erable (µg/L as Co)
				м	etals					
JFSW 01	04-07-93	1030	200	<2	<49	<1	8	<4	<6	<6
JFSW 02	04-06-93	1345	1,000	<2	< 49	<1	66	<4	<6	20
JFSW 03	04-06-93	1315	1,400	<2	< 49	<1	44	<4	6	10
JFSW 04	04-06-93	1230	300	<2	<49	<1	28	<4	<6	<6
JFSW 05	04-06-93	1100	7,400	5	<49	<1	37	<4	9	<6
JFSW 06	04-05-93	0945	870	2	< 49	<1	150	<4	<6	<6
JFSW 07	04-05-93	1030	260	<2	< 49	<1	61	<4	<6	9
JFSW 07	09-30-93	1330	6,100	2	< 54	<3	61	13	<5	100
JFSW 08	04-05-93	1345	230	<2	< 49	<1	79	<4	<6	<6
JFSW 09	04-05-93	1345	65	<2	< 49	<1	49	<4	<6	<6
JFSW 10	04-05-93	1330	<50	4	<49	<1	51	<4	<6	<6
JFSW 11	04-05-93	1500	60	2	< 49	<1	86	<4	<6	<6
JFSW 12	04-06-93	0944	<50	<2	< 49	<1	133	<4	<6	<6
JFSW 12d	04-06-93	0945	< 50	<2	< 49	<1	133	<4	<6	<6
JFSW 13	04-05-93	1545	110	<2	< 49	<1	59	<4	<6	<6
JFSW 14	04-07-93	1030	80	<2	<49	<1	36	<4	<6	<6
JFSW 14	09-30-93	1430	1,100	3	< 54	<3	170	<3	<5	<4
JFSW 15	04-07-93	1100	50	<2	< 49	<1	18	<4	<6	<6
JFSW 15	09-30-93	1500	240	3	< 54	<3	170	<3	<5	<4
JFSW 16	04-07-93	1100	o,400	2	<49	<1	41	<4	7	<6
JFSW 17	04-06-93	1430	3,000	<2	<49	<1	20	<4	10	8
JFSW 18	04-06-93	1445	170	<2	<49	<1	7 5	<4	7	<6
JFSW 18	09-30-93	1045	190	1	< 54	<3	22	<3	8	<4
JFSW 19	04-06-93	1500	420	<2	< 49	<1	8	<4	<6	<6
JFSW 20	04-07-93	1130	2,100	<2	<49	<1	32	<4	<6	<6
JFSW 20d	04-07-93	1134	2,000	<2	<49	<1	30	<4	<6	<6
JFSW 20	09-30-93	1530	250	2	<54	<3	50	<3	<5	<4

Table 15. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, spring and fall 1993--Continued

Sample No.	Date	Copper, total recoverable (µg/L)	Lead, total recov- erable (µg/L)	Mangan- ese, total recov- erable (µg/L)	Mercury, total recov- erable (µg/L)	Nickel total recov- erable (µg/L)	, Sele- nium, total (µg/L as Se)	Silver, total recov- erable (µg/L)	Thal- lium, total recov- erable (µg/L as Tl)	Vana- dium, total (μg/L as V)	Zinc, total recov- erable (µg/L as Zn)
				Met	alsCont	inued					
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	<5 6 12 10 30	1 2 8 2 26	20 120 400 480 360	<0.10 <.10 <.10 <.10 <.10	<13 <13 <13 <13 23	3 <2 <2 <2 <2	<7 <7 <7 <7 <7	<2 <2 <2 <2 <2 <2	<5 <5 7 <5 17	20 110 130 40 160
JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	04-05-93 04-05-93 09-30-93 04-05-93	15 11 34 7 8	6 <1 51 <1 <1	350 390 3,700 300 70	<.10 <.10 <.05 <.10 <.10	<13 <13 120 <13 <13	3 <2 <1 3 <2	<7 8 <6 <7 <7	<20 <20 <5 <20 <2	6 7 16 <5 <5	70 40 2,500 20 30
JFSW 10 JFSW 11 JFSW 12 JFSW 12d JFSW 13	04-05-93 04-05-93 04-06-93 04-06-93 04-05-93	<5 18 15 14 12	<1 8 15 20 2	90 110 100 130 100	<.10 <.10 <.10 <.10 <.10	<13 <13 <13 <13 <13	<2 <2 <2 <2 <2	<7 <7 <7 <7 <7	<2 <20 <2 <2 <2 <2	<5 <5 <5 <5 <5	20 260 730 780 40
JFSW 14 JFSW 14 JFSW 15 JFSW 15 JFSW 16	04-07-93 09-30-93 04-07-93 09-30-93 04-07-93	<5 <4 <5 5 8	2 2 5 <1 12	100 2,500 70 2,600 220	<.10 <.05 <.10 <.05 <.10	<13 <8 <13 <8 <13	<2 <1 <2 <1 <2	<7 <6 <7 <6 <7	<2 <1 <2 <1 <2	<5 9 <5 7 10	20 60 10 30 60
JFSW 17 JFSW 18 JFSW 18 JFSW 19 JFSW 20	04-06-93 04-06-93 09-30-93 04-06-93 04-07-93	16 15 14 7 <5	17 <1 <1 3 13	190 240 250 40 280	<.10 <.10 <.05 <.10 <.10	<13 <13 <8 <13 <13	<2 <2 <1 <2 <2	7 <7 <6 <7	<2 <2 <1 <2 <2	13 <5 <5 <5	70 60 70 20 30
JFSW 20d JFSW 20	04-07-93 09-30-93	< 5 < 4	5 <1	280 110	<.10 <.05	15 <8	<2 <1	<7 <6	<2 <1	<5 	30 3

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993

a value an estin calibrat	dicates ed value n range	parameter was found in the that is less than the repoof the instrument.	d in the tel	e associa porting v	ted blank alue; An	the associated blank, as well reporting value; An "e" after	as in the sample; a value indicates	sample; ndicates	A "j" aft analyses	er a valu that exce	A "j" after a value indicates analyses that exceeded the
NOTE: San	ample No. ending in	in "d" represents		duplicate a	analyses.						
Sample No.	Station Number	Date	Time	Acetone (μg/L)	Benzene (μg/L)	Carbon- tetra- chlo- ride (μg/L)	Chloro- ethane (µg/L)	Chloro- form (µg/L)	1,1-Di- chloro- ethane (µg/L)	1,1-Di- chloro- ethene (µg/L)	1,2-Di- chloro- ethene (µg/L)
				Volatile	Volatile organic compounds	spunoduos					
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	391858076171101 391830076172101 391829076172801 391822076173101 391807076174801	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	1030 1345 1315 1230 1100	8 2 2 5 1 1 1 6	\$\$\$\$\$\$\$	22255 2000 2000 2000 2000 2000 2000 200	, , , , , , , , , , , , , , , , , , ,	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	55555 5555 5555 5555 5555 5555 5555 5555	7700 700 700 700 700 700 700 700 700 70	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	391808076173401 391806076173201 391804076172801 391807076172201	04-05-93 04-05-93 04-05-93 04-05-93 04-05-93	0945 1030 1330 1345	410 17 17 6v.j 77	22555 2000 2000 2000 2000 2000 2000 200	\$\$\$\$\$	66666	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\$\$\$\$\$	\$\$\$\$\$\$\$	0 2000
JFSW 10 JFSW 10d JFSW 11 JFSW 12 JFSW 12d	391808076172401 391809076172701 391810076172702	04-05-93 04-05-93 04-05-93 04-06-93	1330 1334 1500 0944 0945	32j 110j 8vj 8vj 8vj	\$62 \$50 \$10 \$10 \$10	¢250 ¢10 ¢10 ¢10		\$62 \$250 \$10 \$10 \$10	\$\$\$\$ \$10 \$10 \$10 \$10	\$62 \$250 \$10 \$10 \$10	>1,400e 1,400 16 <10 <10
JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	391810076172602 391803076171801 391801076171501	04-05-93 04-07-93 04-07-93 04-07-93 09-30-93	1545 1030 1430 1100 1500	11, 01, 0, 0, 0,	\$\$\$\$\$\$	00000 00000	\$\$\$\$\$\$\$\$	\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$	00000
JFSW 16 JFSW 17 JFSW 18 JFSW 18 JFSW 19	391802076175801 391814076165801 391815076170101 391816076165701	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	1100 1430 1445 1045 1500	7 10 10 10 10 10 10 10 10 10 10 10 10 10	\$\$\$\$\$\$	\$\$\$\$\$\$	\$	\$	\$\$\$\$\$\$	\$\$\$\$\$ \$	\$\$\$\$\$
JFSW 20 JFSW 20d JFSW 20	391758076172701	04-07-93 04-07-93 09-30-93	1130 1134 1530		25 5	2	\$ \$ \$\$	\$ \$\$\$	500 600 600	777 700 700	555 605 605
				Quality	Assurance	e Samples					
TRIP BLANK TRIP BLANK AMBIENT BLA AMBIENT BLA	NK INK BLANK BLANK	04-05-93 09-30-93 04-07-93 09-30-93	1400 1300 1530	6,10 6,10 6,10 6,10	2000	2222	\$\$\$\$\$	2222	\$555 6666	\$555	2222

 $^{[\}mu g/L] = \min crograms per liter; mg/L] = milligrams per liter; <= less than; >= greater than; -- = no data; A "v" after a value indicates parameter was found in the associated blank, as well as in the sample; A "j" after a value indicates an estimated value that is less than the reporting value; An "e" after a value indicates analyses that exceeded the calibration range of the instrument.$

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Vinyl chlor- ide (µg/L)		\$	**************************************		+++++++++++++++++++++++++++++++++++++	77777 20000	\$\$\$\$		2 2000
Tri- chloro- ethene (μg/L)		55555	410 410 6 <u>j</u>	>2,100e 2,100 6j 2,100 12j	\$\$\$\$\$	\$\$\$\$\$\$	666		2 222
1,1,2- Tri- chloro- ethane (μg/L)		24444	\$5555 \$1000	93 j 97 j 1 j 10 <10	\$ \$\$\$\$	\$\$\$\$\$\$	0 0 0 0 0 0 0 0 0		2 255
1,1,1- Tri- chloro- ethane (μg/L)		00000	00000	\$\$5 10 10 10 10 10 10 10 10 10 10 10 10 10	\$\$\$\$\$\$	\$\$\$\$\$\$	0 0 0 0 0 0 0 0 0 0		6666
Toluene (μg/L)	ned	20000 	22. 27. 14. 14.	\$250 \$10 \$10 \$10	£ 00000	55555	\$\$\$\$\$		6666
Tetra- chloro- ethene (μg/L)	dsConti	\$\$\$\$\$\$\$	\$\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}	44 j 40 j 410 0 j 410 0 j	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$	7 10 10 10	Samples	\$\$\$\$
1,1,2,2- Tetra- chloro- ethane (µg/L)	Volatile organic compoundsContinued	\$\$\$\$\$\$	012 190 10 10 10 10 10	>2,200e 2,300 2,300 8j <10 <10	\$\\ \frac{2}{10} \\ \frac{10}{10} \\ \frac{10} \\ \frac{10}{10} \\ \frac{10}{10} \\ \frac{10}{10} \\ 1	\$\$\$\$\$\$\$\$	200	Assurance	7 7 7 7 0 0 0 0 0
Methyl- ethyl- keytone (µg/L)	le organi	6 6666	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\$0 \$50 \$50 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	22 22 10 10 10 10 10	\$\$\$\$\$\$	7 10 10 10	Quality	<10 3 40 10 10 10 10 10 10 10 10 10 10 10 10 10
Methyl- iso- butyl- keytone (μg/L)	Volati	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	\$62 \$250 \$10 \$10 \$10	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$	7 10 10 10 10		1000 1000 1000
Methyl- ene chlo- ride (µg/L)		\$\$\$\$\$\$	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	62 27vj <10 <10 <10	\$\$\$\$\$\$\$\$	\$	200 200 200 200 200 200 200 200 200 200		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Date		04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	04-05-93 04-05-93 04-05-93 04-05-93	04-05-93 04-05-93 04-05-93 04-06-93	04-05-93 04-07-93 09-30-93 04-07-93	04-07-93 04-06-93 04-06-93 09-30-93 09-30-93	04-07-93 04-07-93 09-30-93		04-05-93 09-30-93 04-07-93 09-30-93
Sample No.		JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	JFSW 06 JFSW 07 JFSW 08 JFSW 09	JFSW 10 JFSW 10d JFSW 11 JFSW 12 JFSW 12d	JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	JFSW 16 JFSW 17 JFSW 18 JFSW 18	JFSW 20 JFSW 20d JFSW 20		TRIP BLANK TRIP BLANK AMBIENT BLANK AMBIENT BLANK

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Sample No.	Date	Time	Ace- napth- ene (µg/L)	Ace- napthy- lene (µg/L)	Aldrin (μg/L)	Anthra- cene (μg/L)	Beta benzene hexa- chlor- ide (µg/L)	Delta benzene hexa- chlor- ide (µg/L)
		Semi	-volatile	Semi-volatile organic compounds	spunoduo			
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	1030 1345 1315 1230 1100	\$	00000	0.05 0.05 0.05 0.05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.05 0.05 0.05 0.05	6
JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	04-05-93 04-05-93 09-30-93 04-05-93 04-05-93	0945 1030 1330 1345 1345	2 5555	\$\$\$\$\$\$	* * * * * * * * * * * * * * * * * * *	66666	· · · · · · · · · · · · · · · · · · ·	
JFSW 10 JFSW 10d JFSW 11 JFSW 12 JFSW 12d	04-05-93 04-05-93 04-05-93 04-06-93 04-06-93	1330 1334 1500 0944 0945	6:666	5 - <u>666</u>		6:666		
JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	04-05-93 04-07-93 09-30-93 04-07-93 09-30-93	1545 1030 1430 1100 1500	55555 55555	\$\$\$\$\$\$	× × × × × × × × × × × × × × × × × × ×	66666	· · · · · · · · · · · · · · · · · · ·	
JFSW 16 JFSW 17 JFSW 18 JFSW 18 JFSW 19	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	1100 1430 1445 1045 1500	\$	\$\$\$\$\$\$	· · · · · · · · · · · · · · · · · · ·	55555 5555 5555 5555 5555 5555 5555 5555	· · · · · · · · · · · · · · · · · · ·	
JFSW 20 JFSW 20d JFSW 20	04-07-93 04-07-93 09-30-93	1130 1134 1530	0 0 0 0 0 0 0 0	500 000	 8.88	\$\\ \frac{10}{10}		

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Sample No.	Date	Benzo[a] anthra- cene (µg/L)	Benzo [a] pyrene (µg/L)	Benzo[b] fluor- an- thene (µg/L)	Benzo[k] fluor- an- thene (µg/L)	Benzo [ghi] pery- lene (µg/L)	Bis (2- chloro- ethoxy) methane (μg/L)	Bis (2- chloro- ethyl) ether (μg/L)	Bis(2- chloro- iso- propyl) ether (μg/L)	4- Bromo- phenyl phenyl ether (μg/L)
			Semi-vol	Semi-volatile organic compoundsContinued	nic compo	undsCont	inued			
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	\$	7700 770 700 700 700 700	\$\$\$\$\$\$	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\$\$\$\$ \$	77777	\$\$\$\$\$\$	5555 5
JFSW 06 JFSW 07 JFSW 07 JFSW 08	04-05-93 04-05-93 04-05-93 04-05-93 04-05-93	22222	\$	\$\$\$\$\$	00000	55555 55555	\$\$\$\$\$	\$	55555	55555
JFSW 10 JFSW 10d - JFSW 11 JFSW 12 JFSW 12d	04-05-93 04-05-93 04-06-93 04-06-93	5 555	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	6:666	0 000	6 666	5:555	5:555	5 : 555	5 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
JFSW 13 JFSW 14 JFSW 14 JFSW 15	04-05-93 04-07-93 09-30-93 04-07-93 09-30-93	\$\$\$\$\$\$	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\$\$\$\$\$	7777 00000 00000	00000 00000	\$\$\$\$\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$	55555 66666
JFSW 16 JFSW 17 JFSW 18 JFSW 18 JFSW 19	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	\$\$\$\$\$\$\$	27777 00000 00000	\$\$\$\$\$\$	00000	25252 25252 25252	\$ \$ \$\$\$\$\$	7777 77777	20000	00000
JFSW 20 JFSW 20d JFSW 20	04-07-93 04-07-93 09-30-93	666	\$\$\$\$	666	6 66	6 66	6 66	\$\$\$	6 66	555

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

1,2-Di- chloro- benzene (µg/L)		55555 55555	00000	0 1 0 0 0	00000 00000	00000	50.5 50.5 50.5
	1	V V V V	V V V V	V V V	V V V V	V V V V	^ \
Di- benzo- furan (μg/L)		55555	\$5555 \$	6:666	2222 6	\$\$\$\$\$\$	7 V V
Chry- sene (μg/L)		\$\$\$\$\$\$	\$\$\$\$\$\$	\$: \$ \$ \$ \$	\$\$\$\$\$\$	\$\$\$\$\$\$	666
4- Chloro- phenyl phenyl ether (µg/L)	inued	00000 00000	55555 55555	6:666	\$\$\$\$\$ \$	55555 55555	\$\frac{1}{6} \frac{1}{6} \frac{1}{6}
2- Chloro- phenol (µg/L)	ndsCont	77777 00000 00000	\$\$ \$ \$	5 - 666	\$\$\$\$\$\$\$\$	\$	\$50 00 00 00 00 00 00 00 00 00 00 00 00 0
2- Chloro- naph- thalene (µg/L)	ic compou	\$	55555 55555	6:000	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	6 66
4- Chloro- aniline (µg/L)	Semi-volatile organic compoundsContinued	* * * * * * * * * * * * * * * * * * *	55 <u>5</u> 55	6 : 666	55555 5555 5555 5555 5555 5555 5555 5555	55555 55055	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Gamma chlor- dane (µg/L)	eni-vola	0.05 0.05 0.05 0.05		\$			* * * * .05.05
Alpha chlor- dane (μg/L)	S	60.05 6.05 6.05 6.05 6.05	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Date		04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	04-05-93 04-05-93 09-30-93 04-05-93 04-05-93	04-05-93 04-05-93 04-06-93 04-06-93	04-05-93 04-07-93 04-07-93 04-07-93	04-06-93 04-06-93 09-30-93 04-06-93	04-07-93 04-07-93 09-30-93
Sample No.		JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	JFSW 10 JFSW 11 JFSW 11 JFSW 12 JFSW 12d	JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	JFSW 16 JFSW 17 JFSW 18 JFSW 18 JFSW 19	JFSW 20 JFSW 20d JFSW 20

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Sample No.	Date	1,3-Di- chloro- benzene (mg/L)	1,4-Di- chloro- benzene (μg/L)	3,3'- Di- chloro- benzi- dine (µg/L)	2,4-Di- chloro- phenol (µg/L)	Di- eldrin (µg/L)	2,4-Di- methyl- phenol (µg/L)	Di- methyl phthal- ate (μg/L)	Endo- sul fan- I (μg/L)	Endo- sulfan- sulfate (μg/L)
			Semi-volat	Semi-volatile organic compoundsContinued	ic compou	ndsCont	tinued			
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	77777	50000	00000 00000 00000	000000 000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27777 00000 00000	0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0.05 0.05	ê
JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	04-05-93 04-05-93 09-30-93 04-05-93 04-05-93	\$\$\$\$\$\$	\$	55555 60000	\$\frac{1}{2}\frac{1}{2	· · · · · · · · · · · · · · · · · · ·	\$	\$		
JFSW 10 JFSW 11 JFSW 12 JFSW 12	04-05-93 04-05-93 04-05-93 04-06-93 04-06-93	\$: 000 000 000 000 000 000 000 000 000 0	\$: 6 6 6 6	4:666	6 : 6000	, 100. 100. 100. 100. 100.	6:666	6 : 600	8: 5:5:5	2:222
JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	04-05-93 04-07-93 09-30-93 04-07-93 09-30-93	\$	\$	\$5555 00000	\$	· · · · · · · · · · · · · · · · · · ·	\$5555 60000	\$	 88888	::::::::::::::::::::::::::::::::::::::
JFSW 16 JFSW 17 JFSW 18 JFSW 18 JFSW 19	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	\$\$\$\$\$\$\$	6 6666	\$555¢ 60000	2	· · · · · · · · · · · · · · · · · · ·	\$	\$\$\$\$\$\$\$\$::::::::::::::::::::::::::::::::::::::
JFSW 20 JFSW 20d JFSW 20	04-07-93 04-07-93 09-30-93	**************************************	6 6 6 6	\$\$\$ \$\$\$\$	710 710 70 70 70	 1000	4.4.4 100 100 100	6 66	× × × .05	~~~

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Sample No.	Date	Beta- endo- sulfan (µg/L)	Endrin (μg/L)	Endrin alde- hyde (µg/L)	Endrin keytone (μg/L)	Alpha BHC (μg/L)	Fluo- ranthene (µg/L)	Fluo- rene (µg/L)	Hepta- chlor (µg/L)
		Sei	Semi-volatile organic compoundsContinued	e organic	compounds	Contin	þ		
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	<u> </u>	0	6 	0	<pre><0.05 <0.05 <</pre>	\$\$\$\$\$	77777 00000 00000	40.05 4.05 4.05 6.05 6.05
JFSW 06 JFSW 07 JFSW 08 JFSW 08	04-05-93 04-05-93 09-30-93 04-05-93	22222		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	::::::::::::::::::::::::::::::::::::::	· · · · · · · · · · · · · · · · · · ·	~~~~~ 00000	\$	* * * * * * * * * * * * * * * * * * *
JFSW 10 JFSW 11 JFSW 12 JFSW 12	04-05-93 04-05-93 04-05-93 04-06-93	: : : : : : : : : : : : : : : : : : :	7:777	::::::	::::::	.05.05.05.05	0 : 000	0 : 0000	
JFSW 13 JFSW 14 JFSW 15 JFSW 15	04-05-93 04-07-93 09-30-93 04-07-93		55555		55555	· · · · · · · · · · · · · · · · · · ·	~~~~~ 00000	20000000000000000000000000000000000000	***** 88888
JFSW 16 JFSW 17 JFSW 18 JFSW 18	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	7777	55555	22222	55555		5000 5	\$	 88888
JFSW 20 JFSW 20d JFSW 20	04-07-93 04-07-93 09-30-93	?? ;	<u> </u>	?; ;	?; ;	05 05 05	\$\$ \$	\$\$ \$ \$	

Table 16. Surface-water-quality data fron J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

	Date	Hepta- chlor epoxide (µg/L)	Hexa- chloro- benzene (µg/L)	Hexa- chloro- buta- diene (μg/L)	Hexa- chloro- cyclo- penta- diene (µg/L)	Hexa- chloro- ethane (μg/L)	Indeno [1,2,3- CD] pyrene (µg/L)	Iso- phorone (µg/L)	Lindane (μg/L)	N-Nitro- sodi-n- propyl- amine (µg/L)	N-Nitro- sodi- phenyl- amine (μg/L)
			Semi-v	Semi-volatile	organic (compound	compoundsContinued	penu			
	04-07-93 04-06-93 04-06-93 04-06-93	<pre><0.05 <0.05 <</pre>	5555	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$777 0000 0000	\$\$\$\$\$ \$\$\$\$\$	7777 0000	6.05 6.05 6.05 6.05	5555	5 <u>55</u> 5
_	04-06-93	<.05	<10	<10	<10	<10	~10	<10	~ .05	~10	1< j
22300	04-02-93 04-05-93 09-30-93 04-05-93 04-05-93		\$\$\$\$\$\$	27777 20000 00000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	77777 00000 00000	\$\$\$\$\$\$\$\$	00000		\$\$\$\$\$	24. 10. 24. 24. 24.
	04-05-93 04-05-93 04-05-93 04-06-93 04-06-93	05 05 05	\$: \$ \$ \$	0 : 000	0 : 0000	6:4000	6 : 4000	6:666	05 05 05	45 - 40 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	₹ <u>₹</u> ₹
2000	04-05-93 04-07-93 09-30-93 04-07-93 09-30-93	· · · · · · · · · · · · · · · · · · ·	00000	\$	\$	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\$\$\$\$\$\$	55555 55555	· · · · · · · · · · · · · · · · · · ·	\$\$\$\$\$\$	410 44 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
22200	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	· · · · · · · · · · · · · · · · · · ·	\$\$\$\$\$	2 2222	22225 20000	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	55555 55555		\$\$\$\$\$\$	25.2.5 5.2.5.5
	04-07-93 04-07-93 09-30-93		7 7 7 1000	700	\$ 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200	0 10 10 10	· · · · · · · · · · · · · · · · · · ·	666	<10 1vj <10

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

Sample No.	Date	Phenan- threne (μg/L)	Phenols (µg/L)	Pyrene (μg/L)	Styrene (µg/L)	1,2,4- Tri- chloro- benzene (µg/L)	2,4,6- Tri- chloro- phenol (μg/L)	2,4,5- Tri- chloro- phenol (µg/L)	Xylene (μg/L)
		Semi	Semi-volatile organic compoundsContinued	organic o	-spunoduo:	-Continued			
JFSW 01 JFSW 02 JFSW 03 JFSW 04 JFSW 05	04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	00000 00000 00000	410 410 410 410 410	\$\$\$\$\$\$	******* ********	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$ \$\$\$\$\$\$
JFSW 06 JFSW 07 JFSW 07 JFSW 08 JFSW 09	04-05-93 04-05-93 09-30-93 04-05-93	00 0 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\$\$\$\$\$	\$	55555 55555	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$	55555
JFSW 10 JFSW 10d JFSW 11 JFSW 12 JFSW 12d	04-05-93 04-05-93 04-05-93 04-06-93	0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 50 50 51	Ĉ: <u>Ĉ</u> \$\$	\$62 \$250 \$10 \$10 \$10	÷ ; ÷ ; ; ;	6:666	\$\$ \$\$\$\$\$\$\$	\$\$2 \$250 \$10 \$10 \$10 \$10
JFSW 13 JFSW 14 JFSW 14 JFSW 15 JFSW 15	04-05-93 04-07-93 09-30-93 04-07-93 09-30-93	\$	\$\$ \$\$ \$	\$\$\$\$\$\$\$	\$\$\$\$\$ \$ \$	5555 6	6 6666	స్ట్రస్ట్రస్ట్రస్ట	\$\$ \$\$ \$\$
JFSW 16 JFSW 17 JFSW 18 JFSW 18	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	20000	\$\$\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$	66666	66666	%%%% %	\$\$\$\$\$\$
JFSW 20 JFSW 20d JFSW 20	04-07-93 04-07-93 09-30-93	\$\$\$\$ \$\$\$\$	\$ \$\$\$	000	666	\$\$\$	\$\$\$	\$\$\$\$\$	\$\$\$

Table 16. Surface-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, spring and fall 1993--Continued

1,3,5- Tri- nitro- RDX benzene (μg/L) (μg/L)		%%%% %%%%%	%%%%% %%%%%	\$:\$\$\$	\$\$\$\$\$	%%%%% %%%%%	\$\$\$
PETN (μg/L)			\$250 \$250 \$250 \$250 \$250	<250 <250 <250 <250	\$250 \$250 \$250 \$50 \$50		<250 <250 <250
Nitro glyc- erine (µg/L)		\$	\$\$\$\$\$\$\$\$	\$\$ \$\$\$ \$\$\$	8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$0 \$50 \$0
Nitro- benz- ene (μg/L)		%%% %%	99999	3:555	%%%%%	%%% % %	%% %
2,6-Di- nitro- toluene (µg/L)		%%%% %	%%%% %	\$:\\$\$\$	\$\$\$\$\$	33 33 3	%%%
2,4-Di- nitro- toluene (µg/L)		%%%% %	\$\$\$\$\$	3: 555	%%%%	\$\$\$ \$ \$	%% %
2- Nitro- phenol (µg/L)		**************************************	24444 00000	5 - 600	\$	\$	4 4 4 70 70
Di-n- octyl phthal- ate (µg/L)	surety materials	00000	00000	0 : 0000 0 : 0000	00000	\$\$\$\$\$\$	6 000
Di- methyl phthal- ate (µg/L)		\$\$\$\$\$\$\$\$	00000 00000	\$ - \bar{\bar{\bar{\bar{\bar{\bar{\bar{	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	200
Diethyl phthal- ate (µg/L)	Chemical	\$	\$\$\$\$\$\$\$	0000	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	777
Di-n- butyl phthal- ate (µg/L)		77777 100000 100000	\$\frac{1}{2}\frac{1}{2	6 - 6000	77777 000000	\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Cyanide (mg/L as CN)		VVVV	\$	6 : 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$\$\$\$\$\$\$	\$	2
n-Butyl benzyl phthal- ate (μg/L)		**************************************	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$	\$	7 7 7 0
Bis(2- ethyl hexyl) phthal- ate (μg/L)		2525 -	410 410 410 410 410	Ç : 000 000 000 000 000 000 000 000 000 0	<u>-0000</u>	\$\$\$\$\$\$	555 000 000
Date		04-07-93 04-06-93 04-06-93 04-06-93 04-06-93	04-05-93 04-05-93 09-30-93 04-05-93 04-05-93	04-05-93 04-05-93 04-06-93 04-06-93	04-05-93 04-07-93 09-30-93 04-07-93 04-07-93	04-07-93 04-06-93 04-06-93 09-30-93 04-06-93	04-07-93 04-07-93 09-30-93
Sample No.		JFSW 01 JFSW 03 JFSW 03 JFSW 04	JFSW 06 JFSW 07 JFSW 07 JFSW 08	JFSW 10 JFSW 10d JFSW 11 JFSW 12 JFSW 12d	JFSW 13 JFSW 14 JFSW 15 JFSW 15 JFSW 15	JFSW 16 JFSW 17 JFSW 18 JFSW 19 JFSW 19	JFSW 20 JFSW 20d JFSW 20

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990

[μ S/cm = microsiemens per centimeter; mg/L = milligrams per liter; °C = degrees Celsius; μ g/L = micrograms per liter; < = less than; -- = data not available; A "v" after a well no. indicates possible contamination bias due to drilling methods]

NOTE: Well No. ending in "d" represents duplicate analyses. Asterisk (*) indicates pH value has exceeded calibration range of the pH meter. Field blank 1 was collected after sampling well P7. Field blank 2 was collected after sampling well JF83.

Well No.	Station number	Date	Time	Spe- cific con- duct- ance, (µS/cm)	pH, water whole field (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Oxygen, dis- solved (mg/L)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (µg/L as Mg)
			Field p	arameters a	md major	ions				
				Surficial A	Aquifer					
P1 P2 P3 P4 P5	391811076173201 391809076173001 391812076172901 391811076172801 391825076172501	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	1400 1000 1050 1200 0945	170 425 1,330 1,570 162	5.6 5.4 6.8 5.8 5.5	23.5 21.5 26.0 26.0 19.0	15.5 15.5 15.0 15.0 12.0	7.2 8.0 1.7 0.2 8.0	20 37 16.8 179 18	3,700 8,000 87,000 45,000 3,900
P6 P7 P8 P9 P9d	391825076173001 391826076173001 391827076172801 391810076173101	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	1345 1130 1445 1330 1334	652 189 449 277	6.1 5.3 4.7 5.7	24.0 22.5 23.5 28.0	13.5 14.0 15.0 17.0	6.5 0.1 6.9 6.5	44 7.4 37 33 31	11,000 8,100 23,000 4,200 4,000
TH1 TH1d TH3 TH4 TH4d	391827076172701 391824076173001 391810076172601	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	1130 1134 1330 1030 1034	170 453 668 	5.0 7.0 6.8	23.0 22.0 23.0	14.5 13.0 16.5	6.1 9.5 	4.0 4.2 99 130 130	8,500 9,100 1,700 2,800 2,900
TH6 TH7 TH8 TH10 TH11	391817076173701 391814076171001 391816076173801 391805076174001 391806076165201	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	1000 1315 0950 0945 1015	167 123 285 542 154	6.3 5.7 6.9 4.7 4.6	25.0 28.0 22.5 16.5 21.0	12.0 18.0 13.0	10.5 10.9 6.6 2.6	12.9 6.6 6.5 1.6 7.7	2,200 8,400 2,270 13,400 3,400
JF13 JF13d JF23 JF33 JF33d	391809076174303 391809076174603 391814076173803	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	1040 1044 1300 0954 0955	1,770 1,150 732	6.4 6.8 6.6	27.0 22.0	15.5 15.5 13.5	0.2 0.1 2.3	300 310 195 156 158	17,000 17,000 11,000 5,400 5,400
JF43 JF53 JF63 JF73 JF83	391812076173103 391808076172703 391810076172803 391807076172803 391808076173003	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	1030 1355 1340 1400 1100	183 491 993 467 584	6.3 6.8 6.0 7.4 5.6	26.0 25.5 28.5 23.5	17.0 17.5 16.0 16.0 14.5	1 1.2 0.2 0.2 0.6	20 55 93 44 42	4,500 9,700 15,000 3,000 30,000
JF93 JF103v JF113 JF123	391825076172603 391826076173106 391826076173103 391827076173003	05-11-90 05-17-90 05-18-90 05-30-90	1100 1000 1330 1300	278 3,830 150 97	5.5 12.5* 6.4 6.2	19.0 21.0	15.0 14.5 13.5 13.5	0.0 0.1 0.3	15 370 6.0 3.1	6,100 <130 2,700 1,600

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Station number	Date	Time	Spe- cific con- duct- ance, (µS/cm)	pH, water whole field (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Oxygen, dis- solved (mg/L)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (μg/L as Mg)
		Fiel	ld parame	ters and ma	jor ions	Continu	ed			
				Confining	Unit					
JF12 JF22 JF32 JF42 JF52	391811076173201 391809076174602 391814076173802 391812076173102 391808076172702	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	1030 1400 1400 1200 1100	514 591 270 525 574	7.2 7.1 6.6 7.1 7.4	25.0 23.0 25.0 25.0	14.0 14.5 15.0 16.0 16.0	3.1 1.2 0.8 0.7	91 58 17 94 85	5,900 9,600 3,500 4,500 9,000
JF62 JF72v JF82v JF82dv JF92	391810076172802 391807076172802 391808076173002 391825076172602	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	1100 1430 1000 1004 1115	638 2,600 2,070 448	7.6 12.4* 11.9* 7.0	28.0 22.0 25.0 24.5	16.0 15.5 15.0 14.5	0.6 0.5	92 180 130 110 73	5,700 <130 <130 <130 3700
JF102v JF112v JF122v	391826076173105 391826076173102 391827076173002	05-18-90 06-08-90 05-30-90	1130 1340 1400	2,140 2,010 2,710	12.0* 12.0* 12.1*	27.0 19.5	15.5 15.0 14.5	1.0 1.3 1.2	51 59 30	<130 <130 <130
				Confined A	quifer					
JF1 JF2 JF2d JF11 JF21	391806076165301 391845076171401 391809076174301 391809076174601	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	1200 0950 0954 1400 1400	1,060 438 245 489	6.4 7.0 7.3 6.9	22.0 	13.5 15.0 14.0 14.0	0.8 1.0 0.6 0.4	51 27 27 69 56	16,000 7,000 7,100 5,600
JF31 JF41 JF51v JF61v JF71v	391814076173801 391812076173101 391808076172701 391810076172801 391807076172801	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	1215 1100 1415 1130 1130	474 495 813 1,360 649	7.1 7.2 9.1* 12.0* 11.2*	22.0 27.5 28.0	15.0 15.0 15.5 16.0 16.0	0.2 5.5 	62 74 10 68 19	6,500 5,800 3,900 160 3,800
JF81v JF91 JF101 JF111 JF121	391808076173001 391825076172601 391826076173104 391826076173101 391827076173001	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	1300 1500 1050 1105 0940	781 549 479 459 408	8.0* 7.4 7.8 7.2 7.3	25.0 20.0 28.0 19.5	15.5 15.0 15.0 15.0 14.5	0.1 0.2 0.1 0.5	54 98 78 70 63	19,000 2,600 2,500 3,100 3,000
			Qual	ity Assuran	ice Samop1	es				
TRIP BL FIELD B FIELD B	LANK 1	06-12-90 05-17-90 06-12-90	1145 1115	 					<1.1 <1.1 1.5	<130 <130 <130

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Manga- nese, dis- solved (µg/L as Mn)	Sodium, dis- solved (µg/L as Na)	Potas- sium, dis- solved (µg/L as K)	Bicar- bonate, water lab (mg/L as HCO ₃)	Alka- linity, (mg/L as CaCO ₃)	Sulfide total (mg/L as S)	Sulfite (mg/L as SO ₃)	solved
		Field	parameters	and majo	r ionsCo	ntinued			
			Surf	icial Aqu	ifer				
P1	06-06-90	<10	7,200	<1,200	11	9	<1.0		66,000
P2	06-12-90	17	33,000	<1,200	49	40	<1.0		160,000
P3	06-07-90	350	130,000	62,000			<1.0		270,000
P4	06-07-90	470	67,000	5,300	70	57	<1.0		140,000
P5	05-11-90	<10	7,200	<1,200	9	7		<0.001	57,000
P6	05-15-90	23	89,000	<1,200	63	52	<1.0		220,000
P7	05-17-90	260	13,000	<1,200	8	7	<1.0		72,000
P8	05-16-90	200	13,000	<1,200			<1.0		170,000
P9	06-08-90	<10	12,000	<1,200	116	95	<1.0		94,000
P9d	06-08-90	<10	12,000	<1,200			<1.0		1,920
TH1	05-16-90	78	12,000	<1,200			<1.0		33,000
TH1d	05-16-90	84	13,000	<1,200			<1.0		32,000
TH3	05-14-90	<10	5,600	<1,200	7	6	<1.0		24,000
TH4	06-13-90	120	16,000		351	290	<1.0		
TH4d	06-13-90	130	16,000	1,200			<1.0		
TH6	06-01-90	<10	2,800	25,000			<1.0		18,000
TH7	05-08-90	22	6,800	1,200	27	22		<0.001	30,000
TH8	06-04-90	<10	12,000	4,200	87	71	<1.0		98,000
TH10	06-05-90	340		<1,200			<1.0		44,000
TH11	05-08-90	160	14,000	1,600				<0.001	44,000
JF13	06-04-90	150	55,000	3,700	366	300	<1.0		200,000
JF13d	06-04-90	150	56,000	3,300			<1.0		200,000
JF23	06-05-90	76	47,000	1,600	337	280	<1.0		130,000
JF33	05-31-90	10	13,000	<1,200			<1.0		280,000
JF33d	05-31-90	10	13,000	<1,200	95	79	<1.0		270,000
JF43	06-07-90	350	8,900	1,500	63	52	<1.0		23,000
JF53	06-13-90	900	12,000	1,300	87	71	<1.0		9,940
JF63	06-14-90	710	89,000	2,400	121	99	<1.0		110,000
JF73	06-12-90	120	28,000	38,000	146	120	<1.0		31,000
J F8 3	06-12-90	280	22,000	<1,200	366	300	<1.0		85,000
JF93	05-11-90	94	28,000	2,100	7	6		<0.001	110,000
JF103v	05-17-90	<10	19,000	45,000	1,040	850	<1.0		7,340
JF113	05-18-90	490	12,000	1,300	58	48	<1.0		14,000
JF123	05-30-90	260	8,900	<1,200	35	29	<1.0		4,420

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Manga- nese, dis- solved (µg/L as Mn)	Sodium, dis- solved (µg/L as Na)	Potas- sium, dis- solved (µg/L as K)	Bicar- bonate, (mg/L as HCO ₃)	Alka- linity, (mg/L as CaCO ₃)	Sulfide total (mg/L as S)	Sulfite (mg/L as SO ₃)	Sulfate dis- solved (µg/L)
		Field p	parameters	and major	ionsCont	inued			
			Cor	nfining Uni	t				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	1,800 1,600 1,400 1,300 520	42,000 10,000 11,000 18,000	2,000 12,000 <1,200 2,400 11,000	296 229 152 318 323	240 190 120 260 270	<1.0 <1.0 <1.0 <1.0 <1.0		7,900 49,000 3,910 4,700 25,000
JF62 JF72v JF82v JF82dv JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	970 <10 <10 <10 1,300	25,000 44,000 45,000 44,000 12,000	13,000 18,000 75,000 72,000 1,600	351 849 567 273	290 700 460 220	<1.0 <1.0 <1.0 <1.0		40,000 19,000 26,000 25,000 3,380
JF102v JF112v JF122v	05-18-90 06-08-90 05-30-90	<10 <10 <10	48,000 54,000 83,000	220,000 140,000 320,000	555 535 816	460 440 670	<1.0 <1.0 <1.0		25,000 98,000 15,000
			Cor	nfined Aqui	fer				
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	1,100 530 540 890 2,700	82,000 23,000 23,000 17,000	4,200 3,600 2,400 2,500	71 224 196	59 180 160	<1.0 <1.0 <1.0 <1.0	<0.001 	2,580 433 381 1,450 6,460
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	1,700 1,100 10 <10 <10	14,000 12,000 62,000 45,000 43,000	2,600 2,700 140,000 98,000 79,000	210 257 339 490	170 210 280 400	<1.0 <1.0 <1.0 <1.0 <1.0		3,840 4,400 34,000 20,000 18,000
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	770 490 980 2,000 2,200	30,000 11,000 13,000 13,000 12,000	13,000 2,700 12,000 2,200 2,000	188 302 232 210	150 250 190 170	<1.0 <1.0 <1.0 <1.0 <1.0	<0.001	3,180 1,310 811 <175 3,950
			Quality	Assurance	Samples				
TRIP BLANK FIELD BLANK 1 FIELD BLANK 2	06-20-90 05-17-90 06-20-90	<10 <10 <10	620 <280 480	<1,200 <1,200 <1,200			<1.0 <1.0 <1.0	 	<175 <175 2,300

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Chlo- ride, dis- solved (µg/L)	Fluo- ride, total (mg/L as F)	Bromide, dis- solved (µg/L)	Solids, residue at 180°C dis- solved (mg/L)	gen,am- monia + organic, total (mg/L as N)	Nitro- gen, nitrate, total (mg/L as N)	Phos- phorus, total (µg/L) as PO ₄)	solve (µg/L)
		Fie	ld param	eters and	major ion	sContin	ued		
				Surficial	Aquifer				
P1	06-06-90	2,980	0.2	<407	130	0.52	0.500	<10	30
P2	06-12-90	25,000	. 3	< 407	300	. 43	6.90	16	<78
P3	06-07-90	56,000	1.5	< 407	850	8.6	.210	970	4,40
P4	06-07-90	390,000	. 8	< 407	910	.61	.020	73	1,50
P5	05-11-90	5,380	. 2	<407	82		.640	<10	<7
ΕJ	03-11-90	3,300	. 2	\407	02		.040	~10	`'
P6	05-15-90	31,000	. 6	<407	480		7.10	<10	<7
P7	05-17-90	9,150	. 4	<407	160		.017	<10	8,90
	05-16-90	21 000	. 5	<407				80	<7
P8		21,000			330		4.90		
P9	06-08-90	8,250	. 2	< 407	170	. 49	.940	<10	<7
P9d	06-08-90	7,380	. 5	<407	180	.50	.950	<10	<7
TH1	05-16-90	30,000	. 3	<407	140		.590	<10	<7
TH1d	05-16-90	28,000	. 2	< 407	130	.56	.620	<10	<7
TH3	05-14-90	12,000	. 3	< 407	290		.103	<10	<7
TH4	06-13-90	22,000			410	. 54		20	<7
TH4d	06-13-90				400	. 49	.013	16	<7
m	04 04 00	1 000			4.00				
TH6	06-01-90	1,030	. 2	407	120	. 54		19	<7
TH7	05-08-90	9,590	1.1	407	250		.042	<10	<7
TH8	06-04-90	3,720	. 3	<407	250	. 67	.700	<10	<7
TH10	06-05-90	120,000	. 5	1,040	290	. 43		<10	30
TH11	05-08-90	20,000	1	<407	67		.410	12	<7
JF13	06-04-90	250,000	1.2	1,480	1,200	2.7	.012	57	5,30
JF13d	06-04-90	250,000	1.1	1,570	1,200	2.7	.014	63	5,30
JF23	06-05-90	120,000	.6	<407	710	.73	.010	<10	3,40
JF33	05-31-90	15,000	.5	<407	540	.59	1.50	25	<7
JF33d	05-31-90	15,000	.5	<407	540	.60	1.50	20	<7
ur 33u	03-31-90	13,000		<407	340	.60	1.30	20	
JF43	06-07-90	8,270	. 4	< 407	130	.80	.023	<10	1,60
JF53	06-13-90	92,000	. 3	<407	290	.92	.018	11	4,80
JF63	06-14-90	180,000	. 8	2,840	590	.99	.023	260	18,00
JF73	06-12-90	57,000	. 4	<407	300	.59	.100	<10	·<7
JF83	06-12-90	120,000	.6	<407	320	. 54	2.40	61	1,00
JF93	05-11-90	5.950	. 3	<407	170	.72	1.30	<10	17
JF103v	05-17-90	7.130	1.0	<407	1,000	4.7	.370	<10	<7
JF113V JF113	05-17-90	8,110	.3	<407	1,000	1.3	.020	11	14.00
JF123	05-30-90	8,160	. 3	<407	88	1.3	<.002	38	8,90

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Chlo- ride, dis- solved (µg/L)	Fluo- ride, total (mg/L as F)	Bromide, dis- solved (µg/L)	Solids, residue at 180°C dis- solved (mg/L)	Nitro- gen,am- monia + organic, total (mg/L as N)	Nitro- gen, nitrate total (mg/L as N)	total (μg/L	Iron, , dis- solved (µg/L) as Fe)
		Field	paramete	rs and maj	or ions-	Continued			
				Confining	Unit				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	11,000 35,000 7,880 6,710 7,440	0.5 .8 .3 .4	<407 <407 <407 <407 <407	330 360 180 330 330	3.3 3.0 3.1 4.8 8.0	0.108 .108 .220 .154 .086	12 <10 360 17 61	4,600 19,000 42,000 6,300 <78
JF62 JF72v JF82v JF82dv JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	5,700 6,000 14,000 14,000 6,560	.5 1.4 .6 .7	<407 <407 <407 <407 <407	370 650 580 590 270	7.6 32 7.7 7.7 3.3	<.010 .210 .400 .420 <.010	67 15 27 22 18	4,700 <78 <78 <78 23,000
JF102v JF112v JF122v	05-18-90 06-08-90 05-30-90	15,000 8,280 12,000	1.1 <.2 1.1	<407 <407 <407	710 590 900	6.8 3.1 5.5	.160 <.010 .230	38 35 85	<78 <78 <78
			C	onfined Aq	uifer				
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	270,000 76,000 76,000 44,000 36,000	1.1 .3 .4 	1,200 668 670 <407 <407	580 180 190 300 280	7.0 7.0 6.1 4.7	0.012 .042 .044 <.010 .170	360 130 120 760 370	63,000 27,000 27,000 9,200 14,000
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	33,000 25,000 48,000 25,000 15,000	.3 .4 1.1 .4	<407 <407 <407 <407 <407	300 310 460 460 350	6.1 6.9 17 24 16	.030 <.010 .500 .033 .740	520 <10 140 28 470	10,000 7,600 <78 <78 <78
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	130,000 29,000 37,000 39,000 24,000	.5 .3 .3 .3	981 <407 <407 478 <407	370 320 320 320 290	17 3.9 4.2 4.0 4.0	<.010 .013 .015 .021 <.010	200 1,200 780 690 770	7,800 4,700 1,100 8,600 4,900
			Qual.it	y Assuranc	e Sample:	5			
	ANK 06-12- ANK 1 05-17- ANK 2 06-12-	-90 <290	<.15 <.15 <.15	<407 <407 <407	15 16 23	0.5 .5 .3	0.024 .061	11 <10 17	<78 <78 <78

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Alum- inum, dis- solved (µg/L as Al)	Anti- mony, dis- solved (µg/L as Sb)	Arsenic, dis- solved (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Beryl- lium, dis- solved (µg/L as Be)	Boron, dis- solved (µg/L as B)	Cadmium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)
				Mo	etals					
				Surfic	cial Aquif	er				
P1	06-06-90	<110	<60	<2	23	<1	<230	<6.8	<17	
P2	06-12-90		<60	<2	48	<1	<230	<6.8	<17	<25
P3	06-07-90	<110	<60	30	55	<1	2,500	<6.8	<17	
P4	06-07-90	120	<60	<2	74	<1		<6.8	<17	<10
P5	05-11-90	<110	<60	<2	39	<1	<230	<6.8	<17	
P6	05-15-90	<110	<60	<2	47	<1	<230	<6.8	<17	
P7	05-17-90	240	<60	21	22	<1	<230	<6.8	<17	
P8	05-16-90	780	<60	<2	46	1	<230	<6.8	<17	
P9	06-08-90	<110	<60	<2	23	<1	<230	<6.8	<17	<25
P9d	06-08-90	<110	<60	<2	22	<1	<230	<6.8	<17	<25
TH1	05-16-90	170	<60	<2	78	<1	<230	<6.8	<17	
TH1d	05-16-90	180	<60	<2	82	<1	<230	<6.8	<17	
TH3	05-14-90	<110	<60	<2	15	<1	<230	<6.8	<17	
TH4	06-13-90	<110	<60	<2	24	<1	<230	<6.8	<17	<25
TH4d	06-13-90	<110	<60	<2	24	<1	<230	<6.8	<17	<25
TH6	06-01-90	130		<2	15	<1				
TH7	05-08-90	<110	<60	<2	15	<1	<230	<6.8	<17	
TH8	06-04-90	<110		<2	25	<1	420	<6.8	<17	
TH10	06-05-90	130		<2	130	<1	<230	<6.8	<17	
TH11	05-08-90	250	<60	<2	46	<1	<230	<6.8	<17	
						_	-200		-1.	
JF13	06-04-90	<110	<60	3	270	<1	<230	<6.8	<17	
JF13d	06-04-90	200	<60	3	270	<1	<230	<6.8	<17	
JF23	06-05-90	<110	<60	<2	180	<1	<230	<6.8	<17	
JF33	05-31-90	<110	<60	<2	41	<1	320	<6.8	<17	
JF33d	05-31-90	<110	<60	<2	41	<1	<230	<6.8	<17	
JF43	06-07-90	<110	<60	<2	35	<1	<230	<6.8	<17	
JF53	06-13-90	<110	<60	<2	93	<1	<230	<6.8	<17	<25
JF63	06-14-90	<110	<60	4	110	<1	<230	<6.8	<17	<25
JF73	06-12-90	<110	<60	6	56	<1	<230	<6.8	<17	<25
JF83	06-12-90	<110	<60	60	120	<1	<230	<6.8	<17	<25
JF93	05-11-90	<110	<60	<2	84	<1	<230	<6.8	<17	
JF103v	05-17-90	1600	63	<2	260	<1	<230	<6.8	<17	
JF113	05-18-90	<110	<60	<2	66	<1	<230	<6.8	<17	
JF123	05-30-90	<110	<60	<2	41	<1	<230	<6.8	<17	

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Alum- inum, dis- solved (µg/L as Al)	Anti- mony, dis- solved (µg/L as Sb)	Arsenic, dis- solved (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Beryl- lium, dis- solved (µg/L as Be)	Boron, dis- solved (µg/L as B)	Cadmium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)
				Metals-	-Continue	ed				
				Confir	ning Unit					
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<110 <110 <110 <110 <110	<60 <60 <60 <60	<2 <2 <2 <2 <2	110 150 110 96 70	<1 <1 <1 <1 <1	<230 <230 <230 <230 <230	<6.8 <6.8 <6.8 <6.8	<17 <17 <17 <17 <17	 <25 <25
JF62 JF72v JF82v JF82dv JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<110 340 430 351 <110	<60 <60 67 67 <60	<2 <2 21 20 <2	110 77 140 130	<1 <1 <1 <1 <1	<230 <230 <230 <230 <230	<6.8 <6.8 <6.8 <6.8	<17 <17 <17 <17 <17	<25 <25 <25 <25
JF102v JF112v JF122v	05-18-90 06-08-90 05-30-90	420 <110	<60 82 <60	<2 <2 	170 160 73	<1 <1 <1	<230 <230 < 2 30	<6.8 <6.8 <6.8	<17 <17 <17	 <25
				Confine	d aquifer					
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<110 <110 <110 <110 <110	<60 <60 <60 <60	<2 3 <2 4 <2	250 68 65 100 38	<1 <1 <1 <1 <1	<230 <230 <230 <230 <230	<6.8 <6.8 <6.8 <6.8	<17 <17 <17 <17 <17	<25 <25
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<110 <110 <110 780 <110	<60 <60 <60 <60	<2 4 <2 8 3	67 110 25 76 52	<1 <1 <1 <1 <1 <1 <1 <1	<230 <230 <230 <230 <230	<6.8 <6.8 <6.8 <6.8	<17 <17 <17 <17 <17	 <25 <25 <25
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<110 <110 <110 <110 <110	<60 <60 <60 <60	<2 <2 3 3 <2	87 70 44 45 39	<1 <1 <1 <1 <1	<230 <230 <230 <230 <230	<6.8 <6.8 <6.8 <6.8	<17 <17 <17 <17 <17	<25
			Qua	lity Assum	rance Samp	oles				
	ANK 06-12-90 LANK 1 06-12-90 LANK 2 06-12-90	<110	<60 <60 <60	<2 <2 <2	<2.8 <2.8 5.1	<1 <1 <1	<230 <230 <230	<6.8 <6.8 <6.8	<17 <17 <17	 <25

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Copper, dis- solved (µg/L as Cu)	Lead, dis- solved (µg/L as Pb)	Mercury, dis- solved (#g/L as Hg)	Nickel, dis- solved (µg/L as Ni)	Sele- nium, dis- solved (µg/L as Se)	Silver, dis- solved (µg/L as Ag)	Thal- lium, dis- solved (µg/L as T1)	Vana- dium, dis- solved (µg/L as V)	Zinc, dis- solved (µg/L as Zn)
				Metals	Continue	d				
				Surfic	ial Aquife	r				
P1	06-06-90	<19	<43	<0.1	<32	<3	<10	<120		<18
P2	06-12-90	<19	< 43	< . 1	<32	4	<10	<120	<28	<18
P3	06-07-90	<19	< 43	< . 1	<32	<3	<10	<120		62
P4	06-07-90	<19	<43	< . 1	<32	<3	<10	<120		290
P5	05-11-90	<19	<4		<32	<3	<10	<120		21
P6	05-15-90	<19	<4		<32	<3	<10	<120		29
P7	05-17-90	<19	< 4		40	<3	<10	<120		87
P8	05-16-90	<19	< 4		39	<3	<10	<120		100
P9	06-08-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
P9d	06-08-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
TH1	05-16-90	<19	120		<32	<3	<10	<120		60
TH1d	05-16-90	<19	130		<32	<3	<10	<120		70
TH3	05-14-90	<19			<32	<3	<10	<120		<18
TH4	06-13-90	<19	<43	< . 1	<32	<3	<10	<120		<18
TH4d	06-13-90	<19	<43	< . 1	<32	5	<10	<120	<28	<18
TH6	06-01-90	<19	<43	< . 1	<32	<3	<10	<120		<18
TH7	05-08-90	<19	<4		<32	<3	<10	<120		48
TH8	06-04-90	<19	<43	< . 1	<32	<3	<10	<120		<18
TH10	06-05-90	<19	<43	< . 1	<32	<3	<10	<120		110
TH11	05-03-90	<19	<4		<32	<3	<10	<120		120
								_		
JF13	06-04-90	<19	< 43	< . 1	<32	<3	<10	<120		<18
JF13d	06-04-90	<19	<43	< . 1		<3	<10	<120		<18
JF23	06-05-90	<19	<43	< . 1	<32	<3	<10	<120		<18
JF33	05-31-90	<19	<43	< . 1	<32	<3	<10	<120		<18
JF33đ	05-31-90		<43	<.1	<32	<3	<10	<120		
JF43	06-07-90	<19	< 43	< . 1	<32	<3	<10	<120		<18
JF53	06-13-90	<19	<43	< . 1	440	<3	<10	<120	<28	36
JF63	06-14-90	<19	< 43	< . 1	<32	<3	<10	<120	<28	19
JF73	06-12-90	<19	< 43	< . 1	<32	<3	<10	<120	<28	<18
JF83	06-12-90	<19	<43	< . 1	<32	6	<10	<120	<28	29
JF93	05-11-90	<19	< 4		55	<3	<10	<120		170
JF103v	05-17-90	<19	< 4		<32	<3	<10	<120		39
JF113	05-18-90	<19	< 4		<32	<3	<10	<120		33
JF123	05-30-90	<19	< 43	< . 1	<32	<3	<10	<120		60

Table 17. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Inorganic constituents, Phase I, May-June 1990--Continued

JF22 06- JF32 05- JF32 06- JF42 06- JF52 06- JF62 06- JF82v 06- JF82v 06- JF82dv 06- JF112v 05- JF112v 05- JF112v 05- JF12 06- JF2 06- JF2 06- JF2 06- JF31 05- JF31 06- JF31 05- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF51v 06- JF61v 06-	-05-90 -05-90 -31-90 -08-90 -14-90 -14-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43 <43 <43 <43 <43		Continu ining Uni	**************************************	<10 <10 <10 <10 <10	<120 <120 <120 <120 <120 <120	 <28	<18 <18 <18
JF22 06- JF32 05- JF32 06- JF42 06- JF52 06- JF62 06- JF82v 06- JF82v 06- JF82dv 06- JF112v 05- JF112v 05- JF112v 05- JF12 06- JF2 06- JF2 06- JF2 06- JF31 05- JF31 06- JF31 05- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF51v 06- JF61v 06-	-05-90 -31-90 -08-90 -14-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43 <43 <43 <43	<0.1 <.1 <.1 <.1 <.1 <.1	<32 <32 <32 <32 <32 <32	<pre></pre>	<10 <10 <10	<120 <120 <120		<18 <18
JF22 06- JF32 05- JF32 06- JF42 06- JF52 06- JF62 06- JF82v 06- JF82v 06- JF82dv 06- JF112v 05- JF112v 05- JF112v 05- JF12 06- JF2 06- JF2 06- JF2 06- JF31 05- JF31 06- JF31 05- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF31 06- JF51v 06- JF61v 06-	-05-90 -31-90 -08-90 -14-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43 <43 <43 <43	<.1 <.1 <.1 <.1 <.1 <.1 <.1	<32 <32 <32 <32 <32	<3 <3 <3 <3	<10 <10 <10	<120 <120 <120		<18 <18
JF32	-31-90 -08-90 -14-90 -12-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43 <43	<.1 <.1 <.1 <.1	<32 <32 <32 <32	<3 <3	<10 <10	<120 <120		<18
JF32 05-: JF42 06-: JF52 06 JF62 06 JF82v 06 JF82v 06 JF92 05 JF112v 06 JF112v 05 JF12v 06 JF12v 06 JF2d 06 JF2d 06 JF2d 06 JF11 06 JF11 06 JF11 06 JF11 06 JF11 06 JF2d 06 JF31 05 JF31 05 JF2d 06 JF2d 06 JF31 06	-31-90 -08-90 -14-90 -12-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43	<.1 <.1 <.1 <.1	<32 <32 <32	<3 <3	<10	<120 <120		
JF42 06- JF52 06- JF62 06- JF72v 06- JF82v 06- JF82v 05- JF112v 05- JF112v 05- JF122v 05- JF12d 06- JF2d 06- JF2d 06- JF2d 06- JF51v 06-	-08-90 -14-90 -14-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19	<43 <43 <43 <43 <43	<.1 <.1 <.1 <.1	<32 <32 <32	<3 <3	<10	<120	<28	
JF52 06- JF62 06- JF72v 06- JF82v 06- JF82dv 06- JF92 05- JF112v 06- JF12v 05- JF12 06- JF2 06- JF2 06- JF2 06- JF2 06- JF2 06- JF1 06- JF1 06- JF1 06- JF71v 06- JF51v 06- JF51v 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-	-14-90 -14-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19 <19 <19	<43 <43 <43 <43	<.1 <.1 <.1	<32 <32	<3				<18
JF62 06- JF72v 06- JF82v 06- JF82dv 06- JF92 05- JF112v 06- JF112v 05- JF12d 06- JF11 06-	-14-90 -12-90 -14-90 -14-90 -16-90	<19 <19 <19 <19	<43 <43 <43	<.1 <.1	<32		110		<28	<18
JF72v 06- JF82v 06- JF82dv 06- JF92 05- JF112v 06- JF112v 05- JF122v 05- JF1 06- JF2d 06- JF2d 06- JF2d 06- JF1 06- JF1 06- JF1 06- JF71v 06- JF51v 06- JF71v 06- JF71v 06- JF81v 06-	-12-90 -14-90 -14-90 -16-90	<19 <19 <19	<43 <43	< . 1					~20	/10
JF72v 06- JF82v 06- JF82dv 06- JF92 05- JF112v 06- JF112v 05- JF12d 06- JF2d 06- JF11 06- JF1 05- JF1 06- JF31 05- JF1 06- JF51v 06- JF51v 06- JF51v 06- JF51v 06- JF51v 06-	-12-90 -14-90 -14-90 -16-90	<19 <19 <19	<43 <43	< . 1		<\$	<10	<120	<28	<18
JF82v 06- JF82dv 06- JF92 05- JF102v 05- JF112v 06- JF12d 06- JF2d 06- JF11 06- JF31 05- JF31 05- JF31 06-	-14-90 -14-90 -16-90	<19 <19	< 43		<32	-3	<10	<120	<28	<18
JF82dv 06- JF92 05- JF102v 05- JF112v 06- JF122v 05- JF2 06- JF2d 06- JF2d 06- JF11 06- JF2l 06- JF2l 06- JF2l 06- JF2l 06- JF2l 06- JF2l 06- JF31 05- JF4l 06- JF4l 06- JF5lv 06- JF6lv 06- JF6lv 06- JF7lv 06-	-14-90 -16-90	<19			<32	3 <3	<10			
JF92 05- JF102v 05- JF112v 06- JF122v 05- JF2 06- JF21 06- JF21 06- JF31 05- JF31 05- JF41 06- JF51v 06- JF51v 06- JF61v 06- JF71v 06- JF71v 06- JF81v 06-	-16-90					<3		<120	<28	<18
JF102v 05- JF112v 06- JF122v 05- JF1 05- JF2 06- JF2d 06- JF11 06- JF11 05- JF1 06- JF51v 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-		< 19		<.1	<32		<10	<120	<28	<18
JF112v 06 JF122v 05 JF1 05 JF2 06 JF2d 06 JF21 06 JF21 06 JF31 05 JF41 06 JF51v 06 JF51v 06 JF61v 06 JF61v 06 JF71v 06 JF81v 06			<4		<32	<3	<10	<120		36
JF112v 06 JF122v 05 JF1 05 JF2 06 JF2d 06 JF11 06 JF21 06 JF21 06 JF41 06 JF51v 06 JF51v 06 JF51v 06 JF61v 06 JF61v 06 JF61v 06 JF61v 06 JF61v 06 JF61v 06	-18-90	<19	<4		<32	<3	<10	<120		<18
JF122v 05 JF1 05 JF2 06 JF21 06 JF31 05 JF31 05 JF41 06 JF51v 06 JF51v 06 JF71v 06 JF71v 06 JF81v 06	-08-90	<19	< 43	< . 1	<32	<3	<10	<120	<28	<18
JF1 05-1 JF2 06- JF2d 06- JF11 06-1 JF21 06-1 JF31 05-1 JF41 06-1 JF51v 06- JF61v 06- JF71v 06- JF71v 06-	-30-90	<19	<43	< . 1	<32	<∄	<10	<120		
JF2 06- JF2d 06- JF11 06- JF21 06- JF31 05- JF41 06- JF51v 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-				Conf	ined Aqui	fer				
JF2 06- JF2d 06- JF11 06- JF21 06- JF31 05- JF41 06- JF51v 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-	07.00	-10	< 4			- 12	-10	4100		-10
JF2d 06- JF11 06- JF21 06- JF31 05- JF41 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-		<19			<32	<3 <3	<10	<120		<18
JF11 06- JF21 06- JF31 05- JF41 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-	-15-90	<19	< 43	<0.1	<32		<10	<120	<28	<18
JF21 06- JF31 05- JF41 06- JF51v 06- JF71v 06- JF71v 06-	-15-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
JF31 05-: JF41 06-: JF51v 06- JF61v 06- JF71v 06-	-04-90	<19	<43	< . 1		<3	<10	<120		<18
JF41 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-	-05-90	<19	<43	< . 1	<32	<3	<10	<120		<18
JF41 06- JF51v 06- JF61v 06- JF71v 06- JF81v 06-	-31-90	<19	<43	< . 1	<32	<3	<10	<120		20
JF51v 06- JF61v 06- JF71v 06- JF81v 06-	-06-90	<19	< 43	< 1	<32	< 3	<10	<120		<18
JF61v 06- JF71v 06- JF81v 06-	-13-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
JF71v 06- JF81v 06-	-14-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
	-13-90	<19	<43	< . 1	<32	<3	<10	<120	<28	<18
	10.00	-10	-10	. 1	*00	-	-10	4100	400	-10
JEAT 02-		<19	< 43	< . 1	<32	<3	<10	<120	<28	<18
	-11-90	<19	< 4		<32	< 3	<10	<120		33
	-17-90	<19	< 4		<32	<3 <3 <3 <3	<10	<120		<18
	-18-90	<19			<32		<10	<120		<18
JF121 05-	-30-90	<19	<43	< . 1	<32	<3	<10	<120		<18
	00 /0			Qual.it y	Assurance	Samples				
TRIP BLANK	00 70	<19	<43	<0.1	<32	<3	<10	<120		<18
FIELD BLANK		<19	<4		<32	<3	<10	<120		<18
FIELD BLANK	06-12-90		<43	< . 1	<32	< 3	<10	<120	<28	<18

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990

[TOC = Total organic carbon; μ g/L = micrograms per liter; mg/L = milligrams per liter; < = less than; -- = data not available; > = greater than; A "v" after a well no. indicates possible contamination bias due to drilling methods, while a "v" after a value indicates parameter was found in the associated blank, as well as in the sample]

NOTE: Well No. ending in "d" represents duplicate analyses. Field blank 1 was collected after sampling well P7. Field blank 2 was collected after sampling well JF83.

Well No.	Station Number	Date	Time	TOC (μg/L)	Aceton (μg/L)	e Benzene (μg/L)	Bromo- di- chloro- methane (µg/L)	Bromo- form (µg/L)	Bromo- methane (μg/L)	Carbon- tetra- chlo- ride (µg/L)
			Vo1	atile org	anic co	mpounds				
				Surfici	al Aqui	fer				
P1 P2 P3 P4	391811076173201 391809076173001 391812076172901 391811076172801	06-06-90 06-12-90 06-07-90 06-07-90	1400 1000 1050 1200	1,000 <1,000 25,000	<8 <8 	<1.0 <1.0 	<1.0	<11 	<14	2.2
P5 P6 P7 P8 P9 P9d	391825076172501 391825076173001 391826076173001 391827076172801 391810076173101	05-11-90 05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	0945 1345 1130 1445 1330 1334	 2,000 2,000	<8 <8 <8 <8 <8	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11 <11 <11	<14 <14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0
TH1 TH1d TH3 TH4 TH4d	391827076172701 391824076173001 391810076172601	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	1130 1134 1330 1030 1034	3,000	<8 <8 <8 <8 <8	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0
TH6 TH7 TH8 TH10 TH11	391817076173701 391814076171001 391816076173801 391805076174001 391806076165201	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	1000 1315 0950 0945 1015	<1,000 3,000 <1,000	<8 <8 <8 <8	<1.0 <1.0 6.4 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0
JF13 JF13d JF23 JF33 JF33d	391809076174303 391809076174603 391814076173803	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	1044 1300 1300 0954 0955	18,000 15,000 3,000 1,800 1,100	<8 <8 <8 <8	1,500 1,100 120 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0
JF43 JF53 JF63 JF73 JF83	391812076173103 391808076172703 391810076172803 391807076172803 391808076173003	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	1030 1355 1340 1400 1100	2,000 <1,000 50,000 2,000 3,000	 <8 <8 <8	<1.0 <1.0 <1.0 <1.0 4.9	<1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11	 <14 <14 <14 <14	<1.0 <1.0 <1.0 11.0
JF93 JF103 JF113 JF123	391825076172603 391826076173106 391826076173103 391827076173003	05-11-90 05-17-90 05-18-90 05-30-90	1100 1000 1330 1300	<1,000	<8 <8 <8 <8	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11	<14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

						ļ		····		
Well No.	Station Number	Date	Time	TOC (μg/L)	Acetone (μg/L)	Benzene (µg/L)	Bromo- di- chloro- methane (µg/L)	Bromo- form (μg/L)	Bromo- methane (μg/L)	Carbon- tetra- chlo- ride (µg/L)
		V	olatile	organic	compounds-	-Continue	ed			
				Confi	ning Unit					
				GOLLE	arag onro					
JF12 JF22 JF32 JF42 JF52	391811076173201 391809076174602 391814076173802 391812076173102 391808076172702	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	1030 1400 1400 1200 1100	5,000 4,000 <1,000 4,000 9,000	<8 <8 <8 <8 <8	3.5 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0
JF62 JF72 JF82 JF82d JF92	391810076172802 391807076172802 391808076173002 391825076172602	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	1100 1430 1000 1004 1115	10,000 180,000 100,000 9,000	<8 >100 90 110 <8	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0
JF102 JF112 JF122	391826076173105 391826076173102 391827076173002	05-18-90 06-08-90 05-30-90	1130 1340 1400	3,000 7,400	<8 90 <8	0.9 <1.0 <1.0	<1.0 <1.0 <1.0	<11 <11 <11	<14 <14 <14	<1.0 <1.0 <1.0
				Confi	ned Aquife	r				
JF1 JF2 JF2d JF11 JF21	391806076165301 391845076171401 391845076171401 391809076174301 391809076174601	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	1200 0950 0954 1400 1400	2,000 2,000 2,000 4,000	<8 <8 <8 	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11	<14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0
JF31 JF41 JF51v JF61v JF71v	391814076173801 391812076173101 391808076172701 391810076172801 391807076172801	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	1215 1100 1415 1130 1130	3,000 9,000 160,000 6,000	<8 130 150 <8	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11	<14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0
JF81v JF91 JF101 JF111 JF121	391808076173001 391825076172601 391826076173104 391826076173101 391827076173001	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	1300 1500 1050 1105 0940	2,000	<8 <8 <8 <8	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<11 <11 <11 <11 <11	<14 <14 <14 <14 <14	<1.0 <1.0 <1.0 <1.0 <1.0
			Qu	ıalit y Ass	urance Sam	ples				
	LANK BLANK 1 BLANK 2	06-12-90 05-17-90 06-12-90	1145 0930	<1,000 <1,000	<8 <8 <8	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<11 <11 <11	<14 <14 <14	<1.0 <1.0 <1.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Chloro- ethane (μg/L)	Chloro- form (μg/L)	Chloro- methane (µg/L)	Dibromo- chloro- methane (µg/L)	Dibromo- chloro- propane (µg/L)	1,1-Di- chloro- ethane (µg/L)	1,2-Di- chloro- ethane (µg/L)
		Volati	le organ	ic compoun	dsContin	ued		
			Surf	icial Aqui	fer			
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	<8.0 <8.0 <8.0	<1.0 <1.0 <1.0	<1.2 <1.2	<1.0 <1.0	<12 <12 <12 <12 <12 <12	3.0 <1.0 <1.0	<1.0 <1.0 <1.0
P6	05-15-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
P7	05-17-90	<8.0	<1.0	2.8	<1.0	<12	<1.0	<1.0
P8	05-16-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
P9	06-08-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
P9d	06-08-90	<8.0	<1.0	<1.2	<1.0		<1.0	<1.0
TH1	05-16-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH1d	05-16-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH3	05-14-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH4	06-13-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH4d	06-13-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH6	06-01-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH7	05-08-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH8	06-04-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH10	06-05-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
TH11	05-08-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF13	06-04-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF13d	06-04-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF23	06-05-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF33	05-31-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF33d	05-31-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	<8.0 <8.0 <8.0 <8.0	 <1.0 7.6 2.9	<1.2 <1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0
JF93	05-11-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF103	05-17-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0
JF113	05-18-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	
JF123	05-30-90	<8.0	<1.0	<1.2	<1.0	<12	<1.0	<1.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Chloro- ethane (µg/L)	Chloro- form (µg/L)	Chloro- methane (µg/L)	Dibromo- chloro- methane (µg/L)	Dibromo- chloro- propane (µg/L)	1,1-Di- chloro- ethane (µg/L)	1,2-Di- chloro- ethane (µg/L)
		Volati	le organi	ic compound	lsContinu	ıed		
			Coni	fining Unit				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<8.0 <8.0 <8.0 <8.0 <8.0	<1.0 <1.0 <1.0 2.2 2.2	<1.2 <1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<8.0 <8.0 <8.0 <8.0 <8.0	<1.0 1.9 6.3 4.9 <1.0	<1.2 <1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	<8.0 <8.0 <8.0	<1.0 <1.0 <1.0	<1.2 <1.2 <1.2	<1.0 <1.0 <1.0	<12 <12 <12	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0
			Confi	ined Aquife	er.			
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<8.0 <8.0 <8.0 <8.0	<1.0 <1.0 <1.0 <1.0	<1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<8.0 <8.0 <8.0 <8.0	<1.0 <1.0 <1.0 24	<1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<8.0 <8.0 <8.0 <8.0 <8.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.2 <1.2 <1.2 <1.2 <1.2	<1.0 <1.0 <1.0 <1.0 <1.0	<12 <12 <12 <12 <12 <12	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0
			Quality	Assurance	Samples			
	ANK LANK 1 05-17-90 LANK 2 06-12-90	<8.0 <8.0 <8.0	<1.0 <1.0 <1.0	<1.2 <1.2 <1.2		<12 <12 <12	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	1,1-Di- chloro- ethene (µg/L)	1,2-Di- chloro- ethene (µg/L)	1,2-Di- chloro- propane (µg/L)	Ethyl- benzene (µg/L)	Methyl- ene chlo- ride (μg/L)	Methyl- iso- butyl- keytone (μg/L)	1,1,2,2- Tetra- chloro- ethane (µg/L)	Tetra- chloro- ethene (µg/L)		
		7	Molatile o	organic co	mpoundsC	ontinued					
Surficial Aquifer											
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	<1 <1 <1 <1 <1	10 <5.0	<3.0 <1.0 <1.0	3.0 <1.0 <1.0	3.0 <1.0 <1.0	<1 <1	100v <1.5	<1.0 <1.0 <1.0		
P6 P7 P8 P9 P9d	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.5 <1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0 <1.0		
TH1 TH1d TH3 TH4 TH4d	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.5 <1.5 <1.5 <1.5 8v	<1.0 <1.0 <1.0 <1.0 <1.0		
TH6 TH7 TH8 TH10 TH11	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 120 <1 <1	<1.5 <1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0 <1.0		
JF13 JF13d JF23 JF33 JF33d	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	640 1,100 <1 <1 <1	<1.5 <1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0		
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90		850 7.3 7,150	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	 <1 <1 <1 <1	3,500 <1.5 340 250	<1.0 18 <1.0 1,000		
JF93 JF103 JF113 JF123	05-11-90 05-17-90 05-18-90 05-30-90	<1 <1 <1 <1	<5.0 <5.0 <1.0 <5.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1	<1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0		

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	1,1-Di- chloro- ethene (µg/L)	1,2-Di- chloro- ethene (µg/L)	1,2-Di- chloro- propane (µg/L)	Ethyl- benzene (µg/L)	Methyl- ene chlo- ride (μg/L)	Methyl- iso- butyl- keytone (µg/L)	1,1,2,2- Tetra- chloro- ethane (µg/L)	Tetra- chloro- ethene (µg/L)
			Volatile	organic c	ompounds	Continued			
				Confinin	g Unit				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0 420	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0 <1.0
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<1 <1 35 26 <1	<5.0 33 240 150 <5.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.5 <1.5 <1.5 <1.5 <1.5	<1.0 <1.0 54v 41v <1.0
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	<1 <1 <1	<5.0 <5.0 <5.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1 <1 <1	<1.5 <1.5 <1.5	<1.0 <1.0 <1.0
				Confined	Aquifer				
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<1 <1 <1 <1 <1	<5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 	<1.5 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<1 <1 3.8 <1 <1	<5.0 430 <1.0 >150	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1	<1.5 <1.5 <1.0 <1.5	<1.0 <1.0 <1.0
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<1 <1 <1 <1 <1	35 <5.0 <5.0 <5.0 <5.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	290 <1.5 <1.5 <1.5	<1.0 <1.0 <1.0 <1.0 <1.0
			Qua	ality Assu	rance Samp	les			
TRIP BLAN FIELD BLA FIELD BLA	NK 1 05-17-90	<1 <1 <1	<1.0 <5.0 <5.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1 <1 <1	<1.5 <1.5 17	<1.0 <1.0 6.2

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Toluene (µg/L)	1,1,1- Tri- chloro- ethane (µg/L)	1,1,2- Tri- chloro- ethane (µg/L)	Tri- chloro- ethene (µg/L)	Tri- chloro- fluoro- methane (µg/L)	Vinyl chlo- ride (µg/L)
		Volatile or	ganic com	poundsC	ontinued		
		Su	rficial A	quifer			
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	3.0 <1.0 <1.0	<1 <1 <1 <1 <1	4.0 <1.0	 44 <1.0	3.0 <1.0 <1.0	<12.0 <12.0
P6 P7 P8 P9 P9d	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 40 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0
TH1d TH1d TH3 TH4 TH4d	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0
TH6 TH7 TH8 TH10 TH11	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0 <12.0
JF13 JF13d JF23 JF33 JF33d	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	 110 <1.0 67	820 600 1,800 4,900	<1.0 <1.0 <1.0 <1.0	130 <12.0 <12.0 56
JF93 JF103 JF113 JF123	05-11-90 05-17-90 05-18-90 05-30-90	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase T, May-June 1990--Continued

Well No.	Date	Toluene (µg/L)	1,1,1- Tri- chloro- ethane (µg/L)	1,1,2- Tri- chloro- ethane (µg/L)	Tri- chloro- ethene (µg/L)	Tri- chloro- fluoro- methane (µg/L)	Vinyl chlo- ride (µg/L)
		V olatile or	ganic comp	oundsCo	ntinued		
			Confining	; Unit			
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 3.0 <1 <1 <1	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 52v	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0 <1.0	2.7v 5.4v 1,600 >150 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0 <12.0
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	<1.0 <1.0 <1.0	<1 <1 <1	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<12.0 <12.0 <12.0
		Co	nfined Aqu	iifer			
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<1.0 <1.0 <1.0 <1.0	2.3 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0	<1.0 10v 3v <1.0	<1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1	<1.0 <1.0 <1.0 <1.0	<1.0 520 2 8	<1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<1.0 <1.0 <1.0 <1.0 <1.0	<1 7 <1 <1 <1 <1 <1	<pre>/,100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	230 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<12.0 <12.0 <12.0 <12.0 <12.0
		Qualit	y Assuranc	e Samples	5		
	NK 06-12-90 ANK 1 05-17-90 ANK 2 06-12-90	<1.0 <1.0 <1.0	<1 <1 <1	<1.0 <1.0 <1.0	<1.0 <1.0 21	<1.0 <1.0 <1.0	<12.0 <12.0 <12.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Time	Aldrin (μg/L)	Atra- zine (μg/L)	Chlor- dane (µg/L)	Chloro- benzene (µg/L)	2- Chloro- ethyl- vinyl- ether (µg/L)	2- Chloro- phenol (μg/L)
		Sem	i-volatil	e organic	compound	s		
			Surfi	cial Aqui	fer			
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	1400 1000 1050 1200 0945	<13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37	<37 <1.0 <1.0	3.0 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
P6 P7 P8 P9 P9d	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	1345 1130 1445 1330 1334	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
TH1d TH1d TH3 TH4 TH4d	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	1130 1134 1330 1030 1034	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
TH6 TH7 TH8 TH10 TH11	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	1000 1315 0950 0945 1015	<13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
JF13 JF13d JF23 JF33 JF33d	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	1044 1300 1300 0954 0955	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	1030 1355 1340 1400 1100	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<pre> <1.0 2.5 <1.0 <1.0</pre>	<3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8
JF93 JF103 JF113 JF123	05-11-90 05-17-90 05-18-90 05-30-90	1100 1000 1330 1300	<13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Time	Aldrin (μg/L)	Atra- zine (µg/L)	Chlor- dane (µg/L)	Chloro- benzene (µg/L)	2- Chloro- ethyl- vinyl- ether (μg/L)	2- Chloro- phenol (µg/L)		
	S	emi-volat	ile organ	ic compoun	dsConti	nued				
			Confi	ning Unit						
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	1030 1400 1400 1200 1100	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8		
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	1100 1430 1000 1004 1115	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8		
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	1130 1340 1400	<13 <13 <13	<5.9 <5.9 <5.9	<37 <37 <37	<1.0 <1.0 <1.0	<3.5 <3.5 <3.5	<2.8 <2.8 <2.8		
			Confin	ed Aquifer						
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	1200 0950 0954 1400 1400	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0	<3.5 <3.5 <3.5	 <2.8 <2.8 <2.8		
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	1215 1100 1415 1130 1130	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8		
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	1300 1500 1050 1105 0940	<13 <13 <13 <13 <13	<5.9 <5.9 <5.9 <5.9	<37 <37 <37 <37 <37	<1.0 <1.0 <1.0 <1.0 <1.0	<3.5 <3.5 <3.5 <3.5 <3.5	<2.8 <2.8 <2.8 <2.8 <2.8		
Quality Assurance Samples										
TRIP BLANK FIELD BLANK 2 FIELD BLANK 2		1050 1105 0940	<13 <13 <13	<5.9 <5.9 <5.9	<37 <37 <37	<1.0 <1.0 <1.0	<3.5 <3.5 <3.5	<2.8 <2.8 <2.8		

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	1,3-Di- chloro- benzene (µg/L)	2,4-Di- chloro- phenol (µg/L)	Di- chlor- vos (µg/L)	Di- eldrin (μg/L)	2,4-Di- methyl- phenol (μg/L)	Endrin (μg/L)	Hexa- chloro- cyclo- pen- tadiene (µg/L)	Isodrin (μg/L)
		Semi-v	rolatile o	rganic co	mpounds	Continue	đ		
			s	urficial	Aquifer				
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	<3.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
P6 P7 P8 P9 P9d	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	<1.0 <1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
TH1d TH1d TH3 TH4 TH4d	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	<1.0 <1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
TH6 TH7 TH8 TH10 TH11	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	<1.0 <1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF13 JF13d JF23 JF33 Jf33d	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	<1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 < 54	<7.8 <7.8 <7.8 <7.8 <7.8
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	<1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 4.3 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF93 JF103 JF113 JF123	05-11-90 05-17-90 05-18-90 05-30-90	<1.0 <1.0 <1.0 <1.0	 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18	<54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	1,3-Di- chloro- benzene (µg/L)	2,4-Di- chloro- phenol (µg/L)	Di- chlor- vos (µg/L)	Di- eld‡in (μg/L)	2,4-Di- methyl- phenol (µg/L)	Endrin (μg/L)	Hexa- chloro- cyclo- pen- tadiene (µg/L)	Isodrin (μg/L)
		Semi	-volatile	organic	compounds	Continu	ıed		
				Confinin	g Unit				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<1.0 <1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<4.8 <1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	<1.0 <1.0 <1.0	<8.4 <8.4 <8.4	<8.5 <8.5 <8.5	<26 <26 <26	<4.4 <4.4 <4.4	<18 <18 <18	<54 <5 4 < 5 4	<7.8 <7.8 <7.8
				Confined	Aquifer				
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<1.0 <1.0 <1.0 <1.0	<8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<1.0 <1.0 <1.0 <4.8	<8.4 <8.4 <8.4 <8.4 <8.4	<8.5 <8.5 <8.5 <8.5 <8.5	<26 <26 <26 <26 <26	<4.4 <4.4 <4.4 <4.4	<18 <18 <18 <18 <18	<54 <54 <54 <54	<7.8 <7.8 <7.8 <7.8 <7.8
			Quali	ty Assura	nce Sampl	es			
	ANK 06-12-90 LANK 1 05-17-90 LANK 2 06-12-90	<1.0 <1.0	<8.4 <8.4 <8.4	<8.5 <8.5 <8.5	<26 <26 <26	<4.4 <4.4 <4.4	<18 <18 <18	<54 <54 <54	<7.8 <7.8 <7.8

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Mala- thion (μg/L)	Meta- xylene (μg/L)	Para- thion (μg/L)	Penta- chloro- phenol (µg/L)	Phenols (µg/L)	2,4,5- Tri- chloro- phenol (µg/L)	2,4,6- Tri- chloro- phenol (µg/L)	Xylene (μg/L)
		Sem	i~volatil	e organic	compounds	sContinu	ed		
				Surficia	1 Aquifer				
P1	06-06-90	<21		<37	<9.1	<2	<2.8	<3.6	<3.0
P2	06-12-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
P3	06-07-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	
P4	06-07-90	<21		<37	<9.1	<2	<2.8	<3.6	
P5	05-11-90	<21	<1.0	<37	<9.1	< 2	<2.8	<3.6	<2.0
P6	05-15-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
P7	05-17-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
P8	05-16-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
P9	06-08-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
P9d	06-08-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH1	05-16-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH1d	05-16-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
ТНЗ	05-14-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH4	06-13-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH4d	06-13-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
T H6	06-01-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH7	05-08-90	<21	<1.0	<37	<9.1	<2	<2.8		<2.0
TH8	06-04-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH10	06-05-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
TH11	05-08-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
						_	_,		
JF13	06-04-90	<21	<1.0	<37		24	<2.8	<3.6	<2.0
JF13d	06-04-90	<21	<1.0	<37	<9.1		<2.8	<3.6	<2.0
JF23	06-05-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF33	05-31-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF33d	05-31-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF43	06-07-90	<21		<37	<9.1	<2	<2.8	<3.6	
JF53	06-07-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF63	06-13-90	<21 <21	<1.0	<37	<9.1	<2 <2	<2.8	<3.6 <3.6	6.7
JF73	06-14-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	
JF83	06-12-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0 <2.0
						_			
JF93	05-11-90	<21	<1.0	<37	<9.1	<2	<2. 8	<3.6	<2.0
JF103	05-17-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF113	05-18-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0
JF123	05-30-90	<21	<1.0	<37	<9.1	<2	<2.8	<3.6	<2.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Mala- thion (μg/L)	Meta- xylene (μg/L)	Para- thion (μg/L)	Penta- chloro- phenol (µg/L)	Phenols (µg/L)	2,4,5- Tri- chloro- phenol (µg/L)	2,4,6- Tri- chloro- phenol (µg/L)	Xylene (µg/L)
		Sem	i-volatil	e organic	compound	sContinu	ed		
				Confini	ng Unit				
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	<21 <21 <21 <21 <21	<1.0 <1.0 <1.0 <1.0 <1.0	<37 <37 <37 <37 <37	<9.1 <9.1 <9.1 <9.1 <9.1	<2 <2 <2 <2 <2 <2	<2.8 <2.8 <2.8 <2.8 <2.8	<3.6 <3.6 <3.6 <3.6 <3.6	<2.0 <2.0 <2.0 <2.0 <2.0
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	<21 <21 <21 <21 <21	<1.0 <1.0 <1.0 <1.0 <1.0	<37 <37 <37 <37 <37	<9.1 <9.1 <9.1 <9.1 <9.1	<2 <2 <2 <2 <2 <2	<2.8 <2.8 <2.8 <2.8 <2.8 <2.8	<3.6 <3.6 <3.6 <3.6 <3.6	<2.0 <2.0 <2.0 <2.0 <2.0
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	<21 <21 <21	<1.0 <1.0 <1.0	<37 <37 <37	<9.1 <9.1 <9.1	<2 <2 <2	<2.8 <2.8 <2.8	<3.6 <3.6 <3.6	<2.0 <2.0 <2.0
				Confined	Aquifer				
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	<21 <21 <21 <21 <21	<1.0 <1.0 <1.0	<37 <37 <37 <37 <37	<9.1 <9.1 <9.1 <9.1 <9.1	<2 <2 <2 <2 <2	<2.8 <2.8 <2.8 <2.8 <2.8	<3.6 <3.6 <3.6 <3.6 <3.6	<2.0 <2.0 <2.0 <2.0
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	<21 <21 <21 <21 <21	<1.0 <1.0 <1.0 <1.0	<37 <37 <37 <37 <37	<pre><9.1 <9.1 <9.1 <9.1 <9.1 <9.1 <9.1</pre>	<2 <2 <2 <2 <2	<2.8 <2.8 <2.8 <2.8 <2.8	<3.6 <3.6 <3.6 <3.6 <3.6	<2.0 <2.0 <2.0 <2.0
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	<21 <21 <21 <21 <21	<1.0 <1.0 <1.0 <1.0 <1.0	<37 <37 <37 <37 <37	<9.1 <9.1 <9.1 <9.1	<2 <2 <2 <2 <2	<2.8 <2.8 <2.8 <2.8 <2.8	<3.6 <3.6 <3.6 <3.6 <3.6	<2.0 <2.0 <2.0 <2.0 <2.0
			Qual	ity Assur	ance Samp	les			
	ANK 06-12-90 LANK 1 05-17-90 LANK 2 06-12-90	<21 <21 <21	<1.0 <1.0 <1.0	<37 <37 <37	< 9.1 < 9.1 < 9.1	<2 <2 <2	<2.8 <2.8 <2.8	<3.6 <3.6 <3.6	<2.0 <2.0 <2.0

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Time	Acrylo- nitrile (µg/L)	Cyanide (µg/L as CN)	2,4- Di- chloro- phenol (µg/L)	2,4- Di- nitro- phenol (µg/L)	2,4-Di- nitro- toluene (µg/L)
		Chemi	cal surety	materials			
		5	Surficial Aq	uifer			
P1 P2 P3 P4 P5	06-06-90 06-12-90 06-07-90 06-07-90 05-11-90	1400 1000 1050 1200 0945	<8.4 <8.4	<5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <0.397 <.397
P6 P7 P8 P9 P9d	05-15-90 05-17-90 05-16-90 06-08-90 06-08-90	1345 1130 1445 1330 1334	<8.4 <8.4 <8.4 <8.4 <8.4	7.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <-397 <.397 <.397
TH1d TH1d TH3 TH4 TH4d	05-16-90 05-16-90 05-14-90 06-13-90 06-13-90	1130 1134 1330 1030 1034	<8.4 <8.4 <8.4 <8.4 <8.4	<5.0 <5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.397 <.397
TH6 TH7 TH8 TH10 TH11	06-01-90 05-08-90 06-04-90 06-05-90 05-08-90	1000 1315 0950 0945 1015	<8.4 <8.4 <8.4 <8.4 <8.4	<5.0 <5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.397 <.397
JF13 JF13d JF23 JF33 JF33d	06-04-90 06-04-90 06-05-90 05-31-90 05-31-90	1044 1300 1300 0954 0955	<8.4 <8.4 <8.4 <8.4 <8.4	21.0 21.0 11.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.397
JF43 JF53 JF63 JF73 JF83	06-07-90 06-13-90 06-14-90 06-12-90 06-12-90	1030 1355 1340 1400 1100	< 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4	<5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	<.397 <.397 <.397 <.397 <.397 <.397
JF93 JF103 JF113 JF123	05-11-90 05-17-90 05-18-90 05-30-90	1100 1000 1330 1300	<8.4 <8.4 <8.4 <8.4	<5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180	 <.397 <.397 <.397

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	Time	Acrylo- nitrile (μg/L)	Cyanide (µg/L as CN)	2,4- Di- chloro- phenol (µg/L)	2,4- Di- nitro- phenol (μg/L)	2,4-Di- nitro- toluene (µg/L)				
	Ch	emical s	urety mater	ials—Cont	inued						
			Confining U	nit							
JF12 JF22 JF32 JF42 JF52	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90	1030 1400 1400 1200 1100	< 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4	<5.0 66.0 <5.0 	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.397 <.397				
JF62 JF72 JF82 JF82d JF92	06-14-90 06-12-90 06-14-90 06-14-90 05-16-90	1100 1430 1000 1004 1115	< 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4	<5.0 <5.0 92.0 84.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 				
JF102 JF112 JF122	05-18-90 06-08-90 05-30-90	1130 1340 1400	<8.4 <8.4 <8.4	 9.0	<8.4 <8.4 <8.4	<180 <180 <180	 <.397				
		C	onfined Aqu	ifer							
JF1 JF2 JF2d JF11 JF21	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90	1200 0950 0954 1400 1400	< 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4	<5.0 <5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 				
JF31 JF41 JF51v JF61v JF71v	05-31-90 06-06-90 06-13-90 06-14-90 06-13-90	1215 1100 1415 1130 1130	< 8 . 4 < 8 . 4 < 8 . 4 < 8 . 4	<5.0 <5.0 14.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.878 				
JF81v JF91 JF101 JF111 JF121	06-12-90 05-11-90 05-17-90 05-18-90 05-30-90	1300 1500 1050 1105 0940	<8.4 <8.4 <8.4 <8.4 <8.4	<5.0 <5.0 <5.0 <5.0	<8.4 <8.4 <8.4 <8.4 <8.4	<180 <180 <180 <180 <180	 <.397				
	Quality Assurance Samples										
TRIP BLANK FIELD BLANK 1 FIELD BLANK 2	06-12-90 05-17-90 65-12-90	1145 0930	<8.4 <8.4 <8.4	<5.0 <5.0 	<8.4 <8.4 <8.4	<180 <180 <180	<.397 <.397				

Table 18. Ground-water-quality data from J-field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	2,6-Di- nitro- toluene (µg/L)	Bis(2- ethyl hexyl) phthal- ate (µg/L)	Nitro- benzene (μg/L)	2- Nitro- phenol (μg/L)	4- Nitro- phenol (μg/L)	RDX (μg/L)	Thio- di- glycol (µg/L)
		Chemi	cal surety	materials-	-Continue	đ		
			Surfici	al Aquifer				
P1	06-06-90				<8.2	<96		
P2	06-12-90				<8.2	<96		
P3	06-07-90	<0.60		<0.682	<8.2	<96	<4.2	
P4	06-07-90	<0.60		<0.682	<8.2	<96	<4.2	
P5	05-11-90				<8.2	<96		
P6	05-15-90	<0.60		<0.682	<8.2	<96	<0.416	
P7	05-17-90				<8.2	<96		
P8	05-16-90	<0.60	~-	<0.682	<8.2	<96	<0.416	
P9	06-08-90	<0.60		<0.682	<8.2	<96	0.521	
P9d	06-08-90	<0.60		<0.682	<8.2	<96	0.471	
TH1	05-16-90				<8.2	<96		
TH1d	05-16-90		~		<8.2	<96		
TH3	05-14-90				<8.2	<96		
TH4	06-13-90	< 0.60	<7.7	<0.682	<8.2	<96	<0.416	<6.6
TH4d	06-13-90	<0.60	<7.7	<0.682	<8.2	<96	<0.416	<6.6
TH6	06-01-90		<7.7		<8.2	<96		
TH7	05-08-90	<0.60		<0.682	8.2	<96	<0.416	
TH8	06-04-90				<8.2	<96		
TH10	06-05-90	<0.60		<0.682	<8.20	<96	<0.416	
TH11	05-08-90				<8.2	<96		
JF13	06-04-90				40.0	<96		
JF13d	06-04-90				<8.2 <8.2	<96		
JF23	06-05-90	<0.60		<0.682	<8.2	<96	<0.416	
JF33	05-31-90		<7.7		<8.2	<96	~0.410	
JF33d	05-31-90		<7.7			<96		
TELO	06 07 00	-0. (0		10 (00	40.0	40.6		
JF43	06-07-90	<0.60	 <7.7	<0.682	<8.2	<96		
JF53	06-13-90	<0.60		<0.682	<8.2	<96	<0.416	<6.
JF63 JF73	06-14-90 06-12-90	<0.60		<0.682	<8.2	<96	4.2	21
JF83	06-12-90	<0.60 <0.60		<0.682 <0.682	<8.2 <8.2	<96 <9 6	1.18 <0.416	
JF93	05-11-90				<8.2	<96		
JF103	05-17-90	<0.60		<0.682	<8.2	<96	0.576	
JF113	05-18-90	<0.60		<0.682	<8.2	<96	<0.416	
JF123	05-30-90	<0.60		<0.682	<8.2	<96	<0.416	

Table 18. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase I, May-June 1990--Continued

Well No.	Date	2,6-Di- nitro- toluene (µg/L)	Bis(2- ethyl hexyl) phthal- ate (µg/L)	Nitro- benzene (µg/L)	2- Nitro- phenol (μg/L)	4- Nitro- phenol (μg/L)	RDX (µg/L)	Thio- di- glycol (µg/L)
		Chem	cal surety (materials-	Concinded			
			Conf	ining Unit				
JF12 JF22 JF32 JF42 JF52 JF62 JF72 JF82 JF82d JF92 JF102 JF112	06-05-90 06-05-90 05-31-90 06-08-90 06-14-90 06-14-90 06-14-90 06-14-90 05-16-90 05-18-90 06-08-90	<0.60 <.60	 <7.7 	<0.682 <.682	<8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2	<96 <96 <96 <96 <96 <96 <96 <96 <96 <96	<0.416 <60.0	
JF122	05-30-90	2.26		<.682	<8.2	<96	1.07	
			Confi	ned Aquifer	-			
JF1 JF2 JF2d JF11 JF21 JF31 JF51v JF51v JF71v JF81v JF91 JF101 JF111 JF121	05-07-90 06-15-90 06-15-90 06-04-90 06-05-90 05-31-90 06-13-90 06-13-90 06-13-90 06-13-90 05-11-90 05-11-90 05-17-90 05-18-90 05-30-90	 <0.60 <.60	<pre> <7.7 <7.7 <7.7</pre>	 0,889 	<8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2 <8.2	<96 <96 <96 <96 <96 <96 <96 <96 <96 <96	 	 <6.69
			Quality As	surance San	ples			
TRIP BLAFIELD BY	LANK 1 05-17	-90	 	<.682 <.682	<8.2 <8.2 <8.2 <8.2	<96 <96 <96	<0.416 <.416	

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993

 $[\mu S/cm = microsiemens per centimeter; mg/L = milligrams per liter; °C = degrees Celsius; <math>\mu g/L = micrograms$ per liter; °- = data not available; < = less than; A "v" after a well no. indicates possible contamination bias due to drilling methods, while a "v" after a value indicates parameter was found in the associated blank, as well as in the sample]

Well No. ending in "d" represents duplicate analyses. Asterisk (*) indicates pH value has exceeded calibration range of the pH meter. Field blank 1 was collected after sampling well JF1. Field blank 2 was collected after sampling well JF21. Field blank 3 was collected after sampling well P8. MOTE:

Magne- sium, dis- solved (µg/L as Mg)			6,700	19,000 19,000 6,400 1,900	20,000 11,000 4,500	4,500	3,700	92,000 5,300 9,400 8,500
Magne- sium totam recov- erable (mg/L)			4.6 67 35 40.2	19 2.4 2.2 1.2	6.8 11 46	4.27 2.7 2.7	23.7	-88 5. 2. 8. 9. 6. 2. 6. 6.
Calcium, dis- solved (µg/L as Ca)			22,000	32,000 31,000 3,200 51,000	72,000 29,000 190,000 130,000	17,000	8,200 330,000 3,100	30,000 30,000 1,900 900 1,000
Calcium, total recov- erable (mg/L)			23 120 23 48	30 31 21 3.2 50.2	27 190 120	16 49 48 96 97	101 39 8.8 320 3.3	2.4 28 1.2 2.0
Oxygen, dis- solved (mg/L)			7.9 1.8 2.2 1.0	5.4 10.0 6.0 2.2	2.0	0.5	 8002	0.00 0.6.5 1.5.5
Temper- ature, water (°C)	jor ions		8 10.5 11.5 2.5 3.5 5.5 5.5	10.5 7.5 12.5 11.5	11.5 12.5 16.0	14.5 11.5 14.0	10.5 12.5 13.5	2.00 2.00 2.50 5.50
Temper- ature, air (°C)	en pue su	l Aquifer	0.000.0 0.000.0	12.0 10.5 8.0	9.0 8.0 2.5 18.5	10.0 1.5 8.0 5.0	3.5 8.5 8.5	8.0 11.0 12.5
pH, Water Whole field (stand- ard units)	1	Surficia	0.836.04 0.846.5	8. 4. 0.0.0 5.0	6.8 6.8 7.0 7.0	4.6 6.3 6.9		จพพ.พ. พ.พ.ษ.ต่.จ
Spe- cific con- duct- ance (µS/cm)	Field		285 988 1,190 769	397 177 148 307	395 703 1,200 1,140 570	172 554 1,010 1,596	523 194 3,990 151	4,770 585 273 127
Time			1330 1330 1200 1015	1100 1104 1400 0930	1100 1030 1230 1410	1030 1130 1134 1430 1400	1404 1130 1350 1330	1200 1200 1300 1300
Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Station number			391809076173001 391812076172901 391812076172801 391825076173001 391826076173001	391827076172801 391810076173101 391827076172701 391824076173001	391816076173801 391805076174001 391809076174303 391809076174603 391814076173803	391812076173103 391812076172703 391810076172803 391807076172803	391808076173003 391825076172603 391826076173106 391826076173103	391827076173003 391806076173501 391808076174401 391815076170301 391815076170601
Well No.			P P P P P P P P P P P P P P P P P P P	P84 P99 TH1	TH8 TH10 JF13 JF23 JF33	JF43 JF534 JF63 JF63	JF73d JF83 JF93 JF103v JF113	JF123 JF1433 JF1433 JF153
	Spe- water cific whole cific whole con- field Temper- Temper- Oxygen, total dis- total dis- total dis- total dis- total dis- total duct- (stand- ature, ature, dis- recov- solved recov- solved recov- (µS/cm) units) (°C) (°C) (mg/L) as Ca) (mg/L)	Spe- water cific whole con- field Temper- Temper- Oxygen, total dis- total duct- (stand- air water solved erable (µg/L) erable (µg/L) as Ca) (mg/L) (mg/L) as Ca) (mg/L)	Spe- water Calcium, Calcium, Sium, con- field Temper- Temper- Oxygen, total dis- duct- (stand ature, dis- recov- solved recov- ance and air water solved erable (\mu S/Cm) units) (°C) (mg/L) (mg/L) as Ca) (mg/L) Field parameters and major ions Surficial Aquifer	Spe- water cific whole confield Temper- Temper- Oxygen, total dis- total duct- (stand- ature, alire, alire, acover coverable ($\mu g/L$) as Ca) ($\mu g/L$) (μ	Station number Date Time confided Temper Temper Oxygen, total dis- total confided Temper Temper Solved Tecoval dis- recovance (145) (167)	Station number Date Time correction discussion number Date Time correction discussion number Date Time correction duct. (stand air water duct. (stand air water duct. (stand air water duct.) ("C") ("C") ("G") ("	Station number Date Time correction water can be sture, atture, atture	Station number

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993--Continued

Welt No.	Station number	Date	Time	Spe- cific con- duct- ance (µS/cm)	pH, water whole field (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Oxygen, dis- solved (mg/L)	Calcium, total recov- erable (mg/L)	Calcium, dis- solved (µg/L as Ca)	Magne- sium tota recov- erable (mg/L)	Magne- sium, dis- solved (µg/L as Mg)
				Field parameters and major ionsContinued	meters and	1 major i	onsCont	irued				
					Confining Unit	ng Unit						
JF12 JF22 JF32 JF32 JF52	3918090 76 174502 391809076174602 391814076173802 391808076172702	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	1000 1000 1004 0930 0745	545 441 91 641	7.2 6.9 6.8 7.8	6.0 16.0 7.0	12.0 13.0 9.0	3.2	98 54 37 94	100,000	2.06 2.06 2.06 2.06	5,200
JF62 JF82v JF122v	391810076172802 391808076173002 391827076173002	01-26-93 01-20-93 12-22-92	0830 1100 1030	566 643 410	7.6	7.0	10.0 13.5	0.5	87 59 31	26,000	5.2 .38 1.2	800
					Confined Aquifer	Aquifer						
152 152 152 153 153 153	391806076165301 391845076171401 391809076174301 391809076174601 391809076173801	01-22-93 01-05-93 01-07-93 01-14-93	1230 1400 1300 1200	1, 100 444 537 589 188	6.6 7.7 7.3 7.4	0.07 8.5.2 0.81	25.55.5 2.5.5 2.5.5 5.5 5.5 5.5 5.5 5.5	0.2	68 67 58 55 55	27,000 68,000 59,000	2.0 2.0 5.0 5.0 5.0	7,000
JF41 JF614 JF614 VF714	391812076173101 391808076172701 391810076172801 391807076172801	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	1230 0730 0800 0804 1030	562 880 1,250 	7.7 7.7 12.1*	8.0 7.0 7.0	74.0 71.0 11.5	0.3	70 70 70 70 70 70 70	7,200	5.6 16 0.78 0.86 25	5,600
JF81V JF91 JF101 JF121	391808076173001 391825076172601 391826076173104 371826076173101 391827076173001	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92	1330 1000 1330 1130 1430	721 501 146 435 480	7.2 7.2 6.5	0.000.	251125 25125 2515 2515 2515 2515 2515 2	0.2 2.0 2.0 2.2	53 86 66 64 6.3	86,000 31,000 58,000 61,000	33.0 3.1.0 3.1.0	2,800 2,500 2,800 2,900
				Qual	Quality Assurance Samples	ance Samp	ક્રો					
FIELD B	BLANK 1 BLANK 2 BLANK 3	01-25-93 01-14-93 12-29-92	1400 1047 1130	:::	:::	:::	:::	:::	0.0	:::		:::

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993--Continued

Iron, dis- solved (µg/L as Fe)		26 200	13 45 ::	14,600 1,600 24	5,200	850 50 14,000	11,000 53,000 30 <10 <10
Iron, total recov- erable (µg/L as Fe)		1,900 8,500 1,000 15,000 3,800	500 870 380 680 2,300	24,000 5,400 3,100 2,400	5,200 18,000 17,000 9,900 3,400	3,400 1,500 15,000 16,000	12,000 50,000 1,800 2,700 1,400
Phos- phate, ortho- dis- solved (mg/L as PO ₄)					^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		
Nitrate, dis- solved (mg/L as N)		2.1 4.5 4.5 1.1	ww. ^ w.4.c. ^	8.000	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ _ ^ _ ^ _ ^ ^ _ ^ ^ _ ^	កំនួរកំស <u>ុ</u>
Fluo- ride, dis- solved (mg/L as F)		0 ~ ~	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ ^ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	^ ^ ^ ^ ~ ~ ~ ~ ~ ~	^ ^ ^ _ ^ ^ ^ ^ ^ ^	งพงงง พัชพัพพัพ
Chlo- ride, dis- solved (mg/L as Cl)	ontinued	14 27 230 6.9	11 9.7 19 7.9	3.6 150 180 140 7.6	6.4 130 130 170 61	95 5.8 7.2	7.5 1,300 64 21 3.8
Sulfate, dis- solved (mg/L as SO4)	ionsContinued	20000			15 7.1 7.0 120 25		•
Alka- linity, (mg/L as CaCO ₃)		<u>5</u>			55 54 200 200		
Potas- sium, dis- solved (µg/L as K)	parameters	 470 850	510 530 680 770	2,700 1,700 2,000 1,900 830	1,400	790 18,000 1,200	10,000 530 590 920
Potas- sium total recov- erable (mg/L)	Field				22.72		
Sodium, dis- solved (mg/L as Na)		37	25:35	7.5 70 3.7 40 9.8	8 : : : :	1 2 2 2 2 2	8.7 670 70 35 5.4
Sodium, total recov- erable (mg/L as Na)		75 75 75 75 75 75 75 75 75 75 75 75 75 7	12 11 11 8.9	20 34 37 8.6	7.6 12 71 22	126118	610 68 5.1 34
Date		01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
well No.		P2 P4 P6	P8 P9 TH1 TH3	TH8 TH10 JF13 JF23 JF33	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103v JF113	JF123 JF133 JF143 JF153 JF163

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993--Continued

lron, dis- solved (µg/L as Fe)		2,200			1000 100	7,100	3,400 8,000 5,100 4,200		:::
		2,1			24,000 9,400 9,200	2	W.W.V.4		
Iron total recov- erable (µg/L as Fe)		6,800 18,000 13,000 28,000 2,100	3,600 700 6,000		52,000 800 11,000 10,000	8,300 430 100 90 2,300	10,000 5,000 7,200 4,900		32 32 32 32
Phos- phate, ortho- dis- solved (mg/L as PO ₄)		0 0,	N. V. V.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.8. 7.8. 7.8. 8.	, , , , , v v v v v		0 v 2 v v
Nitrate dis- solved (mg/L as N)		0 ^ ^ ^ ^ ^ ~ ~ ~ ~ ^ ^	^ ^ ^ សិសិសិ		0 / / / / n'n'n'n'n'	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	- ^ ^ ^ ^ ^ ^ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		6
Fluo- ride, dis- solved (mg/L as F)		0 2 × × × 2 2 2 2 2	<.5 63 2.5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^ ^ ^ · · · · · · · · · · · · · · · · ·	v v v v v លល់សំសំល		0 n.v.v.
Chlo- ride, dis- solved (mg/L as Cl)	Continued	9.0 23 23 7.4 4.4	4.7 12. 4.2		290 81 52 40 40	28 38 13 14 15	25 38 20 20		6 ~. ~.
Sulfate, dis- solved (mg/L as SO4)	or ions-	nit 1.1 18 18 4.8	5.8 20.1 1.8	ii fer	1.4 4.50 1.7 1.8	.9 10 13	59 11.2 1.3 1.2	Samples	0, , 2, ,
Alka- linity, (mg/L as caco ₃)	s and maj	Confining Unit 240 18 190 18 110 18 110 18 340 4	300 210 200	Confined Aquifer	97 190 200 180	220 330 340 330	220 240 170 170	Quality Assurance	:::
Potas- sium, dis- solved (µg/L as K)	Field parameters and major ionsContinued	1,800 1,400	000,59	S	3,300 3,300 3,300	2,900	2,300 3,700 4,600 2,700	Quality	:::
Potas- sium tota(recov- erable (mg/L)	Fiel	3.0 8.03 8.03	9.9 17.2 59.6		3.8 3.1 3.1 3.1 3.1	2.6 53.3 90.1 37.8	20 2.2 4.4 2.7 2.7		0 ~ ~ ~
Sodium, dis- solved (mg/L as Na)		5::::	24		127	E ::::	128421		:::
Sodium, total recov- erable (mg/L as Na)		12 28 26 8.6 16	25 25 25		71 6.9 75 75	9.4 40 50 25 25	34 9.8 113 111		33 2.8 33 3.4 1.1
Date		01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93 01-14-93	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		BLANK 1 01-25-93 BLANK 2 01-14-93 BLANK 3 12-29-92
Well No.		JF12 JF22 JF22d JF32 JF52	JF62 JF82v JF122v		152 1521 1521 1531	JF41 JF51v JF61v JF61dv JF71v	JF81v JF91 JF111 JF121		FIELD BL FIELD BL FIELD BL

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993--Continued

Zinc, dis- solved (µg/L as Zn)				92 10 10	20 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	w;;;;	::24°	212 37 39 39
Zinc total recov- erable (µg/L as Zn)			177 747 734 2800	85v 87v 16v 40v 24v	32v 180v 28v 16v 190v	186 800 176 127	11v 15v 44 25v	210v 210v 53v 34v 44v
Vana- dium, dis- solved (μg/L as V)			:::\\\	44:48	4;44 &	∵ ::::	: : \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£\$\$\$\$
Vana- dium tota((μg/L as V)			\$\$\$2\$	4404n	40440 8.	2.0.00 2.0.00	: : 55.65.85	20444 7.
Mercury, dis- solved (µg/L as Hg)			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~, , , , , , , , , , , , , , , , , , ,	? ; ???	? '::::	,,,,,, ;; , , ,	,,,,,,
Mercury, total recov- erable (µg/L)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , ,	,,,,,,	,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , ,	, , , , , , , , , ,
Manga- nese, dis- solved (μg/L as Mn)							 96 420	-
Manga- nese total recov- erable (μg/L)	s	Aquifer	25v 310 160 170 440	170 250 9.7v 77 43v	520 630 220 99 41v	400 860 830 570 170	180 170 170 400	310 1,700 110 90 130
Cya- nide tota((mg/L as CN)	Metals	Surficial	10000	66:66	5:55:	55511	11666	\$\$\$\$\$\$
Cobalt, dis- solved (µg/L as Co)		Ø		28 28 11 44	66 66 64.2	4::::	::877	44 29 10 7.8
Cobalt, total recov- erable (µg/L as Co)			4	25 29 44 12 8.8	\$4\$\$ 6	6.9 6.2 11.2 4.7	13.7 29 44 5.5	29 .3 12 10 10 22
Barium, dis- solved (µg/L as Ba)			21220	33 152 152	21 170 150 40	37	34 170 45	800 80 80 80 80 80 80
Barium, total recov- erable (µg/L as Ba)			52 81 100 20	22 24 27 27 27 27 27	25 180 150 24	%110 100 8	67 90 170 50	655048 6540
Тіте			1330 1330 1200 1015	1100 1104 1400 0930	1100 1030 1230 1410	1030 1130 1134 1430 1400	1404 1130 1350 1020 1330	1200 1200 1300 1300
Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.			P2 P4 P7	P84 P94 TH1 TH3	TH8 TH10 JF13 JF23 JF33	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103v JF113	JF123 JF133 JF143 JF153 JF163

Table 19. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Inorganic constituents, Phase II, November 1992 through January 1993--Continued

Zinc, dis- solved (µg/L as Zn)		9::8:	: : 4		: 52 : 3	4::::	10044		;	;	:
Zinc total recov- erable (µg/L as Zn)		21 41 36 23 23 23	28¢ 411 4		272 300 200 11 15v	21 13 15 15 15 15	13v 25v 10v		20	11	9.9
Vana- dium, dis- solved (µg/L as V)		4::6:	÷ 28 ;		: 44 : 8	\$::::	: &&&&		:	:	:
Vana- dium tota[(µg/L as V)		40000	% 8%		24488 7	<i></i>	= &&&&		٨	Ą	75
Mercury, dis- solved (μg/L as Hg)		<pre><0.2</pre>	. : 5.		 4.2 4.2 	· · · · · ·	;		:	:	:
Mercury, total recov- erable (µg/L)		0, , , , ,	×.22 2.22		0.	22222	,,,,,,		<0.2	<.2	<.2
Manga- nese, dis- solved (µg/L as Mn)		1,900	32		510 910 	,100	540 940 1,900 2,100	શુ	:	;	;
Manga- nese, total recov- erable (µg/L)	ntinued va Unit	2,900 2,900 1,000 680	790 26v 750	Aquifer	1,100 11,000 3,000 1,500	1,000 150 5.6v 5.7v 480	880 570 1,600 2,100 2,100	Quality Assurance Samples	\$	59	55
Cya- nide tota((mg/L as CN)	MetalsContinued Confining Unit	17.1	22.3	Confined Aquifer	500011	1 6666	10000	ty Assura	<10	<10	°10
Cobalt, dis-solved (µg/L as Co)	ž	\$::4:	::4		: \$\$:4	4::::	: 4444	Qual i	:	;	:
Cobalt, total recoverable (#g/L as Co)		6 4444	444		46644	44444	n4444		7,	7>	9
Barium, dis- solved (µg/L as Ba)		06::08:	30		100 100 54	110	53 46 43		;	;	•
Barium, total recov- erable (µg/L as Ba)		110 130 130 87 54	75 51 62		240 23 110 47 70	120 120 120 120	120 61 63 59 51		3. 0	<3.0	<3.0
Time		1000 1000 1004 0930 0745	0830 1100 1030		1230 1400 1300 1200 1230	1230 0730 0800 0804 1030	1330 1000 1330 1130 1430		1400	1047	1130
Date		01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93 01-14-93	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		BLANK 1 01-25-93	01-14-93	12-29-92
Well No.		JF12 JF22 JF32 JF32 JF52	JF62 JF82v JF122v		152 153 1531 1531	JF41 JF51v JF61dv JF61dv JF71v	JF81v JF91 JF101 JF111		IELD	JELD	LIELD

Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-Organic constituents, Phase II, November 1992 through January 1993 Table 20.

[µg/L = micrograms per liter; < = less than; > = greater than; -- = data not available; P,P' DDD = 1,1-Dichloro-2,2- bis-(pchlorophenyl)-1 ethane; P,P' DDT = 2,2-Bis(p-chlorophenyl)-1,1-trichloroethene; A "v" after a well no. indicates possible contamination bias due to drilling methods, while a "v" after a value indicates parameter was found in the associated blank, as well as in the sample; A "j" after a value indicates an estimated value that is less than the reporting value; An "e" after a value indicates analyses that exceeded the calibration range of the instrument]

Well No. ending in a "d" represents duplicate analyses. Field blank 1 was collected after sampling well JF1. Field blank 2 was collected after sampling well JF21. Field blank 3 was collected after sampling well P8. NOTE:

Chloro- ethane (µg/L)			\$200 \$200 \$33 \$33	55555	55588 65588		<pre><250 <250 <1,000 <20,000</pre>	\$\$\$\$\$\$	55 5
Chloro- benzene (µg/L)			\$\$00 \$\$00 \$33 \$33	\$\$\$\$\$\$	<u>^</u>		<pre><250 <250 <1,000 <20,000 </pre>	\$\$\$\$\$\$	**** 665
Carbon- tetra- chlo- ride (µg/L)			\$200 \$200 \$33 \$33	666 : 6	6 66 8 :	\$50 \$10 \$400 \$400 \$400	<250 <1,000 <20,000	2 6666	\$ \$\$\$
Carbon di- sulfide (μg/L)			\$200 \$300 \$300 \$300	\$\$\$\$\$	\$\$\$\$\$\$, 11 , 10 , 400 , 400 , 400	<250 <250 <500 <1,000 <20,000	\$\$\$\$\$	\$\$\$
Bromo- methane (μg/L)			<pre><200 <200 <33</pre>	\$\$ \$ \$\$	4.10 50 50	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<250 <250 <500 <1,000 <20,000 <	\$\$\$\$\$	^ ^ 10 0 10
Bromo- form (µg/L)	spur	۲.	\$200 \$300 \$300 \$300 \$300 \$300 \$300 \$300	6 6666	55588	\$\$\cdot \cdot \cdo	<250 <250 <500 <1,000 <20,000 <2	2 5556	* * * * * * * * * * * * * * * * * * *
Bromo- di- chloro- methane (µg/L)	mīc compo	Surficial Aquifer	\$200 \$200 \$3 \$3	66666	66688	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	<250 <250 <1,000 <20,000	\$\$\$ \$\$	*** ****
Benzene (μg/L)	Volatile organic compounds	Surfic	\$200 \$200 \$33 \$33	666:6	012 012 000 1000 1000 1000 1000 1000 10	\$\$ \$\\ \$\\ \$\\ \$\\ \$\\ \$\\ \$\\ \$\\ \$\\	<250 <1,000 <20,000	555 6 6	<10 2j <10
Acetone (μg/L)	۸		<200 49v j 5v j 11v j	χ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	410 50 50 50 50 50	3vj 4vj 110vj	73vj <250 <500 <1,000 6,700j	110V 13V 13V 10V	410 470 10
Time			1330 1330 1200 1015	1100 1104 1104 1400	0930 1100 1230 1234	1410 1400 1030 1130	1430 1434 1400 1130	1350 1330 1200 1200	1100 1300 1300
Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 01-14-93 12-29-92	12-16-92 01-06-93 01-14-93 01-07-93 01-07-93	01-11-93 11-23-92 12-03-92 01-21-93 01-21-93	01-20-93 01-20-93 01-19-93 01-19-93	12-14-92 12-22-92 12-16-92 12-21-92 12-30-92	12-30-92 01-06-93 12-30-92
Station number			391809076173001 391812076172901 391811076172801 391825076173001 391826076173001	391827076172801 391810076173101 391827076172701	391824076173001 391816076173801 391805076174001 391809076174303	391809076174603 391814076173803 391812076173103 391808076172703	391810076172803 391807076172803 391808076173003	391825076172603 391826076173106 391826076173103 391827076173003 391806076173501	391808076174401 391815076170301 391815076170601
Well No.			P P P P P P P P P P P P P P P P P P P	P84 P99 TH1	TH3 TH8 TH10 JF13	JF23 JF33 JF43 JF53 JF53d	JF63 JF63d JF73 JF73d JF83	JF93 JF103 JF113 JF123 JF133	JF143 JF153 JF163

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Well No.	Station number	Date	Time	Acetone (μg/L)	Benzene (μg/L)	Bromo- di- chloro- methane (µg/L)	Bromo- form (µg/L)	Bromo- methane (μg/L)	Carbon di- sulfide (#9/L)	Carbon- tetra- ch(o- ride (μg/L)	Chloro- benzene (µg/L)	Chloro- ethane (µg/L)
				Volatile		organic compounds-	-Continued					
					Confi	Confining Unit						
JF12 JF22 JF32 JF32	391809076174502 391809076174602 391814076173802 391808076172702	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	1000 1000 1004 0930 0745	8 550 14 14 10	4,410 4,000 1,000	\$\$\$\$\$\$ \$\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$\$	66666	\$\$\$\$\$\$	55555	410 410 10 10 10
JF62 JF82 JF122	391810076172802 391808076173002 391827076173002	01-26-93 01-20-93 12-22-92	0830 1100 1030	4 j 45v 30v	100 100 100 100	^^ ^100 100 100 100	200 000 000 000	4100 4100 410	<10 35 j <10	100 100 100 100	4100 4100 4100	012 010 015
					Confined	red Aquifer						
152 152 1721 1721	391806076165301 391845076171401 391809076174301 391809076174601 391814076173801	01-22-93 01-05-93 01-07-93 01-14-93	1230 1400 1300 1200	12v 12v 3v; 8v;	\$\$\$\$\$\$	<u> </u>	\$\$ \$\$ \$	6 6666	÷6555	\$\$\$\$\$	\$\$\$\$\$	7 7 7 7 7 0 0 0 0 0 0 0 0 0
JF41 JF514 JF6104 JF714	391812076173101 391808076172701 391810076172801 391807076172801	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	1230 0730 0800 0804 1030	45. 45. 45. 45. 46.	55555	000 00 0	56666	66646	6.2.2.6	55555	2 \$\$\$\$\$	00000 00000 000000
JF81V JF81dV JF101 JF111 JF121	391808076173001 391825076172601 391826076173104 391826076173101 391827076173101	01-19-93 01-19-93 12-14-92 12-16-92 12-21-92	1330 1334 1000 1330 1130 1430	65 650 4,1 6,1 10	4:6666	4000000 400000	400000	550 550 500 510 510 510	400000 400000 000000	4:0000 0000 0000	4000000 400000	450 50 610 610 610 610
				đ	Quality Assurance		Samples					
FIELD BLA FIELD BLA FIELD BLA	BLANK 1 BLANK 2 BLANK 3	01-22-93 01-14-93 12-29-92	1245 1245 1115	3. 10. 10.	666	200	666	0 0 0 0 0 0	977	666	666	^ ^ 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRIP BLANK TRIP BLANK TRIP BLANK TRIP BLANK	₹₹₹₹ -0₩4₩	12-14-92 01-14-93 01-15-93 01-19-93 01-20-93	1115 1300 1330 1500 1330	2 40 7 7 7 7 8 7 8	\$\$\$\$\$\$	50000 60000	\$\$\$\$\$	66666	\$\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$\$	00000 00000
TRIP BLANK TRIP BLANK TRIP BLANK	**** ****	01-21-93 01-25-93 01-25-93 01-26-93	1330 1440 0830	4 4 5 7 7 7 7	\$\$\$\$\$	6666	2555	\$ \$ \$\$\$	5555 5555	25 <u>6</u> 5	\$\$\$\$	55 <u>6</u> 5

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Well No.	Date	Chloro- form (µg/L)	Chloro- methane (μg/L)	Di- bromo- chloro- methane (μg/L)	1,1-Di- chloro- ethane (µg/L)	1,2-Di- chloro- ethane (µg/L)	1,2-Di- chloro- ethene (µg/L)	1,1-Di- chloro- ethene (μg/L)	1,2-Di- chloro- propane (µg/L)	cis- 1,3-Di- chloro- propene (μg/L)	trans- 1,3-Di- chloro- propene (µg/L)	Ethyl- benzene (μg/L)
				Volatil	e organic	Volatile organic compoundsContinued	sContinu	1				
					Confi	Confining Unit						
JF12 JF22 JF22d JF32 JF52	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	\$	\$\$\$\$\$\$	410 410 410 152	\$\$\$\$\$\$	\$\$\$\$\$\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$	7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9
JF62 JF82 JF122	01-26-93 01-20-93 12-22-92	600 1000 1000	200 000 000 000 000 000 000 000 000 000	600	, 100 100 100 100	<100 <100 <10	4 j 190 <10	, 100 100 100	100 100 100 100 100	410 410 410	, 1 00 100 100 100	<10 <100 <10
					Confin	Confined Aquifer	L					
151 151 1521 1531	01-22-93 01-05-93 01-07-93 01-14-93 11-24-92	\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	1,0000 1,0000 1,0000	\$\$\$\$\$\$\$	\$	\$\$ \$\$ \$\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	77777 700000 700000
JF41 JF51v JF61v JF61dv JF71v	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	55555	000000 00000	\$\$\$\$\$\$	66666	000000	<10 >200e 2j 2j <10	000000	000 00	55555	66666	000000
JF81V JF81dV JF101 JF111	19- 16- 16- 16- 16-	4000000 400000000000000000000000000000	4.00000 4.00000 0.00000	4 < 10 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	4.00000 4.00000 100000	4,50 10 10 10 10 10 10	22 - 10 - 10 - 10 - 10	250 10 10 10 10 10	4.0000 4.0000 0.0000	50 50 50 50 510 510 510	50 50 50 50 50 50 50 50 50 50 50 50 50 5	4400000 4000000
				ð	Quality Assurance		Samples					
FIELD BL FIELD BL FIELD BL	ANK 1 01-22-93 ANK 2 01-14-93 ANK 3 12-29-92	7.7.	7 7 7 0 0 0 0 0 0	777 000 000	**************************************	0 10 10 10 10	606	\$55 000 000	777 000 000	\$ \$ \$\$	\$\$\$	770 7000 7000
TRIP BLA	BLANK 1 12-14-92 BLANK 2 01-14-93 BLANK 3 01-15-93 BLANK 4 01-19-93 BLANK 5 01-20-93	\$	\$\$\$\$\$\$	\$\$\$\$\$\$	5555 6	2 2555	66666	\$\$\$\$\$	\$\$\$\$\$\$	55555 55555	\$\$ \$ \$\$\$	7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9
TRIP BLAI TRIP BLAI TRIP BLAI	ANK 6 01-21-93 ANK 7 01-25-93 ANK 8 01-25-93 ANK 9 01-26-93	\$ \$\$\$	2000	55 <u>5</u> 5	V V V V 10000	\$\$\$\$\$\$	\$\$\$\$\$ \$\$\$\$\$	\$\$\$\$\$	2444 6666	\$\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$ \$\$\$\$\$

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Vinyl chlo- ride (µg/L)			<10 <200 <10 <33	\$\$\$\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	410 410 50 	<10 <10 <10 110j	<250 <500 <1,000 <20,000	22225	<u> </u>
Tri- chloro- ethene (µg/L)			<10 570 3,600 <10 310	666 : 6	6668 666 666 666 666 666 666 666 666 66	<pre><10 <10 <10 </pre> <pre></pre> <pre><</pre>	4,400 5,100 4,800 41,000 <2	\$\$\$\$\$\$	6 1,1 1,1
1,1,2- Tri- chloro- ethane (µg/L)			\$200 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$	555:5	00000 0000 0000 0000 0000 0000 0000 0000	300 300 300 300 300	<250 <	55555	410 43.j
1,1,1- rri- chloro- ethane (µg/L)			\$200 \$200 \$33 \$33	\$\$\$\$\$	55555 5555 555 555 555 555 555 555 555	0, 0, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	<pre><250 <250 <550 <1,000 <20,000</pre>	\$\$\$ \$ \$	410 410
Toluene (μg/L)	8		\$200 \$200 \$33	555:5	50 50 50 50 50 50 50	4,400 4,000 4,000 4,000	<250 <1,000 <20,000	00000	<10 <10 <10
Tetra- chloro- ethene (µg/L)	-Continu		3400 <200 <10 <33	500015	. 50 50 50 50 50	**************************************	130 j 280 j 290 j 3,600 j	55555 55555	<10 1 j
1,1,2,2- fetra- chloro- ethane (µg/L)	Volatile organic compoundsContinued	Surficial Aquifer	\$200 \$300 \$300 \$300 \$300 \$300 \$300 \$300	\$\$\$: \$	666 <u>8</u> :	4,900 5,000 5,000		66666	<10 <10 10
Methyl n-butyl keytone (μg/L)	e organic	Surfici	\$	55555	55588	\$\$\$ \$\$\$ \$\$\$ \$\$\$	<pre><250 <250 <1,000 <20,000</pre>	55555	<10 2vj 10
Methyl- iso- butyl- ketone (μg/L)	Volatil		\$	\$\$\$\$\$	55588	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre><250 <250 <500 <1,000 <20,000</pre>	55555	<10 4vj 10
Methyl- ethyl- keytone (µg/L)			34,200	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00	010 010 050 18 28	01. 01. 04. 04. 04. 04. 04. 04. 04. 04. 04. 04	<250 74vj 170vj <1,000 <20,000 <	55555	<10 5vj
Methyl- ene chlo- ride (µg/L)			1vj <200 <200 <10 <33	%-%-%- ->>>>-	1010105050	<10 <10 <10 <400 <400	<250 <250 <1,000 <20,000	<10 3 10<br 48 48 10	<10 3vj
Date			01-21-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 01-14-93 12-29-92	12-16-92 01-06-93 01-14-93 01-07-93 01-07-93	01-11-93 11-23-92 12-03-92 01-21-93 01-21-93	01-20-93 01-20-93 01-19-93 01-19-93	12-14-92 12-22-92 12-16-92 12-21-92 12-30-92	12-30-92 01-06-93 12-30-92
Well No.			P 26 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	888 P99 TH1	TH3 TH8 TH10 JF13 JF13d	JF23 JF33 JF43 JF53 JF53d	JF63 JF63d JF73 JF73d JF83	JF93 JF103 JF113 JF123 JF133	JF143 JF153 JF163

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Well No.	Date	Methyl- ene chlo- ride (μg/L)	Methyl- ethyl- keytone (μg/L)	Methyl- iso- butyl- ketone (μg/L)	Methyl n-butyl keytone (μg/L)	1,1,2,2- letra- chloro- ethane (µg/L)	Tetra- chloro- ethene (µg/L)	Toluene (μg/L)	1,1,1- Tri- chloro- ethane $(\mu g/L)$	1,1,2- Tri- chloro- ethane (µg/L)	Tri- chloro- ethene (μg/L)	Vinyl chlo- ride (µg/L)
				Volatile	Volatile organic compoundsContinued	-spunoduo	-Continue	7				
					Confin	Confining Unit						
	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	\$\$\$\$ \$\$\$ \$\$\$	40 40 2 52 50 70 70	00000 0000 10000 10000	\$	\$\$\$\$\$ [†]	55555 5000 6000 6000	27777 00000 00000	\$\$\$\$\$\$\$	00000 10000 10000	\$	55555 55555
F62 F82 F122	01-26-93 01-20-93 12-22-92	100 100 100	<10 <100 8j	, 10 100 100 100	<100 <100 <10	^100 ^100 ^10	<10 22j <10	<100 <100 <10	<100 <100 <10	^100 ^10	1,800 <10	00°, 100°,
					Confine	d Aquifer						
	01-22-93 01-05-93 01-07-93 01-14-93	\$\$\$\$\$ \$\$\$\$\$ £	410 410 410 2 <u>5</u> 2 <u>5</u>	\$	20000 20000	\$\$ \$\$ \$\$	00000 0000 0000	7 7 7 0 1000 <u>1</u> 000	\$	\$\$ \$\$ \$\$\$	\$\$\$ \$\$ \$	\$\$\$\$\$\$\$
51v 61v 61dv 71v	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	\$	<10 <10 <10 34j 34j	000000 000000	0 0 0 0 0 0 0 0 0 0 0 0 0	410 410 210 210 210	410 410 410 410 410 410 410 410 410 410	0000000 000000000000000000000000000000	55555 50000000000000000000000000000000	55555 55555	<10 97 <10 <10 3j	5555 555 555 555 555 555 555 555 555 5
81v 81dv 91 111	01-19-93 01-19-93 12-14-92 12-16-92 12-16-92 12-21-92	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	410 010 13 13 10	4500000 1000000 100000000000000000000000	^ ^ 50 50 610 610 610	5; 100 100 100 100 100 100 100 100 100 10	3 j <10 <10 <10 <10	41. 100. 100. 100. 100. 100.	777777 400000 00000	4 : 00000	220 <10 <10 <10	4 - 10 - 10 - 10 - 10 - 10 - 10
				0	Quality As	61	Samples					
ELD BLANK ELD BLANK ELD BLANK	IK 1 01-22-93 IK 2 01-14-93 IK 3 12-29-92	410 410 2j	<10 <10 4 j	555 650	2 0 0 0 0 0 0	7 V V	7 7 7 7 0 7 0 7	770	1 1 1 1 1 1 1 1	\$\frac{1}{2}	666	666
BLANK BLANK BLANK BLANK BLANK BLANK	(1 12-14-92 (2 01-14-93 (3 01-15-93 (4 01-19-93 (5 01-20-93	010 3.0 10 10 10 10 10 10 10 10 10 10 10 10 10	443 42 469 31	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	\$	56666	66666	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$	66666
BLANK BLANK BLANK BLANK BLANK	(6 01-21-93 (7 01-25-93 (8 01-25-93 (9 01-26-93	12. 2. 2.	410 3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	25 <u>6</u> 2	\$\$\$\$\$	0000 7777	7777 2000 2000	7777 0000	2222	2000 0000	\$\$\$\$\$\$	\$\$\$\$\$

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Well No.	Station number	Date	Time	Ace- naphth- ene (#g/L)	Ace- naphthy- lene (μg/L)	Aldrin (μg/L)	Anthra- cene (μg/L)	Alpha benzene hexa- chlo- ride (μg/L)	Beta benzene hexa- chlo- ride (μg/L)	Delta benzene hexa- chlo- ride (μg/L)	Benzo[a] anthra- cene (μg/L)	Benzo[a] pyrene (μg/L)	Benzo [b] fluor- an- thene (μg/L)
				Semi-	Semi-volatile organic compounds	organic (compounds	44					
					Surfici	Surficial Aquifer	er						
P2 P4 P6	391809076173001 391812076172901 391811076172801 391825076173001 391826076173001	01-14-93 01-21-93 01-21-93 12-15-92	1330 1330 1200 1015 1200	\$\$\$\$\$\$	\$\$\$\$\$\$	60.05 6.05 6.05 6.05	\$\$\$\$\$\$\$\$	60.05 6.05 6.05 6.05	0.05 0.05 0.05 0.05 0.05	<pre></pre>	00000	00000	\$\$\$\$\$
P8 P9 TH1 TH3	391827076172801 391810076173101 391827076172701 391824076173001	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	1100 1104 1100 1400 0930	\$\$\$\$\$\$	\$\$\$\$\$\$\$	· · · · · · · · · · · · · · · · · · ·	\$	· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	\$\$\$\$\$\$	\$\$\$\$\$\$	00000
TH8 TH10 JF13 JF23 JF33	391816076173801 391805076174001 391809076174303 391809076174603 391814076173803	01-06-93 01-14-93 01-07-93 01-11-93	1100 1030 1230 1410 1400	\$\$\$\$ \$	25552		77997	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	\$\$\$\$\$ \$	\$\$\$\$\$ \$	\$\$\$\$ \$
JF43 JF53 JF53d JF63 JF73	391812076173103 391808076172703 391810076172803 391807076172803	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	1030 1130 1134 1430 1400	\$\$\$\$\$	\$\$\$\$\$\$		\$\$\$\$ \$ \$\$	· · · · · · · · · · · · · · · · · · ·	* * * * * * \$ \$ \$ \$ \$ \$ \$	* * * * * * * * * * * * * * * * * * *	\$ \$\$\$\$\$\$	\$\$\$\$\$\$	\$\$ \$\$ \$
JF73d JF83 JF93 JF103 JF113	391808076173003 391825076172603 391826076173106 391826076173105	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	1404 1130 1350 1020 1330	03000 03000	64 66 6		64666 6666	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	. 0.5. 0.5<td>64666 64666</td><td>64666 6466</td><td>64666 64666</td>	64666 64666	64666 6466	64666 64666
JF123 JF133 JF143 JF153 JF163	391827076173003 391806076173501 391808076174401 391815076170301 391815076170601	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92	1200 1200 1300 1300	00000	\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$	* * * * * * \$ \$ \$ \$ \$ \$	* * * * * * 88.888	***** 88888	\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$

Table 20. Ground-Water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Well No.	Station number	Date	Time	Ace- naphth- ene (µg/L)	Ace- naphthy- lene (μg/L)	Aldrin (µg/L)	Anthra- cene (μg/L)	Alpha benzene hexa- chlo- ride (μg/L)	Beta benzene hexa- chlo- ride (μg/L)	Delta benzene hexa- chlo- ride (μg/L)	Benzo[a] anthra- cene (µg/L)	Benzo[a] pyrene (μg/L)	Benzo[b] fluor- an- thene (µg/L)
				Semi-volatile organic compoundsContinued	ile organ	ic compo	undsCon	tinued					
					Confin	Confining Unit							
JF12 JF22 JF32 JF32 JF52	391809076174302 391809076174602 391814076173802 391808076172702	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	1000 1000 1004 0930 0745	7 7 7 7 7 7 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	\$	60.05 6.05 6.05 6.05 6.05	\$\$\$\$\$\$\$	6.05 6.05 6.05 6.05 6.05	0.05 0.05 0.05 0.05 0.05	6.05 6.05 6.05 6.05 6.05	\$\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$\$\$\$\$\$	55555
JF62 JF82 JF122	391810076172802 391808076173002 391827076173002	01-26-93 01-20-93 12-22-92	0830 1100 1030	7 V V V	\$\$\$\$ 0 0 0 0 0 0	<.05 <.05 <.05	7 1 1 1 1 1 1	<.05 <.05 <.05	<.05 <.05 <.05	.05.05.05	<u>^ ^ ^ ^ </u>	6 66	^ ^ ^ ^ ^ ^ ^ ^ ^
					Confine	Confined Aquifer	L						
JF1 JF2 JF211 JF211	391806076165301 39184507617401 39180907617430 391809076174601 391814076173801	01-22-93 01-05-93 01-07-93 01-14-93 11-24-92	1230 1400 1300 1200 1230	55555	\$	60.05 6.05 6.05 6.05 6.05	\$\$\$\$\$ \$\$\$\$ \$\$\$	60.05 6.05 6.05 6.05 6.05	6.05 6.05 6.05 6.05 6.05 6.05	60.05 6.05 6.05 6.05 6.05	\$\frac{1}{2}\$	55555	55555
JF41 JF51v JF61v JF61d v	391812076173101 391808076172701 391810076172801 391807076172801	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	1230 0730 0800 0804 1030	\$5555 \$5555	\$	· · · · · · · · · · · · · · · · · · ·	\$\$\$\$\$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		\$	\$\$\$\$\$\$\$\$	\$\$\$\$\$\$
JF81V JF91 JF101 JF111	391808076173001 391825076172601 391826076173104 391826076173101 391827076173001	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92	1330 1000 1330 1130 1430	V V V V 100000	\$		\$\$\$\$\$\$\$				\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$
				ð	Quality Assurance Samples	urance Si	S J						
FIELD	BLANK 1 BLANK 2 BLANK 3	01-22-93 01-14-93 12-29-92	1245 1245 1150	, , , 100 100	666		7 100 100 100		6. 6.65	6. 6.95 6.95	6 66	666	555 600 600

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

4- Chloro- phenyl phenyl Chry- ether sene (µg/L) (µg/L)		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12	000000 00000 00000 00000 00000 00000 0000	^ ^ ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$
2- Chloro- phenol (µg/L)		55555	\$\$\$\$\$\$\$	00025	20000	0.31.00	\$\$\$\$\$
2- Chloro- naph- thalene (µg/L)		27777 600000	27777 00000	12000 1200 1200 1200	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0,4 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	\$\$\$\$\$\$\$
Bis (2- chloro- iso- propyl) ether (μg/L)		\$	\$\$\$\$\$\$	22 2 25	\$\$\$\$\$\$	24777 04000	\$\$\$\$\$\$
Bis (2- chloro- ethyl) ether (μg/L)	ntinued	00000 00000	27777 00000	7777 12000 12000 12000	27777 00000	4,4,4,0 10,000 1	5555 5
Bis (2- chloro- ethoxy) methane (µg/L)	undsCor	27777 00000	77777 00000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	55555 65555 65555	1,4,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0	\$
4- Chloro- analine (µg/L)	e organic compoun Surficial Aquifer	. 55555	24444 64444	\$\$\$\$\$\$ \$\$\$\$\$\$ \$\$\$\$\$\$\$	\$\$\$\$\$\$	24777 04000	\$\$\$\$ \$
Gamma- chlor- dane (μg/L)	rile organ	0.05 0.05 0.05 0.05 0.05		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Alpha chlor- dane (μg/L)	Semi-volatile organic compoundsContinued Surficial Aquifer	6.05 6.05 6.05 6.05		 	 	 88888	 8888
4- Bromo- phenyl phenyl ether (#g/L)		25555 66556	\$\$\$\$\$\$	\$\$\$\$\$ \$	\$\$\$\$\$\$	247. 040. 040. 040. 040.	\$\$\$\$\$
Benzo [ghi] pery- lene (μg/L)		2222 00000	2444 <u>4</u>	77777 170007 170007	\$	0,4,4,0 10,000 10,000 10,000	\$
Benzo [k] fluor- an- thene (µg/L)		77777 00000 00000	77777 00000 00000	12000 1200 1200 1200 1200 1200 1200 120	\$\$\$\$\$\$\$	0,4,4,4 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	\$\$\$\$ \$ \$
Date		01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.		P	P8 P8d P9 TH1	TH8 TH10 JF13 JF23 JF33	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103 JF113	JF123 JF133 JF143 JF153 JF163

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Chry- sene (µg/L)			\$5555 600 600 600 600 600 600 600 600 600	\$\frac{1}{2}		2 7 7 2 4 4 5	\$ 1	\$\$\$\$\$\$\$	\$\$\$\$\$		4 4 10 10 10
4- Chloro- phenyl phenyl ether (µg/L)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\frac{10}{10}\$		0 10 10 10 10	<10 <11	\$	77777 70000 70000		777 7000
2- Chloro- phenol (µg/L)			\$\frac{1}{2} \frac{1}{2} \frac	0 0 0 0 0 0 0		5 5 5 5 5 5	<10 <11	\$	77777		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
2- Chloro- naph- thalene (µg/L)			\$\$\$\$ \$\$	\$50 \$10 \$10		666	<10 <11	\$\$\$\$\$\$	\$		\$\$\$\$ \$\$\$\$
Bis (2- chloro- iso- propyl) ether (µg/L)			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	410 10 10		5 5 5 5 5 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7	<10 <11	\$\$\$\$\$\$\$	22222		2000 2000
Bis (2- chloro- ethyl) ether (µg/L)	tinued		\$\$\$\$\$\$\$	010 100 100 100 100		555 555	1 011	\$\$\$\$\$\$	\$\$\$\$\$\$\$		666
Bis (2- chloro- ethoxy) methane (µg/L)	ndsCon		66626	0 0 0 0 0 0 0 0 0	•	555 505	1 0 11	\$\$\$\$\$	\$\$\$\$\$\$	න <mark>අ</mark>	200 000 000
4- Chloro- analine (µg/L)	ic compox	Confining Unit	**************************************	4 4 10 10 10 10	Confined Aquifer	555 605 605	0 11 11	55555 66666	00000 00000	Quality Assurance Samples	555 666
Gamma- chlor- dane (µg/L)	ile organ	Confir	6.05 6.05 6.05 6.05	.05.05.05	Confine	<0.05 <0.05 <0.05	 		× · · · · · · · · · · · · · · · · · · ·	lity Assu	4.05 6.05 6.05 7.0
Alpha chlor- dane (µg/L)	Semi-volatile organic compoundsContinued		60.05 6.05 6.05 6.05	.05.05.05		<0.05 <.05 <05	88.		· · · · · · · · · · · · · · · · · · ·	870	
4- Bromo- phenyl phenyl ether (#9/L)	s		\$5555 6005 6005 6005 6005 6005 6005 6005	^ <u>^ ^ </u>		66 6	\$ \	\$\$\$\$\$\$	\$		222
Benzo [ghi] pery- lene (µg/L)			<u> </u>	**************************************		010	6 .	\$\$\$\$\$\$	\$\$\$\$\$\$\$		555 600 600 600 600 600 600 600 600 600
Benzo [k] fluor- an- thene (μg/L)			\$\frac{1}{2}\frac{1}{2	7 V V V V V V V V V V V V V V V V V V V		7.7. 7.00 7.00 7.00 7.00 7.00 7.00 7.00	6 2	55555 50000	\$\$\$\$\$\$\$\$		-93 <10 -92 <10 <10
Bate			01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93	01-14-93	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		1 01-22 2 01-14 3 12-29
Well No.			JF12 JF22 JF324 JF32 JF52	JF62 JF82 JF122		JF1 JF2 111	F21 F31	JF41 JF51v JF61v JF61dv JF71v	JF81v JF91 JF101 JF111		FIELD BLANK FIELD BLANK FIELD BLANK

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Di- methyl phthal- ate (μg/L)			55555	\$\$\$\$\$\$	\$\$\$\$ \$	00 <u>0</u> 000	64444 6466 6	\$\$\$\$\$
2,4-Di- methyl- phenol (µg/L)			\$	77777 00000 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 7 7 7 0 0 0 0 0 0 0 0 0 0	24 25 20 20 20 20 20 20 20 20 20 20 20 20 20	55555 600000
Di- eldrin (μg/L)			6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	*****	 55555	· · · · · · · · · · · · · · · · · · ·
2,4-Di- chloro- phenol (µg/L)			\$	\$	12000 12000 115000	\$	0.44.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	5555 6
3,3'- Di- chloro- benzi- dine (µg/L)	inued		27777 00000 00000	\$\frac{1}{2}\frac{1}{2	44410 44410	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	044.4.6.0 040.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	\$\$\$\$\$\$\$
1,4-Di- chloro- benzene (µg/L)	ndsCont		66666		2,4,4,6 12,000 1	2,7,4,4 6,6,6,6,6,6,6	0,4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	55555 6555 6555 6555 6555 6555 6555 65
1,3-Di- chloro- benzene (µg/L)	ic compou	Surficial Aquifer	55555 5555 5555 5555 5555 5555 5555 5555	1,4,4,4, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$	644 640 640 640 640 640 640 640 640 640	\$\$\$\$\$ \$ \$
1,2-Di- chloro- benzene (µg/L)	Semi-volatile organic compoundsContinued	Surficia	\$\$\$\$\$\$	\$\$\$\$\$\$\$	15 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	\$	0,4,4,4 0,0,0,0 0,0,0,0,0	\$ \$ \$
Dibenzo- furan (μg/L)	emi-volat		55555 65050 65050	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$	2,40 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1	77777 70000 70000 70000
P, P' DĎT (µ9/L)	S		0 v v v v v v v v v v v v v v v v v v v	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		*****	20000
P, P' 00E (μg/L)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	 	·····	·····	 6.0000 6.0000
P, P' 000 (49/L)			0, 0,000 0,000 0,000	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 66666	*****	;;;;; 55555
Date			01-14-93 01-21-93 01-21-93 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.			P2 P4 P6 P7	P8 P8d P9 TH1 TH3	TH8 TH10 JF13 JF23	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103 JF113	JF123 JF133 JF143 JF153 JF163

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Di- methyl phthal- ate (µg/L)		2222 5	\$\frac{10}{10}		6 666	÷ ;	20000	66666		0 0 0 0 0 0 0 0
2,4-Di- m methyl- p phenol (µg/L) (000770	^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2 7 7 0 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	20000 20000	\$\$\$\$\$\$		000
Di- eldrin (μg/L)		0 0 0			6		20000	·····		
2,4-Di- chloro- phenol (µg/L)		\$\$\$\$\$\$\$	000 000 000		0000	- -	86666	\$\$\$\$\$\$		\$\$\$\$
3,3'- bi- chloro- benzi- dine (µg/L)	inued	2 2225	666		555	<u></u>	88888	\$\$\$\$\$\$\$		277 1000 1000
1,4-Di- chloro- benzene (µg/L)	Semi-volatile organic compoundsContinued Confining Unit	55555	\$\frac{1}{2}\$		0 10 10 10 10	2	86666	\$	જ્ઞ	10 10 10 10
1,3-Di- chloro- benzene (µg/L)	c compoun g Unit	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$\$	Aqui fer	0 0 0 0 0 0 0 0 0 0 0	} = :	86666	77277	ance Samp	\$50 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00
1,2-Di- chloro- benzene (µg/L)	le organic comp Confining Unit	77777 1000 1000 1000	\$\$\$\$\$	Confined Aquifer	0 0 0 0 0 0 0 0 0 0		25555	77777	Quality Assurance Samples	2 10 10 10
Dibenzo- furan (μg/L)	mi-volatí	77777	0 10 10 10		0000 0000 0000	2	\$ \$\$\$\$	\$	grad Jene	\$50 000 000 000 000 000 000 000 000 000
ρ, Ρ' DĎT (μg/L)	, %	 	· · · · · · · · · · · · · · · · · · ·		60.10 . 10 . 10 . 10	· · ·	 66666	·····		
ρ, Ρ' οδΕ (μg/L)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	···		6.70 	· · ·	2222	· · · · · · · · · · · · · · · · · · ·		6.70 6.10 6.10
P, P' DDD (μg/L)		0 0.0000 0.0000	2000			. 10	22222	· · · · · · · · · · · · · · · · · · ·		3 <0.10 3 <.10 2 <.10
Date		01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93 01-14-93	11-24-92	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		NK 1 01-22-93 NK 2 01-14-93 NK 3 12-29-92
Well No.		JF12 JF22 JF324 JF32	JF62 JF82 JF122		JF1 JF2 JF21	37.	JF41 JF51v JF61v JF61dv JF71v	JF81V JF91 JF111 JF121		FIELD BLANK FIELD BLANK FIELD BLANK

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Hexa- chloro- but- adiene (μg/L)			\$\$\$\$\$\$	\$\$\$\$\$\$	7777 7	\$\$\$\$\$\$	<u>^</u>	\$\$\$\$\$\$
Hexa- chloro- benzene (μg/L)			\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	75655	\$ \$\$\$\$\$\$	2,4,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	55555 50000 50000
Hepta- chlor epoxide (µg/L)			6 88888	 25252	****** 8888	 88888	***** 88888	88888
Hepta- chlor (µg/L)			6 6 . 6	 			· · · · · · · · · · · · · · · · · · ·	
Fluor- ene (µg/L)	rued		\$\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	77777 7770 7770 7770 7770	7 77 7	5455 6	\$\$\$\$\$\$
Fluor- anthene (μg/L)	dsConti		5555 6	\$\$\$\$\$\$\$\$	750000	66666	0,4,0,0 0,00	\$\$\$\$\$\$\$\$
Endrin ketone (µg/L)	Semi-volatile organic compoundsContinued	al Aquifer	0,,,,	*****	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	*****	· · · · · · · · · · · · · · · · · · ·
Endrin alde- hyde (µg/L)	ile organi	Surficial	6 6.6666	·····	·····	*****	·····	·····
Endrin (µg/L)	emi-volat		0, v v v v v v v v v v v v v v v v v v v	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·
Endo- sulfan sulfate (#g/L)	\ \dots		0, , , , , 0, 0, 0, 0, 0	· · · · · · · · · · · · · · · · · · ·	******	*****	· · · · · · · · · · · · · · · · · · ·	·····
Endo- sulfan- 1 (µg/L)			0.05 6.05 6.05 6.05 6.05			* * * * * * * * * * * * * * * * * * *	 88888	× × × × × × × × × × × × × × × × × × ×
Beta- endo- sulfan (μg/L)			6 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93 11-23-92	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.			P2 P4 P4 P7	P8 P84 TH1 TH3	TH8 TH10 JF13 JF33	1553 1553 1553 1653 1673	JF734 JF83 JF93 JF103	JF123 JF133 JF143 JF153

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Hexa- chloro- but- adiene (µg/L)			25525	0777 000 000		\$555 500 500 500 500 500 500 500 500 500	11	00000	00000		666
Hexa- chloro- benzene (µg/L)			22222	200 000 000		\$5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	~11	\$\$\$\$\$\$	\$\$\$\$\$\$		2 55
Hepta- chlor epoxide (µg/L)			6 88888			0.05 0.05 0.05 0.05 0.05	<.05	· · · · · · · · · · · · · · · · · · ·	***** 88888		<0.05 <.05 <.05
Hepta- chlor (µg/L)			0 0 0 0 0 0 0 0 0 0 0 0	.05.05.05		60.05 6.05 6.05 6.05	<.05	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×		6.0 6.05 6.05
Fluor- ene (µg/L)	8		55555 55555 55555	2 666		9999	5	20200	\$ \$\$\$\$\$ \$\$		666
Fluor- anthene (μg/L)	Semi-volatile organic compoundsContinued		55555	200		6666	11	9999 9	\$\$\$\$\$\$	প্র	\$55 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00
Endrin ketone (µg/L)	compounds	g Unit	6 6 6 6 6	 01.10 100 100 100 100 100 100 100 10	Aquifer	60.10 6.10 6.10	<.10	 55555	· · · · · · · · · · · · · · · · · · ·	Quality Assurance Samples	6 6.00
Endrin alde- hyde (#g/L)	e organic	Confining Unit	0 v v v v v v v v v v v v v v v v v v v	· · · · · · · · · · · · · · · · · · ·	Confined Aquifer	0.00	<.10	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ity Assur	6 5
Endrin (μg/L)	i-volatil		0 v v v v	· · · ·		0.00 0.10 0.10 0.10	<.10	22222	· · · · · · · ·	Qual	6 v v 6 0 0 0
Endo- sul fan sul fate (µg/L)	Sem		6 6 6 6	· · · · · · · · · · · · · · · · · · ·		60.10 6.10 6.10 6.10	·. 10		·····		6 6 6
Endo- sul fan- I (μg/L)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.05.05.05		0.05 0.05 0.05 0.05 0.05	<.05	· · · · · · · · · · · · · · · · · · ·	× × × × × × × × × × × × × × × × × × ×		6 × × 50 50 50
Beta- endo- sulfan (µg/L)			, , , , , , , , , , , , , , , , , , ,	· · · ·		0	·.10	· · · · · · · · · · · · · · · · · · ·	*****		3 <0.10 3 <.10 2 <.10
Date			01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93 01-14-93	11-24-92	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		NK 1 01-22-93 NK 2 01-14-93 NK 3 12-29-92
Well No.			JF12 JF22 JF22d JF32 JF52	JF62 JF82 JF122		152 152 1521	JF31	JF41 JF51v JF61v JF61dv	JF81V JF91 JF111		FIELD BLANK FIELD BLANK FIELD BLANK

Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued Table 20.

Penta- chloro- Phenan- phenol threne (µg/L) (µg/L)			\$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25		<pre><25 <25 <26 <27 <26 <27 <27 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28</pre>	\$25 \$25 \$25 \$25 \$25 \$40 \$25 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40	400 400 425 400 440 440 450 410 410 410 410 410 410 410 410 410 41	\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$
N- nitro- sodi-N- propyl- chl amine phe (#g/L) (#g/L)			00000	99999	25655	22222	0.3.0.0.0 0.0.0.0.0 0.0.0.0.0	\$\$\$\$\$\$
Naph- thalene (μg/L)			00000 00000	00000 00000	7770	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.000 00000 00000	66666
2- Methyl naph- thalene (μg/L)	ontinued		22222	22222	77707	00000 00000	0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	\$\$\$\$\$
Meth- oxy- chlor (µg/L)	Semi-volatile organic compoundsContinued	ıi fer	60.50 6.50 6.50 6.50	50 50 50 50	<pre><.50 <.50 <.50 <.62 <.54 <.54 </pre>		· · · · · · · · · · · · · · · · · · ·	
Lindane (μg/L)	rganic com	Surficial Aquifer	0 20 20 20 20 20 20 20 20 20 20 20 20 20				 88888	 88888
Iso- phorone (µg/L)	olatile on	Suri	\$\$\$\$\$\$	20000	77797	\$\$\$\$\$\$	24777 04000	\$\$\$\$\$\$
Indeno [1,2, 3-C,D] pyrene (µg/L)	Semi-ve		\$\$\$\$\$\$	00000	25555	\$\$\$\$\$\$	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	\$\$\$\$\$
Hexa- chloro- ethane (µg/L)			22222	22222	77777	2000 2000 2000 2000	610 610 610 610 610	66666
Hexa- chloro- cyclo- pen- tadiene (µg/L)			~~~~~ 00000	~~~~~ 00000	7777 7	<u> </u>	^4^^^	\$\$\$\$\$\$\$
Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.			P P P P P P P P P P P P P P P P P P P	P8 P9 TH1 TH3	TH8 TH10 JF13 JF23 JF33	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103 JF113	JF123 JF133 JF143 JF153 JF153

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

Semi-volatile organic compounds - Continued Confining Unit Confining Unit F22 01-08-93 <10 <10 <10 <10 <10 <25 F22 01-12-93 <10 <10 <10 <10 <10 <25 F22 01-12-93 <10 <10 <10 <10 <10 <25 F22 01-12-93 <10 <10 <10 <10 <10 <25 F32 01-12-93 <10 <10 <10 <10 <10 <25 F52 01-12-93 <10 <10 <10 <10 <25 <11 <27 F52 01-26-93 <10 <10 <10 <10 <25 <11 <11 <27 F52 01-26-93 <10 <10 <10 <10 <10 <10 <25 <10 <10 <10 <25 <10 <10 <10 <25 <10 <10 <10 <10	F31 11-24-92 (11) (11) (11) (12) (13) (13) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Quality Assurance Samples Quality Assurance Samples 1 01-22-93 <10 <10 <10 <10 <0.50 <10 <10 <10 <25 <0.50 <10 <10 <0.55 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.
	Confining Unit Confining Unit Confining Unit	Confining Unit Confining Unit
		F31 11-24-92

1	وم ا			00000	00000	00000	00000	00000	0000.		
	χylene (μg/L)			^200 ^200 ^200 ^10	55555	250 250 210 210 210	<pre><10 <400 <400 <250 <500</pre>	<20,000 <20,000 <10 <10 <10	555€		
	2,4,6- Tri- chloro- phenol (µg/L)			22222	\$	412 412 412 413	\$	1440000 0000000000000000000000000000000	\$\$\$\$\$\$		
Proving hrough J	2,4,5- Tri- chloro- phenol (µg/L)	ontinued		\$\$\$\$\$\$\$\$	\$\$\$\$\$\$	\$25 \$25 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30	\$\$\$\$\$\$\$\$\$	\$ 5 \$\$\$\$	<u> </u>		
	1,2,4- fri- chloro- benzene (μg/L)	compoundsContinued	uifer	55555	\$\$\$\$\$\$\$	777077	2555 2	0,4,4,4 10,000 10,000	\$\$\$\$\$\$\$\$		
Ground-water-quality data from J-Field, Aberdeen Proving Ground, Organic constituents, Phase II, November 1992 through January Continued	Styrene (µg/L)			Surficial Aquifer	ficial Aq	200 200 200 200 10	\$\$\$\$\$\$	\$	<pre>< 10 < 400 < 400 < 250 < 500 </pre>	20,000 20,000 1000 1000 1000 1000	\$\$\$\$ \$\$\$!-
	Pyrene (μg/L)	-volatile organic	Sur	\$\$\$\$\$\$	\$\$\$\$\$\$	75055	\$\$\$\$\$\$	÷3÷55	55555		
	Phenols (µg/L)	Semi-vo		00000	~~~~~ 00000	410 13 12 11	00000 0000	0,40 4,0 10,0 10,0 10,0	2000 0		
	Date			01-14-93 01-21-93 01-21-93 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92		
	Well No.			P2 P4 P6 P7	P8 P8d P9 TH1 TH3	TH8 TH10 JF13 JF33	JF43 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103 JF113	JF123 JF133 JF143 JF153 JF163		

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

- 1								
	Date	Phenols (µg/L)	Pyrene (μg/L)	Styrene (µg/L)	1,2,4- fri- chloro- benzene (µg/L)	2,4,5- Tri- chloro- phenol (µg/L)	2,4,6- fri- chloro- phenol (µg/L)	Xylene (μg/L)
		Semi-vol	latile or	ganic com	Semi-volatile organic compoundsContinued	ntinued		
			Con	Confining Unit	ī			
	01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01 12.01 1.01 1.01	\$\$\$\$\$\$\$	0 0000	\$\$\$\$\$\$\$	%%%% %	\$\$\$\$\$	27777 00000
	01-26-93 01-20-93 12-22-92	411 8j 9j	<u> </u>	01°, 100°,	<u>200</u>	\$25 \$25 \$25	<u> </u>	100 100 100 100 100
			Conf	Confined Aquifer	ēr			
	01-22-93 01-05-93 01-07-93 01-14-93	\$\$\$\$\$ \$	\$4555 \$4555	\$\frac{1}{2}\$	00000 0000 0000 0000 0000 0000 0000 0000	\$25 \$35 \$35 \$35 \$35	55565	55555
	12-01-92 01-26-93 01-26-93 01-26-93	410 22 22 6j	55555	55555	\$\$\$\$\$\$\$	%%%% %	55555	55555
	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92	24444 10444 1044	77777 20000 20000	40000 40000	******* ******************************	\$\$\$\$\$\$\$ \$\$\$\$\$\$	\$\$\$\$\$\$	40000 40000
		J	Quality Assurance	ssurance (Samples			
444	BLANK 1 01-22-93 BLANK 2 01-14-93 BLANK 3 12-29-93	666	555	555 565	666	\$\$\$\$	\$\$\$	\$\$\$

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland-

1	2- [- al-								
	Bis(2- ethyl- hexyl) phthal- ate (μg/L)			5000 500 500 500 500 500 500 500 500 50	\$\$\$\$\$\$\$	2777 1770 1770 1770 1770	\$2000 \$200 \$200 \$200 \$300 \$300 \$300 \$300	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	210 10 10 10 10 10 10 10 10 10 10 10 10 1
	2,6-Di- nitro- toluene (µg/L)			%%%%%	%%%%%	%%%% %	%%%%%	%%%%	%%%% %
and Continued	2,4-Di- nitro- toluene (µg/L)			%%%%	33333	33333	33333	33333	99999
Ground-water-quality data trom J-Field, Aberdeen Proving Ground, Maryland Organic constituents, Phase II, November 1992 through January 1993Continued	2,4,- Di- nitro- phenol (μg/L)			<i>ఫిసిసిసిసి</i>	<i>సిసిసిసిసి</i>	<i>\$</i> 8888	<i>ఫీసీసీసీసీ</i>	నీ క ్ సీసీసీ	<i>ఫీసీసీసీసీ</i>
oving Grou	1,3,Di- nitro- benzene (µg/L)	,,		%%%%%	9 9 999	99999	99999	33333	%%%%%
1992 thro	Di-n- octyl - phthal- ate (µg/L)	materials	Aquifer	\$\$\$\$\$\$	\$\$\$\$\$\$	75055	000000	0.44.0.0 0.0000 0.0000	66666
tovember	Di-n- butyl phthal ate (µg/L)	Chemical surety	Surficial Aquifer	55555	\$\$\$\$\$\$	77797	\$\$\$\$\$\$	64666 64666	\$\$\$\$\$\$\$
from J-F ase II, I	Diethyl phthal- ate (μg/L)	Chemica	Z	\$	\$\$\$\$\$\$\$\$	777077	\$\$\$\$\$\$\$	64466 6466 6466 6466 6466	\$\$\$\$\$\$
ory data uents, Ph	n-Butyl benzyl phthal- ate (µg/L)			\$\$\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$ \$	\$\$\$\$\$\$	0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	\$\$\$\$\$\$
ater-qual c constit	Time			1330 1330 1200 1015	1100 1104 1100 1400 0930	1100 10 3 0 12 3 0 1410 1400	1030 1130 1134 1430 1400	1404 1130 1350 1020 1330	1200 1200 1100 1300 1300
Ground-W Organi	Date			01-14-93 01-21-93 01-21-93 12-15-92 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
lable 20.	Well No.			55 54 54 54 54 54 54 54 54 54 54 54 54 5	P8 P8d P9 TH1 TH3	TH8 TH10 JF13 JF23 JF33	JF53 JF53 JF53d JF63 JF73	JF73d JF83 JF93 JF103 JF113	JF123 JF133 JF143 JF153 JF163

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

i										
		11 410 22 5vj	4vj 4j 1vj		44 4 4 5 10 4 4 5 10 4 4 5 10 4 4 5 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10	410 344 364 364	1.5vj 410 410 7vj		5.0 5.0	
		%% %%	%%%		\$\$ \$\$ \$	\$\$\$\$\$	%%%% %		% %%	
		%%%%%	%% %		\$\$\$\$\$	%%%%%	%%%% %		%% %	
		<i>ຈ</i> ໍລໍຈໍຊໍຊໍ	\$\$\$\$\$\$		<i>ស</i> ំសំសំ <mark>វ</mark> ន់	<i>సిసిసిసిసి</i>	<i>ងំងំងំងំងំ</i>		²⁵ 55	
Continued		%%%%%	%% %		\$\$\$\$\$	\$\$\$\$\$	% %%%%	83	%% %	
terials(y Unit	\$5000 \$41 \$\display{2}{\dinpla	3vj 11j <10	Aqui fer	22. 23. 10. 11.	010 6V.j 3V.j 13V.j 100	410 410 410 6vj	ice Sample	500 600	
surety ma	Confinin	\$\$\$ 5 \$	200	onfined /	55555	\$\$\$\$\$	\$\$\$\$\$\$	cy Assura	555 565	
hemical s		\$\$\$\$ \$ \$\$	4.410 100 100	J	\$	\$5555 60000 60000	\$\$\$\$\$\$\$	Qual i 1	5 5 5 5 5 6 7 6	
0		66626	66626	2.4.4 0.00 0.00		55555	\$\$\$\$\$\$\$	\$\$\$\$\$\$		000
		1000 1000 1004 0930 0745	0830 1100 1030		1230 1400 1300 1230	1230 0730 0800 0804 1030	1330 1000 1330 1130		93 1245 93 1245 92 1115	
			1-08-93 1-12-93 1-12-93 1-23-92 1-26-93	1-26-93 1-20-93 2-22-92		11-22-93 11-05-93 11-14-93 11-24-92	12-01-92 31-26-93 31-26-93 31-26-93	11-19-93 12-14-92 12-16-92 12-16-92 12-21-92		IK 1 01-22-93 IK 2 01-14-93 IK 3 12-29-92
		JF12 JF22 JF22d JF32	JF62 JF82 JF122		152 152 1531	JF41 JF51v JF61v JF61dv JF71v	JF81V JF91 JF101 JF111		FIELD BLANK FIELD BLANK FIELD BLANK	
	Chemical surety materialsContinued	Chemical surety materialsContinued Confining Unit	Chemical surety materialsContinued O1-08-93 1000 <10 <10 <10 <2 <25 <2 <2	Chemical surety materialsContinued Confining Unit 01-08-93 1000 <10 <10 <10 <2 <25 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Chemical surety materialsContinued Confining Unit 01-08-93 1000 <10 <10 <10 <2 <25 <2 <2 <10 <10 <10 <10 <2 <25 <2 <2 <10 <10 <10 <10 <2 <25 <2 <2 <2 <10 <10 <10 <10 <10 <2 <25 <2 <2 <2 <2 <10 <10 <10 <10 <10 <10 <2 <25 <2 <2 <2 <2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Chemical surety materials—Continued Confining Unit 01-08-93 1000 <10 <10 <10 <2 <25 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Confining Unit O1-08-93 1000 <10 <10 <10 <10 <2 <25 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Confining Unit Confined Surety materials Continued Confined Surety materials Confined Surety	Chemical surety materials—Continued Confining Unit Confining Unit	

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

RDX (µg/L)			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	%%:%%	0:000	%%%%%	0.000 4.000	%%%%%
PETN (µg/L)			\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$	\$	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$	\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$	\$250 \$250 \$250 \$250 \$250
N- nitro- sodi- phenyl- amine (µg/L)			0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	01 1,01 1,01 1,01	7770 7770 7770 7770 7770	\$	044 05 05 05 05 05 05 05 05 05 05 05 05 05	610 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
4- Nitro- phenol (µg/L)			<i>ង</i> ់សំងំសំ	<i>ងំងំងំងំងំ</i>	<i>\$</i> 8888	<i>ង</i> ់សំងំសំ	సకససస	సీసిసిసిసి
2- Nitro- phenol (#g/L)			\$\$\$\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$ \$	\$\$\$\$\$\$	64666 6666	\$\$\$\$\$\$
Nitro- glyc- erine (μg/L)	inued		\$	\$	\$	\$	\$	\$
Nitro- benzene (µg/L)	alsCont	fer	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$	7770	\$\$\$\$\$\$\$	0,4,4,4,6 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	\$\$\$\$\$\$\$
4- Nitro- aniline (µg/L)	ty materi	Surficial Aquifer	<i></i>	<i>ຄ</i> ື ກໍຄື ກໍຄື ກໍຄື ກໍຄື ກໍຄື ກໍຄື ກໍຄື ກໍຄ	బీబీబీజీఇ	<i></i>	<u> </u>	<i></i>
2- Nitro- aniline (µg/L)	Chemical surety materialsContinued	Surfi	<i></i>	<i>ఫీసీసీసీసీ</i>	సీసీసీపీ	<i></i>	<u> </u>	<i></i>
3- Nitro- aniline (µg/L)	Chem		<i>ស</i> សំសំសំ	<i>ភ</i> ្ជំនំវាំសំនំ	స్ట్రస్ట్రప్లి	<i>ងំងំងំងំងំ</i>	ន ទ ិស <mark>៌</mark> សំសំ	<i>ងំងំងំ</i> ងំ
Z- Methyl 4,6-di- nitro- phenol (µg/L)			<i>\$</i> \$\$\$\$\$	సీసీసీసీసీ	\$\$\$\$\$\$\$ \$	<i>\$</i> \$\$\$\$\$	ກໍຣົ <i>່</i> ກໍຄໍຄໍ	<i></i>
HMX F			%%%%%	%%%%%	%%%%%	, , ,	% %%2%	4.0000 4.
Date			01-14-93 01-21-93 01-21-93 12-15-92	12-29-92 12-29-92 01-14-93 12-29-92 12-16-92	01-06-93 01-14-93 01-07-93 01-11-93 11-23-92	12-03-92 01-21-93 01-21-93 01-20-93 01-19-93	01-19-93 01-19-93 12-14-92 12-22-92 12-16-92	12-21-92 12-30-92 12-30-92 01-06-93 12-30-92
Well No.			55 54 54 54 54 54	P84 P99 TH1 TH3	TH8 TH10 JF13 JF23 JF33	JF43 JF534 JF63 JF63	JF73d JF83 JF93 JF103	JF123 JF143 JF153 JF153

Table 20. Ground-water-quality data from J-Field, Aberdeen Proving Ground, Maryland--Organic constituents, Phase II, November 1992 through January 1993--Continued

. ^	ı															
RDX (μ9/L)			%%%% %	%%%		%%%% %	%%%% %	%%% % %		999						
PETN (μg/)L			888888	\$\$5 \$\$5 \$\$0 \$\$0 \$\$0 \$\$0		\$	\$\$\$\$\$\$\$	\$\$\$\$\$\$\$		4250 4250 4250						
N- nitro- sodi- phenyl- amine (µg/L)			99979	\$ \$ \$ \$ \$		410 410 12Vj	<u> </u>	0 0 1 1 1 1 1 1		\$\$\$\$ \$\$\$\$						
4- Nitro- phenol (µg/L)			ŵŵŵ ¢ŵ	\$\$\$\$		<i>ភ</i> ំនំនំនំ	<u> జీసిసిసిసి</u>	సీసీసీసీసీ		888						
2- Nitro- phenol (µg/L)									\$	0 10 10 10		25000 00000	77777 -0000	\$		440 400 400
Nitro- glγc- erine (μg/L)	tinued		\$	\$50 \$50 \$50		\$\$\$\$ \$50 50	\$50000	\$\$\$\$\$\$\$\$\$\$		\$\$\$\$ \$0 \$0 \$0						
Nitro- benzene (μg/L)	alsCon	it	\$\$\$\$\$\$\$\$	<10 <10 2.8	fer	27777 20000 20000		20000	Samples	7 7 7 7 7 7 7 7						
4- Nitro- aniline (μg/L)	ty materi	Confining Unit	<i>\$</i> 8\$\$\$\$	888	Confined Aquifer	<i>ង់ង់ង់</i> ង់	<u> </u>	సీసీసీసీసీ	Quality Assurance Samples	సీసీసీ						
2- Nitro- aniline (μg/L)	ical sure	Chemical surety materialsContinued Confining Unit	Σ.	9	88888	\$\$\$\$	Conf	<i>ង់ង់ង់</i> ង់	<u> </u>	బీసీసీసీసీ	Quality A	888				
3- Nitro- aniline (µg/L)	Che				\$\$\$\$\$\$\$	ర్టి స్ట్రిస్ట్రీ క	<u> </u>	<u>జ</u> ిసిసిసిసి	సిసిసిసిసి		888					
Methyl 4,6-di- nitro- phenol (#g/L)									ŵ &\$\$\$\$	<25 <25 <25	32,23	\$ \$\$\$\$\$	\$\$\$\$\$\$\$\$	బీసీసీసీసీ		సీసీసీ
HMX (ηβ/L)					%%%% %	%% %		%%%% %	%%%% %	%%%%%		%%%				
Date			01-08-93 01-12-93 01-12-93 11-23-92 01-26-93	01-26-93 01-20-93 12-22-92		01-22-93 01-05-93 01-07-93 01-14-93 11-24-92	12-01-92 01-26-93 01-26-93 01-26-93 01-21-93	01-19-93 12-14-92 12-16-92 12-16-92 12-21-92		BLANK 1 01-22-93 BLANK 2 01-14-93 BLANK 3 12-29-92						
Well No.			JF12 JF22 JF32 JF52	JF62 JF82 JF122		JF2 JF2 JF21 JF31	JF41 JF51v JF61dv JF71v	JF81V JF91 JF111 JF121		FIELD BLA FIELD BLA FIELD BLA						

Percentage of recovery for volatile organic compounds detected in field matrix spikes of ground-water samples, compared to laboratory matrix spikes and spike duplicates, Phase II, December 1992 and January 1993 Table 21.

sample) concentrations from a corresponding sample were subtracted from the [µg/L, micrograms per liter; --, data not available; ambient (unspiked sample) con spiked environmental sample concentrations to obtain the percentage of recovery]

(7/6n Percentage of recovery for field matrix spikes (assuming no background concentration, expected concentration is 125

ride	
Vinyl chloride	77 80 77 57
Tri- chloro- ethene	112 96 *b 160*c
1,1,2- Tri- chloro- ethane	136 128 136 104
Toluene	112 104 112 75*
Tetra- chloro- ethene	112 96 104 55
1,1,2,2- Tetra- chloro- ethane	128 136 60* 108
1,2- Dj chloro- ethene	100 96 46 87
1 ₆ 1- Di- chloro- ethene	::::
Chloro- benzene	::::
Carbon tetra- chlor- ide	112 96 96 96 58
Benzene	112 64*a 120 88
Date	01/14/93 01/07/93 01/20/93 01/19/93
Sample No.	P9 JF13 JF81

/d/6π Percentage of recovery for laboratory matrix spikes and spike duplicates (assuming no background concentration, expected concentration is 50

::	::	: :	::::	
84 153*	95 91	28.2	90 94 87 87 87	71-120
			! ! ! !	
95 92	108 102	92	801 007 895 895	76-125
: :	;;	: :	::::	;
::	::	::	::::	1
::	::	::	1111	;
62 79	888	67 91	8888 82488	61-145
66 86	96 93	6%	89 91 97	75-130
;;	::	::	::::	;
% 88	122 106	77 78	% % % % % % % % % % % % % % % % % % %	76-127
12/15/92	01/11/93	01/24/92	01/14/93	for
Ь7	JF23-92-MS	JF32-92-MS	JF21-92-MS JF1-92-MS	Quality-control (QC) limits for percentage of recovery

[₽] These samples are outside of the laboratory QC limits for either the percentage of recovery or the relative percentage of difference difference of duplicate matrix spikes.

Ambient concentration of benzene was 800 µg/L, which could have increased the error associated with the percentage of recovery.

Ambient concentration of trichloroethene was 4,400 µg/L, which could have increased the error associated with the percentage of recovery.

Ambient concentration of trichloroethene was 250 µg/L, which could have increased the error associated with the percentage of recovery.

These GC (Imits are for percent recovery of matrix spikes and spike duplicates at the laboratory; therefore, these are acceptable limits for percent recovery of matrix spikes and spike duplicates at the laboratory; therefore, these are acceptable limits for percent recovery based on U.S. Environmental Protection Agency standards (U.S. Environmental Protection Agency, 1985). συασ

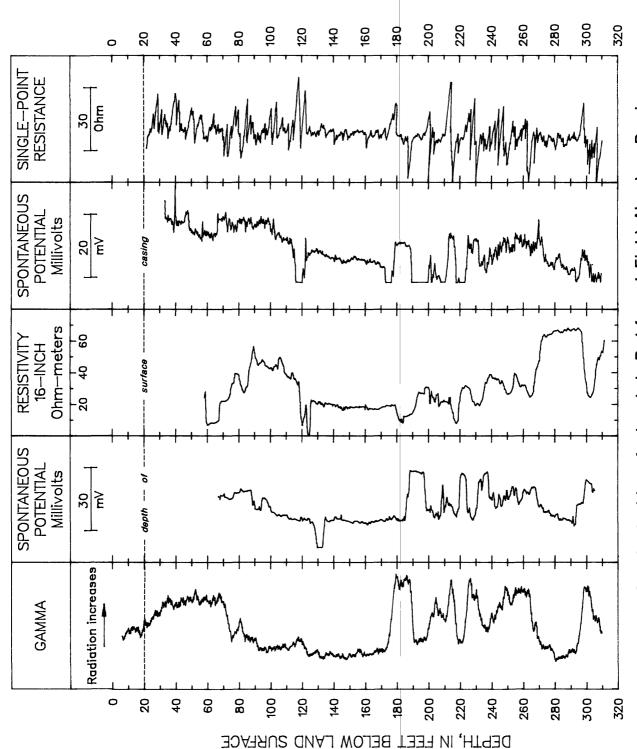


Figure 6a.--Geophysical logs for borehole B-1 from J-Field, Aberdeen Proving Ground, Maryland.

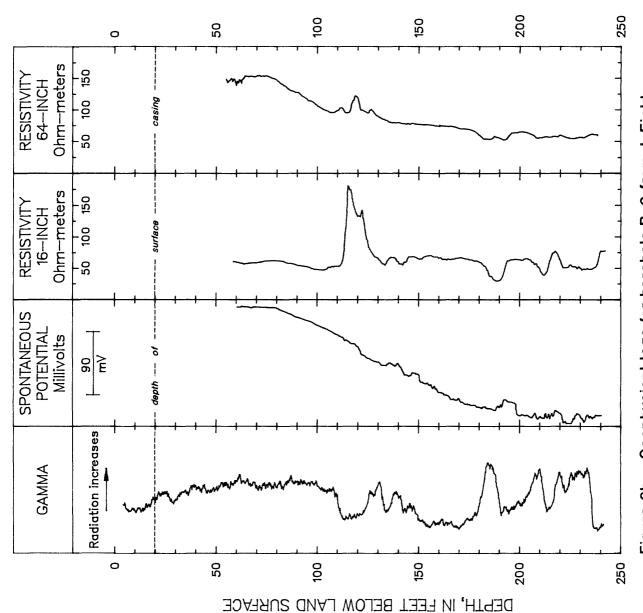
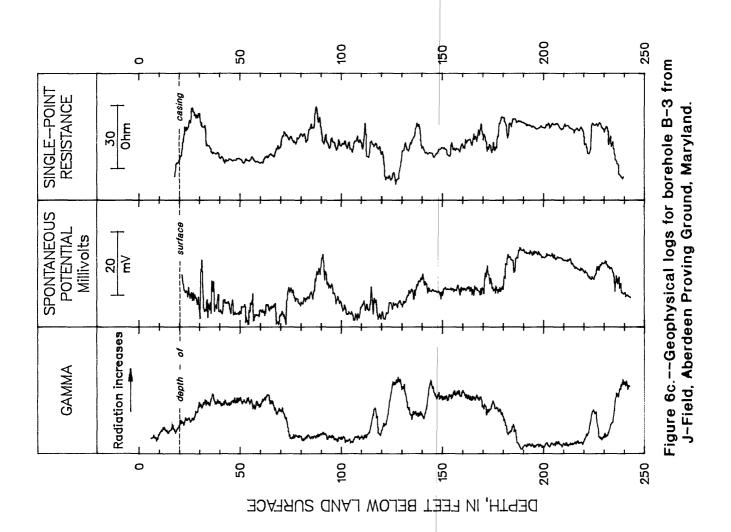



Figure 6b.--Geophysical logs for borehole B-2 from J-Field, Aberdeen Proving Ground, Maryland.

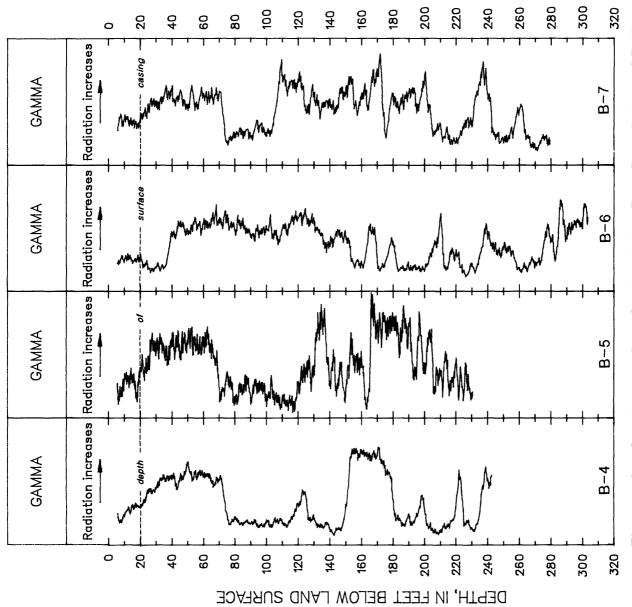


Figure 6d.--Geophysical logs for boreholes B-4, B-5, B-6, and B-7 from J-Field, Aberdeen Proving Ground, Maryland.

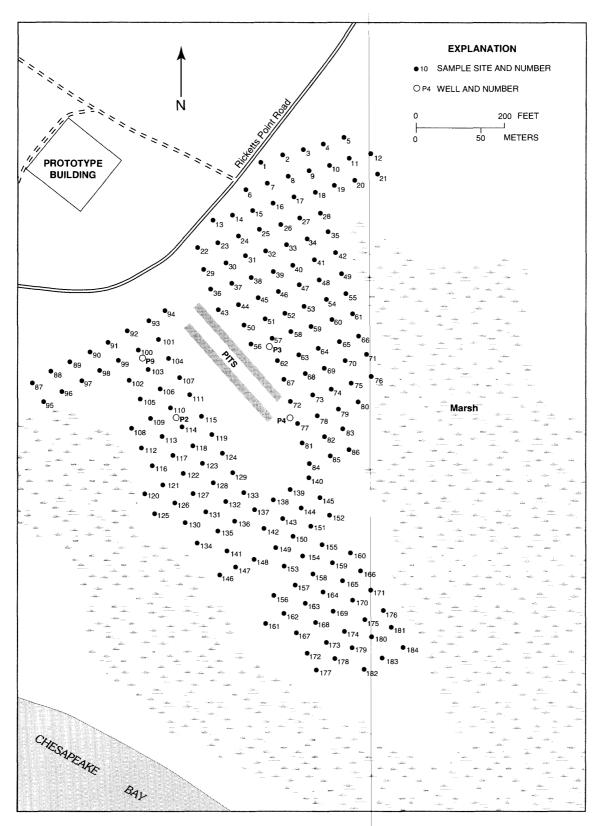


Figure 7a.—Electromagnetic—induction sampling grid at the toxic—materials disposal area at J-Field, Aberdeen Proving Ground, Maryand.

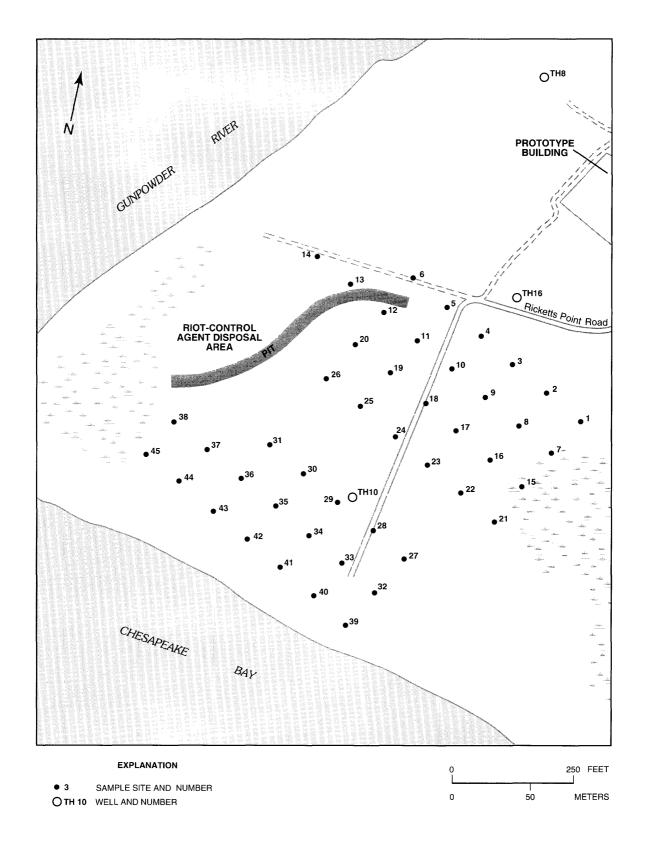


Figure 7b.—Electromagnetic—induction sampling grid at the riot—control—agent disposal area at J-Field, Aberdeen Proving Ground, Maryand.

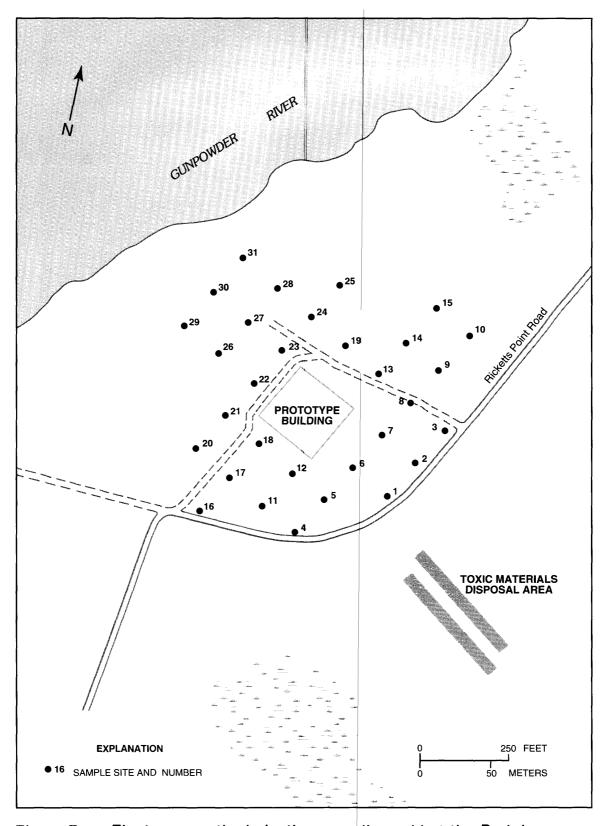
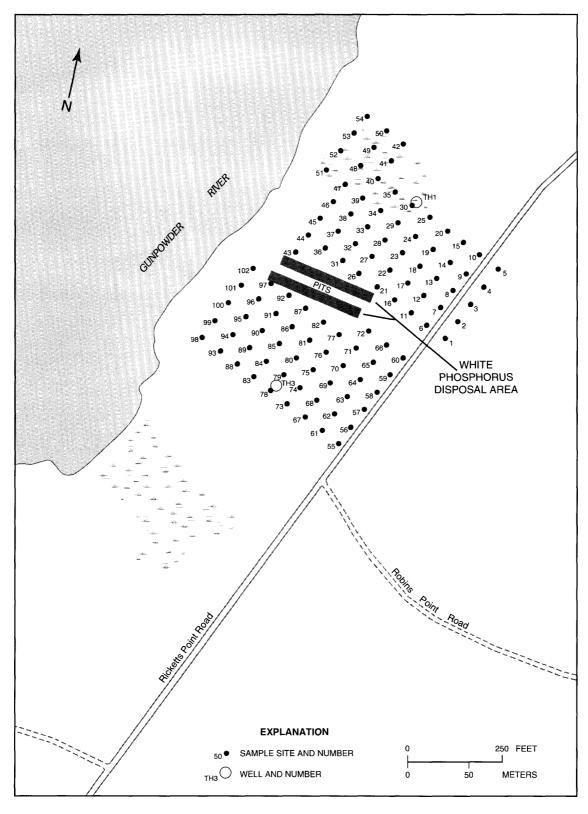
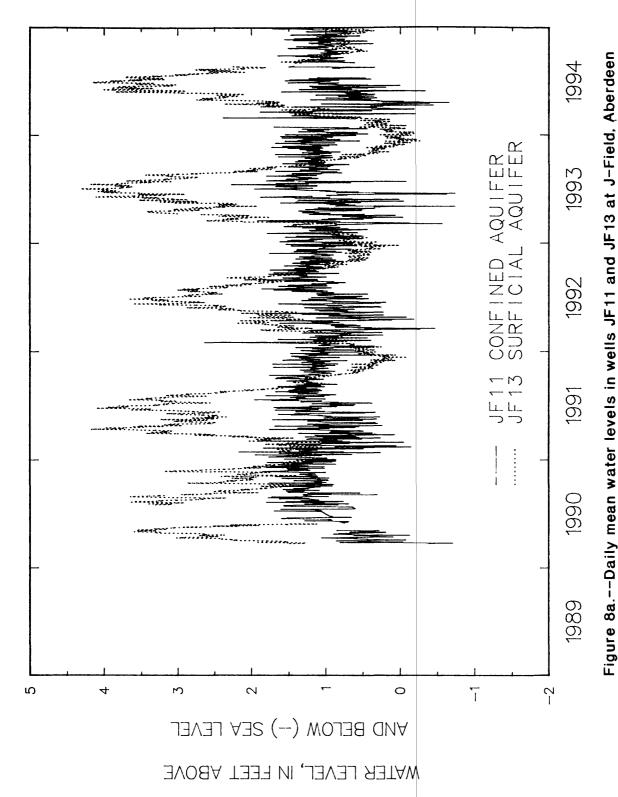
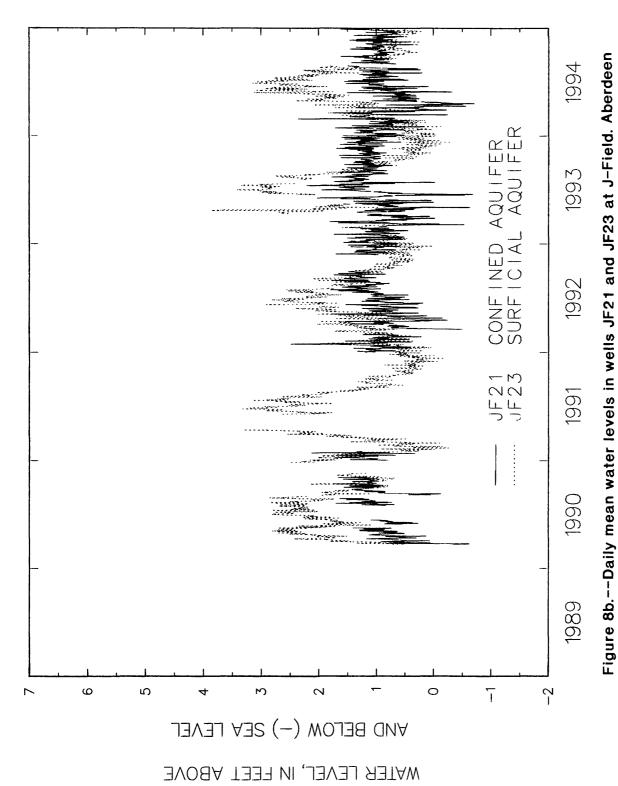
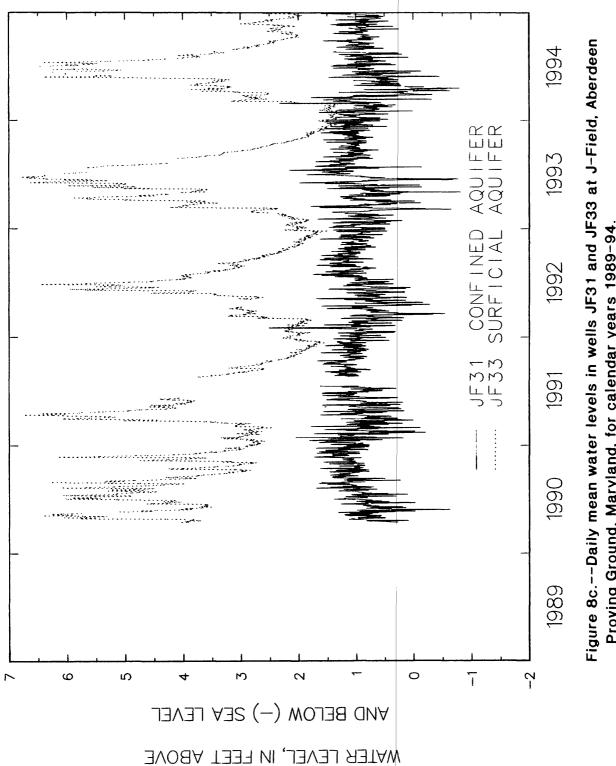
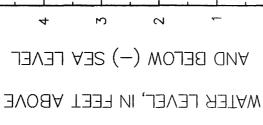


Figure 7c.—Electromagnetic-induction sampling grid at the Prototype Building area at J-Field, Aberdeen Proving Ground, Maryland.


Figure 7d.--Electromagnetic-induction sampling grid at the white-phosphorus disposal area at J-Field, Aberdeen Proving Ground, Maryland.


(Screened interval for well JF11 is 78 to 83 ft below sea level, and the interval for well JF13 is 13 to 18 ft below sea level.) Proving Ground, Maryland, for calendar years 1989-94.

(Screened interval for well JF21 is 65 to 68 ft below sea level and the interval for well JF23 is 13 to 16 ft below sea level.) Proving Ground. Maryland, for calendar years 1989-94

(Screened interval for well JF31 is 66 to 71 ft below sea level, and the interval for well JF33 is 7 to 12 ft below sea level.) Proving Ground, Maryland, for calendar years 1989-94.

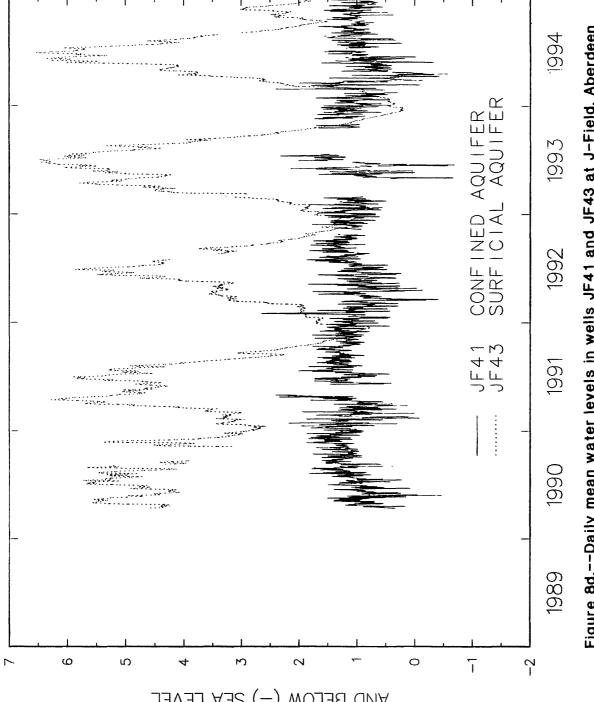


Figure 8d.--Daily mean water levels in wells JF41 and JF43 at J-Field, Aberdeen (Screened interval for well JF41 is 75 to 80 ft below sea level, and the interval for well JF43 is 19 to 24 ft below sea level.) Proving Ground, Maryland, for calendar years 1989-94.

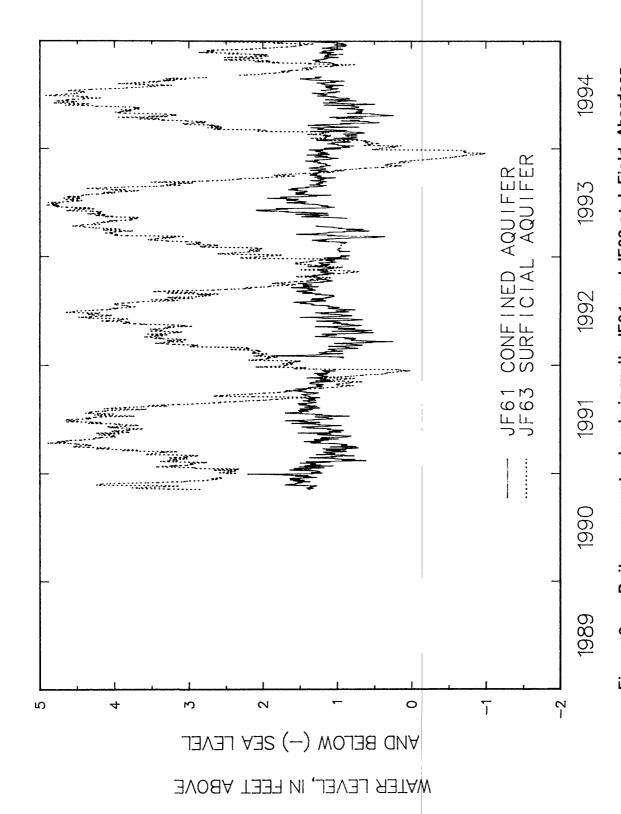


Figure 8e.--Daily mean water levels in wells JF61 and JF63 at J-Field, Aberdeen (Screened interval for well JF61 is 91 to 96 ft below sea level, and the interval for well JF63 is 12 to 15 ft below sea level.) Proving Ground, Maryland, for calendar years 1989-94.

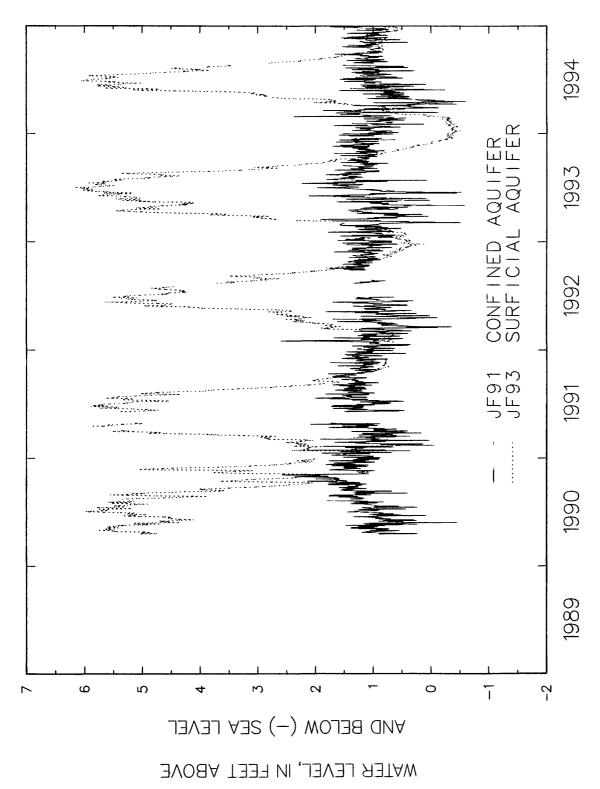


Figure 8f.--Daily mean water levels in wells JF91 and JF93 at J-Field, Aberdeen and the interval for well JF93 is 10 to 15 ft below sea level.) (Screened interval for well JF91 is 64 to 69 ft below sea level, Proving Ground, Maryland, for calendar years 1989-94.

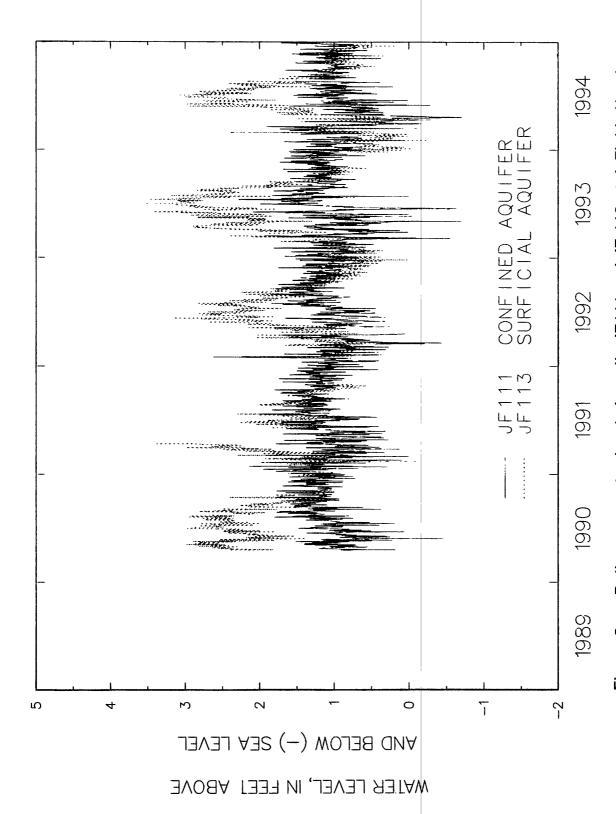
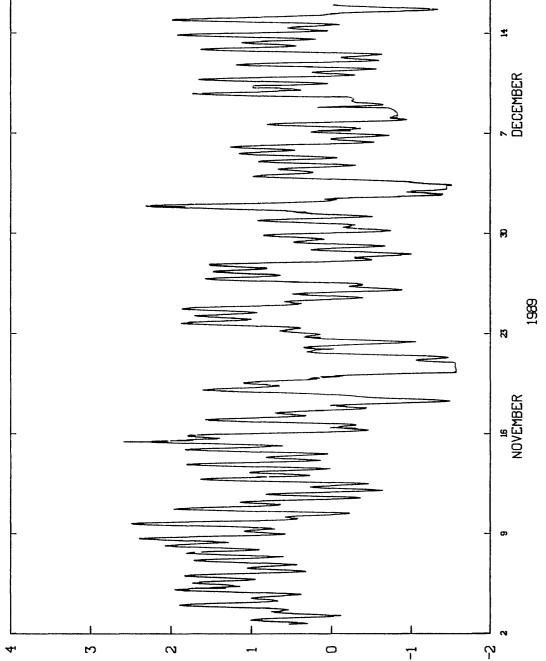



Figure 8g.--Daily mean water levels in wells JF111 and JF 113 at J-Field, Aberdeen Proving Ground, Maryland, for calendar years 1989-94.

(Screened interval for well JF111 is 63 to 68 ft below sea level, and the interval for well JF113 is 15 to 18 ft below sea level.)

Aberdeen Proving Ground, Maryland, November 2 to December 15, 1989.

ELEVATION, IN FEET ABOVE AND BELOW (-) SEA LEVEL

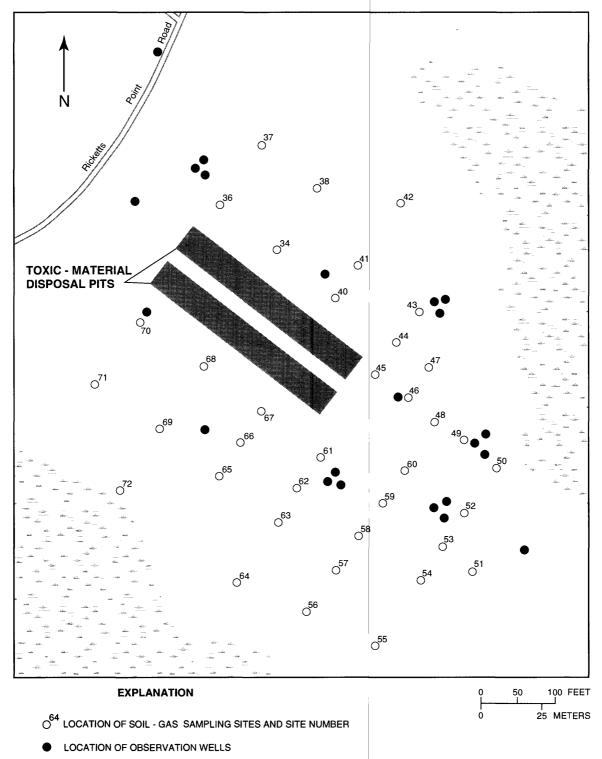
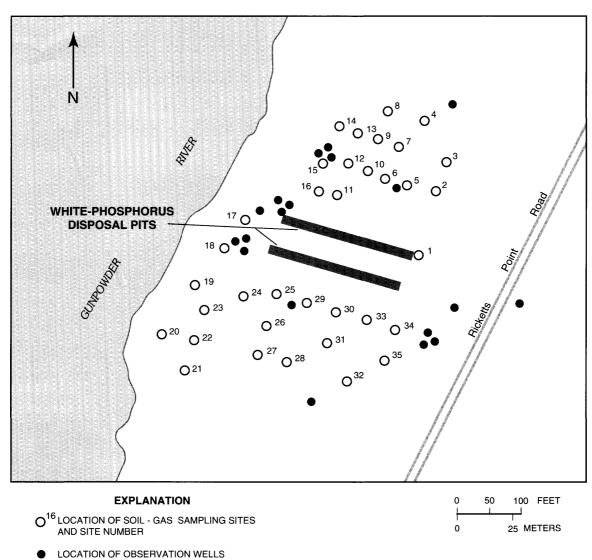



Figure 10a.--Location of soil-gas sampling sites at the toxic-materials disposal area, Phase I, J-Field, Aberdeen Proving Ground, Maryland.

EGGATION OF OBSERVATION WEEKS

Figure 10b.--Location of soil-gas sampling sites at the white-phosphorus disposal area, Phase I, J-Field, Aberdeen Proving Ground, Maryland.

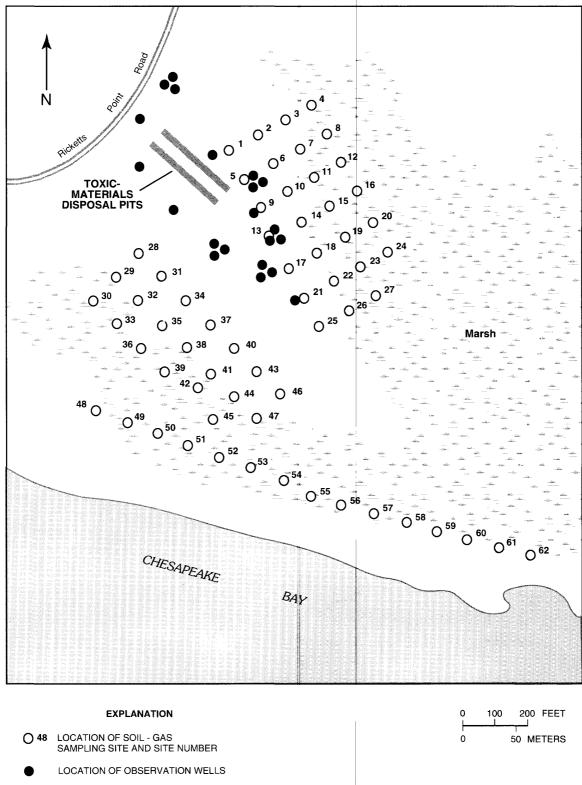


Figure 11a.—Location of soil—gas sampling sites at the toxic—materials disposal area, Phase II, J-Field, Aberdeen Proving Ground, Maryland.

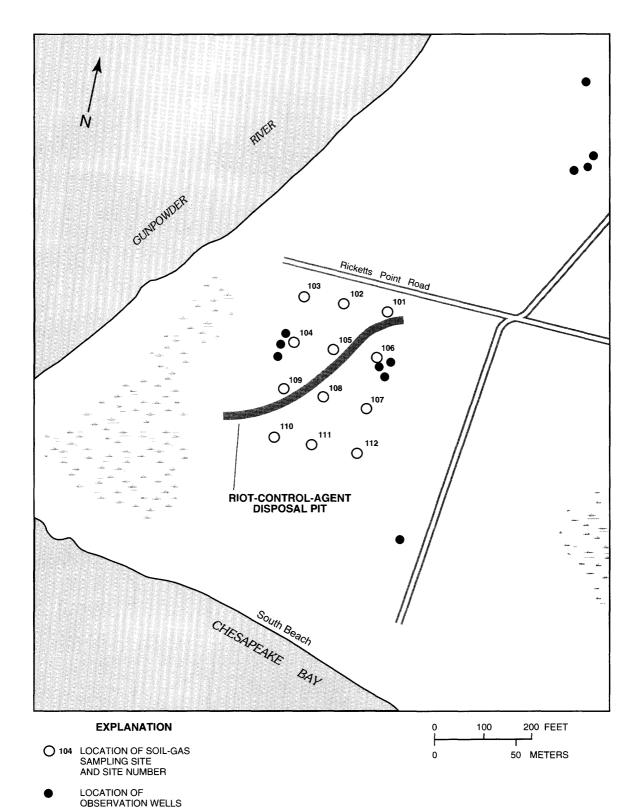


Figure 11b.--Location of soil-gas sampling sites at the riot-control-agent disposal area, Phase II, J-Field, Aberdeen Proving Ground, Maryland.

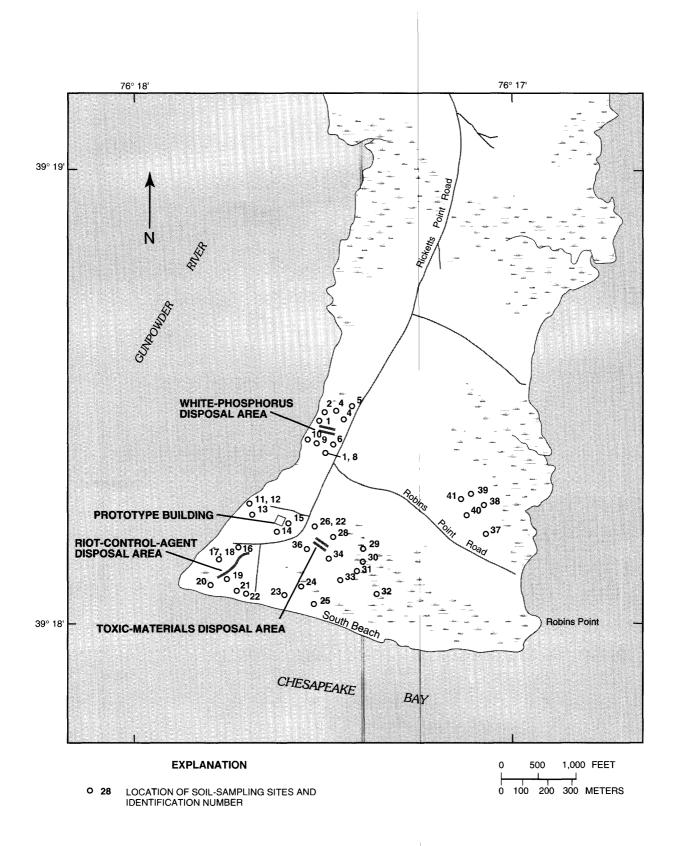


Figure 12.--Location of soil-quality sampling sites, J-Field, Aberdeen Proving Ground, Maryland.

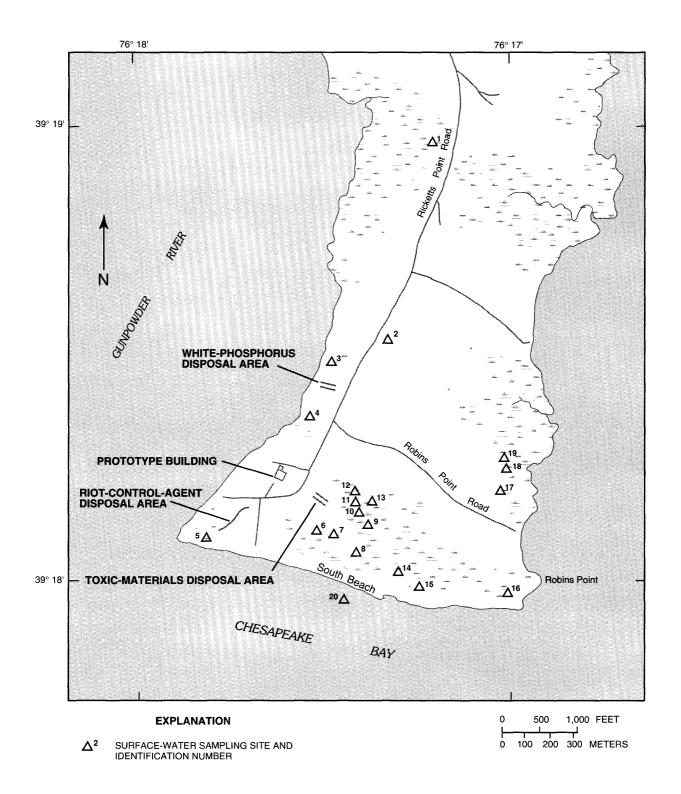


Figure 13.--Location of surface-water sampling sites, J-Field, Aberdeen Proving Ground, Maryland.

Multiply	Ву	To obtain
inch (in.)	25.4	millimeter
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
mile (mi)	1.609	kilometer
mile per hour (mi/hr)	1.609	kilometer per hour
square inch (in ²)	6.4516	square centimeter
square foot (ft ²)	0.0929	square meter
gallon (gal)	3.785	liter
<pre>gallon per minute (gal/min)</pre>	0.06308	liter per second

Temperature is reported in degrees Celsius (°C), which can be converted to degrees Farenheit (°F) by use of the following equation: F=1.8(°C)+32

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Chemical concentration, specific conductance, and water temperature are reported in metric units. Aqueous chemical concentration is given in milligrams per liter (mg/L) or in micrograms per liter (μ g/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as well as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million.

Specific conductance of water is expressed in microsiemens per centimeter at 25 degrees Celsius ($\mu S/cm$), which is identical to micromhos per centimeter at 25 degrees Celsius, formerly used by the U.S. Geological Survey.

Radioactivity is expressed in picocuries per liter (pCi/L). A picocurie is one-trillionth (1×10^{-12}) the amount of radioactivity of one curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 disintegrations per minute.

The standard unit for hydraulic conductivity is cubic foot per day per square foot $[(ft^3/d)/ft^2]$. This mathematical expression reduces to foot per day (ft/d).