LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (RANDVT00120042) on STATE HIGHWAY 12, crossing the THIRD BRANCH WHITE RIVER, RANDOLPH, VERMONT

U.S. Geological Survey Open-File Report 96-187

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (RANDVT00120042) on STATE HIGHWAY 12, crossing the THIRD BRANCH WHITE RIVER, RANDOLPH, VERMONT

By SCOTT A. OLSON and MATTHEW A. WEBER

U.S. Geological Survey Open-File Report 96-187

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Rock Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	26
D. Historical data form	29
E. Level I data form	34
F. Scour computations	44

FIGURES

1.	Map showing location of study area on USGS 1:24,000 scale map	3
2.	Map showing location of study area on Vermont Agency of Transportation town	
	highway map	4
3.	. Structure RANDVT00120042 viewed from upstream (August 3, 1994)	5
4.	Downstream channel viewed from structure RANDVT00120042 (August 3, 1994)	5
5.	. Upstream channel viewed from structure RANDVT00120042 (August 3, 1994).	6
6.	Structure RANDVT00120042 viewed from downstream (August 3, 1994).	6
7.	Water-surface profiles for the 100- and 500-year discharges at structure	
	RANDVT00120042 on State Highway 12, crossing the Third Branch White River,	
	Randolph, Vermont.	15
8.	Scour elevations for the 100- and 500-year discharges at structure	
	RANDVT00120042 on State Highway 12, crossing the Third Branch White River,	
	Randolph, Vermont.	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
RANDVT00120042 on State Highway 12, crossing the Third Branch White River,	
Randolph, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
RANDVT00120042 on State Highway 12, crossing the Third Branch White River,	
Randolph, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m^3)
	Velocity and Flow	
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m^3/s)
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^{3}/s)/mi^{2}]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

left wingwall	LWW	bank full	BF
main channel	MC	cubic feet per second	cfs
right abutment	RAB	median diameter of bed material	D ₅₀
face of right abutment	RABUT	downstream	DS
right bank	RB	elevation	elev.
right overbank	ROB	flood plain	f/p
right wingwall	RWW	square feet	ft^2
town highway	TH	feet per foot	ft/ft
under bridge	UB	junction	JCT
upstream	US	left abutment	LAB
United States Geological Survey	USGS	face of left abutment	LABUT
Vermont Agency of Transportation	VTAOT	left bank	LB
water-surface profile model	WSPRO	left overbank	LOB

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (RANDVT00120042) ON STATE HIGHWAY 12, CROSSING THE THIRD BRANCH WHITE RIVER, RANDOLPH, VERMONT

By Scott A. Olson and Matthew A. Weber

INTRODUCTION

This report provides the results of a detailed Level II analysis of scour potential at structure RANDVT00120042 on State Highway 12 crossing the Third Branch White River, Randolph, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic division of central Vermont in the town of Randolph. The 61.9-mi² drainage area is in a predominantly rural drainage basin. In the vicinity of the study site, the left and right banks have moderate tree cover with residential and commercial buildings on the overbank areas.

In the study area, the Third Branch White River has a sinuous channel with a slope of approximately 0.013 ft/ft, an average channel top width of 133 ft and an average channel depth of 5 ft. The predominant channel bed material is gravel with a median grain size (D_{50}) of 49.6 mm (0.163 ft). Bank material is sand and gravel (D_{50} is 3.08 mm or 0.010 ft). The geomorphic assessment at the time of the Level I site visits on July 8, 1994 and December 13, 1994, indicated that the reach has experienced vertical degradation. A drop structure has been constructed downstream of the bridge to prevent further degradation. In addition to the degradation of the stream bed, there is local pier scour at the bridge site as well. At the nose of the pier in the main channel, the bed is approximately three feet below the mean thalweg and two feet below the bottom of the pier footing.

The State Highway 12 crossing of the Third Branch White River is a 220-ft-long, two-lane bridge consisting of four concrete spans. The maximum span length is 57 ft. (Vermont Agency of Transportation, written commun., July 29, 1994). The bridge is supported by vertical, concrete abutments and three concrete piers. The toe of the left abutment is at the channel edge. The toe of the right abutment is set back on the right over-bank. The roadway centerline on the structure has a slight horizontal curve; however, the main channel is skewed approximately 5 degrees to the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Randolph, VT. Quadrangle, 1:24,000, 1981

Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number	RANDVT00120042	Stream	Third Branc	ch White River	
County Orange		Road —	VT0012	District —	04

Description of Bridge

220			36.5			57
Bridge length	ft	Bridge width		ft	Max span lengt	h ft
AI! / CI ! I /	17	,	• • • • •	straigh	it, bridge has slig	tht curve
Alignment of bridge to i	oad (e	on curve or stra parata	ight)		vertical	
Abutment type	<i>a</i> i, co		Embankm	ent tvne	vertical	
Abuiment type	no		Linounium	em type	7/8/94 and 12/	/13/94
Stone fill on abutment?	No	one	Nato of incr	oction		
Nacamintian of stand fill						
at the channel edge. The	right	Abu abutment is set l	utments and back on the	piers are	concrete. The Lorer-bank. Only one	eft abutment is e of the three
piers is in the main chan	nel. N	ose of this pier i	is undermine	ed.		
					Y	5
Is bridge skewed to floo	d flow	v according to <u>1</u>	<u>N </u> surve	y?	Angle	,

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection 7/8/94 and 12/13/94	Percent of abannal bloc ked norizoniall y	Percent of shares el block ed vertically
Level I	<u>07/20/94</u> Moderate. Th	ere is also moderate potential	- for debris capture due to
<i>Level II</i> the piers. <i>A</i> <i>Potential f</i>	At the time of inspection, a for debris	log was lodged against the lo	eft pier.

July 8, 1994 and December 13, 1994. There is a drop structure 30 feet downstream of the bridge. Describe any features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topo	<i>graphy</i> This is an upland river with	moderate gradient. Floodplains are generally
narrow with	high stream banks.	
Geomorphic	c conditions at bridge site: downstream	(DS), upstream (US)
Date of insp	<i>pection</i> <u>7/8/95 and 12/13/94</u>	
DS left:	Steep high bank.	
DS right:	Narrow flood plain to steep high bank	ζ
US left:	Narrow flood plain to steep high bank	
US right:	Narrow flood plain to steep high ban	<u>k.</u>
	Description of the	e Channel
Auguaga	<u>133</u>	
	_gravel	
Predominar	nt bed material	Bank material
flood plains.	· · · · · · · · · · · · · · · · · · ·	
		7/8 <u>/94 & 12/13/94</u>
Vegetative c	^{co} Forested.	
DS left:	Forested on immediate bank; a large	building on over-bank.
DS right:	Moderate tree cover and grass.	
US left:	Forested.	
US right:	Yes	
Do banks ap	ppear stable?	нос посинот ини цурс од низнионију ини
date of obs	ervation.	
		July 8, 1994 and
December Describe an	13, 1994. A log is lodged against the pic ity obstructions in channel and date of a	er in the main channel. bbservation.

Hydrology

Is drainage area considered rural or urban? Describe any significant urbanization:	<i>Physiographic province</i> Green Mountain	Percent of di	rainage area 100
Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area mi^2 No Is there a lake/p	Is drainage area considered rural or urban?	Rural	Describe any significant
USGS gage description USGS gage number Gage drainage area mi^2 No Is there a lake/p 10,500 Calculated Discharges 15,000 Q100 ft^3/s Q500 ft^3/s Q100 ft^3/s Q100 and Q500 discharges were taken from the Sederal Emergency Management Agency Flood Insurance study (Federal Emergency Management Agency, 1991) for the Town of Randolph.	Is there a USGS gage on the stream of interest	<u>N</u>	
USGS gage number	USGS gage description		
Gage drainage area mi^2 No Is there a lake/p Is there a lake/p No	USGS gage number		
Is there a lake/p <u>10,500</u> <u>Calculated Discharges</u> <u>15,000</u> <u>Q100</u> <u>ft³/s</u> <u>Q500</u> <u>ft³/s</u> <u>Q100</u> <u>and Q500 discharges were taken from the</u> <u>Sederal Emergency Management Agency Flood Insurance study (Federal Emergency Management Agency, 1991) for the Town of Randolph.</u>	Gage drainage area	mi ²	No
Calculated Discharges 15,000 Q100 ft³/s Q500 ft³/s Q100 ft³/s Q100 and Q500 discharges were taken from the Eederal Emergency Management Agency Flood Insurance study (Federal Emergency Management Agency, 1991) for the Town of Randolph.	Is there a lake/p		* *
Q100 and Q500 discharges were taken from the <u>Federal Emergency Management Agency</u> Flood Insurance study (Federal Emergency Management Agency, 1991) for the Town of Randolph.	_ <u>10,500</u> Calculate <i>Q100 ft³/s</i>	ed Discharges <i>Q500</i>	<u>15,000</u> ft ³ /s
Ederal Emergency Management Agency Flood Insurance study (Federal Emergency Management Agency, 1991) for the Town of Randolph.	Q100	and Q500 disch	arges were taken from the
	Eederal Emergency Management Agency Flood Management Agency, 1991) for the Town of Ran	Insurance study adolph.	(Federal Emergency

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	Subtract 442.53 ft from USGS
datum to get VTAOT plans datum.	
Description of reference marks used to determine USGS dat	tum. <u>RM1 is the top of the</u>
first "A" in "CASHMAN" on a bronze plaque in the sidewall	k at the downstream, right end of
the bridge (elev. 534.71 ft, arbitrary datum). RM2 is a the bridge (elev. 534.71 ft, arbitrary datum).	ridge rail seat immediately above
the downstream streamward end of the left abutment (elev. 5.	27.54 ft, arbitrary datum).

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
XSDS1	0	1	
XSDS2	270	1	
DSDRP	450	1	Section just downstream of drop structure
USDRP	480	1	Exit section (at drop struc- turesubmerged sharp- crested weir analysis done to determine water sur- face).
FV	510	2	Downstream full valley section (templated from XSUS1)
BRDGE	510	1	Bridge section
XSUS1	590	1	Approach section

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Channel "n" values for the reach ranged from 0.025 to 0.038, and overbank "n" values ranged from 0.040 to 0.103.

A step-backwater solution could not be found at the drop structure downstream of bridge 42. Thus, alternative methods for computing starting water surface elevations for the bridge model were necessary. The elevations were determined by a weir rating developed for the drop structure combined with an estimated rating developed for the flow on the right over-bank. To develop these rating curves, the tailwater elevations for the drop structure were needed.

To determine the tailwater elevations at the drop structure, the three cross sections surveyed downstream of the drop structure were modelled. Normal depth was assumed as the starting water surface for this initial model and was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was

0.013 ft/ft which was determined from surveyed thalweg points 210 ft and 480 ft downstream of the drop structure. The resulting tailwater elevations for the 100-year and 500-year events were 506.5 and 508.7 ft, respectively. The crest of the drop structure is 499.9 ft.

Submerged sharp-crested weir computations (Brater and King, 1982, pp 5-4 to 5-17) were then done to determine the rating curve for headwater elevations at the drop structure. A rating of the over-bank flow right of the drop structure was also necessary. The overbank was modelled with WSPRO using the overbank geometry of the cross sections on and downstream of the drop structure. The starting water surface of this over-bank model was the drop structure tailwater. The rating developed from this crude model was graphically combined with the weir rating to determine the water surface at the upstream side of the drop structure. The 100-year and 500-year water surface elevations are 508.8 and 510.6 feet, respectively. These elevations were used as the starting water surface elevation for the bridge model.

Bridge Hydraulics Summary

Average bridge embankment elevation530.9ftAverage low steel elevation526.5ft

 100-year discharge
 10,500
 ft³/s

 Water-surface elevation in bridge opening
 509.0
 ft

 Road overtopping?
 N
 Discharge over road
 -- ,...s

 Area of flow in bridge opening
 1060
 ft²

 Average velocity in bridge opening
 9.9
 ft/s

 Maximum WSPRO tube velocity at bridge
 14.7
 ft/s

Water-surface elevation at Approach section with bridge510.0Water-surface elevation at Approach section without bridge509.7Amount of backwater caused by bridge0.3 t

500-year discharge	15,000	ft ³ /s			
Water-surface elevation	n in bridge	opening	5	510.8 <i>ft</i>	
Road overtopping?	N	Discharge	over ro	ad	/s
Area of flow in bridge	opening	1330	ft^2		
Average velocity in brid	lge opening	7	11.3	ft/s	
Maximum WSPRO tul	oe velocity a	t bridge		17.1 ⁄s	

Water-surface elevation at Approach section with bridge512.0Water-surface elevation at Approach section without bridge511.7Amount of backwater caused by bridge0.3

Incipient overtopping discharge	ft^3/s
Water-surface elevation in bridge opening	ft
Area of flow in bridge opening	ft^2
Average velocity in bridge opening	ft/s
Maximum WSPRO tube velocity at bridge	ft/s

Water-surface elevation at Approach section	with bridge	~
Water-surface elevation at Approach section	without bridge	v
Amount of backwater caused by bridge	<u>t</u>	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour in the main channel was computed by use of the live-bed contraction scour equation (Richardson and others, 1993, p. 33, equation 16) for the 500-year discharge. Contraction scour for the 100-year discharge and in the over-bank was computed by use of the clear-water contraction scour equation (Richardson and others, 1993, p.35, equation 18). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Abutment scour at the left abutment was computed using the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). The Froehlich equation gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48).

Pier scour was computed using the Colorado State University pier scour equation (Richardson and others, 1993, p. 39, equation 21). Two methods were used for determining variables for the scour computations of the pier in the main channel and the most conservative answer used. The first method used the velocity of the maximum velocity flow tube in the main channel and the pier width in the equation. The second method used the width of the pier footing since it was exposed and the velocity at the exposed footing. The velocity at the exposed footing was a depth weighted estimate of the maximum velocity flow tube (Richardson and others, 1993, p. 41, equation 23). Variables used in the equation for the over-bank pier included the pier width and the maximum velocity in the over-bank flow tubes. Only the over-bank flow tubes were used since the thalweg was not expected to shift.

Potential scour at the drop structure was not computed. However, failure of the drop structure would result is significant lowering of the bed at the bridge.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(Scour depths in feet)	
Main channel			
Live-bed scour		2.5	
Clear-water scour	2.5		
	12.4	20.8	
Depth to armoring			
Left overbank	1.6	3.6	
Right overbank			
Local scour:			
Abutment scour	19.0	23.7	
Left abutment	0.0-	0.0-	
Right abutment			
Pier scour	11.6	12.3	
Pier 1	7.2	7.2	
Pier 2	0.0	0.0	
Pier 3			

Rock Riprap Sizing

		01	Incipient vertopping
	100-yr discharge	500-yr discharge	discharge
		(D_{50} in feet)	
Abutments:	3.0	3.7	
Left abutment			
Right abutment	4.1 ⁻	5.5	
Piers:	0.9	2.1	
Pier 1			
Pier 2			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure RANDVT00120042 on State Highway 12, crossing the Third Branch White River, Randolph, Vermont.

Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure RANDVT00120042 on State Highway 12, crossing the Third Branch White River, Randolph, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure RANDVT00120042 on State Highway 12, crossing the Third Branch White River, Randolph, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr. o	discharge is 10,50	0 cubic-feet per se	cond				
Left abutment	150	80.33			499.3	2.5	19.0		21.5	477.8	
Pier1	198	81.76		489.5	497.7	2.5		11.6	14.1	483.6	-5.9
Pier 2	252	83.69		489.5	504.0	1.6		7.2	8.8	495.2	5.7
Pier 3	305	85.63		489.5	512.7				0.0	512.7	23.2
Right abutment	355	87.57	530.10	501.6	524.5				0.0	524.5	22.9

^{1.} Measured along the face of the most constricting side of the bridge.

². Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure RANDVT00120042 on State Highway 12, crossing the Third Branch White River, Randolph, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)	
500-yr. discharge is 15,000 cubic-feet per second												
Left abutment	150	80.33			499.3	2.5	23.7		26.2	473.1		
Pier 1	198	81.76		489.5	497.7	2.5		12.3	14.8	482.9	-6.6	
Pier 2	252	83.69		489.5	504.0	3.6		7.2	10.8	493.2	3.7	
Pier 3	305	85.63		489.5	512.7				0.0	512.7	23.2	
Right abutment	355	87.57	530.10	501.6	524.5				0.0	524.5	22.9	

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brater, E.F., and King, H.W., 1982, Handbook of Hydraulics, McGraw-Hill Book Company.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Emergency Management Agency, 1991, Flood Insurance Study, Town of Randolph, Orange County, Vermont: Washington, D.C., July 16, 1991.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Richardson, J.R., Chang, F., 1991, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 195 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Richardson, E.V., Harrison, L.J., Richardson, J.R., and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Roberson, J.A., Cassidy, J.J., and Chaudhry, M.H., 1988, Hydraulic Engineering, Houghton Mifflin Company, Boston, 662 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1966, Plymouth, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

т1 HYDRAULIC ANALYSIS Т2 Randolph, VT BRIDGE #042, Third Branch White River Т3 USGS BOW,NH 03/10/95 * J3 6 29 30 28 17 13 23 3 * 5 15 14 7 4 11 12 3 * Q 10500 15000 WS 508.8 510.6 * * USDRP is on crest of drop structure * XS USDRP 480 GR 99., 526.65 100., 525.93 105., 521.35 118., 507.91 GR 122., 504.00 124., 501.56 129., 500.75 134., 499.89 140., 498.89 140., 499.95 150., 499.94 GR 135., 499.35 151., 499.72 172., 499.78 199., 499.84 202., 500.06 GR 204., 499.89 205., 501.30 210., 501.61 215., 502.49 GR GR 219., 502.89 220., 500.75 228., 502.88 233., 504.29 265., 503.90 327., 520.70 GR 241., 505.74 249., 504.55 275., 506.43 GR 285., 512.25 312., 512.99 349., 534.62 Ν 0.090 0.025 0.072 SA 105. 233. * * Using approach geometry for the full valley since the * Bed elevation at the downstream face of the bridge is lower * than the min elevation of USDRP, which the full valley section * would default to. * XS FV 510 97., 522.67 149., 504.67 125., 505.21 136., 504.06 GR 150., 503.90 160., 499.81 165., 498.52 191., 498.00 GR 252., 504.63 255., 505.67 218., 497.62 234., 499.80 GR 258., 505.90 276., 505.33 292., 503.74 301., 505.58 GR GR 316., 521.74 0.040 0.035 N 0.103 252 SA 150 * BR BRDGE 510 530.10 5 150., 530.10 151., 499.32 156., 498.59 GR 178., 497.11 171., 496.94 192., 496.33 192., 500.44 GR 200., 500.46 203., 499.03 195., 500.43 203., 500.41 GR 208., 498.69 217., 499.92 224., 502.08 249., 504.01 GR 254., 504.09 283., 505.82 303., 512.16 GR 303., 511.25 307., 513.22 307., 513.22 326., 513.53 355., 524.47 GR 150., 530.10 355., 530.10 GR 0.038 0.067 N SA 224 CD 1 36.5 * 534.70 * * * PW 500.43,4.7 504.05,4.7 504.05,9.4 512,9.4 512,14.1 530.10,14.1 * AS XSUS1 590. 136., 504.06 149., 504.67 GR 97., 522.67 125., 505.21 GR 150., 503.90 160., 499.81 165., 498.52 191., 498.00 252., 504.63 255., 505.67 GR 218., 497.62 234., 499.80 258., 505.90 276., 505.33 292., 503.74 301., 505.58 GR GR 316., 521.74 N 0.040 0.035 0.103 252 SA 150 ΒP 150 * HP 1 BRDGE 508.96 1 508.96 HP 2 BRDGE 508.96 * * 10500 HP 2 BRDGE 509.16 * * 10500 HP 1 XSUS1 509.95 1 509.95 HP 2 XSUS1 509.95 * * 10500

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

			HYDRAU Randol USGS *** RUN	JLIC AN ph, VI BOW,NH I DATE	VALYSIS F BRIDO H 03/ & TIME	3 € #04 /10/95 5: 03-	12, Th 5 -15-95	ird Bi	ranch	White	River		
	CR0 WS	DSS-SI SEL \$	ECTION SA# 1 2	PROPEN AREA 758. 303.	RTIES: 12455 1802	ISEQ K 53. 21.	2 = 3 TOPW 73. 69.	; SEC WETI 88 69	CID = 1 P ALP	BRDGE H	; SRE LEW) = REW	510. QCR 13865. 3612.
	508	.96		1061.	14257	74.	142.	158	. 1.3	3 1	51.	293.	14288.
	VEI	LOCIT WSI 508.9	Y DISTR EL 96 15	LEW	ON: IS REW 292.9	SEQ = AF 1061	3; REA 1.3 1	SECID I 42574	= BRD K . 10	GE; Q 500.	SRD = VEL 9.89	51	LO.
X	STA. A(I) V(I)		150.7	71.5 7.35	157.9 1	45.2 L1.61	162.1	42.7 12.30	165.9	39.6 13.26	169.3	37.7 13.91	172.5
Х	STA. A(I) V(I)		172.5	36.9 14.23	175.6	37.1 L4.15	178.7	36.2 14.52	181.8	36.2 14.48	184.8	36.7 14.29	187.8
х	STA. A(I) V(I)		187.8	35.7 14.71	190.6	63.3 8.30	197.4	51.5 10.19	203.4	39.2 13.40	207.3	39.7 13.24	211.3
x	STA. A(I) V(I)		211.3	41.3 12.71	215.6	44.4 L1.83	220.8	74.7 7.03	231.8	110.0 4.77	251.8	141.7 3.70	292.9
	VEI	LOCITY WSI 509.1	Y DISTR EL 16 15	LEW 50.7	ON: IS REW 293.5	SEQ = AF 1089	3; REA 9.7 1	SECID H 47671	= BRD K . 10	GE; Q 500.	SRD = VEI 9.64	51	LO.
Х	STA.		150.7	,	158.0		162.2		166.0		169.5		172.6
	A(I) V(I)			73.3 7.16	1	46.4 L1.33		43.7 12.00		40.6 12.94		38.6 13.59	
Χ	STA. A(T)		172.6	377	175.8	38 0	178.9	37 9	182.0	36 7	185.0	37.2	188.0
	V(I)			13.92	1	13.83		13.85		14.31		14.12	
Х	STA.		188.0)	191.0		198.0		203.8		207.7		211.7
	A(I) V(I)			37.5 14.01		65.2 8.05		51.4 10.21		40.3 13.02		40.6 12.94	
Χ	STA.		211.7	,	216.1	45 1	221.3	00 5	233.3		253.1		293.5
	A(I) V(I)			42.2	1	45.1 L1.64		82.7 6.35		4.72		143.4 3.66	
	CR0 WS	DSS-SI SEL S	ECTION SA#	PROPEI AREA	RTIES:	ISEÇ K) = 4 TOPW	; SEC WETI	CID = 2 P ALP	XSUS1 H	; SRI LEW) = REW	590. QCR
			1 2	155. 1086.	1574 22110	11. 01.	33. 102.	34 104					1913. 20099.
	509	95	3	248. 1488	974 24658	15. 37	53. 188	55 193	13	8 1	17	305	3043. 20240
	505				21050				. 1.5				20210.
	VEI	WSI 509.9	Y DISTR EL 95 11	LEW .7.4	REW 305.1	EQ = AF 1488	4; REA 3.5 2	SECID 1 46587	= XSU K . 10	SI; Q 500.	SRD = VEI 7.05		90.
x	STA.		117.4		144.4		157.6		163.9		169.2		174.1
	A(I) V(I)			124.4 4.22		87.9 5.98		64.5 8.13		60.7 8.65		57.0 9.21	
X	STA. A(I) V(I)		174.1	57.3 9.16	179.0	56.2 9.34	183.8	55.9 9.39	188.5	55.7 9.42	193.2	56.0 9.37	197.8
х	STA. A(I) V(I)		197.8	55.9 9.39	202.5	56.2 9.34	207.1	55.2 9.51	211.6	55.2 9.51	216.1	56.9 9.23	220.8
x	STA		220 8	3	225 8		231 6		238 2		248 5		305 1
••	A(I)		220.0	58.3		63.1		65.2	2	78.6	210.0	268.2	
	V (T)			9.00		ø.32		8.05		6.68		т.96	

WSPRO OUTPUT FILE (continued)

	1	HYDRAULIC AN Randolph, V	NALYSIS F BRIDGE #04	12, Third Bi	anch White	River	
	1	USGS BOW, NH	H 03/10/95	15-95 09.0			
	CROSS-SE	CTION PROPE	RTIES: ISE(2 = 3; SE(CID = BRDGE	; SRD =	510.
	WSEL S.	A# AREA	K	TOPW WETH	P ALPH	LEW REW	QCR
		1 894. 2 436.	161676. 31249.	73. 90			17748. 5987.
	510.82	1330.	192925.	148. 166	1.34 1	51. 299.	19563.
	VELOCITY	DISTRIBUTIO	ON: ISEO =	3; SECID	= BRDGE;	SRD = 51	LO.
	WSE 510.8	L LEW 2 150.6	REW AF 298.8 1330	REA 192925	C Q 15000.	VEL 11.28	
Х	STA.	150.6	158.3	162.9	166.8	170.4	173.8
	A(I)	89.7	58.1	51.5	49.1	46.4	
	V(I)	8.36	12.92	14.56	15.27	16.18	
Х	STA.	173.8	177.1	180.4	183.7	186.9	190.0
	A(I)	46.0	45.4	45.5	44.0	44.5	
	V(1)	16.31	16.52	16.49	17.06	10.85	
Χ	STA.	190.0	196.3	201.2	206.3	210.3	214.7
	A(1) V(I)	73.6	50.9 14.75	58.0 12.93	47.5	49.8 15.07	
Χ	STA.	214.7	219.4	227.2	241.8	260.5	298.8
	V(I)	14.82	10.52	6.52	5.90	4.51	
	VELOCITY		N. TOPO -	2. CECTD	- PPDCE.	E1	0
	WSE	L LEW	REW AF	REA I	_ BRDGE; (Q	VEL 51	
	511.0	4 150.6	299.5 1362	2.8 199309	15000.	11.01	
X	STA.	150.6	158.4	163.0	166.9	170.5	173.9
	A(I)	91.9	59.5	52.7	50.3	47.4	
	V(1)	8.16	12.61	14.22	14.91	15.82	
X	STA.	173.9	177.4	180.7	183.9	187.1	190.2
	A(I) V(T)	47.9	46.2 16.23	45.3 16.57	46.0 16.30	45.1 16.61	
	. ,						
х	STA. A(T)	190.2	196.7	201.7	206.7	210.7	215.0
	V(I)	9.98	14.21	12.80	15.44	14.78	
x	STA	215 0	219 9	228 0	242 8	261 1	299 5
	A(I)	52.9	74.4	119.0	127.1	171.2	299.9
	V(I)	14.18	10.08	6.30	5.90	4.38	
	CROSS-SE	CTION PROPE	RTIES: ISEQ) = 4; SE(CID = XSUS1	; SRD =	590.
	WSEL S.	A# AREA	K	TOPW WETH	P ALPH	LEW REW	QCR
		1 224. 2 1293	27213.	36. 38 102 104			3182. 26115
		3 358.	17360.	55. 58			5178.
	511.98	1875.	340335.	193. 200	1.42 1	14. 307.	27841.
	VELOCITY	DISTRIBUTIO	ON: ISEQ =	4; SECID	= XSUS1;	SRD = 59	90.
	WSE 511.9	L LEW 8 114.1	REW AF 306.9 1874	REA I 1.6 340335	C Q . 15000.	VEL 8.00	
17	CTTA	11/ 1	140.2	164 5	161 7	167 4	170 0
Λ	A(I)	114.1	140.3	82.8	74.6	71.0	1/2.6
	V(I)	4.96	6.63	9.06	10.05	10.57	
х	STA.	172.6	177,8	183.0	188,0	192.9	197.8
	A(I)	71.3	71.0	69.2	68.8	69.2	
	V(I)	10.51	10.57	10.85	10.90	10.84	
Х	STA.	197.8	202.7	207.7	212.4	217.3	222.3
	A(I)	69.3	69.6	68.3	69.7	70.1	
	v (⊥/	10.82	10.//	T0.98	10./5	T0./0	
Χ	STA.	222.3	227.6	233.8	241.3	252.4	306.9
	A(1) V(I)	71.8 10.44	78.1 9.60	83.8 8.94	96.8 7.75	354.8 2.11	

WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS Randolph, VT BRIDGE #042, Third Branch White River USGS BOW,NH 03/10/95 *** RUN DATE & TIME: 03-15-95 08:55

XSID	:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL		
USDRP	:XS 480.	***** *****	117. 279.	1102. 221490.	1.77 1.25	**** ****	510.57 ******	507.15 0.72	10500. 9.52	508.80		
FV	:FV 510.	30. 30. <<< <the< td=""><td>118. 305. ABOVE R</td><td>1388. 224117. ESULTS REI</td><td>1.22 1.37 FLECT</td><td>0.07 0.00 "NORMA</td><td>510.63 0.00 L" (UNCO</td><td>****** 0.57 ONSTRICTE</td><td>10500. 7.56 ED) FLOW></td><td>509.41 >>>></td></the<>	118. 305. ABOVE R	1388. 224117. ESULTS REI	1.22 1.37 FLECT	0.07 0.00 "NORMA	510.63 0.00 L" (UNCO	****** 0.57 ONSTRICTE	10500. 7.56 ED) FLOW>	509.41 >>>>		
XSUS1	:AS 590. <<	80. 80. <<< <the< td=""><td>118. 305. ABOVE R</td><td>1436. 234601. ESULTS REI</td><td>1.14 1.37 FLECT</td><td>0.17 0.00 "NORMA</td><td>510.81 0.01 L" (UNCO</td><td>****** 0.55 DNSTRICTE</td><td>10500. 7.31 ED) FLOW></td><td>509.67 >>>></td></the<>	118. 305. ABOVE R	1436. 234601. ESULTS REI	1.14 1.37 FLECT	0.17 0.00 "NORMA	510.81 0.01 L" (UNCO	****** 0.55 DNSTRICTE	10500. 7.31 ED) FLOW>	509.67 >>>>		
		<<< <r< td=""><td>ESULTS</td><td>REFLECTING</td><td>G THE</td><td>CONSTR</td><td>ICTED FI</td><td>LOW FOLLO</td><td>)W>>>>></td><td></td></r<>	ESULTS	REFLECTING	G THE	CONSTR	ICTED FI	LOW FOLLO)W>>>>>			
XSID	:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL		
BRDGE	:BR 510.	30. 30.	151. 293.	1061. 142611.	1.72 1.13	0.10 0.00	510.68 -0.01	507.56 0.68	10500. 9.89	508.96		
	TYPE H 1.	PCD FLO 0. 1	W . 0.94	C P/A 1 0.060	LSE 530.1	EL BI LO ****	EN XLA	AB XRAE	3			
XSID	:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL		
XSUS1	:AS 590.	44. 48.	117. 305.	1488. 246570.	1.07 1.38	0.15 0.20	511.02 0.01	506.49 0.52	10500. 7.05	509.95		
	M(G) 0.231	M(K) L 0.113	21822	KQ XLKQ 3. 160.	XRF 302	(Q C 2. 50)TEL 19.87					
	<<< <end bridge="" computations="" of="">>>></end>											
FIR	ST USE	ER DEFIN	ED TABL	E. EW REW	XSI	rw 1	AREA	VEL	YMIN	WSEL		

XSID:CODE	SRD	LEW	REW	XSTW	AREA	VEL	YMIN	WSEL
USDRP:XS	480.	117.	279.	162.	1102.	9.52	498.89	508.80
FV :FV	510.	118.	305.	186.	1388.	7.56	497.62	509.41
BRDGE:BR	510.	151.	293.	142.	1061.	9.89	496.33	508.96
XSUS1:AS	590.	117.	305.	188.	1488.	7.05	497.62	509.95

SECOND USER DEFINED TABLE.

XSID:CODE	Q	CRWS	FR#	EGL	VHD	HF	HO	WSEL
USDRP:XS	10500.	507.15	0.72	510.57	1.77*	*****	* * * * *	508.80
FV :FV	10500.*	******	0.57	510.63	1.22	0.07	0.00	509.41
BRDGE:BR	10500.	507.56	0.68	510.68	1.72	0.10	0.00	508.96
XSUS1:AS	10500.	506.49	0.52	511.02	1.07	0.15	0.20	509.95

WSPRO OUTPUT FILE (continued)

HYDRAULIC ANALYSIS Randolph, VT BRIDGE #042, Third Branch White River USGS BOW,NH 03/10/95 *** RUN DATE & TIME: 03-15-95 08:55

XSID	CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL	
USDRP	2:XS 480.	***** *****	115. 282.	1398. 311067.	2.31 1.29	**** ****	512.91 ******	508.78 0.74	15000. 10.73	510.60	
FV	:FV 510. <<	30. 30. <<< <the< td=""><td>115. 306. ABOVE RI</td><td>1759. 311188. ESULTS RE</td><td>1.59 1.41 FLECT</td><td>0.07 0.00 "NORMA</td><td>512.97 -0.01 AL" (UNCO</td><td>****** 0.59 ONSTRICTE</td><td>15000. 8.53 2D) FLOW></td><td>511.38 >>>></td></the<>	115. 306. ABOVE RI	1759. 311188. ESULTS RE	1.59 1.41 FLECT	0.07 0.00 "NORMA	512.97 -0.01 AL" (UNCO	****** 0.59 ONSTRICTE	15000. 8.53 2D) FLOW>	511.38 >>>>	
XSUS1	:AS 590. <<	80. 80. << <the< td=""><td>115. 307. ABOVE RI</td><td>1812. 324504. ESULTS RE</td><td>1.51 1.41 FLECT</td><td>0.18 0.00 "NORMA</td><td>513.16 0.01 AL" (UNCO</td><td>****** 0.56 ONSTRICTE</td><td>15000. 8.28 ED) FLOW></td><td>511.66 >>>></td></the<>	115. 307. ABOVE RI	1812. 324504. ESULTS RE	1.51 1.41 FLECT	0.18 0.00 "NORMA	513.16 0.01 AL" (UNCO	****** 0.56 ONSTRICTE	15000. 8.28 ED) FLOW>	511.66 >>>>	
<<< <results constricted="" flow="" follow="" reflecting="" the="">>>>></results>											
XSID	CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL	
BRDGE	:BR 510.	30. 30.	151. 299.	1330. 192795.	2.22 1.12	0.11 0.00	513.03 -0.01	509.50 0.70	15000. 11.28	510.82	
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. 0. 1. 0.945 0.061 530.10 ****** ****** ******											
XSID	CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL	
XSUS1	:AS 590.	44. 44.	114. 307.	1874. 340266.	1.41 1.42	0.15 0.22	513.39 0.01	508.13 0.54	15000. 8.00	511.98	
	M(G) 0.205	M(K) 5 0.118	1 299694	KQ XLKQ 4. 158.	XR# 306	Q C 5. 51)TEL 1.89				
<<<< <end bridge="" computations="" of="">>>></end>											
FIRST USER DEFINED TABLE. XSID:CODE SRD LEW REW XSTW AREA VEL YMIN WSEL USDRP:XS 480. 115. 282. 167. 1398. 10.73 498.89 510.60											

USDRP	:12	480.	115.	282.	167.	1398.	10.73	498.89	510.60
FV	:FV	510.	115.	306.	191.	1759.	8.53	497.62	511.38
BRDGE	:BR	510.	151.	299.	148.	1330.	11.28	496.33	510.82
XSUS1	:AS	590.	114.	307.	193.	1874.	8.00	497.62	511.98

SECOND USER DEFINED TABLE.

XSID:CODE	Q	CRWS	FR#	EGL	VHD	HF	HO	WSEL
USDRP:XS	15000.	508.78	0.74	512.91	2.31*	*****	* * * * *	510.60
FV :FV	15000.*	******	0.59	512.97	1.59	0.07	0.00	511.38
BRDGE:BR	15000.	509.50	0.70	513.03	2.22	0.11	0.00	510.82
XSUS1:AS	15000.	508.13	0.54	513.39	1.41	0.15	0.22	511.98

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

APPENDIX D: HISTORICAL DATA FORM