LEVEL II SCOUR ANALYSIS FOR BRIDGE 3 (BRIDTH00010003) on TOWN HIGHWAY 1, crossing DAILEY HOLLOW BRANCH, BRIDGEWATER, VERMONT

U.S. Geological Survey Open-File Report 96-237

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 3 (BRIDTH00010003) on TOWN HIGHWAY 1, crossing DAILEY HOLLOW BRANCH, BRIDGEWATER, VERMONT

By SCOTT A. OLSON and DONALD L. SONG

U.S. Geological Survey Open-File Report 96-237

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Rock Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	25
D. Historical data form	27
E. Level I data form	33
F. Scour computations	43

FIGURES

1.	Map showing location of study area on USGS 1:24,000 scale map	3
2.	Map showing location of study area on Vermont Agency of Transportation town	
	highway map	4
3.	Structure BRIDTH00010003 viewed from upstream (October 27, 1994)	5
4.	Downstream channel viewed from structure BRIDTH00010003 (October 27, 1994).	5
5.	Upstream channel viewed from structure BRIDTH00010003 (October 27, 1994).	6
6.	Structure BRIDTH00010003 viewed from downstream (October 27, 1994).	6
7.	Water-surface profiles for the 100- and 500-year discharges at structure	
	BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch,	
	Bridgewater, Vermont.	15
8.	Scour elevations for the 100- and 500-year discharges at structure	
	BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch,	
	Bridgewater, Vermont.	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch,	
Bridgewater, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch,	
Bridgewater, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Ву	To obtain
Length	
25.4	millimeter (mm)
0.3048	meter (m)
1.609	kilometer (km)
Slope	
0.1894	meter per kilometer (m/km)
Area	
2.590	square kilometer (km ²)
Volume	
0.02832	cubic meter (m^3)
Velocity and Flow	
0.3048	meter per second (m/s)
0.02832	cubic meter per second (m ³ /s
0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²]
	Length 25.4 0.3048 1.609 Slope 0.1894 Area 2.590 Volume 0.02832 Velocity and Flow 0.3048 0.02832

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D ₅₀	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 3 (BRIDTH00010003) ON TOWN HIGHWAY 1, CROSSING DAILEY HOLLOW BRANCH, BRIDGEWATER, VERMONT

By Scott A. Olson and Donald L. Song

INTRODUCTION

This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH00010003 on town highway 1 crossing Dailey Hollow Branch, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic division of central Vermont in the town of Bridgewater. The 9.88-mi² drainage area is in a predominantly rural, forested basin. In the vicinity of the study site, the immediate channel banks have moderate tree cover and shrubs with residential properties on the overbank.

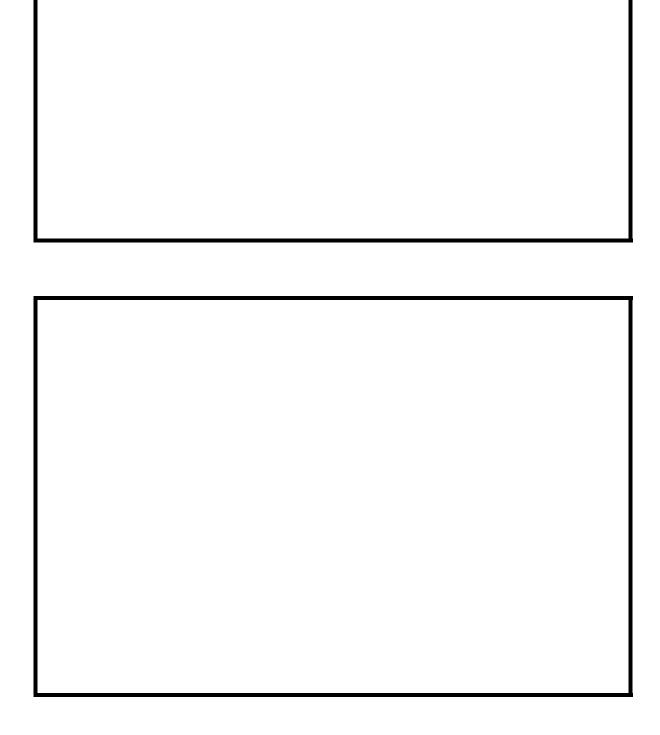
In the study area, Dailey Hollow Branch has an incised, sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 46 ft and an average channel depth of 4 ft. The predominant channel bed materials are gravel and cobble with a median grain size (D_{50}) of 89.7 mm (0.294 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 27, 1994, indicated that the reach was vertically degrading.

The town highway 1 crossing of Dailey Hollow Branch is a 45-ft-long, two-lane bridge consisting of one 42-foot steel-beam span (Vermont Agency of Transportation, written communication, August 24, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 stone fill (less than 36 inches diameter) protects the downstream right and left wingwall. Type-3 stone fill (less than 48 inches diameter) exists on the downstream right bank. The left abutment is undermined by up to one foot. Horizontal probing under the abutment resulted in penetration up to 6 feet.

The bridge is misaligned with the channel. Higher discharges may directly impact the left wingwall. The channel is skewed approximately 20 degrees to the bridge; the opening-skew-to-roadway is also 20 degrees. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows.

Contraction scour for all modelled flows ranged from 0.6 ft to 1.3 ft and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 ft to 12.2 ft and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled "Scour Results". Scour elevations, based on the calculated depths are presented in tables 1 and 2; a graph of the scour elevations is presented in figure 8 Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


For all scour presented in this report, "the scour depths adopted [by VTAOT] may differ from the equation values based on engineering judgement" (Richardson and others, 1993, p. 21, 27). It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results.

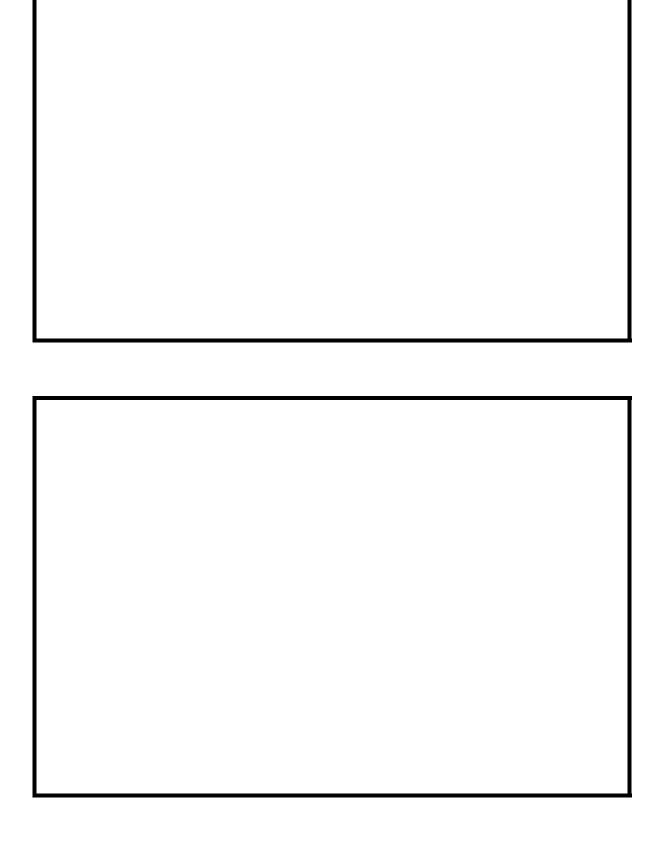


Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number —	mber BRIDTH00010003 Stream		Dailey Hollow Branch		
County Windsor		Road —	TH01	District —	04

Description of Bridge

	45			21.7			42
Bridge length		ft	Bridge width		ft	Max span lengt	h ft
Alignment of bri	dae to roe	d (a	n curva ar straig	(ht) —	straigl	nt	
Augnment of ort			concrete	m)		sloping on	right
Abutment type		No		Embankm	ent type		
Stone fill on abut	ment?	Тур		m wingwa		e-3, in slumped c	ondition along
the downstream		and	road embankme	nt.			
			Abuti	ments and	wingwa	lls are concrete.	Гhe left
abutment is unde	rmined by	a m	aximum measure	ement of o	ne foot.	Maximum horizo	ontal
penetration unde	r the abutn	nent	is six feet.				
						Y	20
Is bridge skewed	to flood f	low	according to <u>N</u>	surve	y?	Angle	
<u></u>				j ~~- , ~		ι,,,	

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection	Percent of channel bloc ked norizoniall y	Percent of alarrael blocked vertically
Level I	10/27/94	<u> </u>	
Level II	Low		

Potential for debris

The stream joins the North Branch of the Ottauquechee 185 feet downstream of the bridge. The **Describe any features near or at the bridge that may affect flow (include observation date)** bridge is misaligned with the channel (10/27/95).

Description of the Geomorphic Setting

General topo	<i>ography</i> The bridge crosses a high gradient incised upland stream with terraces in a
moderate rel	lief valley.
Geomorphi	ic conditions at bridge site: downstream (DS), upstream (US)
Date of insp	pection <u>10/27/94</u>
DS left:	Narrow flood plain to high terrace.
DS right:	High terrace.
US left:	High narrow terrace to valley wall.
US right:	High narrow terrace to valley wall.
	Description of the Channel
	464
Average to	op width fragravel/cobble/boulder ⁴ verage depth gravel/cobble
Predomina	nt bed material Bank material Straight, incised
stream.	······································
	_10/27/94
Vegetative c	<i>Immediate bank is densely forested with lawn on overbank.</i>
DS left:	Minor woody vegetation on immediate bank; parking lot on overbank.
DS right:	Forested; gravel roadway on narrow terrace.
US left:	Forested; gravel roadway on narrow terrace.
US right:	<u>N</u>
Do banks a	ppear stable? October 27, 1994. There is a cut bank on the downstream left and the
upstream i date of obs	right. All banks appear to be oversteepened.
	October 27, 1994 None.
Degentle	we obstructions in observed and date of observed in
Describe an	<i>ny obstructions in channel and date of observation.</i>

Hydrology

Percentage of drainage area in physiographic		iximalei
		,
<i>Physiographic province</i> Green Mountain	Percent of dr 1	ainage area 00
Is drainage area considered rural or urban?	Rural	Describe any significa
urbanization: None.		
	No	
Is there a USGS gage on the stream of interest	?	
USGS gage description		
USGS gage number		
Gage drainage area	mi ²	
Gage drainage area	mi ²	No
Gage drainage area	<i>mi</i> ²	No
	mi ²	No
	<i>mi²</i>	<u>No</u>
	<i>mi</i> ²	No
	<i>mi</i> ²	No
	<i>mi</i> ²	No
	mi ²	No
Is there a lake/p		<u>No</u>
Is there a lake/p	d Discharges	<u>No</u>
Is there a lake/p Calculate 2,170 Calculate $Q100$ ft^3/s	d Discharges	
Is there a lake/p Calculate	d Discharges Q500 arges determined	$\frac{2,920}{ft^3/s}$ using a drainage area
Is there a lake/p Calculate	d Discharges <i>Q500</i> arges determined 3 [(9.88/9.80) to t	<u>2,920</u> <i>ft³/s</i> using a drainage area he 0.7 power]. The Q100
Is there a lake/p Calculate	d Discharges <i>Q500</i> arges determined 3 [(9.88/9.80) to t) cubic feet per se	$\frac{2,920}{ft^3/s}$ using a drainage area he 0.7 power]. The Q100 cond, respectively. The Q
Is there a lake/p Calculate $2,170$ Calculate $2,170$ Calculate $2,170$ ft^3/s Disch relationship with upstream Bridgewater bridge 43 are 2,150 and 2,900 at bridge 43 is from the VTAOT database (VTAC	d Discharges <i>Q500</i> arges determined 3 [(9.88/9.80) to t) cubic feet per se 0T, written commu	$\frac{2,920}{ft^3/s}$ using a drainage area he 0.7 power]. The Q100 cond, respectively. The Q unication, May, 1995); th
Is there a lake/p Calculate 2,170 Calculate $Q100$ ft^3/s	d Discharges Q500 arges determined 3 [(9.88/9.80) to t) cubic feet per se DT, written communited discharges from	$\frac{2,920}{ft^3/s}$ using a drainage area he 0.7 power]. The Q100 cond, respectively. The Q unication, May, 1995); the om applicable empirical

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey
Datum tie between USGS survey and VTAOT plans	Not applicable	e

Description of reference marks used to determine USGS datum. RM1 is a chiseled X on

top of the downstream end of the right abutment (elev. 101.07 ft, arbitrary datum). RM2 is a

chiseled X on top of the upstream end of the left abutment (elev. 100.94 ft, arbitrary datum).

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-73	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	11	1	Road Grade section
APPRO	62	2	Modeled Approach sec- tion (Templated from SURVA)
APTEM	108	1	Approach section as sur- veyed (Used as a tem- plate)

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflects conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.049 to 0.057, and overbank "n" values ranged from 0.030 to 0.035.

Dailey Hollow Branch drains into the North Branch Ottauquechee River approximately 185 feet downstream of this site. The close proximity of the confluence may affect the Dailey Hollow Branch hydraulics, especially if the flow peaks are simultaneous. However an analysis of potential backwater from the North Branch Ottauquechee River is outside of the scope of this study and normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was 0.0092 ft/ft which was determined from surveyed thalweg points downstream of the bridge.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.031 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation100.3ftAverage low steel elevation97.6ft

 100-year discharge
 2,170
 ft^3/s

 Water-surface elevation in bridge opening
 88.8
 ft

 Road overtopping?
 N
 Discharge over road
 -- ,... s

 Area of flow in bridge opening
 186
 ft^2

 Average velocity in bridge opening
 11.7
 ft/s

 Maximum WSPRO tube velocity at bridge
 14.5
 ft/s

Water-surface elevation at Approach section with bridge91.2Water-surface elevation at Approach section without bridge89.9Amount of backwater caused by bridge1.3 t

500-year discharge $2,920$ ft^3/s	
Water-surface elevation in bridge opening	<u> 89.6 </u> ft
Road overtopping? <u>N</u> Dischar	ge over road, /s
Area of flow in bridge opening 219	$\frac{1}{2}$ ft ²
Average velocity in bridge opening	13.3 <i>ft/s</i>
Maximum WSPRO tube velocity at bridge	<u>16.7</u> /s
Maximum WSPRO tube velocity at bridge	16.7′s

Water-surface elevation at Approach section with bridge92.7Water-surface elevation at Approach section without bridge91.0Amount of backwater caused by bridge1.7

Incipient overtopping discharge	ft^3/s
Water-surface elevation in bridge opening	ft
Area of flow in bridge opening	ft^2
Average velocity in bridge opening	<i>ft/s</i>
Maximum WSPRO tube velocity at bridge	ft/s

Water-surface elevation at Approach section	with bridge	
Water-surface elevation at Approach section	without bridge	
Amount of backwater caused by bridge	<i>t</i>	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1993, p. 35, equation 18). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). The Froehlich equation gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	0.6	1.3	
	18.5	26.0	
Depth to armoring			*
Left overbank			
Right overbank			
Local scour:			
Abutment scour	10.1	12.2	
Left abutment	6.7–	8.3-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Rock Riprap Sizing

		01	Incipient vertopping
	100-yr discharge	500-yr discharge	discharge
		(D_{50} in feet)	
Abutments:	2.0	2.4	
Abutments: Left abutment	2.0	2.4	
Right abutment			
Piers:			
Pier 1			
Pier 2			

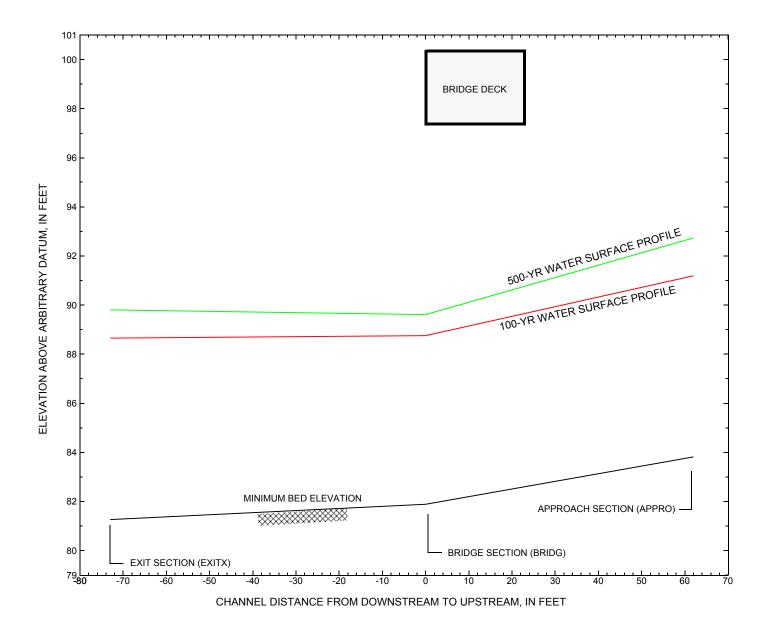


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BRIDTH00010003 on town highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont.

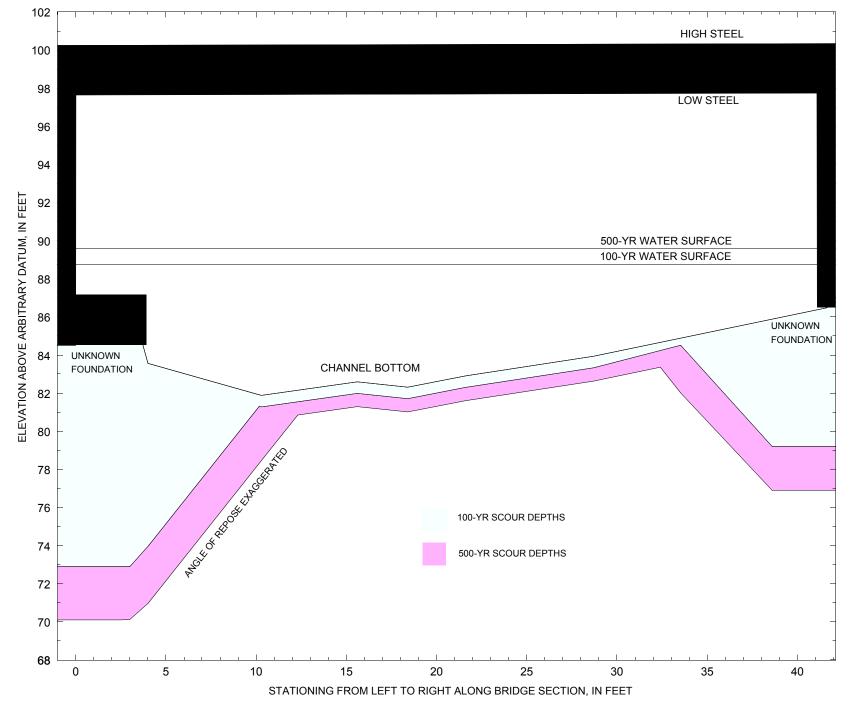


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BRIDTH00010003 on town highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont.

16

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 2,170) cubic-feet per sec	cond				
Left abutment	0.0		97.64		83.6	0.6	10.1		10.7	72.9	
Right abutment	41.1		97.66		86.5	0.6	6.7		7.3	79.2	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BRIDTH00010003 on Town Highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 2,920) cubic-feet per sec	cond				
Left abutment	0.0		97.64		83.6	1.3	12.2		13.5	70.1	
Right abutment	41.1		97.66		86.5	1.3	8.3		9.6	76.9	

^{1.} Measured along the face of the most constricting side of the bridge.

². Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Richardson, J.R., Chang, F., 1991, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 195 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V., Harrison, L.J., Richardson, J.R., and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1966, Plymouth, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

Τ1 U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid003.wsp Т2 CREATED ON 26-APR-95 FOR BRIDGE BRIDTH00010003 USING FILE brid003.dca Т3 Dailey Hollow Branch, Town Highway 1, Town of Bridgewater * 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 J3 * 2170 2920 0 SK 0.0092 0.0092 * * XS EXITX -73 GR -119.9, 92.44 -30.7, 94.16 -21.0, 89.95 -4.2, 85.64 GR -3.6, 83.31 0.0, 82.31 5.3, 81.33 9.5, 81.92 32.6, 82.89 38.9, 86.93 GR 16.6, 81.26 22.4, 82.25 52.2, 96.88 176.4, 96.82 GR Ν 0.035 0.052 0.035 SA -30.7 52.2 * XS FULLV 0 * * * 0.009 * BR BRIDG 0 97.65 20 0.6, 87.00 3.8, 87.00 0.0, 97.64 GR 4.0, 83.56 6.5, 82.87 15.6, 82.59 GR 10.3, 81.88 18.4, 82.31 28.7, 83.93 41.1, 86.47 21.6, 82.90 GR 41.1, 97.66 0.0, 97.64 GR Ν 0.049 1 36.5 * * 62.5 7.2 CD * XR RDWAY 11 21.7 1 GR -121.5, 96.60 -71.5, 97.49 -34.7, 98.85 0.0, 100.19 GR 0.1, 100.95 1.6, 100.95 2.0, 101.69 41.9, 101.83 44.1, 101.07 45.3, 100.39 76.4, 100.42 GR 42.0, 101.06 101.0, 110.88 GR BP 0 * XT APTEM 108 GR -102.5, 105.83 -72.0, 104.05 -57.4, 98.61 -19.4, 98.11 GR -7.4, 89.75 -5.7, 88.71 2.1, 87.12 5.0, 85.74 20.9,85.7126.8,86.2137.1,88.7242.8,91.9957.3,99.8383.5,101.43 13.2, 85.24 GR 38.7, 90.29 GR 96.3, 109.49 GR * AS APPRO 62 -1.43 GT Ν 0.030 0.057 0.030 -19.4 57.3 SA ΒP 0 * HP 1 BRIDG 88.75 1 88.75 HP 2 BRIDG 88.75 * * 2170 HP 1 APPRO 91.19 1 91.19 HP 2 APPRO 91.19 * * 2170 *

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

	U.S. GEOLO	GICAL	SURVEY WSPF	O INPUT	FILE bri	d003.wsp		
			R-95 FOR BF anch, Town					rid003.dca
			& TIME: 09-			or bridge	water	
	SS-SECTION							
WS	EL SA# 1	AREA 186.	к 14372.	38.	ETP ALP 46.	H LEW	REW	QCR 2335.
88.	1 75	186.	14372.	38.	46. 1.0	0 1.	41.	2335.
VET	OCTTV DIGT		N. TOPO -	2. CEC	דפס – חדי	הכי פשח	_	0
VEL	OCITY DISTR WSEL		REW AF					0.
	88.75	0.5	41.1 186	5.2 143	72. 2	170. 11.	65	
X STA	0 5		63	8 1	9.6	10	9	12 2
A(I)	0.5	, 17.8	10.4	9.1	.0	8.5	7.9	12.2
V(I)		6.09	10.45	12.	10	12.73	13.72	
X STA	12 2	,	13 4	14 7	16 0	17	3	18 6
A(I)	12.2	7.7	7.7	7	.7	7.6	7.5	1010
V(I)		14.14	14.10	14.	02	14.33	14.49	
X STA.	18.6	5	19.8	21.2	22.7	24	.2	25.9
A(I)	18.6	7.6	7.8	7	.9	8.2	8.3	
V(I)		14.27	13.94	13.	82	13.16	13.00	
X STA.	25.9	,	27.7	29.8	32.2	35	.4	41.1
A(I)		8.7	9.3	10	.0	11.2	15.4	
V(I)		12.43	11.70	10.	81	9.70	7.04	
CRO	SS-SECTION	PROPER	TIES: ISEQ	2 = 5;	SECID =	APPRO; S	RD =	62.
WS	EL SA# 2	AREA	K	TOPW W	ETP ALP	H LEW	REW	QCR
91	2 19	284. 284	21203. 21203	55. 55	59. 1 A	0 -12	44	3639. 3639.
VEL	OCITY DISTR							52.
	WSEL 91.19 -1							
X STA.	-11.5	5	-2.9	0.5	3.3	10 5	.3	7.1
A(I) V(I)		∠3.3 4.66	16.5 6.58	15	08	13.5	8.71	
	7.1	12.4	8.9	10.5	12.1	13	.7	15.3
A(I) V(I)		12.4 8.75	11.9 9.15	11 9.	33	9.33	9.40	
X STA. A(I)	15.3	11 0	16.9 11.6	18.6	20.3	12 2	12 5	23.9
V(I)		9.19	9.32	9.	03	8.90	8.71	
	23.9) 131	25.9	28.0	30.6	33 16 6	.9	44.0
V(I)		8.31	13.6 8.00	7.	28	6.54	4.31	
CRO WS	SS-SECTION EL SA#	AREA	TIES: ISEÇ K	2 = 3; TOPW W	SECID = IETP ALP	BRIDG; S H LEW	RD = REW	0. QCR
	1	219.	18383.	38.	48.			2977.
89.	61	219.	18383.	38.	48. 1.0	0 0.	41.	2977.
VEL	OCITY DISTR	RIBUTIO	N: ISEO =	3; SEC	ID = BRT	DG; SRD	=	0.
	WSEL 89.61	LEW	REW AF	REA	ĸ	Q V	EL	
	89.61	0.5	41.1 219	9.1 183	83. 2	920. 13.	33	
X STA.	0.5	5	6.1	8.0	9.5	10	.9	12.2
A(I)	0.5	21.1	12.3	10	.9	10.0	9.3	
V(I)		6.91	11.89	13.	45	14.65	15.77	
	12.2		13.6	14.9	16.3	17	.6	18.9
A(I)		9.4	9.0	9	.1	8.9	8.7	
V(I)		15.60	16.31	16.	13	16.42	16.70	
X STA.	18.9)	20.2	21.6	23.1	24	.7	26.4
A(I)	18.9	8.9	9.2	9	.3	9.4	9.9	
V(I)		16.35	15.93	15.	/ U	15.48	14.80	
X STA.	26.4	Ł	28.3	30.4	32.8	35	.8	41.1
A(I)		10.4	10.8	11	. 4	13.0	18.3	
V(I)		14.07	13.55	12.	78	11.26	7.97	
CRO	SS-SECTION	PROPER	TIES: ISEQ	2 = 5;	SECID =	APPRO; S	RD =	62.
WS	EL SA#	AREA	K	TOPW W	ETP ALP	H LEW	REW	QCR
92.	2 73	373. 373.	31384. 31384.	ыт. 61.	65. 1.0	0 -14.	47.	5253. 5253.

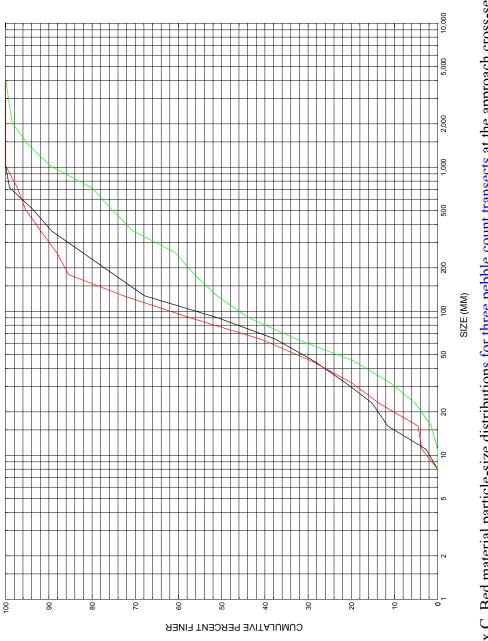
WSPRO OUTPUT FILE (continued)

0.2	Z DISTRIE	BUTION: I	ISEQ = N AR	5; EA	SECID K	= APPRO; Q 2920.	SRD = VEL	62.	
92. X STA. A(I) V(I)	-13.7 -13.7 3	-4.3 -4.3 31.6 4.62	21.5 6.79	-0.6	19.5 7.49	2920. 2.3 18.3 8.09	7.83 4.7 1 5	16.3 8.95	6.6
X STA. A(I) V(I)						12.0 15.: 9.5		15.1 9.64	5.4
X STA. A(I) V(I)	15.4 1	17.2 15.4 9.47	2 15.2 9.59	18.9	15.7 9.27	20.8 15. 9.3	22.7 7 2	2- 16.7 8.76	4.7
X STA. A(I) V(I)	24.7 1 8	26.8 16.8 3.70	3 18.1 8.07	29.1	19.5 7.48	31.9 22.0 6.4	35.5 6 5	4 33.0 4.42	6.8
CRE# Dail	ATED ON 2 Ley Hollo	26-APR-95	FOR BR Town	IDGE Highw	BRIDTH ay 1,	E brid003 00010003 1 Town of B: 8	USING F		003.dca
XSID:CODE SRD						EGL ERR			
EXITX:XS -73.	*****	-16. 41. 22	284. 2618.	0.91 1.00	**** ****	89.55	86.87 0.60	2170. 7.63	88.65
FULLV:FV 0. <<<	73.	41. 22	2853.	1.00	0.00	90.23 * 0.02 L" (UNCON:	0.60	7.58	
===125 FR#						TRIALS CO 0.87			47
===110 WSEI						CED DELTA 8.84		0.50	
===115 WSEI						WSMIN = 0 84 103		89.47	
===135 CONV	/EYANCE F					D LIMITS. O = 0.62			
			214	1 59	0 00			0170	
62.		41. 14	173.	1.00	0.35	91.48 0.00 L" (UNCON:	0.87	10.12	
62.	62. < <the ae<="" td=""><td>41. 14 BOVE RESUL</td><td>173. JTS REF</td><td>1.00 'LECT</td><td>0.35 "NORMA</td><td>0.00</td><td>0.87 STRICTEI</td><td>10.12 D) FLOW></td><td></td></the>	41. 14 BOVE RESUL	173. JTS REF	1.00 'LECT	0.35 "NORMA	0.00	0.87 STRICTEI	10.12 D) FLOW>	
62. <<< XSID:CODE	62. << <the ae<br=""><<<<res SRDL</res </the>	41. 14 BOVE RESULTS REFI	173. STS REF SECTING AREA	1.00 TLECT THE VHD	0.35 "NORMA CONSTR HF	0.00 L" (UNCON	0.87 STRICTEN W FOLLOW CRWS	10.12 D) FLOW> N>>>>> Q	>>>>
62. <<< XSID:CODE SRD BRIDG:BR	62. << <the ae<br=""><<<<res SRDL FLEN 73.</res </the>	41. 14 BOVE RESULTS SULTS REFI LEW REW 1.	173. TS REF LECTING AREA K 186.	1.00 PLECT THE VHD ALPH 2.11	0.35 "NORMA CONSTR HF HO 1.06	0.00 L" (UNCONS ICTED FLO EGL ERR	0.87 STRICTEN W FOLLOW CRWS FR# 88.51	10.12 D) FLOW> W>>>>> Q VEL 2170.	WSEL
62. <<< XSID:CODE SRD BRIDG:BR 0. TYPE PI	62. << <the ae<br=""><<<<res SRDL FLEN 73. 73. PCD FLOW</res </the>	41. 14 30VE RESULTS REFI LEW REW 1. 41. 14 C	173. TS REF LECTING AREA K 186. 1364. P/A	1.00 'LECT ; THE VHD ALPH 2.11 1.00 LSE	0.35 NORMA CONSTR HF HO 1.06 0.25 L BL	0.00 L" (UNCONS ICTED FLOW EGL ERR 90.86	0.87 STRICTEN W FOLLOW CRWS FR# 88.51 0.93 XRAB	10.12) FLOW> N>>>> Q VEL 2170. 11.66	WSEL
62. << XSID:CODE SRD BRIDG:BR 0. TYPE PH 1. ** XSID:COU	62. << <the ae<br="">SRDL FLEN 73. 73. PCD FLOW *** 1.</the>	41. 14 30VE RESULTS REFI LEW REW 1. 41. 14 C 1.000 **	1173. TS REF JECTING AREA K 186. 1364. P/A ***** HF	1.00 CLECT ; THE VHD ALPH 2.11 1.00 LSE 97.6 VHD	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG	0.00 L" (UNCON: ICTED FLOI EGL ERR 90.86 0.00 EN XLAB	0.87 STRICTEN W FOLLON CRWS FR# 88.51 0.93 XRAB ******	10.12) FLOW> V>>>> Q VEL 2170. 11.66 N SE	>>>> WSEL 88.75
62. << XSID:CODE SRD BRIDG:BR 0. TYPE PH 1. ** XSID:COU	62. << <the ae<br="">SRDL FLEN 73. 73. PCD FLOW *** 1. DE SRI 11.</the>	41. 14 30VE RESUL SULTS REFI LEW REW 1. 41. 14 1.000 ** 0. FLEN	173. TS REF JECTING AREA K 186. 186. 186. P/A ***** HF <<< <em< td=""><td>1.00 YLECT 7 THE VHD ALPH 2.11 1.00 LSE 97.6 VHD</td><td>0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS</td><td>0.00 L" (UNCON EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER</td><td>0.87 STRICTEN W FOLLOU CRWS FR# 88.51 0.93 XRAB ******</td><td>10.12) FLOW> W>>>>> Q VEL 2170. 11.66</td><td>>>>> WSEL 88.75 L</td></em<>	1.00 YLECT 7 THE VHD ALPH 2.11 1.00 LSE 97.6 VHD	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS	0.00 L" (UNCON EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER	0.87 STRICTEN W FOLLOU CRWS FR# 88.51 0.93 XRAB ******	10.12) FLOW> W>>>>> Q VEL 2170. 11.66	>>>> WSEL 88.75 L
62. << <tr>XSID:CODESRDBRIDG:BR0.TYPE PI1. **XSID:COIRDWAY:RGXSID:CODESRDAPPRO:AS</tr>	62. << <the ae<br=""><<<<res SRDL FLEN 73. 73. 73. PCD FLOW *** 1. DE SRE 11. SRDL FLEN 26.</res </the>	41. 14 30VE RESULTS REFI LEW REW 1. 14 41. 14 1.000 ** 0 FLEN LEW REW -12.	1173. JTS REF JECTING AREA K 1866. 1364. P/A ***** HF K AREA K 283.	1.00 PLECT THE VHD ALPH 2.11 1.00 LSE 97.6 VHD BANKM VHD ALPH 0.91	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS HF HO 0.41	0.00 L" (UNCON: ICTED FLOI EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER' EGL ERR	0.87 STRICTEJ W FOLLOU CRWS FR# 88.51 0.93 XRAB ****** TOPPED>: CRWS FR# 89.47	10.12) FLOW> VEL 2170. 11.66 Q WSE Q VEL 2170.	WSEL 88.75 L
62. << XSID:CODE SRD BRIDG:BR 0. TYPE PI 1. ** XSID:CODE RDWAY:RG XSID:CODE SRD APPRO:AS 62. M(G)	62. << <the ae<br="">SRDL FLEN 73. 73. 73. PCD FLOW *** 1. DE SRU 11. SRDL FLEN 26. 26. 26. 26. M(K)</the>	41. 14 30VE RESULTS REFI LEW REW 1. 14 41. 14 1.000 ** 0 FLEN LEW REW -12.	1173. TTS REF JECTING AREA K 186. 1364. P/A ***** HF <<<< <em AREA K 283. 186. XLKO</em 	1.00 LECT THE VHD ALPH 2.11 1.00 LSE 97.6 VHD IBANKM VHD ALPH 0.91 1.00 XRK	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS HF HO 0.41 0.83 O O O	0.00 L" (UNCON: ICTED FLOI EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER' EGL ERR 92.10 0.02 TEL	0.87 STRICTEJ W FOLLOU CRWS FR# 88.51 0.93 XRAB ****** TOPPED>: CRWS FR# 89.47	10.12) FLOW> VEL 2170. 11.66 Q WSE Q VEL 2170.	WSEL 88.75 L
62. << XSID:CODE SRD BRIDG:BR 0. TYPE PI 1. ** XSID:CODE RDWAY:RG XSID:CODE SRD APPRO:AS 62. M(G)	62. << <the ae<br="">SRDL FLEN 73. 73. 73. PCD FLOW *** 1. DE SRU 11. SRDL FLEN 26. 26. 26. 26. M(K)</the>	41. 14 30VE RESUL SULTS REFI LEW REW 1. 14 41. 14 1.000 ** 0 FLEN LEW REW -12. 2: 44. 2: KQ 21643.	1773. TTS REF LECTING AREA K 1866. 1866. 4364. P/A ***** HF 444 K 283. 1866. XLKQ -3.	1.00 LECT THE VHD ALPH 2.11 1.00 LSE 97.6 VHD BANKM VHD ALPH 0.91 1.00 XRK 38	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS HF HO 0.41 0.83 Q 00 . 9	0.00 L" (UNCON: ICTED FLOI EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER' EGL ERR 92.10 0.02 TEL	0.87 STRICTEJ W FOLLOU CRWS FR# 88.51 0.93 XRAB ****** COPPED>: CRWS FR# 89.47 0.60	10.12) FLOW> VEL 2170. 11.66 Q WSE Q VEL 2170.	WSEL 88.75 L
62. << XSID:CODE SRD BRIDG:BR 0. TYPE PH 1. ** XSID:CODE RDWAY:RG XSID:CODE SRD APPRO:AS 62. M(G) 0.201 FIRST USEEL XSID:COD EXITY:XS	62. << <the af<br=""><<<<res SRDL FLEN 73. 73. 73. PCD FLOW *** 1. DE SRI 11. SRDL FLEN 26. 26. M(K) 0.000 R DEFINEI DE SRI -73</res </the>	41. 14 30VE RESULTS REFI LEW REW 1. 14 41. 14 C 1.000 ** 0 FLEN LEW REW -12. 44. 2: KQ 21643. <<< <eni 0 TABLE. 0 LEW -16</eni 	1773. TTS REF LECTING AREA K 1866. 1866. P/A ***** HF CCCCEM AREA K 283. 1866. XLKQ -3. O OF BR REW 41	1.00 LECT THE VHD ALPH 2.11 1.00 LSE 97.6 VHD BANKM VHD ALPH 0.91 1.00 XRK 38 SIDGE	0.35 "NORMA CONSTR HF HO 1.06 0.25 L BL 5 **** EG ENT IS HF HO 0.41 0.83 Q O . 9 COMPUT	0.00 L" (UNCON: ICTED FLOU EGL ERR 90.86 0.00 EN XLAB ** ****** L ERR NOT OVER' EGL ERR 92.10 0.02 TEL 0.76 ATIONS>>>: K 2618	0.87 STRICTEI W FOLLOU CRWS FR# 88.51 0.93 XRAB ****** (TOPPED>: CRWS FR# 89.47 0.60 >> AREA 284	10.12) FLOW> Q VEL 2170. 11.66 Q VEL 2170. 7.66 VEL 7.63	<pre>>>>> WSEL 88.75 L WSEL 91.19 WSEL 88.65</pre>

 APPRO:AS
 62.
 -12.
 44.
 2170.
 21186.

 XSID:CODE
 XLKQ
 XRKQ
 KQ

 APPRO:AS
 -3.
 38.
 21643.


23

WSPRO OUTPUT FILE (continued)

SECOND USER XSID:CODE				NTN	VMAY	υг		FG	L WSEL
EXITX:XS									5 88.65
FULLV:FV									3 89.34
BRIDG:BR		1 0.9	93 81	.88 9	97.66	1.06 0	.25 2.1	1 90.8	6 88.75
RDWAY:RG		******	** 96	.60 1	10.88*	*******	*******	*******	
APPRO:AS									
CREAT	TED ON 2	6-APR-9	5 FOR BI	RIDGE I	BRIDTH		3.wsp USING F Bridgewa		003.dca
* 5	* RUN D.	ATE & T	IME: 09	-20-95	14:0	8	-		
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO		CRWS FR#	Q VEL	WSEL
EXITX:XS ** -73. **							87.87 0.61		89.80
FULLV:FV 0. <<<<	73.	43. 3	356. 30714. ULTS RE	1.00	0.00		******* 0.61 NSTRICTE	2920. 8.20 D) FLOW>	
===125 FR# H		FNTEST 2 ,FR#,WS1					ONTINUED 91.00		41
===110 WSEL		ND AT SI SLIM1,WS					AY. 108.06	0.50	
===115 WSEL		ND AT SI SLIM1,WS					CRWS. 08.06	90.41	
===135 CONVE	EYANCE R.	ATIO OU	ISIDE O			D LIMITS O = 0.6			
APPRO:AS	62.	-11	272	1.79	0 86	92.77	90.41	2920.	90.98
62.	62. 62.		19990.				0.85		20.20
							NSTRICTE		>>>>
								_,	
۰	<<< <res< td=""><td>ULTS REI</td><td>FLECTIN</td><td>G THE (</td><td>CONSTR</td><td>ICTED FL</td><td>OW FOLLO</td><td>W>>>>></td><td></td></res<>	ULTS REI	FLECTIN	G THE (CONSTR	ICTED FL	OW FOLLO	W>>>>>	
		LEW REW	AREA K	VHD ALPH	HF HO		CRWS FR#	Q VEL	WSEL
		<u>^</u>	010	0.50		00.05	00 54		0.0 (1
BRIDG:BR 0.							89.54 0.98	2920. 13.33	89.61
TYPE PPC 1. ***				LSE1 97.6			B XRAB * *****		
XSID:CODE	s srd	FLEN	HF	VHD	EG	L ER	R	O WSE	τ.
RDWAY:RG							RTOPPED>		-
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
APPRO:AS 62.	26. 27.	-14. 47. 3	373. 31386.	0.95 1.00	0.39 0.92	93.68 0.01	90.41 0.56	2920. 7.83	92.73
	M(K) 0.000		XLKQ -3.						
		<<< <ei< td=""><td>ND OF BI</td><td>RIDGE (</td><td>COMPUT</td><td>ATIONS>></td><td>>>></td><td></td><td></td></ei<>	ND OF BI	RIDGE (COMPUT	ATIONS>>	>>>		
FIRST USER	DEFINED	TABLE.							
XSID:CODE		LEW	REW	0.05	Q -	K	AREA		WSEL
EXITX:XS FULLV:FV	-73.	-20. -21.	43.	2920	J. 3	0422. 0714.	354.	8.25 8.20	89.80
FULLV:FV BRIDG:BR						0714. 8383.	356. 219.		90.50 89.61
RDWAY:RG	11.	******	******	().****	*******	* * * * * *	1.00**	* * * * * *
APPRO:AS	62.	-14.	47.	292). 3	1386.	373.		
XSID.CODI	E XLKQ	XRKQ	1 3161	KQ 3.					
APPRO:AS	-3.								
APPRO:AS									
APPRO:AS	DEFINED	TABLE.		MIN	YMAX	HF	HO VHD	EG	L WSEL
APPRO:AS SECOND USER XSID:CODE EXITX:XS	DEFINED E CRW 87.8	TABLE. S FI 7 0.6	R# YI 61 81	.26	96.88*	******	*** 1.0	6 90.8	6 89.80
APPRO:AS SECOND USER XSID:CODI EXITX:XS FULLV:FV	DEFINED 5 CRW 87.8 ******	TABLE. S FI 7 0.6 * 0.6	R# YI 61 81 61 81	.26	96.88* 97.54	******* 0.67 0	*** 1.0 .00 1.0	6 90.8 4 91.5	6 89.80 4 90.50
APPRO:AS SECOND USER XSID:CODH EXITX:XS FULLV:FV BRIDG:BR	DEFINED E CRW 87.8 ******	TABLE. S FI 7 0.6 * 0.6 4 0.5	R# YI 61 81 61 81 98 81	.26 .92 .88	96.88* 97.54 97.66	******** 0.67 0 1.11 0	*** 1.0 .00 1.0 .40 2.7	6 90.8 4 91.5 6 92.3	6 89.80 4 90.50 7 89.61
APPRO:AS SECOND USER XSID:CODH EXITX:XS FULLV:FV	DEFINED E CRW 87.8 ****** 89.5 ******	TABLE. S FI 7 0.6 * 0.6 4 0.5 **********	R# YI 61 81 61 81 98 81 ** 96	.26 .92 .88 .60 1	96.88* 97.54 97.66 10.88*	********* 0.67 0 1.11 0 *******	*** 1.0 .00 1.0 .40 2.7 ******	6 90.8 4 91.5 6 92.3 ****	6 89.80 4 90.50 7 89.61

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

APPENDIX D: HISTORICAL DATA FORM