LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (BRIDTH00040042) on TOWN HIGHWAY 4, crossing DAILEY HOLLOW BROOK, BRIDGEWATER, VERMONT

U.S. Geological Survey Open-File Report 96-243

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (BRIDTH00040042) on TOWN HIGHWAY 4, crossing DAILEY HOLLOW BROOK, BRIDGEWATER, VERMONT

By SCOTT A. OLSON and MATTHEW A. WEBER

U.S. Geological Survey Open-File Report 96-243

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summar	ry of Results
Level II summary	
	÷
Description of the Ge	comorphic Setting
Description of the Ch	nannel
	harges
	ater-Surface Profile Model (WSPRO) Analysis
	Jsed in WSPRO Analysis
	otions Used in WSPRO Model
_	immary
Scour Analysis Sumn	nary
Special Condition	ns or Assumptions Made in Scour Analysis
Scour Results	
Rock Riprap Sizing	
Appendixes:	
* *	
•	
	e
•	cle-size distribution
D. Historical data for	m
E. Level I data form	
F Scour computation	IS
2. Map showing location	n of study area on USGS 1:24,000 scale map n of study area on Vermont Agency of Transportation town
	040042 viewed from upstream (November 1, 1994)
	viewed from structure BRIDTH00040042 (November 1, 1994)
	wed from structure BRIDTH00040042 (November 1, 1994)
	040042 viewed from downstream (November 1, 1994)
	s for the 100- and 500-year discharges at structure
	40042 on Town Highway 4, crossing Dailey Hollow Brook,
	Vermont
	he 100- and 500-year discharges at structure
	40042 on Town Highway 4, crossing Dailey Hollow Brook,
	Vermont
Driage water,	Verificate.
TABLES	
	la dande et alacteranta Cando 100 anno disal
	le depth at abutments for the 100-year discharge at structure
	042 on Town Highway 4, crossing Dailey Hollow Brook,
Bridgewater, Ve	ermont.
	le depth at abutments for the 500-year discharge at structure
	042 on Town Highway 4, crossing Dailey Hollow Brook,
Bridgewater, V	ermont

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 42 (BRIDTH00040042) ON TOWN HIGHWAY 4, CROSSING DAILEY HOLLOW BROOK, BRIDGEWATER, VERMONT

By Scott A. Olson and Matthew A. Weber

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH00040042 on town highway 4 crossing Dailey Hollow Brook, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic division of central Vermont in the town of Bridgewater. The 2.20-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbanks are covered by shrubs and trees except for the upstream right overbank where there is a house. Dailey Hollow Brook enters Dailey Hollow Branch at the downstream face of the bridge.

In the study area, Dailey Hollow Brook has an incised, sinuous channel with a slope of approximately 0.035 ft/ft. The channel top width and channel depth upstream of the bridge is 19 ft and 3 ft, respectively. Downstream of the bridge and the confluence the channel top width and channel depth is 39 ft and 2 ft respectively. The predominant channel bed material is cobble and gravel (D_{50} is 64.7 mm or 0.212 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 1, 1994, indicated that the reach was stable.

The town highway 4 crossing of Dailey Hollow Brook is a 25-ft-long, one-lane bridge consisting of one 23-foot concrete span (Vermont Agency of Transportation, written communication, August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 stone fill (less than 36 inches) exists along all four wingwalls, the downstream right road approach, and the channel banks in the immediate vicinity of the bridge. The channel is skewed approximately 20 degrees to the opening; the opening-skew-to-roadway is also 20 degrees. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for modelled flows was 0.0 ft. Abutment scour ranged from 3.9 to 5.4 ft. with the worst-case abutment scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

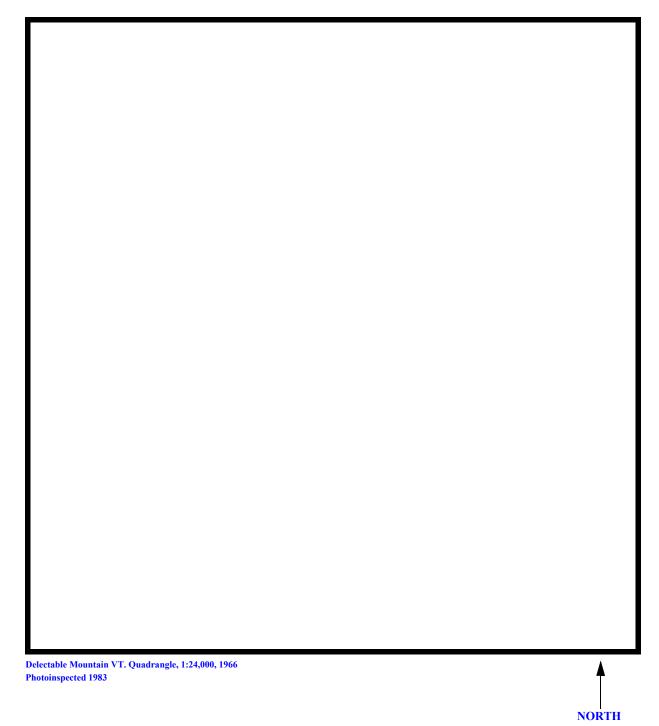
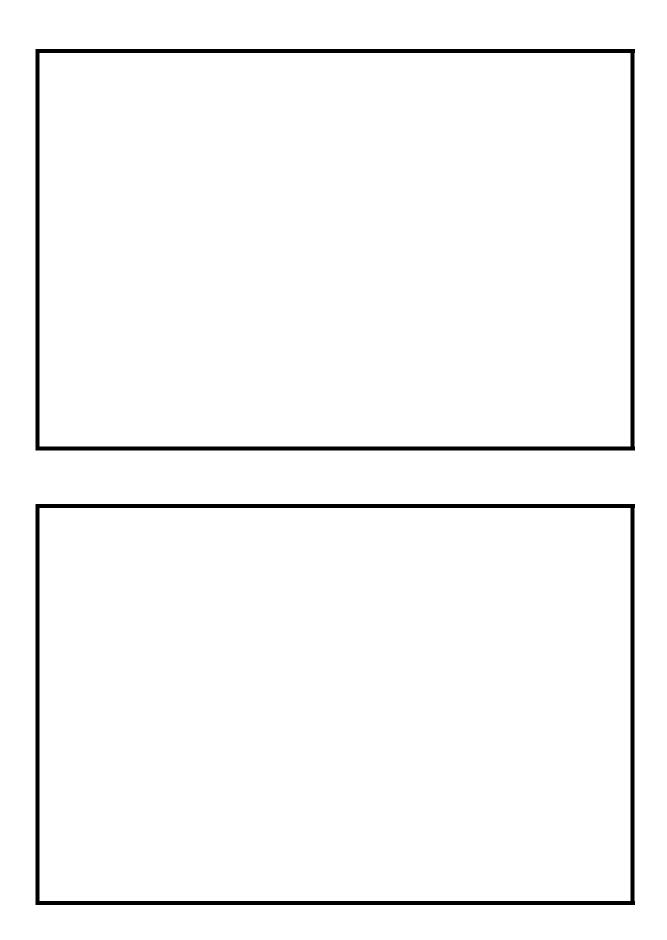



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

cture Number	BRIDTH	100040042	Stream	Daile	ey Hollow Brook	
winty Windso	or		— Road —	TH04	District -	04
		Descri	ption of Brid	ge		
		_		<i>ft</i> straigh	Max span length	
Alignment of br	vertical	no	stratgnt) Embankt	ment type	sloping on le	eft
Stone fill on abuse vicinity of the br				ngwalls an	d the channel bank lso protected with	
The abutments	and wingwa	alls are concret	e.			
					_20	Y
Is bridge skewe	d to flood fl	low according	tosurv	rey?	Angle	
There is a mild b	end in the c	hannel approac	ch. Since t	the openin	g skew to roadway	matches th
skew of 20 degree						
		finspection /01/94	Percent of bloc ked n o		Percent block ed	o (
Level I	11/9	01/94				
	wards the ch		th the banks up	stream oft	en undercut with r	many trees
Dotantial f						
1 otenuai je	or debris					
·		Hollow Brook	empties into D	Dailey Hol	low Branch immed	diately

Description of the Geomorphic Setting

conditio	ons at bridge site: downstread	m (DS), upstream (US)	
ection	11/01/94		
Steep h	igh bank. A gravel road para	illels the left bank.	
Modera	ately sloping bank.		
Steep h	igh bank. A gravel road para	llels the left bank.	
High r	iver bank with a flat narrow o	overbank to a steep valley	wall.
	Description of the	he Channel	
	19 (US)		3.2 (US)
	cobble/gravel	Average depth	cobble / gravel
t bed ma	terial	Bank material_ _I	High gradient,
us strear	n with no flood plains.		
			11/01/94
Foreste	ed.		
Immed	iate banks have significant w	voody vegetation; grass on	overbanks.
Foreste	ed.		
Immed	iate bank is grass; forested be	eyond.	
	<u>Y</u>		
pear stal	ble? <u>17 nov, uc</u>	n iwa wanion una iypa v	,
rvation.			•
		11/	/01/94None.
obstruc	tions in channel and date of	f observation.	
	Steep h Modera Steep h High r width t bed ma us stream Foreste Immed Foreste Immed	Steep high bank. A gravel road para Moderately sloping bank. Steep high bank. A gravel road para High river bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank. Steep high bank. A gravel road para Description of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank. A gravel road para Steep high bank. A gravel road para Description of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank. Forested. Immediate banks have significant with a flat narrow of the steep high bank with a flat narrow of the steep high bank. Forested. Immediate banks have significant with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank. Forested. Immediate bank is grass; forested by the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with a flat narrow of the steep high bank with	Steep high bank. A gravel road parallels the left bank. Moderately sloping bank. Steep high bank. A gravel road parallels the left bank. High river bank with a flat narrow overbank to a steep valley Description of the Channel 19 (US) width cobble/gravel Bank material us stream with no flood plains. Forested. Immediate banks have significant woody vegetation; grass on Forested. Immediate bank is grass; forested beyond. Y pear stable? y rvation.

Hydrology

Drainage area $\frac{2.20}{}$ mi ²					
Percentage of drainage area in physiographic p	provinces: (ap	proximate)			
Physiographic province Green Mountain Prov.	Percent of drainage area				
Is drainage area considered rural or urban? None. urbanization:	Rural	Describe any significant			
Is there a USGS gage on the stream of interest:	No				
USGS gage description					
USGS gage number					
Gage drainage area	mi ²	No			
Is there a lake/p					
805 Calculated	d Discharges	1,060			
<i>Q100 ft</i> ³ /s Q100	Q50 and Q500 for	0 ft³/s Bridgewater bridge #42 were			
based on a drainage area relationship with Bridge	water bridge #	#30 which is on Dailey Hollow			
Branch. The Q100 for bridge #30 was taken from	VTAOT files	. The Q500 for bridge #30 was			
determined by a weighted average of numerous ex	xtrapolated em	pirical methods which were			
applicable to a stream with it's size drainage in this	s region(Potter	r, 1957a&b Johnson and Tasker,			
1974; FHWA, 1983; Talbot, 1887; FEMA, 1980).					

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	olans) USGS survey
Datum tie between USGS survey and VTAOT plans	Add 1355 feet to the study's
arbitrary datum to obtain VTAOT plans' datum (NAD27).	
Description of reference marks used to determine USGS data	IRM1 is the center of a
bronze disk on top of the downstream end of the right abutme	nt (elev. 99.62 ft, arbitrary survey
datum). RM2 is a chiseled X on the upstream end of the left a survey datum).	butment (elev. 99.23 ft, arbitrary
survey datum).	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-45	1	Surveyed exit section downstream of the conflu- ence of a Dailey Hollow Brook and Dailey Hollow Branch (this section mod- elled with the combined discharge).
EXIT2	-20	2	Exit section (templated from EXITX)
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	9	1	Road Grade section
APPRO	55	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflects conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.055 to 0.075, and overbank "n" values ranged from 0.055 to 0.105.

Since the confluence of Dailey Hollow Brook and Dailey Hollow Branch was at the immediate downstream face of the bridge, the exit section (EXITX) was surveyed just downstream of the confluence. Normal depth at the exit section (EXITX) was assumed and used as the starting water surface for the model. This depth was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was 0.0221 ft/ft which was determined from surveyed thalweg points downstream of the confluence.

The discharges used in the normal depth computations were 1,780 ft³/s (100-year) and 2,260 ft³/s (500-year), which are the estimated combined flow of the Dailey Hollow Brook and Dailey Hollow Branch. Both streams are assumed to peak at the same time since each has similar basin characteristics including drainage area. The 100-year discharge of Dailey Hollow Branch is from the VTAOT database (written communication, May 1995). The 500-year discharge for Dailey Hollow Branch was based on a drainage area relationship (2.2/2.5) with the study site.

The surveyed exit section was then used as a template and moved upstream in the model with a correction for the bed slope to a location one bridge length downstream of the bridge and the discharge was changed to only include the flows of Dailey Hollow Brook.

Bridge Hydraulics Summary

Average bridge embankment elevation	Ģ	99.6	ft			
Average low steel elevation 97.	9 f i	t	_,			
100-year discharge	805	_ ft ³ /s				
Water-surface elevation in	n bridge	opening	_	90.7	ft	
Road overtopping?	N	Discha	rge over	road _		,. ,s
Area of flow in bridge ope Average velocity in bridge			$\frac{06}{7.6}$ ft ²	ft/s		
Maximum WSPRO tube v	elocity (at bridge	e	9.5	ft/s	
Water-surface elevation a Water-surface elevation a Amount of backwater cau	t Appro	ach sect		_	lge	91.6
500-year discharge Water-surface elevation in	n bridge	opening	<u> </u>	91.5		
Road overtopping?	N		_			- ,. /s
Area of flow in bridge ope	_	-	$\frac{1}{2}$ ft			
Average velocity in bridge	_	_	-	$\frac{8}{s}$ ft/s		
Maximum WSPRO tube v	relocity (at bridge	e	11.	1_'s	
Water-surface elevation a Water-surface elevation a Amount of backwater cau	t Appro	ach sect		_	lge	92.6
Incipient overtopping disc Water-surface elevation in	_	opening		ft ³ /s	<u></u> ft	
Area of flow in bridge ope	ening		ft	2		
Average velocity in bridge Maximum WSPRO tube v	•	_	e	ft/s	_ft/s	
Water-surface elevation a	t Approd	ach sect	ion with	bridge		
Water-surface elevation a			ion with	out bria	lge	
Amount of backwater cau	sed by b	oridge		t		

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the live-bed contraction scour equation (Richardson and others, 1993, p. 33, equation 16,17). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	((Scour depths in feet)	
Main channel			
Live-bed scour	0.0	0.0	
Clear-water scour			
	1.0	2.3	_
Depth to armoring		-	
Left overbank			
Right overbank			
Local scour:			
Abutment scour	4.3	5.4	
Left abutment	3.9-	5.0-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Rock Riprap Sizing

		or	Incipient overtopping	
	100-yr discharge	500-yr discharge	discharge	
		(D_{50} in feet)		
Abutments:	1.1	1.5		
Left abutment	1.1	1.5		
Right abutment		<u></u> -		
Piers:				
Pier 1				
Pier 2				



Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BRIDTH00040042 on town highway 4, crossing Dailey Hollow Brook, Bridgewater, Vermont.

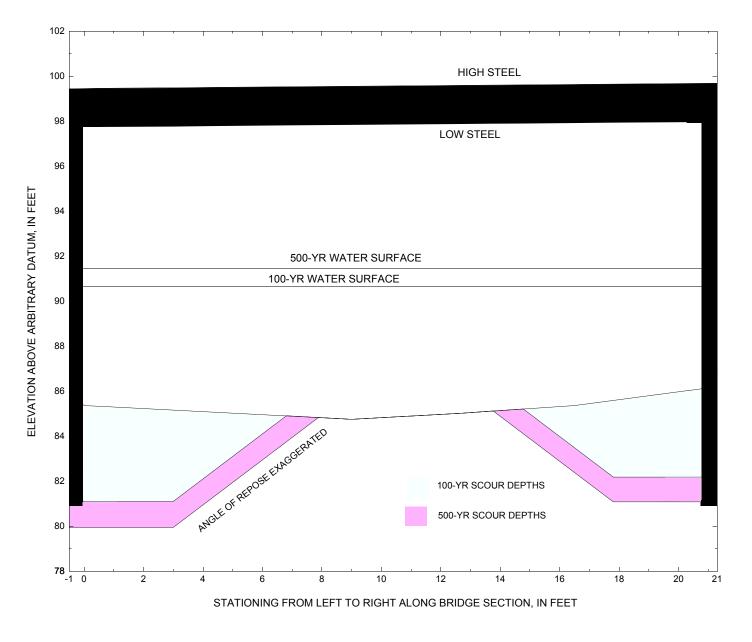


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BRIDTH00040042 on town highway 4, crossing Dailey Hollow Brook, Bridgewater, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BRIDTH00040042 on Town Highway 4, crossing Dailey Hollow Brook, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT plans' bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 1,780 cubic-feet per second										
Left abutment	0.0	1452.4	97.66	81	85.4	0.0	4.3		4.3	81.1	0
Right abutment	20.8	1452.8	98.13	81	86.1	0.0	3.9		3.9	82.2	1

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BRIDTH00040042 on Town Highway 4, crossing Dailey Hollow Brook, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT plans' bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 2,260	cubic-feet per sec	cond				
Left abutment	0.0	1452.4	97.66	81	85.4	0.0	5.4		5.4	80.0	-1
Right abutment	20.8	1452.8	98.13	81	86.1	0.0	5.0		5.0	81.1	0

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Richardson, J.R., Chang, F., 1991, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 195 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V., Harrison, L.J., Richardson, J.R., and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1966, Delectable Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid042.wsp
T1
T2
        CREATED ON 03-OCT-95 FOR BRIDGE BRIDTH00040042 USING FILE brid042.dca
Т3
        HYDRAULIC ANALYSIS OF BRID042 SAO
J3
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
0
         1780 2260
SK
          0.0221 0.0221
XS EXITX -45
           -80.1, 105.48 -59.4, 100.61 -51.6, 99.61 -33.0, 99.51
GR
GR
          -13.3, 95.49
                          -4.0, 87.28
                                          0.0, 85.36
                                                          6.3, 84.67
                          18.0, 83.16
                                          21.8, 83.37
           12.7, 84.11
                                                          25.8, 84.15
GR
                                          46.7, 93.13 72.5, 94.40
                          36.7, 89.67
GR
           34.7, 86.56
           85.9, 96.11 133.0, 98.27 143.9, 103.36
GR
            0.055 0.062 0.060
N
SA
             -13.3 46.7
XS EXIT2 -20 * * * 0.0385
Q
         805 1060
*
XS FULLV 0 * * * 0.0385
*
BR BRIDG 0 97.9 20

      0.0, 97.66
      0.1, 85.37
      4.3, 85.11
      9.0, 84.76

      12.7, 85.03
      16.5, 85.37
      20.6, 86.12
      20.8, 98.13

GR
GR
            0.0, 97.66
GR
            0.055
N
CD
           1 35.5 * * 55 8.8
XR RDWAY
           9 17.4 2
           -78.2, 103.19 -64.3, 100.12 -50.9, 101.09 -33.4, 100.21
GR
GR
           0.0, 99.35
                          21.3, 99.80
                                          56.9, 100.25
                                                        100.0, 101.67
*
AS APPRO 55 * 1
           -48.5, 106.21 -31.8, 101.52
                                          -4.0, 93.73
GR
                                                          0.0, 90.43
GR
            3.9, 87.49
                           6.2, 87.03
                                           7.3, 86.30
                                                          9.3, 86.33
                                          15.7, 87.00 18.8, 90.69
32.4, 99.50 44.2, 100.11
           10.8, 86.75
                          13.6, 86.95
GR
GR
            23.8, 92.50
                          27.7, 94.01
           80.5, 102.23 86.9, 106.85
GR
            0.105 0.075 0.072
N
SA
                 -4.0 32.4
HP 1 BRIDG 90.67 1 90.67
HP 2 BRIDG 90.67 * * 805
HP 1 APPRO 91.61 1 91.61
HP 2 APPRO 91.61 * * 805
HP 1 BRIDG 91.46 1 91.46
HP 2 BRIDG 91.46 * * 1060
HP 1 APPRO 92.55 1 92.55
HP 2 APPRO 92.55 * * 1060
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid042.wsp CREATED ON 03-OCT-95 FOR BRIDGE BRIDTH00040042 USING FILE brid042.dca HYDRAULIC ANALYSIS OF BRID042 SAO
*** RUN DATE & TIME: 10-03-95 10:46 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 106. 6736. 19. 29. 1399. 90.67 106. 6736. 19. 29. 1.00 0. 21. 1399. 90 67 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 90.67 0.1 20.7 105.6 6736. 805. 7.62 0.1 2.1 3.3 4.4 10.4 6.1 5.4 5.0 3.88 6.63 7.49 8.11 0.1 X STA. 4.6 8.75 A(I) V(I) 7.0 7.8 8.6 4.4 4.3 4.2 9.22 9.44 9.47 9.3 X STA 6.2 10.1 A(I) 4.5 9.54 V(I) 8.99 10.1 10.9 11.7 12.5 13.3 3 4.2 4.4 4.4 4.5 4 9.54 9.20 9.21 9.00 X STA. A(I) 4 3 V(I) 9.44
 14.2
 15.1
 16.0
 17.1
 18.4

 4.7
 4.8
 5.4
 5.8
 10.2

 8.56
 8.37
 7.39
 6.89
 3.96
 X STA. A(I) V(I) CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APPRO; SRD = 55
 WSEL
 SA#
 AREA
 K
 TOPW
 WETP
 ALPH
 LEW
 REW
 QCR

 2
 78.
 3165.
 23.
 26.
 ...
 813.

 91.61
 78.
 3165.
 23.
 26.
 1.00
 -1.
 21.
 813.
 91.61 VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APPRO; SRD = WSEL LEW REW AREA K Q VEL 91.61 -1.4 21.3 77.6 3165. 805. 10.37 2.7 4.0 4.9 5.7 9 4.7 3.9 3.6 3.5 2 8.58 10.36 11.18 11.58 6 9 A(T) V(I) 5.82 7.2 7.8 8.3 8.9 3.1 3.0 3.0 3.0 12.82 13.25 13.43 13.47 X STA. 9.5 A(I) 3.4 12.82 V(I) 11.96 9.5 10.1 10.7 11.3 12.0 3.0 3.1 3.2 3.2 3.2 13.29 12.91 12.62 12.39 12.44 X STA A(I) V(I) .7 13.4 14.2 15.1 16.1 3.5 3.6 4.0 4.8 7.8 11.49 11.08 10.16 8.35 5.16 X STA. A(T)

V(I)

5.16

WSPRO OUTPUT FILE (continued)

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid042.wsp CREATED ON 03-OCT-95 FOR BRIDGE BRIDTH00040042 USING FILE brid042.dca HYDRAULIC ANALYSIS OF BRID042 SAO
*** RUN DATE & TIME: 10-03-95 10:46 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW OCR 121. 8151. 19. 31. 1714. 121. 8151. 19. 31. 1.00 0. 21. 1714. 91 46 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 91.46 0.1 20.7 120.9 8151. 1060. 8.77 0.1 2.2 3.4 4.4 5.4 12.2 7.1 6.1 5.6 5.2 4.35 7.43 8.67 9.39 10.15 X STA. A(I) V(I) 7.1 7.8 8.6 9.4 4.9 4.8 4.8 4.8 10.73 10.99 11.05 11.12 X STA 10.1 5.1 A(I) 11.12 V(I) 10.44 10.1 10.9 11.7 12.5 13.3 4.8 4.8 4.9 4.9 5 11.03 11.13 10.72 10.71 10. X STA. 5.1 A(I) V(I)
 14.2
 15.1
 16.0
 17.1
 18.4

 5.2
 5.6
 6.0
 7.1
 11.8

 10.19
 9.45
 8.78
 7.48
 4.50
 X STA. A(I) V(I) CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APPRO; SRD = 55 WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR
2 101. 4430. 26. 31. 1115.
92.55 101. 4430. 26. 31. 1.00 -3. 24. 1115. QCR VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APPRO; SRD = WSEL LEW REW AREA K Q VEL 92.55 -2.6 23.9 100.8 4430. 1060. 10.52 2.1 3.5 4.5 5.4 9 6.1 4.9 4.7 4.3 5 8.71 10.86 11.37 12.36 A(I) 8 9 V(I) 5.95 6.9 7.6 8.2 4.1 3.9 3.8 12.85 13.70 13.88 X STA. 3.8 A(I) 4.2 13.91 V(I) 12.51 9.4 10.1 10.8 11.5 12.2 3.9 4.0 4.0 4.2 4.3 13.58 13.16 13.24 12.69 12.44 X STA A(I) V(I) 12.9 13.7 14.6 15.5 16.9 4.5 4.7 5.3 6.7 10.4 11.69 11.23 9.99 7.86 5.09 X STA. A(T)

V(I)

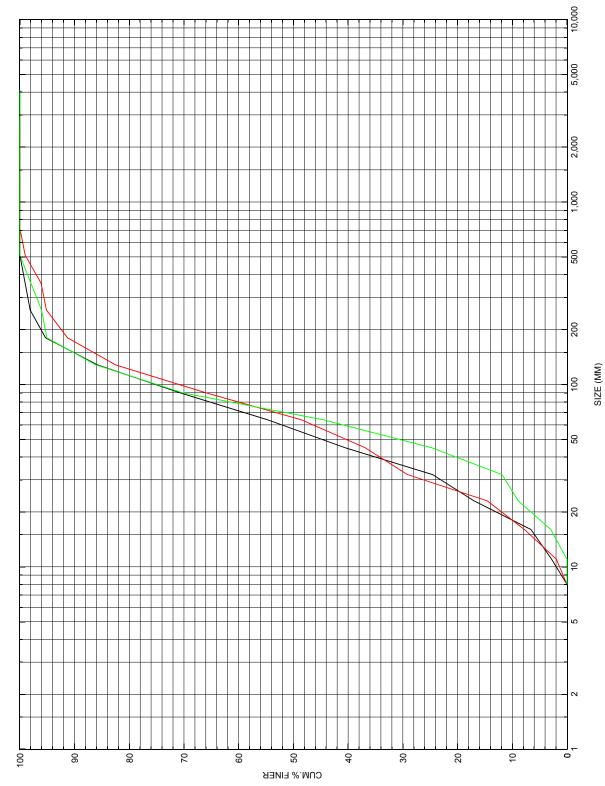
WSPRO OUTPUT FILE (continued)

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid042.wsp CREATED ON 03-OCT-95 FOR BRIDGE BRIDTH00040042 USING FILE brid042.dca HYDRAULIC ANALYSIS OF BRID042 SAO

	*** RUN D					16							
	1.01. 2			05 55		- 0							
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL				
	FLEN						FR#						
EXITX:XS	*****	-6.	193.	1.32	****	90.80	88.71	1780.	89.48				
-45.	*****	37.	L1969.	1.00	****	*****	0.77	9.23					
EXIT2:XS									90.83				
-20.	25.	37.	L3506.	1.00	0.00	0.00	0.31	3.84					
FULLV:FV							*****		90.87				
0.							0.39						
<>< <the "normal"="" (unconstricted)="" above="" flow="" reflect="" results="">>>></the>													
===125 FR#							CONTINUED.		59				
	1111201	, ,	22,0100	٠.		0.51	31.01	,,,,					
===110 WSE	L NOT FOU	ND AT SE	ECID "A	PPRO" :	REDU	JCED DEL	TAY.						
	W	SLIM1,WS	SLIM2,D	ELTAY	= 9	90.37	106.85	0.50					
===115 WSE	L NOT FOU	ND AT SE	ECID "A	PPRO":	USEI	WSMIN =	= CRWS.						
	W	SLIM1,WS	SLIM2,C	RWS =	90	.37	L06.85	91.59					
===135 CON	VEYANCE R	ATIO OUTA	rside o	F RECO	OMMENDI	ED LIMITS	3.						
			"APPR	O "	KRAT	1.0 = 0.1	32						
APPRO:AS							91.59		91.85				
55.						0.01							
<<	<< <the ab<="" td=""><td>OVE RESU</td><td>JLTS RE</td><td>FLECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTE</td><td>) FLOW></td><td>>>>></td></the>	OVE RESU	JLTS RE	FLECT	"NORM	AL" (UNC	ONSTRICTE) FLOW>	>>>>				
	<<< <res< td=""><td>ULTS RE</td><td>FLECTIN</td><td>G THE</td><td>CONST</td><td>RICTED FI</td><td>LOW FOLLOW</td><td>√>>>></td><td></td></res<>	ULTS RE	FLECTIN	G THE	CONST	RICTED FI	LOW FOLLOW	√>>>>					
							~~						
XSID:CODE	FLEN						CRWS						
SRD	FLEN	REW	K	ALPH	но	ERR	FR#	VEL					
BRIDG:BR	2.0	0	100	0 01	0 00	01 57	00 00	0.05	00 67				
									90.67				
0.	20.	21.	0/20.	1.00	0.22	0.00	0.58	7.03					
TVDF D	DCD FIOW	C	D/7	T.QT	rt. Bi	FN YI.	AB XRAB						
1 *	*** 1.	1 000 3	+***	97	90 ***	*** ****	** *****						
XSID:CO	DE SRD	FLEN	HF	VHD	E	GL E	RR () WSE	L				
RDWAY:RG	9.		<<< <e< td=""><td>MBANKN</td><td>MENT IS</td><td>NOT OVE</td><td>ERTOPPED>:</td><td>>>>></td><td></td></e<>	MBANKN	MENT IS	NOT OVE	ERTOPPED>:	>>>>					
XSID: CODE							CRWS						
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL					
APPRO:AS	20.	-1.	78.	1.67	1.20	93.28	91.59	805.	91.61				
55.	20.	21.	3165.	1.00	0.51	0.00	0.99	10.37					
	M(K)		XLKQ			OTEL							
0.130	0.000	3341.	-1.	20). 8	39.18							
		<<< <e1< td=""><td>ND OF B</td><td>RIDGE</td><td>COMPU</td><td>TATIONS></td><td>>>></td><td></td><td></td></e1<>	ND OF B	RIDGE	COMPU	TATIONS>	>>>						
FIRST USE					_								
XSID:CO	DE SRD -45.) LEW		1.00	Q	K	AREA	VEL	WSEL				
							193.						
EXIT2:XS FULLV:FV			37. 36.			L3506. L0656.	210. 178.	3.84 4.51					
BRIDG:BR													
RDWAY:RG		*****		0(∩ ***	U140.	106. ******	7.03 2 NN**	*****				
				ρſ)5	3165	78.	10 37	91 61				
	55.	±.	21.	0 (J_ J_ J	,	_0.0/	J = . U =				
SECOND USE	R DEFINED	TABLE											
	DE CRW			MIN	YMAX	HF	HO VHD	EG	L WSEL				
EXITX:XS	88.7	1 0.7	77 83	.16 1	L05.48	*****	**** 1.32	90.8	0 89.48				
EXIT2:XS	*****	* 0.3	31 84	.12 1	L06.44	0.26	0.00 0.23	91.0	6 90.83				
	*****						0.04 0.32		9 90.87				
BRIDG:BR							0.22 0.91		7 90.67				
RDWAY:RG									*****				
APPRO:AS									8 91.61				

WSPRO OUTPUT FILE (continued)

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid042.wsp CREATED ON 03-OCT-95 FOR BRIDGE BRIDTH00040042 USING FILE brid042.dca HYDRAULIC ANALYSIS OF BRID042 SAO


	RAULIC AN					_						
•	*** RUN D	ATE & T	IME: 10	-03-95	5 10:4	6						
XSID:CODE						EGL			WSEL			
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL				
EXITX:XS	****	-7.	229.	1.52	****	91.80	89.40	2260.	90.29			
-45.	*****	38.	15189.	1.00	****	*****	0.78	9.88				
EXIT2:XS	25.	-8.	254.	0.27	0.26	92.06	*****	1060.	91.79			
	25.											
20.	23.	10.	1,213.	1.00	0.00	0.01	0.52	1.1,				
FULLV:FV	20	7	220	0.26	0 00	00 10		1000	01 02			
						92.19			91.83			
0.	20.		14404.				0.38					
<>< <the "normal"="" (unconstricted)="" above="" flow="" reflect="" results="">>>></the>												
===125 FR#	EXCEEDS	FNTEST A	AT SECI	D "APE	PRO":	TRIALS C	ONTINUED					
	FNTEST	,FR#,WSE	EL,CRWS	= 0.	. 80	0.89	92.75	92.	40			
===110 WSE	NOT FOU	ND AT SE	ECTD "A	PPRO":	REDU	CED DELT	AY.					
						1.33		0.50				
	**	DDIFFIT, WE	JULINZ, D	DDIAI		1.55	100.05	0.50				
115 1100	. NOT TO	NTD N	atp.	DDD0#	HODD	TACMENT	apria					
===115 WSE												
	W	SLIM1,WS	SLIM2,C	RWS =	91.	33 1	06.85	92.40				
===135 CON	VEYANCE R	ATIO OUT	rside o	F RECO	OMMENDE	D LIMITS						
			"APPR	0"	KRATI	0 = 0.3	3					
APPRO:AS	55.	-3.	106.	1.56	0.91	94.30	92.40	1060.	92.74			
55.	55.		4724.					10.01				
<<	<< <the ab<="" td=""><td>OVE RESU</td><td>лиго ке</td><td>PLECI</td><td>NORMA</td><td>T (ONCO</td><td>NSIKICIE</td><td>D) FLOW></td><td>>>>></td></the>	OVE RESU	лиго ке	PLECI	NORMA	T (ONCO	NSIKICIE	D) FLOW>	>>>>			
	<<< <res< td=""><td>ULTS REI</td><td>FLECTIN</td><td>G THE</td><td>CONSTR</td><td>ICTED FLO</td><td>OW FOLLO</td><td>W>>>></td><td></td></res<>	ULTS REI	FLECTIN	G THE	CONSTR	ICTED FLO	OW FOLLO	W>>>>				
XSID:CODE	SRDL	LEW				EGL	CRWS	Q	WSEL			
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL				
BRIDG:BR	20	0	121	1 20	0.26	92 65	89 74	1060	91 46			
	20.								51.10			
0.	20.	21.	0142.	1.00	0.33	0.00	0.62	0.//				
		_	_ /-									
	PCD FLOW											
1. *	*** 1.	1.000 3	*****	97.9	90 ****	** ****	* *****					
XSID: COI	DE SRD	FLEN	HF	VHD	EG	L ER	R	Q WSE	L			
RDWAY:RG	9.		<<< <e< td=""><td>MBANKM</td><td>MENT IS</td><td>NOT OVE</td><td>RTOPPED></td><td>>>>></td><td></td></e<>	MBANKM	MENT IS	NOT OVE	RTOPPED>	>>>>				
XSID: CODE	SRDI	T.EW	AREA	VHD	HF	EGL	CRWS	0	WSEL			
		REW	K									
SKD	FLEIN	KEW	17.	ALIFI	по	EKK	F IX#	VEL				
**************************************	0.0	2	107	1		04 07	00 10	1050	00 ==			
APPRO:AS									92.55			
55.	20.	24.	4437.	1.00	0.60	0.01	0.95	10.51				
M(G)	M(K)	KQ	XLKQ	XRE	(Q O	TEL						
0.241	M(K) 0.000	4842.	-1.	20). 9	0.40						
		PN	AD OF B	RIDGE	COMPITE	ATIONS>>	>>>					
			UF D		JUI 11 U 1							
DTD 08 11001	DEELWED	man.										
FIRST USE					_							
XSID: CO		LEW	REW		Q	K	AREA	VEL				
EXITX:XS		-7.	38.	226	50. 1	5189.	229.	9.88				
EXIT2:XS	-20.	-8.	40.	106	50. 1	7513.	254.	4.17	91.79			
FULLV: FV		-7.	40. 38.	106		4404.	220.	4.82	91.83			
BRIDG:BR	0.	0.	21.	106	50.	8142.	121.	8.77	91.46			
RDWAY:RG	9	*****	*****		0.****	*****	*****	2.00**				
APPRO: AS												
AFPRU:AS	55.	-3.	24.	106		77J/.	101.	10.51	J4.55			
SECOND USE												
	DE CRW					HF						
EXITX:XS	89.4	0 0.7	78 83	.16 1	L05.48*	*****	*** 1.5	2 91.8	0 90.29			
EXIT2:XS	*****	* 0.3	32 84	.12 1	L06.44	0.26 0	.00 0.2	7 92.0	6 91.79			
VI-VIIII	*****								9 91.83			

APPRO:AS

92.40 0.95 86.30 106.85 1.03 0.60 1.72 94.27 92.55

25

APPENDIX C: **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure BRIDTH00040042, in Bridgewater, Vermont.

APPENDIX D: HISTORICAL DATA FORM