LEVEL II SCOUR ANALYSIS FOR BRIDGE 51 (RANDTH00SC0051) on SCHOOL STREET, crossing THAYER BROOK, RANDOLPH, VERMONT

U.S. Geological Survey Open-File Report 96-240

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 51 (RANDTH00SC0051) on SCHOOL STREET, crossing THAYER BROOK, RANDOLPH, VERMONT

By SCOTT A. OLSON

U.S. Geological Survey Open-File Report 96-240

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting.	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Rock Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure RANDTH00SC0051 viewed from upstream (August 4, 1994)	
4. Downstream channel viewed from structure RANDTH00SC0051 (August 4, 1994)	
5. Upstream channel viewed from structure RANDTH00SC0051 (August 4, 1994)	
6. Structure RANDTH00SC0051 viewed from downstream (August 4, 1994).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
RANDTH00SC0051 on School Street, crossing Thayer Brook,	
Randolph, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
RANDTH00SC0051 on School Street, crossing Thayer Brook,	
Randolph, Vermont.	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
RANDTH00SC0051 on School Street, crossing Thayer Brook,	
Randolph, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
RANDTH00SC0051 on School Street, crossing Thayer Brook,	
Randolph, Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 51 (RANDTH00SC0051) ON SCHOOL STREET, CROSSING THAYER BROOK, RANDOLPH, VERMONT

By Scott A. Olson

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure RANDTH00SC0051 on School Street crossing Thayer Brook, Randolph, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic division of central Vermont in the town of Randolph. The 5.30-mi² drainage area is a predominantly rural basin. In the vicinity of the study site, the left and right banks are forested with residences on the left overbanks.

In the study area, Thayer Brook has a sinuous channel with a slope of approximately $0.03 \, \text{ft/}$ ft, an average channel top width of 36 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble (D_{50} is 58.2 mm or 0.191 ft). The geomorphic assessment at the time of the Level I site visits on August 4, 1994 and December 8, 1994, indicated that the reach was stable.

The School Street crossing of Thayer Brook is a 39-ft-long, two-lane bridge consisting of one 35-foot concrete span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 stone fill (less than 36 inches diameter) along the downstream left bank was the only existing protection. The approach channel is skewed approximately 45 degrees to the bridge face; the opening-skew-to-roadway is also 45 degrees. Additional details describing conditions at the site are included in the Level II Summary, Appendix D, and Appendix E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 1.0 to 2.2 ft. with the worst-case scenario occurring at the 500-year discharge. Abutment scour ranged from 6.2 to 12.0 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

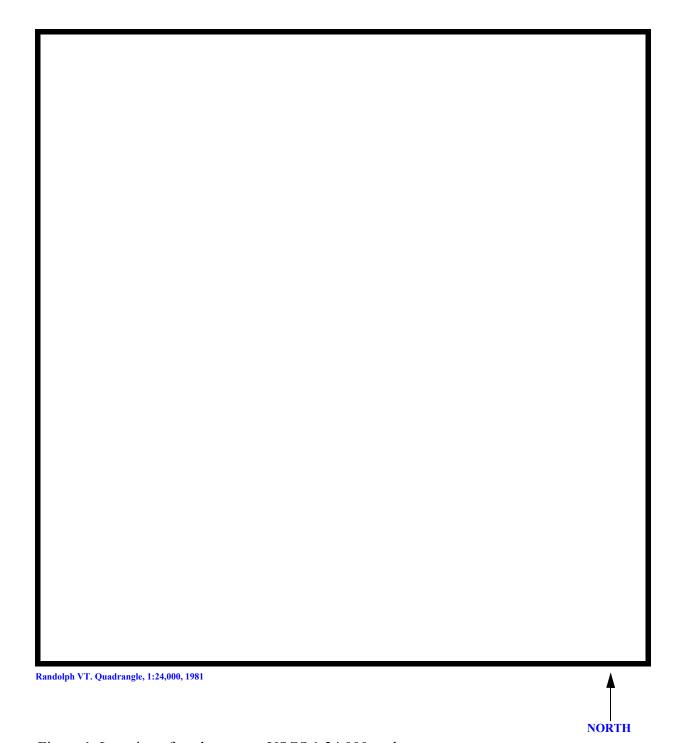
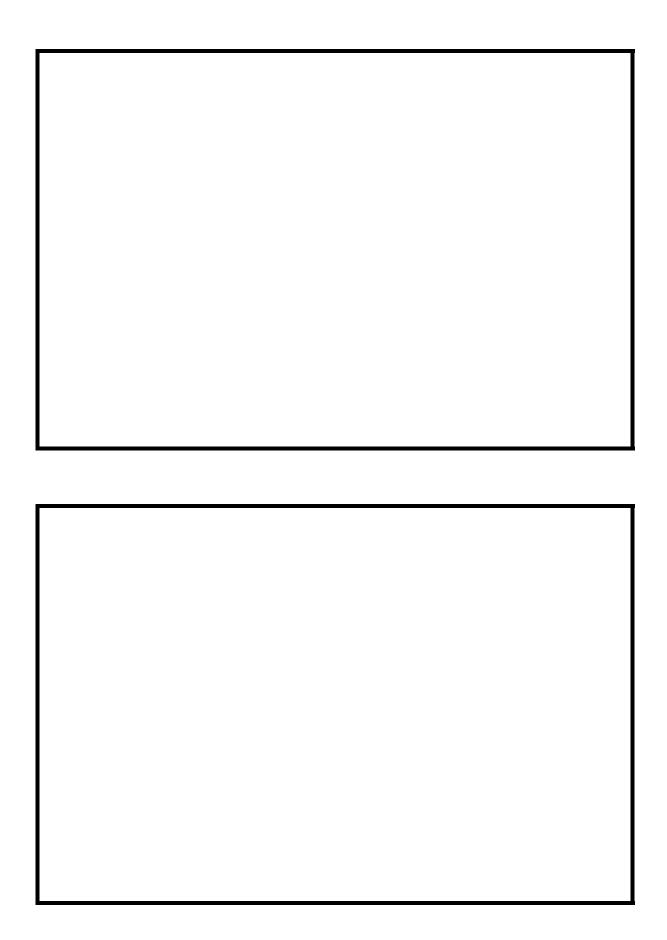



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

icture Number -	RANDTH00SC0051	— Stream	Thayer E	Brook	
unty Orange		_ Road —	TH00SC	District –	04
	Descrip	tion of Brid	ge		
Bridge length -	ft Bridge wid	23.1	– <i>ft Max</i> straight	span length	35
Alignment of bri	dge to road (on curve or s	traight) —	straight	sloping	
Abutment type	no	Embankn	nent type ${08}$	//04/94 and 12/	/08/94
Stone fill on abut		Date of inst	n <i>oct</i> ion		
Dannindian of al					
			,	<u>Y</u>	45
		. N		<u>Y</u>	45
_	to flood flow according to o roadway is also 45 degree		ey:	Angle	
_Opening sacw t	<u>0 10auway 15.a150.43 ucgic</u>	.cs _{j ~~} ,		, , ~ -	·,
Debris accumula	ution on bridge at time of .	Level I or Lev	el II site visit:		
	Date of inspection 8/4/94 and 12/8/94	Percent of the blocked no	ohannal		o alamel Vertically
Level I	08/09/94				
Level II	Moderate				
Potential fo	r debris				
			11 21 1 1	. 4	
There is a large i	piece of concrete debris, p	ropabiy the oic	a bridge deck	in the middle	of the

Description of the Geomorphic Setting

General topo	graphy The bridge crosses a high gradient upland stream with no flood plains in
moderate re	ief valley.
Geomorphi	c conditions at bridge site: downstream (DS), upstream (US)
Date of ins	ection 8/4/94 and 12/8/94
DS left:	Steep high channel bank to mild sloping overbank.
DS right:	Steep valley wall intersected by roadway.
US left:	Steep high channel bank to mild sloping overbank.
US right:	Steep valley wall.
	Description of the Channel
	<u>36</u>
Average t	gravel and cobble gravel/cobble
Predomina	t bed material Bank material Incised upland stream
with only sl	ght sinuosity.
	8/4 <u>/</u> and 12/8/94
Vegetative o	Forested; residence on overbank.
DS left:	Forested.
DS right:	Forested; residence on overbank.
US left:	Forested.
US right:	<u>Y</u>
Do banks a	pear stable? 8/4/94 and 12/8/94, we were wearen and type of insulating and
date of obs	ervation.
	There is a large piece or
concrete ro	ughly 15 feet by 15 feet in the channel about 40 feet downstream of the bridge. It is y obstructions in channel and date of observation.
	be the old bridge deck. August 4, 1994 and December 8, 1994.

Hydrology

Drainage area $\frac{5.30}{}$ mi ²								
Percentage of drainage area in physiographic	provinces: (approximate)							
Physiographic province Green Mountain Prov.Percent of drainage area 100								
Is drainage area considered rural or urban? None. Area is mostly forested has urbanization:	Rural Describe any significant nigh-elevation headwater drainage.							
Is there a USGS gage on the stream of interest	<u>No</u>							
USGS gage description								
USGS gage number								
Gage drainage area	mi ²							
Is there a lake/p								
Calculate	ed Discharges 1,840							
$Q100$ ft^3/s	Q500 ft ³ /s Q100 was based upon a drainage area							
relationship [(5.3/3.5) to the 0.7 power] with a si	•							
available from VTAOT (VTAOT, oral communit								
drainage area of 3.5 square miles. Q500 was estimated	mated by multiplying the Q100 by 1.7							
(Richardson and others, 1983).								

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT plans)	USGS survey		
Datum tie between USGS survey and VTAOT plans Not appl	licable.		
Description of reference marks used to determine USGS datum.	RM1 is a chiseled		
square on the top of the downstream end of the left abutment (elev. 516.			

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT2	-20	1	Downstream section
EXIT	0	1	Exit section
SVEX	1	5	Exit section without the concrete debris mid-channel (used as a template for the full valley section only).
FV	40	2	Downstream Full-valley section (Templated from SVEX)
BRIDG	40	1	Bridge section
APPR	110	1	Modelled Approach section (Templated from SURVA)
SURVA	130	2	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. The channel "n" value used for the reach was 0.065. Overbank "n" values ranged from 0.053 to 0.100.

Normal depth at the downstream section, EXIT2, was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was 0.031 ft/ft which was determined from surveyed thalweg points downstream of the bridge.

The surveyed approach section (SURVA) was moved along the approach channel slope (0.026 ft/ft) to establish the modelled approach section (APPR), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For the 100- and 500-year discharges, WSPRO assumes critical depth at the bridge section. Further analysis, in which the water surface is shown to pass through critical depth in the constriction, suggests the critical depth assumption at the bridge section is a satisfactory solution.

Bridge Hydraulics Summary

Average bridge embankment elevation 516.0 ft Average low steel elevation 513.6 ft	
100-year discharge 1,080 ft ³ /s Water-surface elevation in bridge opening 504.6 ft	
Road overtopping?N Discharge over road	. , S
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.7 1	8.4 506.7
500-year discharge 1,840 ft ³ /s Water-surface elevation in bridge opening 506.2 ft Road overtopping? N Discharge over road , Area of flow in bridge opening 138 ft ² Average velocity in bridge opening 13.3 ft/s Maximum WSPRO tube velocity at bridge 16.1 /s	. /s
	0.7 508.0
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour for the 100-yr and 500-yr discharges were computed by use of the clear-water contraction scour equation (Richardson and others, 1993, p. 35, equation 18,19). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Depths to armoring were 22 feet and 38 feet for the 100-yr and 500-yr discharges, respectively. These high values indicate that armoring would not limit the amount of contraction scour.

Abutment scour was computed by the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). Parameters for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(S	Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	1.0	2.2	
Depth to armoring	22.4	38.2	
Left overbank			_
Right overbank			
Local scour:			
Abutment scour	9.1	12.0	
Left abutment	6.2-	8.4-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Rock Riprap Siz	zing	
			Incipient overtopping
	100-yr discharg		discharge
	1.6	(D ₅₀ in feet) 2.3	
Abutments:	1.6	2.3	
Left abutment			
Right abutment		-	
Piers:			
Pier 1			
			

Pier 2

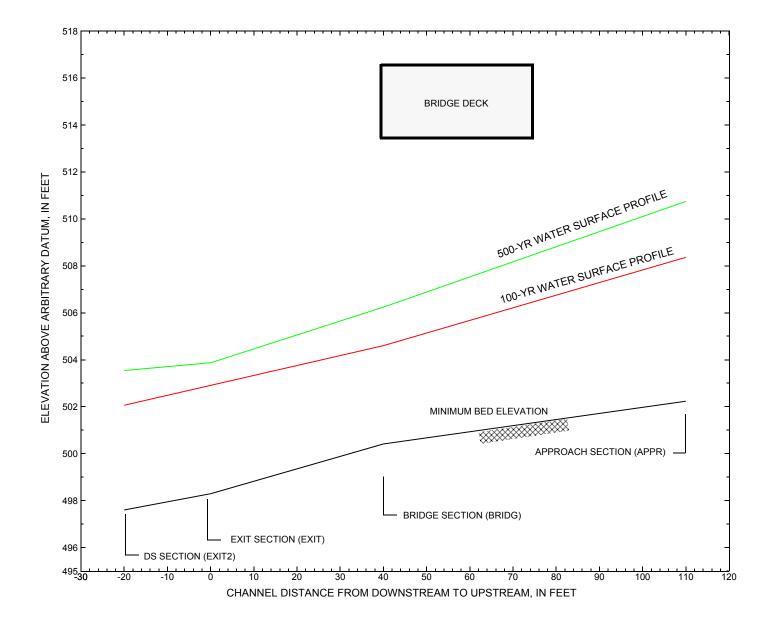


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure RANDTH00SC0051 on School Street, crossing Thayer Brook, Randolph, Vermont.

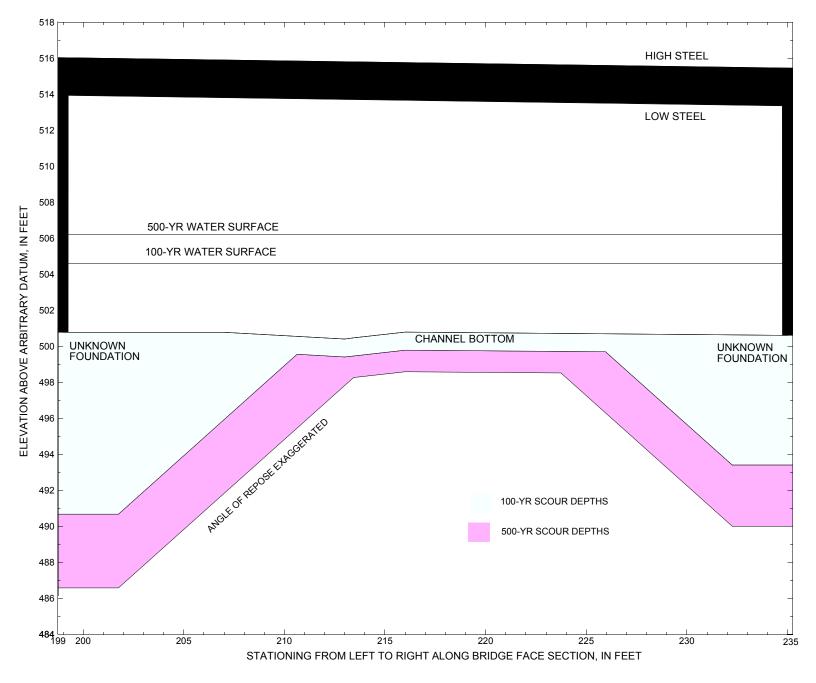


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure RANDTH00SC0051 on School Street, crossing Thayer Brook, Randolph, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure RANDTH00SC0051 on School Street, crossing Thayer Brook, Randolph, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 1,080 cubic-feet per second										
Left abutment	199		514.1		500.8	1.0	9.1		10.1	490.7	
Right abutment	235		513.2		500.6	1.0	6.2		7.2	493.4	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure RANDTH00SC0051 on School Street, crossing Thayer Brook, Randolph, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-yr. discharge is 1,840 cubic-feet per second										
Left abutment	199		514.1		500.8	2.2	12.0		14.2	486.6	
Right abutment	235		513.2		500.6	2.2	8.4		10.6	490.0	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Federal Emergency Management Agency, 1981, Flood Insurance Study, Town of Randolph, Orange County, Vermont: Washington, D.C., July 16, 1981.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Richardson, J.R., Chang, F., 1991, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 195 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V., Harrison, L.J., Richardson, J.R., and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1981, Randolph, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
Т1
              HYDRAULIC ANALYSIS
              Randolph, VT BRIDGE #051
Т2
Т3
              USGS BOW, NH 03/21/95
*
           6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
0
               1080 1840
SK
               0.031 0.031
*
XS
     EXIT2
             57., 513
197., 502.6
                              77., 502.6
GR
GR
                              200., 501.6
                                               202., 498.9
                                                                205., 497.9
             208., 498.4
GR
                              213.5,497.6
                                               220., 498.0
                                                                228., 498.63
GR
                              257., 515
             237., 501.3
               0.1 0.065
Ν
SA
                     200
*
XS
     EXIT
                0
GR
             181., 512.86
                              184., 510.03
                                               191., 503.52
                                                                200., 501.69
             204., 499.68
                              207., 498.76
                                               210., 498.34
                                                                215., 498.29
GR
             215., 499.64
                              225., 499.96
                                               226., 498.50
                                                                 228., 498.38
GR
GR
             230., 498.50
                              231., 499.29
                                               235., 500.06
                                                                237., 499.19
GR
             241., 502.94
                              255., 514.57
Ν
              0.065
*
             The following template section is the same as the exit section
*
             except that the large block of concrete that was in the
*
             stream is removed from the middle of the section. The section
*
             without the block is the one to be propagated up to the
*
             downstream bridge face
XТ
     SVEX
               1
             181., 512.86
GR
                              184., 510.03
                                               191., 503.52
                                                                200., 501.69
             204., 499.68
                              207., 498.76
GR
                                               210., 498.34
                                                                215., 498.29
GR
             226., 498.50
                              228., 498.38
GR
             230., 498.50
                              231., 499.29
                                               235., 500.06
                                                                237., 499.19
GR
             241., 502.94
                              255., 514.57
*
XS
     FV
              40
GT
              2.1
Ν
              0.065
*
BR
     BRIDG
             40 513.5 45
                                                                213., 500.41
GR
             199., 514.07
                              200., 500.78
                                               207., 500.78
GR
             216., 500.79
                             235., 500.61
                                               235., 513.17
                                                                199., 514.07
N
             0.065
CD
             1 23.1 * * 42.5 14.4
XT
     SURVA
             130
             189., 516.29
                            195., 514.24
                                               198., 510.80
                                                                200., 507.13
GR
GR
             203., 505.08
                           204., 502.75
                                               210., 502.95
                                                                223., 502.81
GR
             232., 503.01
                            233., 505.93
                                               252., 516.97
*
AS
     APPR
               110
GT
               -.52
               0.053
N
                          0.065
SA
                   195
HP 1 APPR
               508.36 1 508.36
HP 2 APPR
               508.36 * * 1080
HP 1 BRIDG
               504.60 1 504.60
HP 2 BRIDG
               504.60 * * 1080
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

HYDRAULIC ANALYSIS Randolph, VT BRIDGE #051

USGS BOW, NH 03/21/95 *** RUN DATE & TIME: 09-27-95 11:53

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPR; SRD = 110. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 2 194. 11751. 39. 45. 2453. 08.36 194. 11751. 39. 45. 1.00 199. 238. 2453.

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPR; SRD = WSEL LEW REW AREA K Q VEL 508.36 199.0 238.1 193.9 11751. 1080. 5.57

A(I)	199.0	17.0	10.6	9.1	9.0		210.7
 A(I)	210.7	8.5	8.3	8.2	8.1		
A(I)	217.6	8.2	8.2	8.3	8.4		224.4
A(I)	224.4	8.8			11.1	18.1 2.99	238.1

 CROSS-SECTION
 PROPERTIES:
 ISEQ = 4;
 SECID = BRIDG;
 SRD = 40.
 40.

 WSEL SA#
 AREA
 K
 TOPW
 WETP ALPH LEW
 REW
 QCR

 1
 97.
 4612.
 25.
 33.
 1.00
 200.
 235.
 1088.

 504.60
 97.
 4612.
 25.
 33.
 1.00
 200.
 235.
 1088.

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 504.60 199.7 235.0 97.2 4612. 1080. 11.11

199.7 202.9 204.9 206.7 208.3 8.3 5.2 4.9 4.5 4.4 6.47 10.47 11.09 11.90 12.22 X STA. A(I) 209.9 211.4 212.8 214.3 215.8 4.3 4.1 4.2 4.2 4.2 12.53 13.11 12.86 12.89 12.87 X STA. A(I) 217.3 218.9 220.5 222.0 223.6 4.3 4.3 4.2 4.3 4.4 12.68 12.63 12.88 12.63 12.34 A(I)

225.2 226.7 228.4 230.1 232.0 4.4 4.5 4.9 5.1 8.5 12.37 11.87 11.08 10.56 6.32 X STA. 235.0 A(I) V(I)

 CROSS-SECTION PROPERTIES:
 ISEQ = 5;
 SECID = APPR;
 SRD =
 110.

 WSEL SA#
 AREA
 K
 TOPW
 WETP ALPH LEW
 REW
 QCR

 2
 293.
 21123.
 45.
 53.
 4269.

 510.74
 293.
 21123.
 45.
 53.
 1.00
 198.
 242.
 4269.

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPR; SRD = WSEL LEW REW AREA K Q VEL 510.74 197.6 242.2 293.3 21123. 1840. 6.27

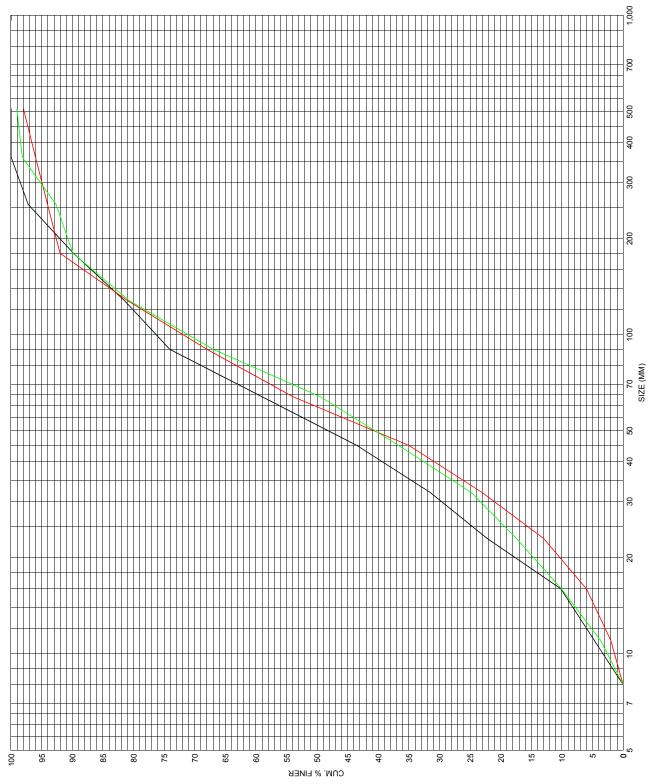
203.8 205.8 207.4 209.0 26.1 16.6 13.8 13.2 12.8 3.53 5.53 6.66 6.96 7.16 X STA 210 6 A(I) V(I) 210.6 212.0 213.5 215.0 216.4 217.8 X STA. 12.2 12.4 12.0 11.9 11.9 7.52 7.42 7.66 7.73 7.72 A(I) 219.2 220.7 222.1 223.6 12.1 12.1 12.3 12.4 12.7 7.62 7.61 7.51 7.40 7.22 X STA. A(I) 225.1 226.7 228.3 230.1 232.4 X STA. 13.1 13.7 15.2 18.2 28.4 7.03 6.71 6.04 5.07 3.24 A(I)

CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = AREA K K TOPW WETP ALPH LEW REW 78. 25. 36. WSEL SA# QCR 7778. 25. 36. 1.00 200. 235. 506.24 138.

WSPRO OUTPUT FILE (continued)

VELOCITY	DISTRIBUT	ION: ISEQ	= 4;	SECID	= BRIDG;	SRD =	40		
WSE	L LEW	REW 235.0 1	AREA	K		Q VEL			
	199.6	203.1	205.1		206.9	208.5	2:	10.0	
A(I) V(I)	12	6 7. 2 11.8	7	7 0	6	: 3	6.0		
X STA.	210.0	211.5	212.9		214.3	215.8	2:	17.3	
A(I) V(I)	6.	0 5. 3 15.7	8	5.7	5	5.9	5.7		
X STA.								24.9	
A(I) V(I)	5. 15.9	8 5. 5 15.9	0	5.9 15.68	15.	5.8 76 1	6.1 L5.05		
X STA.	224.9	226.4	228.0		229.8	231.8	23	35.0	
A(I) V(I)	6. 14.9	1 6. 7 14.7	2	6.9	11.	7.8 79	7.14		
HYDRAULIC ANALYSIS Randolph, VT BRIDGE #051 USGS BOW,NH 03/21/95 *** RUN DATE & TIME: 09-27-95 11:53									
XSID:CODE SRD		EW AREA EW K						WSEL	
EXIT2:XS **	***** 19 **** 23	9. 126. 8. 6132.	1.15	*****	503.21	501.67 0.85	1080. 8.58	502.06	
EXIT :XS		4. 143. 1. 6465.							
===125 FR# 1		TEST AT SEC R#,WSEL,CRW						.01	
===110 WSEL		AT SECID " IM1,WSLIM2,					0.50		
===115 WSEL		AT SECID " IM1,WSLIM2,					504.0	L	
FV :FV 40.	40. 19	9. 117. 0. 5186.	1.32	1.39	505.40	504.01	1080. 9.21		
	< <the abov<="" td=""><td>E RESULTS R</td><td>EFLECT</td><td>"NORMA</td><td>AL" (UNCC</td><td>NSTRICTE</td><td>) FLOW:</td><td>>>>></td></the>	E RESULTS R	EFLECT	"NORMA	AL" (UNCC	NSTRICTE) FLOW:	>>>>	
110.	70. 23	5. 6759. E RESULTS R	1.00	0.00	0.01	0.74	8.15		
===285 CRIT	ICAL WATER		EVATION	A	s s	U M E	E D!		
		TS REFLECTI							
XSID: CODE									
BRIDG:BR	FLEN R				ERR				
		5. 4603.							
		C P/A							
XSID:CODE SRD	SRDL L FLEN R	EW AREA EW K				CRWS FR#			
APPR :AS 110.		9. 194. 8. 11766.							
		KQ XLK 2465. 200			TEL)7.97				
	<	<< <end of<="" td=""><td>BRIDGE</td><td>COMPUT</td><td>CATIONS>></td><td>>>></td><td></td><td></td></end>	BRIDGE	COMPUT	CATIONS>>	>>>			
FIRST USER XSID:COD	E SRD	LEW RE	W	Q	K	AREA	VEL	WSEL	
EXIT2:XS EXIT :XS	-20.	199. 238 194. 241	. 108	0.	6132.	126. 143.			
rv · rv	4.0	199 240	108	Ω	5186	117	9 21	504 09	
APPR :AS	110.	200. 235 199. 238	. 108	0. 1	1766.	194.	5.56	504.60 508.36	

WSPRO OUTPUT FILE (continued)


SECOND USER I XSID:CODE EXIT2:XS EXIT :XS FV :FV BRIDG:BR APPR :AS	DEFINED TABLE CRWS 501.67 ****** 504.01 504.60 505.94	FR# YM	IN YMA 60 515.0 29 514.5 39 516.6 41 514.0 23 516.4	X HF 0******* 7 0.59 0 7 1.39 0 7*******	HO VHD **** 1.15 0.00 0.88 0.22 1.32 **** 1.93 1.27 0.48	EGI 503.23 503.79 505.40 506.52	WSEL 1 502.06 9 502.91 0 504.09 2 504.60 5 508.36
F U	HYDRAULIC ANA Randolph, VT JSGS BOW,NH ** RUN DATE &	BRIDGE #05 03/21/95		:53			
===015 WSI 1	IN WRONG FLOW			XIT2": U		CRWS.	
	SRDL LEW FLEN REW						
EXIT2:XS **	***** 75. ***** 240.	302. 12794.	1.02 **** 1.78 ****	* 504.57 * *****	503.54 1.06	1840. 6.09	503.54
===125 FR# F	EXCEEDS FNTES FNTEST,FR#,						55
===110 WSEL	NOT FOUND AT WSLIM1	SECID "EX, WSLIM2, DE				0.50	
===115 WSEL	NOT FOUND AT WSLIM1	SECID "EX, WSLIM2, CR				503.55	
EXIT :XS	20. 191. 20. 242.						
===125 FR# F	EXCEEDS FNTES FNTEST, FR#,						32
===110 WSEL	NOT FOUND AT WSLIM1	SECID "FV, WSLIM2, DE				0.50	
===115 WSEL	NOT FOUND AT WSLIM1	SECID "FV, WSLIM2, CR				505.32	
===130 CRITI	ICAL WATER-SU ENERGY EQUA WSBEG,		T B_A_L_	A_N_C_E_D	AT SECID	"FV	
FV :FV 40.	40. 192. 40. 241. < <the above="" r<="" td=""><td>8853.</td><td>1.00 ****</td><td>* ******</td><td>505.32 1.00 DNSTRICTED</td><td>10.64</td><td></td></the>	8853.	1.00 ****	* ******	505.32 1.00 DNSTRICTED	10.64	
===125 FR# F	EXCEEDS FNTES FNTEST, FR#,						38
===110 WSEL	NOT FOUND AT WSLIM1	SECID "AP., WSLIM2, DE				0.50	
===115 WSEL	NOT FOUND AT WSLIM1	SECID "AP., WSLIM2, CR				507.38	
APPR :AS 110.	70. 199. 70. 237. < <the above="" r<="" td=""><td>10528.</td><td>1.00 0.0</td><td>0 0.00</td><td>0.83</td><td>10.24</td><td></td></the>	10528.	1.00 0.0	0 0.00	0.83	10.24	
===285 CRITI	ICAL WATER-SU SECID	RFACE ELEV. "BRIDG"	ATION A Q,CRWS	_ S _ S _ = 1840	U _ M _ E	_ D !!	111
<	<>< <results< td=""><td>REFLECTING</td><td>THE CONS</td><td>TRICTED F</td><td>LOW FOLLOW</td><td>>>>></td><td></td></results<>	REFLECTING	THE CONS	TRICTED F	LOW FOLLOW	>>>>	
XSID:CODE SRD	SRDL LEW FLEN REW	AREA K	VHD H ALPH H	F EGL O ERR	CRWS FR#	Q VEL	WSEL
BRIDG:BR 40.		138. 7772.					506.24
	CD FLOW ** 1. 1.00						
XSID:CODE SRD	SRDL LEW FLEN REW	AREA K	VHD H ALPH H	F EGL O ERR	CRWS FR#	Q VEL	WSEL
APPR :AS 110.		293. 21119.					510.74
	M(K) 0.000 2265						

WSPRO OUTPUT FILE (continued)

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER D	EFINED T	ABLE.							
XSID: CODE	SRD	LEW	REW	Q	K	AR	EA	VEL	WSEL
EXIT2:XS	-20.	75.	240.	1840.	12794.	3 0	2.	6.09	503.54
EXIT :XS	0.	191.	242.	1840.	9803.	19	1.	9.64	503.87
FV :FV	40.	192.	241.	1840.	8853.	17	3. 1	0.64	505.32
BRIDG:BR	40.	200.	235.	1840.	7772.	13	8. 1	3.32	506.24
APPR :AS	110.	198.	242.	1840.	21119.	29	3.	6.27	510.74
SECOND USER D	EETNED T	ים.ד.בי							
			NAT N	I YMA	v 110	110	THE		at want
XSID:CODE	CRWS	FR#	YMIN			HO	VHD		GL WSEL
EXIT2:XS	503.54	1.06	497.60	515.0	0*****	****	1.02	504.	57 503.54
EXIT :XS	503.55	0.88	498.29	514.5	7 0.54	0.21	1.44	505.	31 503.87
FV :FV	505.32	1.00	500.39	516.6	7******	****	1.76	507.	08 505.32
BRIDG:BR	506.24	1.00	500.41	514.0	7******	****	2.76	509.	00 506.24
APPR :AS	507.38	0.43	502.23	516.4	5 1.06	1.29	0.61	511.	35 510.74

APPENDIX C: **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure RANDTH00SC0051, in Randolph, Vermont.

APPENDIX D: HISTORICAL DATA FORM