
UNITED STATES DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

MAPIT: An improved method for mapping digital sidescan sonar data
using the Woods Hole Image Processing System (WHIPS) Software

by

Valeric Paskevich 1

Open-File Report 96-281

This report is preliminary and has not been reviewed for conformity with U.S.
Geological Survey Editorial standards. Use of tradenames is for purpose of
identification only and does not constitute endorsement by the U.S. Geological
Survey.

July 1996

1 Marine and Coastal Geology Program
Woods Hole, MA 02543

CONTENTS

Abstract .. 1

Introduction ... 1
Program Summary ... 3

Digital Mapping Procedure ... 3

Digital Mosaicking Procedure.. 9

Software Requirements .. 14

FIGURES
Figure 1 - GLORIA pass 12 mapped .. 5
Figure 2 - GLORIA east passes mapped ... 8
Figure 3 - GLORIA west passes mapped .. 9
Figure 4 - GLORIA south pass mapped... 9
Figure 5 - GCPworks windows... 12
Figure 6 - GCP Scatter Plot Reports... 14
Figure 7 - Completed GLORIA mosaic .. 17

TABLES
Table I - Available projections .. 19
Table II - Available ellipsoids ... 21
Table III - UTM zones .. 23

APPENDIXES
Appendix A - WHIPS user program documentation ... 25

avg_heading ... 27
avg_position ... 30
filter .. 32
gss_vel ... 38
listhdr ... 42
Iowpass2b2 ... 44
mapit... 46
median3 .. 51
mode3 ... 53
mode5 ... 56
projss .. 58
qmos ... 63
sshead ... 65
whips2raw .. 67

Appendix B - mapit run-line and map control file example 69

Appendix C - Example digital mapping processing script................................... 71

References.. 73

Abstract

The Marine and Coastal Geology Program, Northeast Section located in Woods Hole, MA has been
involved in collecting, processing and digitally mosaicking sidescan sonar data utilizing the Woods Hole
Image Processing System (WHIPS) software since 1992. Program MAPIT, which is described here,
replaces the previously used WHIPS programs for digital mapping of sidescan sonar data while reducing
the required processing time to 20-25% over the previously used method. A detailed description of the
programs utilization along with a mapping example is included.

Introduction

Since 1992 the Marine and Coastal Geology Programs, Northeast Section has utilized the Woods Hole
Image Processing System (WHIPS) software (Paskevich,1992a) to process and digitally mosaic sidescan
sonar data. This locally developed software package was written specifically for processing high and low-
resolution sidescan data collected by the field office, and has been installed on a variety of UNIX
workstations. The focus of the WHIPS software is to provide a suite of programs that may be initiated from
a run-line command to accomplish pre-processing requirements and digital mapping of the unique data set.
When a production run of collected and processed field data is required, a UNIX script file containing the
processing requirements for a given data set is created and executed by the user.

This new mapping program, mapit, conceptually is similar to the procedure described in U.S. Geological
Survey Open-File Report 92-536 (Paskevich,1992c) but is more efficient computationally. As in the
previous mapping method, the sonar pixels are processed on a one-by-one basis. In other words, the
geographic coordinate for each sonar pixel from the input file must be calculated. The computed
geographic coordinate must then be projected to it's Cartesian coordinate based on the map projection and
earth model specified by the user, and once the Cartesian coordinate is know, it's position in the output file
(i.e. it's image coordinate) must then be computed. This can easily result in the need to compute the
geographic to Cartesian to image position for millions of points in a single input file. The new program and
old mapping method have been compared, and the new program has reduced the processing time to 20-25%
over the previous method.

There are two major changes and improvements over the previously described method. The first major
change is that program mapit combines the features of programs gss_vel and projss and incorporates
cartographic projection routines from proj (Evenden, 1990). This change alone is responsible for the
significant increase in speed and time required to map a sidescan sonar swath. The second change is the
definition of the mapping control file. Previously the user needed to create a file that contained the four
corner geographic bounds of the image to be created. Now the user need only define the upper left and
lower right geographic coordinates of the map area, but they must now also include the map projection
information (e.g. projection name, ellipsoid) in proj format.

To begin the mapping procedure, the sidescan sonar data must be in the WHIPS format (Paskevich,1992)
which utilizes the Unidata NetCDF data access software (Unidata, 1991). The WHIPS software was
developed utilizing the NetCDF data access software to provide platform independent data files due to the
wide variety of UNIX workstations being utilized at the Northeast field center. It is assumed that prior to
starting this procedure, the user has properly formatted and processed the sidescan data to be mapped. The
initial processing should include all radiometric and geometric corrections required by the d#ta set such as
slant-to-ground range correction, striped noise removal, shading, and beam angle correction. This
document does not discuss the pre-processing requirements of sidescan data as that can be found elsewhere,
for example, Chavez (1986), Miller et al (1991), Paskevich (1992b). Paskevich (1992b) provides an in-
depth discussion of pre-processing sidescan data utilizing the UNIX based WHIPS software.

To digitally map the sidescan data swath, the sidescan file must include the sonar data header with the
necessary sonar fish information. More specifically, the sidescan header must have the fish position
recorded in the proper coordinates and a heading for each scan. Since a portion of program mapit is based
on program gss_vel (see documentation in Appendix A), the consecutive positions stored in the sonar
header must be unique. Program mapit will compute how many times to duplicate a given sonar swath to
properly fill gaps between consecutive swaths.

In addition to the fish position, a heading value stored in the sidescan header is also required to properly
compute the line orientation from the fish position. A heading logged from the sidescan fish would be
desirable. However, if no heading is logged by the sidescan system, ship heading or heading computed
from the fish position stored in the header may also be used. This can be computed using sshead
(Appendix A).

As with the previous mapping method, one drawback to the digital mapping still remains. This is the holes
or gaps that may occur from the placement of consecutive lines of sonar data. Since the heading values are
critical in placing the sonar pixels, fluctuations in headings which can occur between the adjacent lines can
cause the lines to overwrite one another rather than being placed neatly alongside each other. The
overwriting of the adjacent lines and the resulting gaps can be minimized by smoothing the fish navigation
using avg_position (Appendix A) and heading using avg_heading (Appendix A) contained in the sonar
header before beginning the digital mapping procedure. However, this will not provide a perfect solution
and filtering of some sort to fill in the holes in the final image is still required.

As stated earlier, one major change in the new mapping procedure involves program proj (Evenden, 1990).
The previous mapping method utilized proj as a UNIX filter. By utilizing proj in that manner all
projections available in proj were available to the user wanting to map their sidescan data. However, not
all the projections were appropriate to our mapping needs. Therefore, program mapit has selected specific
projections from the proj cartographic library and made only those available to the user. The sub-set of the
available projections was implemented to reduce the size of the compiled program and therefore the
memory required to run the program. A list of the selected projections available in mapit are listed in
Table I with the required proj parameters if any. The list is not meant to be a definitive description of the
various projections. It is included as a quick reference. For more detailed information on the projection
requirements, the user is directed to Evenden, 1990 and 1994. As usual, the user should fully understand
the requirements of the selected projection.

The user should also be familiar with the operation of the UNIX program proj as they will be required to
specify the projection parameters utilizing proj parameters. When specifying the projection parameters for
program mapit, the user may reference the proj documentation. The basic parameter specifications for
mapit are similar to the run-line options for proj. The major change is that the '+' prefix for the proj
commands are eliminated. For example, when running the UNIX program proj and the user wanted to
specify the mercator projection, the projection was specified as +proj=merc on the proj run-line. This
proj parameter would now be specified simply as proj=merc in the mapit control file (see example in
Appendix C).

It is also the user's responsibility to specify the ellipsoid to be used in the mapping procedure. A list of
available ellipsoids is shown in Table II. If no ellipsoid is specified as part of the proj initialization, proj
will default to the Clarke 1866 spheroid.

The mapping example provided here is the same example (mapping GLORIA sidescan sonar data) as
described in the previous digital mapping documentation, U.S.G.S. OpenFile Report 92-536. The GLORIA
data processed has an input pixel resolution of 45 meters. The final map/image created is a 100 meter
resolution for a 2° by 2° area bounded by -114° to -112° longitude and -34° to -36° latitude. Utilizing the
same example will allow for easier comparison and clarification of changes in the mapping procedure and
programs.

Program Summary

The following is the list of WHIPS programs that the user may need to complete the sidescan sonar digital
mapping. Some of the listed programs are not used in the mapping procedure but have been included for
reference.

avg_heading apply a running average to the heading values contained in a
WHIPS netCDF sidescan sonar image header

avg_position apply a running average to the fish positions contained in a
WHIPS netCDF sidescan sonar image header

filter applies a low-pass, high-pass, zero replacement or divide filter
to an image

listhdr list the contents of a sidescan sonar header in a WHIPS image

mapit computes the geographic coordinates for each pixel contained
in a WHIPS sidescan sonar image and projects the geographic
coordinates to it's Cartesian equivalent and places the pixel in
a WHIPS image file

medianB applies a 3-by-3 median filter to a WHIPS image

mode3 applies a 3-by-3 mode filter to a WHPS image.

modeS applies a 5-by-5 mode filter to a WHIPS image

qmos mosaics (overlays) the specified input file over the specified
output file. The program will either overlay where the input
file has priority over the existing output file, where the output
file has priority over the input file, or average non-zero pixel
values together from the input and existing output file.

sshead computes a simple heading for a WHIPS netCDF sidescan
sonar image

whipslraw converts a WHIPS NetCDF image file to a raw, binary image
file

Digital Mapping Procedure

To begin the mapping procedure, the user must make some preliminary decision that will define the map
area to be created. These decisions include selecting the map projection, spheroid and map bounds. As
previously mentioned, program mapit utilizes a sub-set of the proj cartographic library. The user should
reference Table I to select from the list of available map projections.

The proj specifications and geographic bounds of the map area must be entered into a text file by the user.
Program mapit will access this file as it's control file (-c) and utilize the information in the proj
initialization and image creation. The control file must contain three lines of information that are
summarized as follows:

1) the proj (projection) parameters
2) the upper left geographic coordinates of the map
3) the lower right geographic coordinates of the map

The geographic coordinates specified on lines two and three are required to define the map area and may be
defined in the DMS (Degrees, Minutes and Seconds) system acceptable to the proj cartographic library.
The DMS system has been previously defined (Evenden, 1990) but will be summarized here for
convenience.

The DMS system is defined as two numeric values separated by "white space" (either blanks or tabs). In
it's simpler format signed degrees (e.g. -72, 72W or 72w) is acceptable. Signed decimal degrees (e.g. 42.5,
42.5N or 42.5n) is also acceptable. However, for more accuracy a typical geographic coordinate may be
defined as 42°25'15.22"N. Since there is no degree symbol available in the ASCII character set and
imbedded blanks are not allowed, the equivalent DMS value for the coordinate may be expressed as
42d25'15.22"N or 42d25'15.22. The second example illustrates that the suffix letter and trailing seconds
(") sign may be eliminated because the coordinate is located in the northern hemisphere and therefore
positive. If the same latitude coordinate were in the southern hemisphere, it may have been specified as
42d25'15.22"S, -42d25'15.22, or 42d25'15.22s. Please note that the d and ' are only required when
respective minute and second subfields are employed.

For the mapping example, the mapit control file referred to as mapit.dat is shown below. A comparison of
the mapping control files and mapping procedure from the previous mapping procedure and the control file
required by mapit is shown in Appendix B.

proj=utm ellps=clrk66 south lat_0=-110
-34 -114
-36 -112

A second example of defining a simple mapit control file follows. This example illustrates a map defined
as a mercator projection utilizing the WGS84 ellipsoid, and geographic coordinates defined in the DMS
format acceptable to proj.

proj=merc ellps=WGS84 lat_ts=41
41dl3'n 71d54'w
41dll'n 71d50'w

*NOTE; WGS84 is the ellipsoid used by the AMG navigation system.

Once the user has the mapit control data file created, they may execute the mapping program. The program
has 4 required keywords that are listed below. There are additional, optional keywords the user may specify
on the program run-line. The user may reference the mapit program documentation found in Appendix A
for a full description of the program's keywords and their usage.

-i filein specifies the WHIPS sidescan sonar input file

-o fileout specifies the WHIPS output file

-c controljile specifies the mapit control file

-r resin,resout specifies the pixel resolution of the sidescan input data and the
output file to be created

The run-line specification to process one line of GLORIA data (pass!2.avg_head) from the mapping
example may now be specified as:

mapit -i pass!2.avg_head -o east.map -c mapit.dat -r 45,100

The GLORIA swath mapped from this run-line is shown in Figure I. The mapped swath illustrates small
gaps that can be left between adjacent lines. These holes are due to the heading fluctuation and may have
been minimized by further smoothing the heading values prior to mapping. But additional smoothing of
the heading values will never entirely eliminate the digital mapping gaps because the lines are not
perfectly straight. These gaps are best filled by filters designed to properly fill the gaps, and can be
applied as a final processing step once all the sonar swaths are mapped. The entire modified processing
script utilized to produce the three (east.map, west.map and south.map) final 2° by 2° GLORIA mosaic is
shown in Appendix C.

Figure 1 - GLORIA pass!2 placed in image/map space

Another change from the previous mapping procedure involves the output file specification (-o) in program
mapit The new program will allow the user to write to a file that may already exist. Previously, the user
needed to create a new output file each time the mapping procedure ran. This resulted in numerous files, all
of the same size, being created. Though there were trade-offs in that approach, program mapit will now
allow the user to open an existing output file and, if it passes two initial tests, allow the file to be updated.
An existing output file will be opened and updated if:

 the selected output file contains the same number of lines and pixels as computed by
program mapit from the user specified proj parameters

 the bittype of the output file matches the bittype of the input file

If the existing output file fails either of these two tests, the program will display an error message and stop.
Allowing the user to update an existing output file will reduce the number of files that are needed during the
mapping phase. Updating an existing file also eliminates the need to execute program qmos to combine
map files and additionally reduces the amount of disk space needed and the time to complete the digital
mapping process. The user will now be able to create one data file for a sonar line that may consist of two
or more input files, or create one file for all lines oriented in the same direction. As before, it is the user's
responsibility to maintain the bookkeeping to ensure data are not incorrectly overwritten in the output file.

The user should also take note of the program's print file, mapit.prt, created during the program execution.
The program print file, as with all the WHIPS program print files, provides an overview of the program's
execution parameters and specific program information. The print file should not be deleted until the digital
mosaicking procedure is completed. An example of the mapit print file is shown on the following page.

map it

Wed Jun 12 12:00:23 1996

INPUT FILE: pass!2.avg_head

Image bittyp: 8

Image Size:
number of lines:

number of samples:

OUTPUT FILE: east.map

Image bittyp: 8

Image Size:
number of lines:

number of samples:

Map corner locations:

37, 1 - -

720
1024

2256
1870

1, 1848

2256, 67 2219, 1870

Pixel Resolution: 45.00(input) 100.00(output)

MAPIT CONTROL FILE: mapit.dat

Proj parameters: proj=utm ellps=clrk66 south lon_0=-lll
Upper left lat/lon: -34 -114

(y/x meters): 6233979 222902
Lower right lat/lon: -36 -112

(y/x meters): 6015789 409868

The -R option was selected.

The mapitprt file is of particular importance because it provides two important sets of information the user
will need in the digital mosaicking phase. The first is the size of the created map file, in lines and pixels.
The user will need this information to create the PCI database file when beginning the digital mosaicking
procedure. Secondly, the print file also reports the location of the map bounds within the image file.
Depending on the map projection specified, the map area may not be rectangular as would be the case when
specifying a mercator projection. The defined map area may be cylindrical as with a UTM projection. If
this is the case, the geographic bounds will not occur exactly at the image corners. Some map bounds may

map bounds may fall within the image area while others may fall exactly on the image corners. Because
the defined image must be rectangular, the map image file is created with the largest size possible to allow
placement of the map within the image file. The mapit.prt file will tell the user where the geographic
coordinates are located in the image. The transformed x and y meter coordinates of the map area's
latitude and longitude coordinates are also included. Knowing where the specified geographic coordinates
are in the image file will allow the user to properly specify the georeferencing parameters of the map in
the PCI database when the digital mosaicking procedure is completed.

The recommended approach to accomplishing the digital mapping phase is to focus on creating separate
mosaics with alternating lines. This means initially creating two, or more if necessary, image map files.
This approach is taken to keep adjacent lines from overwriting each other, and keeping data which might
be good from being overwritten by bad data or noise.

When all the sonar swaths for a given map area have
been digitally mapped, any gaps or holes that may
exist between the lines of the individual swaths must
be filled. The user has the option of running a
variety of filters (e.g. mode, median, zero
replacement) to fill the gaps. The gaps are
considered zero values as is the image area where no
data is mapped. By filtering the image to fill these
'holes', the image will be slightly enlarged along the
far range of the swaths. This is an area of noise that
will be removed from the image during the digital
mosaicking phase and is not of concern. Figure 2 is
the east component (shown reduced) of the GLORIA
mosaic example after all appropriate east lines have
been combined and a series of filters have been
applied to fill the gaps. Note the swaths now show a
more distinct edge at the far range. This is where
the noise has been enhanced as a result of the
filtering.

When all the sonar swaths for a given map have _____________________
been digitally mapped and the gaps filled, the image maps can be combined by stenciling unwanted data
from the swaths and mosaicked to build the final digital mosaic. In the case of the GLORIA data used in
the example, three mosaics were created. One for each of the lines (ship's) major heading direction: east,
west and south.

Figure! - GLORIA east passes mapped & filtered

The final mapped images for the remaining two areas, west and south, are shown, reduced, below. These
images have also been filtered to fill any 'holes' left from the mapping procedure. The three files, east,
west and south, will be combined to create the final digital mosaic. An overview of the digital mosaicking
procedure follows in the next section.

[Figure 3 - GLORIA west passes mapped & filtered [[Figure 4 - GLORIA south pass mapped & filtered |

Digital Mosaicking Procedure

Mosaicking is the process of combining several arbitrarily shaped images to form one large,
radiometrically balanced image. In the case of sidescan sonar, the images are the adjacent swaths
collected during the survey. The mapped swaths are combined together along user-specified cut lines
defining the polygon and image precedence (what part of the image to keep; what part of the image to
remove). Ideally, the cut-line boundaries can be blended together to reduce the boundary between images
so they are not easily seen.

Examining the east, west and south images the user can see where data contained in adjacent swaths
would overwrite each other if they had been simply composited together as part of the mapping procedure.
Additionally, the noise at the far range of the images makes a simple composite method undesirable.
Typically each mapped swath may have some undesirable data that could be replaced by overlapping data
from an adjacent swath. The user may wish to remove the unwanted portion of the imagery and select
data which he or she feels is best. To support digital mosaicking, a cut and paste method to composite the
images is preferred. A variety of methods and computer programs are available to accomplish a simple
cut and paste compositing and, if needed, tone matching of the files. Two such programs are Adobe
Photoshop (Adobe Systems Incorporated, 1994) and Corel PhotoPaint (Corel Corporation, 1994).
However, these programs do not support the more sophisticated geometric corrections required to register
images, and are simply mentioned as alternative methods of a elementary cut and paste method. Detailed
description of these programs is outside of the scope of this report and will not be included here.

Geometric Correction where the registration of one image to another takes place. Ground Control Points
(GCPs) are collected, and the unconnected (slave) image is transformed to the georeferenced (master) image.
To accomplish this, more sophisticated computer programs that allow for rubber sheeting and
transformation of the slave image according to the derived polynomial are needed. To complete geometric
correction and mosaicking, the Northeast field center utilizes the PCI Remote Sensing software which
includes program GCPworks. This program is one of several components of the PCI Remote Sensing
software package, and is specifically written to support georeferencing, rectification and mosaicking of
remote sensing imagery.

In addition to GCPworks, the Northeast field center utilizes a number of additional PCI software packages
to support general remote sensing enhancement and analysis. These programs are available to the user via
either an X-l 1 interface, X-Pace, or a simple ASCII interface named EASI. Many of the PCI programs are
used as analytical tools after completing the digital mosaic. However, a few programs are needed to set up
the PCIdatabase and import the WHIPS created mosaic prior to beginning the digital mosaicking process
with GCPworks. These programs, CIM and WHIPSRD, are described below as part of the PCIdsk
creation prior to beginning GCPworks.

PLEASE NOTE: The following notes relate specifically to completing the digital mosaicking using the PCI
Remote Sensing software package. For sites that may have other remote sensing software packages, such
as ERDAS or ERMAPPER, changes to the process will be required. However, some general information
and suggestions are included that may be useful if utilizing other software packages.

To begin the digital mosaicking phase, the user must import the individual images into a PCI database file
for processing. This is done after all the sonar swaths have been mapped. To begin, the user must define a
simple PCI database file of the same size (number of lines and pixels) as was created in the mapit mapping
procedure. This is done using the PCI X-Pace program CIM (Create Image database). When defining the
PCI database, the user must also specify the number of image 'channels' to be contained in the database. It
is suggested, that the user create the database with enough channels to hold the mapped images, plus one
additional working channel (i.e. in the example shown in Figs 2, 3 & 4, 4 channels would be needed).
The working channel will be used to produce the final digital mosaic. When the mosaic is completed, the
channels holding the mapped data may be deleted or overwritten. An annotated example of defining the
PCIdsk data file for the GLORIA mosaic is shown below utilizing the EASI parameters. The filename
suffix, 'pix\ is the default identifier for a PCI database file and must be specified as part of the filename.
For more information regarding the EASI keywords, the user may reference the PCI program
documentation or utilize the on-line HELP feature of the PCI X-Pace programs.

EASI> FILE= "gloria, pix" 4 name of file to be created
EASI> DBSZ=1870,2256 4 number of pixels & lines in image from mapit.prt file
EASI> PXSZ=100,100 4 output pixel resolution in meters also from mapit.prt file
EASI> TEX1 = "GLORIA sidescan sonar mosaic"
EASI> TEX2= "Juan Fernandez microplate"
EASI> DBNC = 4 < 3 maps + 1 working channel

EASI> DBLAYOUT = "Band" < band or pixel; band recommended

After the PCI database file has been created, each of the maps created by mapit must be imported into the
PCI database. A program has been added to the PCI Image Interchange category to support the exchange
of the data from WHIPS to PCI. This program, WHIPSRD, has been added to the PCI program library
and may be found in the Image Interchange category of the X-Pace programs.

10

If the WHIPSRD program is not available, a second, two-step procedure is available to import the file to
the PCI database. First, the user must convert the WHIPS program to a raw binary stream image file. This
is done by utilizing the program whips2raw. The output file created from this program may then be
directly imported to the PCI database utilizing their IMAGERD program. For sites that do not have the
WHIPSRD program or the PCI software, most other software packages provide some similar method of
importing foreign data files.

When all the maps have been imported to the PCI database file, the user must make a decision as to which
of the mapped images will be considered the 'registered' or master image. This means that when doing the
geo-referencing and stenciling procedure features from the other images and swaths will be tied and
matched to the features in master image. This may result in warping and rubber sheeting of some of the
mapped imagery in an attempt to align features but minimizes the amount of warping by keeping one of the
images constant.

Once the user has selected which of the images will be the master, the image should be copied to the
remaining empty channel in the PCIdsk file. This is the channel that will be used to build the final
composite mosaic. One of the existing image channels may be selected as the master and used without
copying. However, copying the image to a second work channel provides a backup in case an error occurs
in the processing and can eliminate the need to reload the image into the database.

To copy the image to the working channel, the user has easily three methods. They may select either of the
two methods used above and re-read the selected WHIPS file directly into the working channel. The third
and more direct option is to utilize the X-Pace program III to accomplish a simple image transfer.
Program III will allow the user to specify the input channel to be read and the output channel to store the
image copy thereby producing a quick copy of the imagery.

Once the PCIdsk file has been created and the WHIPS images have been imported to the database file, the
user may begin the process of digital mosaicking and registering utilizing program GCPworks. Though
sidescan sonar mosaicking was not a typical application of the GCPworks software developers, the
program has proven highly effective in fulfilling the needs of the Marine and Coastal Surveys Program to
produce final digital mosaics.

Program GCPworks provides a number of functions critical to completing the final mosaic. In addition to
the basic function of collecting ground control points to align features on adjacent swaths, the program
provides support for mosaic stenciling, image feathering along the stencil cut-line to make seams disappear,
and interactive registration preview. Real-time Root Mean Square error scatter plot reports along with
model fit reports also provide useful information to determine best model and order fit before applying the
registration and mosaicking to the disk files. For a more detailed description of program GCPworks, the
user is referred to the available GCPWorks Reference Manual (November 1995). This PCI manual
provides detailed description of the program's theory, usage and application.

The last step of building the completed mosaic is highly interactive and requires more of the user's time and
attention than was needed in the digital mapping phase. The final digital mosaic is built in a repetitive
process of registration and stenciling by selecting the necessary pieces from the slave image(s) (one at a
time) to incorporate into the master image. When selecting the mosaic cut-line, the user may select what
portion of the image to show or replace with overlapping data. Additional options to reduce the effect of
the mosaic cut-line on the image and tone matching to produce a more uniform image are also available.

An example of the windows and usage of GCPworks is shown below. The screen 'snapshot' was taken
during a mosaicking phase of the program's application to the GLORIA data. Windows in the upper right
of the 'image screen' show GCPworks main menu and the 'Mosaic Area Collection' pop-up window. To
the left of this area, the two top windows show an overview of the slave (unreferenced) image and the
master image (georeferenced image). Two windows below these show the imagery at full resolution around
the area of the cursor from each of the overview windows.

11

This view of GCPworks was taken alter some of the digital mosaicking steps were completed. First, the
slave file has been geo-referenced to the master. Note the +nn marks denoting the location of the selected
ground control points. Secondly, a stencil line (yellow line) can be seen in the overview and full resolution
windows. The image data contained within the stencil area from the 'Uncorrected Image Overview' (slave)
will be placed within the stencil area of the 'Georeferenced Image Overview' (master) file. Only one stencil
line can be drawn at a time, so only one track from the slave database can be registered and mosaicked at a
time. It also has been found to be difficult to pick GCP's for more than one track at a time.

Figure 5 - GCPworks windows example

12

Selecting Ground Control Points

It is best to select GCPs at well-defined and easy to recognize points on both the georeferenced and
uncorrected data sets. Unlike georeferencing requirements of traditional remote sensing data, such as
aerial photographs, sidescan sonar data presents a specific set of unique problems. At times locating
common points on adjacent sidescan sonar images can be difficult due to the different look angles from
the adjacent swaths and subsequent shadows generated and the small amount of overlap in the swaths.
Patience and perseverance are important traits when learning the 'art' of GCP selection and registration
and digital mosaicking of sidescan sonar imagery.

When collecting GCPs, it is important to select points that are distributed over the entire image. Most
points will be from overlaping areas with adjacent swaths, but some points away from the swaths are need
as well. The selected GCPs will be utilized to compute a 1st to 5th order polynomial describing how the
uncorrected image has to be warped to make it register (match) the georeferenced image. Collecting
GCPs simply along the swaths would result in the image being distorted at it's bottom, sides and corners.
Collecting well distributed GCPs will help reduce unwanted image distortion.

In the GCPworks example on the previous page, the sonar image being georeferenced was in the upper
quarter of the image. GCPs were first collected in the four corners of the image to tie the image to each
other and provide the initial first order transformation. Next, GCPs were collected along the image swath
followed by identifying features from other portions of the image to provide more evenly distributed
GCPs. Finally, additional points were selected as tie points in the area where no imagery was available.
This final set of points are added to distribute points over the image and reduce the clustering of points in
the upper half of the image. The placement of these points are based on the polynomial transformation
computed from the previously selected points and as such errors in those points will affect the placement
of these final points. Since there are no features associated with these points, they are accepted as they are
placed by GCPworks.

One very useful option of GCPworks is the GCP Scatter Plot Report that can be obtained while in the GCP
Selection and Editing Panel. This report can assist the user in identifying the GCPs which contain the
greatest error. The reports can be viewed by selecting "GCP Scatter Plot" from the Reports menu found
on the top menu line of the panel. The report is updated each time the GCP list is changed by adding or
removing control points and shows the X and Y residual errors for each GCP point. The report can be
used to determine the accuracy of the derived coefficients of the GCPs and easily identify points which
contain the greatest errors.

The four panels comprising Figure 6 a through d shows the GCP Scatter Plot Reports for the 1st to the 4th
polynomial based on the selected GCPs in the example. It is important to note that while selecting a
higher order polynomial will result in a more accurate fit in the immediate area of the GCPs, it may
introduce new and larger errors in those parts of the image away from the GCPs. In this specific
application, the first and second order polynomial show the greatest errors. The 3rd order polynomial was
selected and applied to the image. The completed digital mosaic is shown at the end of this section.

13

I Figure 6a - CCPs with 1st order polynomial | [Figure 6b - CCPs with 2nd order polynomial |

| Figure 6c - CCPs with 3rd order polynomial | | Figure 6d - GCPs with 4th order polynomial |

Software Requirements

Program mapit is one of the dozens of programs comprising the Woods Hole Image Processing System
(WHIPS) software developed at the U.S. Geological Survey, Woods Hole, MA. The focus of the WHIPS
software is for initial processing (radiometric and geometric corrections) and digital mapping of sidescan
sonar data. This program, along with the entire WHIPS software package, has been installed on a variety of
UNIX platforms. However, before attempting to install the software package, there are a few characteristics
of the WHIPS software that must be addressed.

14

First, the WHIPS software utilizes the NetCDF Data Access Software as described in the 1991 Unidata
Report (Unidata Program Center, 1991) and USGS Open-File Report 92-25 (Paskevich, 1992a). This
software provides the underlying data file layout and access. The NetCDF data access software was chosen
because of the variety of UNDC workstations in use at the Woods Hole field center. Utilizing the NetCDF
software provided the ability to create platform independent data files. In other words, the NetCDF
software provided the ability to create files on one computer system that may be read on a system with a
different byte order.

A second requirement of program mapit is the proj cartographic library (Evenden, 1990). To properly
compile the program, the proj v4.0 or greater cartographic library must be available. The proj cartographic
library currently contains 100+ cartographic projections. Only a sub-set of the cartographic library was
included in program mapit and is defined in the header file mapit-pjlist.h. The included projections are
also summarized for the user in Appendix A. If a projection must be added to the program, the user should
add the information to the mapit-pjlist.h file and recompile the program.

Program mapit also has two minor restrictions regarding the projection initialization information. First, the
program has been limited to reading a character string of 100 maximum characters. This means that the
specified projection line cannot be greater than 100 characters. This should not be a problem under normal
circumstances. If the projection specification will be longer than 100 characters, the program should be
modified. To allow projection lines longer than 100 characters, the variable pjline should be increased and
the program recompiled.

Secondly, mapit has assumed that there will not be more than 20 separate projection parameters specified.
This should not be a problem since most of the currently included projections require at most three or four
projection specific variables. If more than two separate projection parameters are needed, the variable
params should be increased and the program recompiled.

The WHIPS software, proj cartographic library, and the NetCDF data access software has been compiled
and tested on a variety of computer systems. All software is in the public domain and may be obtained via
anonymous ftp. The WHIPS software and PROJ 4.0 is available from the U.S. Geological Survey Seafloor
Mapping server (kai.er.usgs.gov). Because of security features installed on the Seafloor Mapping server,
some users may experience difficulty in connecting via anonymous ftp. If problems occur, they may wish to
try accessing the system via the World Wide Web at http://kai.er.usgs.gov and going to the Seafloor
Mapping server's homepage. Access to the ftp directories can be made through here. The NetCDF data
access software is available from Unidata (ftp.unidata.edu).

In the past, the compiled WHIPS software has been made available for specific systems. However, it has
become impractical to provide executables for specific systems. Only the WHIPS source code is now made
available. User's wishing to use the software must now compile the software for their specific computer
systems.

15

16

114'00'H
UTM Zoom 12H Clark* 1866 (NAD 27)

GLORIA sidescan sonar mosaic
Juan Fornandez microplate

1:1 250 000 Seal*
0

17

****** BLANK *****

18

TABLE I

The table below summarizes the projections which have been include in program mapit from the proj 4.0
cartographic library. The first column contains the common name/identifier for the projection followed by
the proj keyword for the projection. The third and final column summarizes the required proj parameter(s)
for the selected projection.

The information contained in this table were summarized from various proj documentation. This table is
not meant to be a definitive description of the projection characteristics. It is simply meant to be a summary
of the required proj parameters so the user may specify the selected map properly. For a detailed
description of any map projection or the optional parameters, the user is advised to reference Snyder, 1987
and 1989 or Evenden, 1990.

Projection Name

Albers Equal Area

Azimuthal Equidistant

Modified Stereographies of
Alaska

Central Cylindrical

Equal Area Cylindrical

Equidistant Conic

Modified Sterographics of 48
U.S.

Modified Sterographics of 50
U.S.

Lambert Azimuthal equal Area

Lambert Conformal Conic

Lambert Equal Area Conic

LANDSAT - Space Oblique

Mercator

Miller Oblated Sterographic

proj
name

aea

aeqd

alsk

cc

cea

eqdc

gs48

gs50

laea

Ice

leac

Isat

mere

mil_os

proj
parameters*

lat_l, lat_2

lat.O

lat_ts

lat_l, lat_2

lat_l,lat_2
or lat_0

lat_l, south

Isat, path

lat_ts

Notes

Normal default values when
creating maps of the conterminous
United States are 33°N and 45°N
for lat_l and lat_2.

Normal default values when
creating maps of the conterminous
United States are 33°N and 45°N
for lat_l and lat_2.

Select parameter south for south
polar aspect.

The central meridian (lon_0) and
parallel (lat_0) are fixed at 20°E
and 18°N respectively.

19

proj proj
Projection Name name parameters* Notes

Miller Cylindrical

Mollweide

Near-sided perspective

Orthographic

Polyconic (American)

Robinson

Rectangular Polyconic

Sinusoidal (Sanson-Flamsteed)

Sterographic

Transverse Central Cylindrical

Transverse Cylindrical Equal
Area

Transverse Mercator

Two Point Equidistant

Universal Transverse Mercator

van der Grinten (I)
van der Grinten (II)
van der Grinten (III)
van der Grinten (IV)

mill

moll

nsper

ortho

poly

robin

rpoly

sinu

stere

tec

tcea

tmerc

tpeqd

utm

vandg
vandg2
vandgS
vandg4

lat_ts

lat_ts

lon_l, lat_l,
lon_2, lat_2

zone or
lon_0, south For maps in the southern hemisphere,

the keyword south should be
specified. If both zone and lon_0 are
specified, zone will take precedence.

* The following list describes the proj cartographic parameters.

Ion_0 - central meridian. When specified with
lat_0, determines the geographic origin
of the projection.

Iat_0 - central parallel
lat_ts - latitude of true scale
lat_l - first standard parallel
lat_2 - second standard parallel
Isat - LANDS AT satellite number, n, must be in

the range 1-5

path - LANDS AT satellite path number,/;, must
be in the ranges 1-251 for n= 1,2,3 or 1-
233 for n=3,4

south - to be specified for southern hemisphere
mapping applications

zone - One of the 60 zone numbers required by
the Universal Transverse Mercator
projection.

20

TABLE II

The table below lists the various ellipsoid names and their respective values contained within the proj
cartographic library. The first column contains the ellipsoid descriptor. The second column contains the
proj keyword to identify the ellipsoid. The last column represent the semi-major axis in meters. The list
was compiled from program proj v4.4 and may not reflect additions to later versions of the software.

When running mapit, the user must specify the ellipsoid and may chose one from the table below. To
specify a spheroid, the user must enter the command ellps=proj_name as part of the proj command line in
the mapit control file.

proj clips Semi-Major
Descriptor keyword Axis (A)

MERIT 1983
SGS85
GRS 1980(IUGG, 1980)
IAU 1976

Airy 1830
Appl. Physics. 1965
Naval Weapons Lab., 1965
Modified Airy
Andrae 1876 (Den., Iclnd.)

Australian Natl & S. Amer. 1969
GRS 67(IUGG 1967)
Bessel 1841
Bessel 1841 (Namibia)
Clarkel866 1

Clarke 1880 mod.
Comm. des Poids et Mesures 1799
Delambre 1810 (Belgium)
Engelis 1985
Everest 1830

Everest 1948
Everest 1956
Everest 1969
Everest (Sabah & Sarawak)
Fischer (Mercury Datum) 1960

Modified Fischer 1960
Fischer 1968
Helmert 1906
Hough
International 1909 (Hayford)

MERIT
SGS85
GRS80
IAU76

airy
APL4.9
NWL9D
mod_airy
andrae

aust_SA
GRS67
bessel
bess_nam
clrk66

clrkSO
CPM
delmbr
engelis
evrst30

evrst48
evrst56
evrst69
evrstSS
fschr60

fschr60m
fschr68
helmert
hough
intl

a=6378 137.0
a=6378 136.0
a=6378 137.0
a=6378 140.0

a=6377563.396
a=6378 137.0
a=6378 145.0
a=6377340.189
a=6377 104.4

a=6378 160.0
a=6378 160.0
a=6377397.155
a=6377483.865
a=6378206.4

a=6378249.145
a=6375738.7
a=6376428.
a=6378 136.05
a=6377276.345

a=6377304.063
a=6377301.243
a=6377295.664
a=6377298.556
a=6378166.

a=6378155.
a=6378150.
a=6378200.
a=6378270.0
a=6378388.0

21

Descriptor
proj ellps
keyword

Semi-Major
Axis (A)

Krassovsky, 1942
Kaula 1961
Lerch 1979
Maupertius 1738
New International 1967

Plessis 18 17 (France)
Southeast Asia
Walbeck
WGS60
WGS66

WGS72
WGS 84 2

krass
kaula
lerch
mprts
new_intl

plessis
Seasia
walbeck
WGS60
WGS66

WGS72
WGS84

a=6378245.0
a=6378163.
a=6378139.
a=6397300.
a=6378157.5

a=6376523.
a=6378 155.0
a=6376896.0
a=6378 165.0
a=6378 145.0

a=6378135.0
a=6378 137.0

1 standard for many USGS maps

2 ellipsoid used by AMG navigation acquisition system

22

TABLE III

The table below lists the 60 UTM zones which may be specified when defining a map in the Universal
Transverse Mercator (UTM) projection. One of the 60 zones may be specified in lieu of specifying the
central meridian (lon_0). To specify the zone, the user must include the proj initialization command of
zone=n where n is in the range of 1 to 60. For zones in the southern hemisphere the proj keyword south
should also be specified as part of the proj initialization..

UTM
Zone

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Zone Range

180W -
174W -
168W -
162W -
156W -
150W -
144W -
138W -
132W -
126W -
120W -
114W -
108W -
102W -
96W -
90W -
84W -
78W -
72W -
66W -
60W -
54W -
48W -
42W -
36W -
30W -
24W -
18W -
12W -
6W -

174W
168W
162W
156W
150W
144W
138W
132W
126W
120W
114W
108W
102W
96W
90W
84W
78W
72W
66W
60W
54W
48W
42W
36W
30W
24W
18W
12W
6W
OW

Central UTM
Meridian Zone

177W
171W
165W
159W
153W
147W
141W
135W
129W
123W
117W
111W
105W
99W
93W
87W
81W
76W
69W
63W
57W
51W
45W
39W
33W
27W
21W
15W
9W
3W

31
32
33
34
36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Zone Range

OE
6E

12E
18E
24E
30E
36E
42E
48E
64E
60E
66E
72E
7SE
84E
90E
96E

102E
108E
114E
120E
126E
132E
138E
144E
150E
156E
162E
168E
174E

- 6E
- 12E
- 18E
- 24E
- 30E
- 36E
- 42E
- 48E
- 64E
- 60E
- 66E
- 72E
- 78E
- 84E
- 90E
- 96E
- 102E
- 108E
- 114E
- 120E
- 126E
- 132E
- 138E
- 144E
- 150E
- 156E
- 162E
- 168E
- 174E
-180W

Central
Meridian

3E
9E

1SE
21E
27E
33E
39E
45E
51E
57E
63E
69E
75E
81E
87E
93E
99E

10SE
HIE
117E
123E
129E
13SE
141E
147E
153E
159E
16SE
171E
177E

23

APPENDIX A

The following is a list of the WHIPS program that may be utilized in the sidescan sonar digital mapping
procedure. A detailed description of the listed programs follows the listing.

avg_heading apply a running average to the heading values contained in a WHIPS NetCDF sidescan
sonar image header

avg_position apply a running average to the fish positions contained in a WHIPS NetCDF sidescan
sonar image header

filter applies a low-pass, high-pass, zero replacement or divide filter to an image

gss_vel computes the geographic coordinates of the sidescan sonar pixels and applies the
necessary velocity correction to the sonar swath

listhdr list the contents of a sidescan sonar header in a WHIPS image

Iowpass2b2 applies a 2-by-2 low-pass filter to an image

medianS applies a 3-by-3 median filter to an image

mode3 applies a 3-by-3 mode filter to an image

modeS applies a 5-by-5 mode filter to an image

projss place projected sidescan sonar data in a map space

qmos Mosaics (overlays) the specified input file over the specified output file. The program
will either overlay where the input file has priority over the existing output file, where the
output file has priority over the input file, or average non-zero pixel values together from
the input and existing output file.

sshead computes a simple heading for a WHIPS NetCDF sidescan sonar image

whips2raw converts a WHIPS NetCDF image file to a raw (binary) image file

25

~) "7 Uf^f / A y »f

NAME
avg_heading - apply a simple running average to the heading values contained in a WHIPS

netCDF sidescan sonar image header

SYNOPSIS
avg_heading -i input -o output [-1 n/] [-H]

DESCRIPTION
The avg_heading program allows the user to apply a simple running average over the heading
values contained in a WHIPS netCDF sidescan sonar image header and to effectively smooth the
values. The number of values averaged may be specified by the user by selecting the -1 option
along with the number of lines (nl) to average on the run-line. The specified number of lines must
be 3 or greater and must be an odd integer value. If this option is not specified, the program
defaults to averaging the heading values from 3 lines. Special processing takes place to handle the
beginning and end of the sidescan sonar files. However, general processing is done by
accumulating the heading values for an equal number of lines before and after the actual line being
processed, averaging the value, and outputting the new heading value in the output file.

Special processing takes place to handle the beginning and ending lines contained in the files. It is
not possible to have an equal number of lines before and after the line being processed unless
processing is taking place in the center of the image, away from the beginning and ending lines.
To compute the total to be averaged at the beginning of the file, the first line is weighted by an
additional 1/2 the number of lines to be totaled. This means when nl = 3 and the first line is to be
processed, the first heading value is computed as:

new_headingl = (headl + headl + head2) / 3

In this simple case, processing the second line will produce an equally spaced number of heading
values before and after the record being processed. Even spacing of the lines will continue until
the last line is to be processed. To process the last line, as with the first line, the heading from the
last line is double weighted.

As the number of lines to be processed is increased by the user, the weighting of the first line is
increased. For example, when the user specifies nl=5 the new heading for the first record is
computed as:

new_headingl = (headl + headl + headl + head2 + head3) / 5

In the example above using 5 lines and processing moves from the first to the second record, the
first line is not weighted as heavily.

new_heading2 = (headl + headl + head2 + head3 + head4) / 5

As described earlier, moving away from the beginning of the file will eventually produce line
processing where the heading values are weighted evenly before and after the specific line to be
processed. The even processing will continue until processing nears the end-of-file. At that time,

27

any necessary weighting of the last line in the image is similar to that done for the first line in the
file.

Special processing was added to correct a problem that occurred when averaging north heading
values. During times when the heading value would alter between high values (approximately
325° - 360°) to low values (approximately 0° - 35°) averaging the low and high values produced
accurate results though wild heading values. These shifts in the heading value typically occur in
one of two scenarios: 1- a ship is attempting to follow a northerly course, and it's heading waivers;
or 2- the ship is executing a turn. Regardless of the cause, averaging the high and low values
together produces undesirable results. In simplest terms, if the program is attempting to compute
an average heading from two values of 359° and 1°, the mathematically correct result would be
180° though not the desired heading value of 0°. To correct for this problem and to compute an
accurate heading value, additional checks were added to the program to test when the heading
values were approaching 0° from either direction. When the program has detected heading values
both in the high and low range, it focuses on those headings that will be used to compute the
average heading for a given line. As the total is computed, 360° is added to the low values to bring
the headings into a similar data range. The average heading is then computed from these values.
If the average heading is greater than 360°, 360° is subtracted from the average and becomes the
new heading value for the line being processed. As the processing continues to the next line, the
program checks to see if both high and low heading values continue to exist. If so, the special
computation applies once again. When the heading values being totaled fall entirely within a high
or low range, the default method of computing the new heading value by a running-average is
resumed.

The special handling required to properly compute the heading values when mixing the high and
low heading values will slow file processing in those files were the heading values shift frequently
in the north direction. The heading computation and program execution is more efficient when
processing can be accomplished without having to address the special handling for the north
heading values or for a few cases such as a valid course turn in a file.

The following run-line options must be specified and can appear in any order.

-i inputjile

specifies the input file to be processed. The input file must 8-bit.

The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and the
processing will stop

-o outputjile

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-In/

specifies the number of lines (nl) for which the heading value is to be totaled and
averaged.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

28

RESTRICTIONS
The input file selected must contain the required sidescan sonar header information.

The output file to be created must not currently exist.

EXAMPLE
The example below shows a simple execution of the program.

% avg_heading -i pass29.hdr -o pass29.avg_hd

The example below shows a possible execution of the program to compute the running average
using seven heading values.

% avg_heading -i pass29.hdr -o pass29.avg_hd -1 7

SEE ALSO
avg_position(l)

WHIPS(5), whips_sonar(5)

"Digital Mapping of Side-scan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS
none known

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

29

NAME
avg_position - apply a simple running average to the fish positions contained in a WHIPS

netCDF sidescan sonar image header

SYNOPSIS
avg_position -i input -o output [-1 nl\ [-H]

DESCRIPTION
The avg_position program allows the user to apply a simple running average over the fish
positions contained in a WHIPS netCDF sidescan sonar image header and to effectively smooth
the latitude and longitude positions. The number of positions to be totaled and averaged may be
specified by the user by selecting the -1 option along with the number of lines (nl) to average on the
run-line. The specified number of lines must be 3 or greater and must be an odd integer value. If
this option is not specified, the program defaults to averaging the fish position for 3 lines. Special
processing takes place to handle the first and last records of the sidescan sonar image file as well
as the beginning and end of the sidescan sonar files. However, general processing is done by
accumulating the latitude and longitude coordinates for an equal number of lines before and after
the actual line being processed, averaging the position, and writing the new coordinates to the
output file.

The first and last record are handled uniquely. The fish positions for those records are output
unchanged. This was implemented to ensure that consecutive, separate file/line segments would
match. In addition to the special processing for the first and last records of the sonar file, special
processing takes place to handle the beginning and ending lines contained in the files. When nl (-1)
is specified as 5 or greater, it is not possible to have an equal number of lines before and after the
line being processed unless processing is taking place in the center of the image, away from the
beginning and ending lines. To compute the totals to be averaged at the beginning of the file, the
first line is weighted by an additional 1/2 the number of lines to be totaled. This means when nl =
5 and the first line is to be processed, the second positions are computed as:

new_lat = (latl + latl + Iat2 + Iat3 + Iat4) / 5

new_lon = (lonl + lonl + Ion2 + Ion3 + Ion4) / 5

In this simple case, processing the third line will produce an equally spaced number of heading
values before and after the record being processed. Even spacing of the lines will continue until
the end-of-file is approached. As processing nears the end-of-file, the fish positions from the last
line are weighted accordingly.

The following run-line options must be specified and can appear in any order.

-i input_file

specifies the input file to be processed. The input file must 8-bit.
The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and the
processing will stop

-o output_file

30

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-In/

specifies the number of lines (nl) for which the sidescan sonar fish positions are to be
totaled and averaged.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The input file selected must contain the required sidescan sonar header information.

The output file to be created must not currently exist.

EXAMPLE
The example below shows a simple execution of the program.

% avg_position -i pass29.mg2 -o pass29.avg_pos

The example below shows a possible execution of the program to compute the running average
using seven values.

% avg_position -i pass29.mg2 -o pass29.avg_pos -1 7

SEE ALSO
avg_heading(l)

WHIPS(5), whips_sonar(5)

"Digital Mapping of Sidescan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS
none known

31

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

32

NAME
filter - apply a low-pass, high-pass, zero replacement or divide filter to an image

SYNOPSIS
filter -i input -o output -b nl,ns [-11 -z I -L I -h I -d] [options ... [-H]]

DESCRIPTION
The filter program allows the user to select one of five filter operations and apply it to a WHIPS
image. The filters are applied to the image by a moving boxcar. The boxcar (-b) is a user specified
sampling size which is two odd integer values that are not necessarily equal. The values represent
the number of lines and samples (nl,ns) to be considered when accumulating the sums. Pixel
values at the center of the boxcar are modified and are affected by the surrounding valid values.
The boxcar totals are applied over the image starting at line_l/sample_l to line_n/column_n. The
boxcar is shifted left to right over the image line.

Valid data are specified by the user selecting the run-line option -v. The data values entered by the
user will define the valid data range for processing. Values less than the minimum value or greater
than the maximum value are considered non-valid and are not included in the operation of
computing the boxcar totals. Specifying a valid data range may have other impacts on the selected
filter. See the specific filter operation described on the following pages.

Each pixel surrounding the center of the boxcar is compared to the low and high range before the
filtering operation is done. If the value of the original pixel falls outside of the valid range, it is not
included in the boxcar sum and count. Boxcar totals represent the total of the valid pixel values
and the number of valid points surrounding the center of the boxcar. The original unchanged pixel
values are used to calculate the boxcar totals.

A minimum number of valid data points (-m) are required to be contained within the boxcar totals
before the filtering process takes place. If there are less points in the boxcar than the user specified
minimum, the resulting dn value will be set to zero on output for all filters. The default minimum
value for this option is 1. The user may specify a value greater than or equal to 1 and less than or
equal to the total boxcar size (nl * ns).

The minimum valid data points which must be contained in the filter may also be specified by
selecting a fraction (-f) of the boxcar which must contain valid data points. If this option is
selected, the minimum valid points is computed as:

((nl * ns) * fraction) + .5

For example, a 5-by-5 filter with a .5 fraction specified would then have to contain a minimum of
13 valid data points in the boxcar totals for the filter to be applied. This would have the same
result as specifying -m 13, but is easier to specify for large filters. If a fraction greater than one is
specified, it is reset to one. If the computed value is less than one, it will be set to one as a default.

A coefficient value (-c) to expand the results of the data may also be specified. This is a real
number which is used by all filters to expand the range of the results of the filter operations. The
default value is 1.

The following run-line options must be specified and can appear in any order. Optional program
keywords are listed and described following the detailed filter descriptions.

-i input_file

specifies the input file to be processed. The input file may be an 8, 16 or 32-bit image.

33

-o output_file

specifies the output file to be created.

-b nl,ns

specifies the size of the boxcar by the number of lines («/) and the number of samples
(IM).

-1 1 -z I -L I -h I -d

specifies the type of filter to perform. Valid filter selections are low-pass (-1), low-pass
filter with zero replacement (-z), low-pass filter changing only valid data (-L), high-pass
(-h) filter or divide (-d) filter.

The core to all the filtering operations is the computation of the low-pass filter (LPF). The LPF is a
smoothing spatial filter which is good at reducing noise and removing the high-frequency content
of an image. The LPF is computed by averaging the total valid pixels values in the pixel
neighborhood. The neighborhood is the boxcar size specified by the user.

One consideration when developing a filtering program is how to deal with the edges of the image.
As the boxcar begins and moves across the image, it is not properly centered and would not
contain the proper sums. One possibility is to ignore the edges, thereby reducing the image
content. The approach taken in this program is to compute the boxcar totals at the image edges by
a folding/unfolding method. In essence, the program duplicates the neighboring pixels inside the
edges, centered on the boxcar. As the boxcar moves away from the edge and across to the center
of the image, these duplicated values are removed and replaced by pixel values from the center of
the image. As the boxcar meets the right and bottom edge of the image, the pixel values inside the
edge are slowly duplicated back as if to fold the edge of the image back over itself. The variables
for the individual filter are defined as:

(i,j) - The image coordinate of the pixel being computed. For line 29 and
sample 12, the image coordinate would be (29,12).

P(i,j) - The original pixel value of the input image at coordinate i,j.

S(i,j) - The sum of the points over the boxcar centered at i,j.

N(i,j) - The number of valid points within the boxcar surrounding the pixel
being processed.

The LPF computation is defined below and is followed by a description of the individual filters.

LPF(i,j) = S(i,j

The low-pass filter (LPF) is a smoothing spatial filter. Only input image pixels values that fall
within the user specified valid data range and processing boxcar size are totaled and averaged to
produce the LPF component. If the minimum valid points (-m or -f) for the boxcar are not
satisfied, the output pixel is set equal to zero. If the minimum valid points have been satisfied, the
LPF is applied regardless of the original pixel value. In other words, this option will modify all
input pixel values. The low-pass filter is computed using the following equation:

LPF(i,j) =
= COEF*LPF(i,j)

34

If the sum of the boxcar or the number of valid points contained in the boxcar is zero, the value
returned by the LPF computation will be zero.

The zero replacement filter (LPFZ) is a low-pass filter with one minor difference. That difference
is that during the filtering process, only input pixel values equal to zero are modified. This allows
the user an option to fill in "holes" based on the value of surrounding pixels. If the user does not
specify a valid range for computing the boxcar totals, the minimum valid value is automatically set
to 1 to eliminate zeros from the boxcar totals. The minimum valid value MUST be greater than
zero.

The low-pass filter changing valid data only (LPFV) is also similar to the low-pass filter described
above in the initial boxcar computations. The major difference is this option will only modify
input pixel values that fall between the valid minimum and maximum values specified by the user.
If an input pixel value is less than the specified minimum value, the output pixel is set to 0 for all
filters. If the input pixel value is greater than the maximum value, the output pixel value is set to
the maximum allowed value for the bit type. For an 8-bit image this value is 255, 16-bit is 32767
and 32-bit is set equal to FLT_MAX as defined in the file /usr/include/limits.h.

The high-pass filter (HPF) enhances the high-frequency details of an image. Edge enhancement of
an image is also possible with the application of a high-pass filter. The HPF is computed using the
low-pass filter described above. The boxcar values are computed by totaling the input image pixel
values that fall within the valid data range. The high-pass filter (HPF) is computed as follows:

HPF(ij) = NORM*(1-ADDBACK) + P(i,j)*COEF*(l+ADDBACK) - LPF(i,j)*COEF

Before computing the high-pass filter, the original pixel value is compared against the valid data
range. The high-pass filter is applied to the image coordinate only if the original pixel value falls
within the valid data range. If the original value is less than the specified minimum valid value, the
output pixel is set equal to zero. If the input pixel value is greater than the maximum value, the
output pixel value is set to the maximum allowed value for the bit type. For an 8-bit image this
value is 255, 16-bit is 32767 and 32-bit is set equal to FLT_MAX as defined in the file
/usr/include/limits.h.

The divide filter (DIV), when utilized by specifying a valid data range, will produce a binary
image (0 or 255 values) similar to a mask image. When the LPF component of the filter is greater
than the maximum valid value specified by the user, the input pixel will be output as 255. If the
LPF component is computed as less than the minimum valid value specified by the user, the output
pixel is zero. The resulting image would then be a "mask" of the valid values. The divide filter is
computed as follows:

DIV(i,j) = COEF*(P(i,j)/LPF(i,j)) - NORM

The divide filter is applied to the image coordinate only if the original input pixel value falls within
the valid data range. If the original value is less than the minimum value specified by the user, the
output pixel value is set equal to zero. If the input pixel value is greater than the maximum value,
the output pixel value is set to the maximum allowed value for the bit type. For an 8- bit image
this value is 255, 16-bit is 32767 and 32-bit is set equal to FLT_MAX as defined in the file
/usr/include/limits. h.

35

It is recommended that the user apply the resulting DIV "mask" with caution. In some cases, the
"mask" outlines are not continuous. When the "mask" is applied to the image, the discontinuous
lines can result in portions of the image, which are to be preserved, being dropped during the
masking operation.

Options: The following run-line commands are optional to the execution of the program.

 a addback

specifies the addback value which is used by the high-pass and divide filters only.

 v minval,maxval

specifies the minimum and maximum values (minval,maxval) to be used to define the
valid data range.

 c coef

specifies the coefficient (coef) to be used during the filtering process to expand the results
of the data during filtering. The value specified may be a floating point value and may be
any value the user desires. The default coefficient value is 1.

 n norm

specifies the normalization value (norm) used in the high-pass and divide filter
computations. The default normalization value for 8-bit image data is 127. For 16 or 32-
bit data, the default value is 0.

 m mingood

specifies the minimum number of good points (mingood) that must be contained within
the boxcar before the filter is applied. The default value is 1. This option may be
superseded by specifying -f.

 ffraction_good

specifies the fraction of the boxcar (fraction_good) that must contain valid data points
before the filter is applied to the image coordinate. Specifying this option would override
the -m option. The fraction_good is specified as the percentage of the boxcar that must
contain valid data points before a filter can be applied.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The output file to be created must not currently exist.

SEE ALSO
/usr/include/limits.h

Iowpass2b2(l), median3(l), mode3(l), mode5(l), ssfilter(l)

WHIPS(5)

36

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS
The 8 and 16-bit options have been extensively tested. The 32-bit option has not been fully tested.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

37

NAME
gss_vel - compute geographic coordinates of sidescan sonar pixels and corrects the sonar

imagery for changes in ship's velocity

SYNOPSIS
gss_vel -i input -r resolution [[options ...] [-E ellips] ... [-H]] >std_out

DESCRIPTION
The gss_vel program will compute the geographic coordinates of each pixel in the scan line of a
WHIPS netCDF sidescan sonar image. The input file MUST be a sidescan sonar image that has
NOT been velocity stretched. Gss_vel combines the functions of programs gss and velocity
because it will apply the velocity corrections as each swath is processed. The velocity correction is
applied by the program by first computing the distance travelled between consecutive swaths and
then the number of times an individual line should be duplicated to fill the image to the position of
the next swath. Velocity stretching of a sidescan sonar image is accomplished by duplicating
individual swath lines in an attempt to produce an image with the same across and along-track
resolution. The velocity correction may not be necessary for mid or low-range sidescan sonar
which have ^square' pixels.

The program begins by calculating the number of times the individual line to be processed should
be duplicated so it will meet the following line and reduce the gap in the map space between the
consecutive lines. The duplication factor is calculated first by determining the distance travelled
between a pair of consecutive lines contained in the sidescan sonar image. The distance travelled
between the consecutive swaths is determined by comparing the position coordinates contained in
the sidescan sonar header. The user may select the spheroid (-E) to be used in the distance
computation from one of five available ellipsoids. With the distance travelled between the
consecutive lines known, the program then computes the number of times a line should be
duplicated to fill the image space up to the placing of the next swath based on the sidescan sonar
image resolution (-r) specified by the user.

As each individual swath is processed, the geographic coordinate of each pixel is computed using
the heading value contained in the sidescan sonar attribute field, the sonar position associated with
the scan line, and the user supplied resolution value. The resolution value (-r) is the pixel
resolution, in meters, of the input image file. As each individual line is duplicated, a new nadir
position is calculated based on the sonar resolution (-r) and the heading contained in the sidescan
sonar header. Geographic coordinates are then computed for the pixels contained in the duplicate
lines to allow the proper placement of the swaths and to reduce the gaps which can occur between
swaths.

The program computes the geographic coordinates of the pixels and, if necessary, the new
positions of the duplicate lines by a simple distance computation utilizing one of five earth
ellipsoids. By default, gss_vel uses the Clarke 1866 spheroid in these computations. The user
may select an alternate earth ellipsoids by specifying the -E option on the program run-line. The
available ellipsoids are: 1) Clarke 1866 (default); 2) International 1909 (Hayford); 3) Geodetic
Reference System 1980; 4) WGS 1984; and 5) WGS 1972.

By default, the program will process every image line and sample contained in the input file. The
user may select which lines of the image to process by specifying the -1 option. When this option
is specified, the user must specify the starting line and ending line to process within the image.
The user may also optionally specify the number of samples (nsamps) or the distance (distance)
from nadir to be processed within each scan by selecting either the -s or -d program option. Each
sonar image line is processed from nadir to the specified far range with the port side being
processed first, followed by the starboard side. As the geographic coordinates of the pixels are

38

computed, the position, along with the associated pixel value, are output to the std_out device.
The coordinates are recorded as decimal degree values and are output in latitude/longitude order.

The fish_heading value contained in the sidescan sonar header fish attributes field may be adjusted
by the user by selecting the -h option. When this option is selected, the user must also specify a
heading adjustment value (heading_adjustment) to be added to the fish heading value before the
pixel coordinates are computed. This option, along with the ability to select a portion of the input
image to be processed, provides a simple way to "tweak" a segment of a sonar line when the
navigation data may not accurately reflect the track of the sonar fish. Hopefully this option will
assist in adjusting the sonar swaths and provide a simple way to lineup adjacent swaths.

As stated above, the program output is to std_out. This option was implemented to allow for
piping of the data through a series of steps to facilitate a stream processing to place the pixels
directly into a defined map space. If the input pixel value is equal to zero, the program will NOT
output the coordinate and pixel information. This was implemented to help reduce the amount of
pixels output and later processed.

The maximum and minimum geographic coordinates computed by the program are output to the
program print file.

The following run-line options must be specified and can occur in any order.

-i input_file

specifies the input file to be processed. The input file must be 8 or 16-bit.

The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and processing
will stop.

-r resolution

specifies the pixel resolution, in meters, of the input image. This value is used to compute
the position of the pixel values from the known position at nadir.

Options: The following run-line commands are optional to the execution of the program.

-\sl,el

specifies a sub-area of the input file to be processed. The sub-area is specified by
entering the starting line (si) and the ending line (el) of the sonar image file to be
processed. This option, along with -s or -d, may be selected to specify a sub-area of the
sonar image to process.

-h heading_adjustment

specifies a user supplied value to be added to the fish heading value before computing the
pixel coordinates. This option may be used to adjust the fish heading and swath
orientation if the user suspects the fish coordinates to not accurately reflect the direction
of the fish.

-s nsamps

specifies the number of samples (nsamps), port and starboard, to be processed from nadir.
For example specifying samp as 225 would flag the program to process 225 samples from
either side of nadir resulting in a total of 450 samples being output per scan. This option,

39

along with -1, may be selected to specify a sub-area of the sonar image to process. If the
user specifies samp as greater than the number of samples actually contained in each side
of the image scan, the value will be set to half the actual number of samples contained in a
line of the image file.

The user may optionally select the -d option to specify the distance from nadir to be
processed.

-d distance

specifies the distance (distance), in meters, from nadir for which to process the image
samples. The user may specify this option, along with -1, to select a sub-area of the sonar
image to process.

The user may optionally select the -s option to specify the number of samples from nadir
to be processed.

-E ellips

specifies the earth ellipsoid to be used in the computation of the pixel and line
coordinates. The ellips value may be specified as one of the following values:

1 = Clarke 1866
2 = International 1909 (Hayford)
3 = Geodetic Reference System 1980
4 = WGS 1984
5 = WGS 1972

-R

flags the program to round-up the number of times a sidescan sonar swath is to be
duplicated to accommodate the velocity stretching. For example, when the program
computes a line duplication factor of 3.5, the program, by default, will output the line
only three times. If the -R option has been selected on the program run-line, line
duplication factor would be rounded-up and the specific line being processed would be
duplicated four times.

This option may help reduce the gaps which can exist between adjacent lines as they are
placed in the map space. It will also increase the processing time and will affect the
resultant image by increasing the blockiness of the sonar map image.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The program only accepts 8 or 16-bit image files.

The output file to be created must not currently exist.

The -s or -d options are exclusive. Only one may be selected.

NOTES
This program combines the functions of programs gss and velocity. In addition to the pixel
coordinate computation which program gss provides, this program will correct the image for
changes in ship's velocity by duplicating the line being processed up to the position of the
following line.

40

This program also differs slightly from gssv. Program gssv requires the sidescan sonar input file to
have been previously processed through program velocity.

EXAMPLE
The example below shows a simple application of the program to compute the coordinate values
for a sidescan sonar image processed at .5 meters using the default Clarke 1866 spheroid.

% gss_vel -i boslS.wco -r .5 >bos13_cord.dat

The example below shows the program usage to select a specified number of lines (275 lines) and
width (375 samples per side). The -R option has been selected to help reduce the gaps between the
placement of the consecutive sidescan sonar swaths. The -E option has also be specified to
utilized the International 1909 spheroid.

% gss_vel -i gloria.head -r 50 -1 201,475 -s 375 -E 2 -R >pass74b.dat

SEE ALSO
avg_heading(l), avg_position(l), gss(l), gssv(l), projss(l), sshead(l), sumss(l)

WHIPS(5), whips_sonar(5)

"Digital Processing of Side-Scan Sonar data with the Woods Hole Image Processing System
Software": U. S. Geological Survey Open-File Report 92-204, lip.

"Digital Mapping of Side-Scan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536,90p.

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS
The 16-bit option has not been completely tested.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

41

NAME
listhdr - list the contents of a sidescan sonar header in a WHIPS netCDF sidescan sonar image

SYNOPSIS
listhdr -i input [-1 line] [-j] [-S] [-P print file] [-H]

DESCRIPTION
The listhdr program will list the header information from a sidescan sonar image. By default, the
line number, year, month, day, hour, minute, seconds, latitude, longitude, heading and fish altitude
information is displayed. If a field contained in the sidescan sonar header is printed that does not
contain valid information, inf will be output in the appropriate field. The inf reflects that the field
has been filled with system dependent infinity value for that data type.

The information is displayed on the user's terminal but may be output to a file by re-direction of
std_out or selecting the -P option on the runline.

The following run-line options must be specified and can occur in any order.

-i input Jile

specifies the input file to be processed. The input file must be 8-bit.

The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and the
processing will stop.

Options: The following run-line commands are optional to the execution of the program.

-1 line

specifies the line increment (line) at which to output the lines from the input file. The
default line value is 1.

-J

flags the program to replace the day and month information with the day of year value in
the output.

-S

flags the program that, in addition to the default information, output the sonar pitch roll
and yaw information.

-P print_file

specifies the print file to re-direct the output information to.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

42

RESTRICTIONS
The input file selected must contain the required sidescan sonar header information.

EXAMPLE
The example will output the sidescan sonar header from file bos 13.sir and output the information
to bos!3.hdr. The first ten records of the header file are the listed below.

% listhdr -i bos!3.slr -P bos!3.hdr

% head bos!3
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

1985
1985
1985
1985
1985
1985
1985
1985
1985
1985

10
10
10
10
10
10
10
10
10
10

.hdr
9
9
9
9
9
9
9
9
9
9

5
5
5
5
5
5
5
5
5
5

0
0
1
1
2
2
3
3
4
4

0
30
0

30
0

30
0

30
0

30

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

25
25
25
25
25
25
25
25
25
25

.392599

.391350

.390100

.388849

.387600

.386351

.385099

.383850

.382601

.381350

-84
-84
-84
-84
-84
-84
-84
-84
-84
-84

.828300

.827751

.827202

.826653

.826103

.825546

.824997

.824463

.823898

.823372

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

3356
3356
3356
3356
3356
3356
3356
3356
3356
3356

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

SEE ALSO
replacehdr(l), strphdr(l)

WHIPS(5), whips_sonar(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS
none known

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

43

NAME
Iowpass2b2 - applies a 2 by 2 low-pass filter to an image

SYNOPSIS
Iowpass2b2 -i input -o output [-H]

DESCRIPTION
Program Iowpass2b2 applies a small low-pass smoothing filter to an image. The low-pass filter
consists of a 2-by-2 moving boxcar. The image is smoothed by the filter with the boxcar applied
starting at the upper left origin of the image and moving across each line of input data and down
through the input image. With the exception of the first line and ending sample of each line, the
filter is applied by computing the average of 4 neighboring pixels with the result being stored in
the lower left pixel. The filter is applied to the entire image.

An example of how the program computes the pixel averages is as follows:

input output

line 1:

line 2:

11

33

22

44

11

28

22

44

The first input image line is a special case and is smoothed by applying a l-by-2 low-pass filter.

input output

line 1:

line 2:

11

33

22

44

33

55

44

66

17

28

28

39

39

50

The last sample of each line is also a special case and is processed as a 2-by-l low-pass filter.

input output

line 1:

line 2:

line 3:

line 4:

11

33

55

77

22

44

66

88

44

66

88

99

17

28

50

72

33

88

66

85

44

55

77

M

The following run-line options must be specified and can occur in any order.

-i inputs/lie

specifies the input file to be processed. The input file must be 8-bit.

44

-o output_file

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The program accepts only 8-bit image files.

The output file to be created must not currently exist.

EXAMPLE

% Iowpass2b2 -i gloria.vel -o gloria.2b2

SEE ALSO

filter(l), median3(l), mode3(l), mode5(l)

WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

45

NAME
mapit - computes the geographic coordinates of sidescan sonar pixels and maps the pixels in a

user specified cartesian space. Mapping of the pixels includes additional correction to
the sonar imagery for changes in ship's velocity.

SYNOPSIS
mapit -i input -o output -c control_file -r resin,resout [[options ...] [-H]]

DESCRIPTION
The mapit program is a composite of WHIPS programs gss_vel and projss and provides the
functionality of both with the integrated projection features of program proj. As with gss_vel, this
program will compute the geographic coordinates of each pixel in the scan line of a WHIPS
netCDF sidescan sonar image from the known fish position and heading value contained in the
sonar header. Rather than passing the geographic coordinates to proj and projss, this program
will project the geographic coordinate internally and place the pixel value in it's proper cartesian
coordinate to build a digital sidescan sonar mosaic within one program.

The output file (-o) is defined by a user specified cartographic projection by specifying typical
proj parameters and the geographic coordinates of the map area. A sub-set of the proj
cartographic library has been made available and the user should reference Table 1 for a complete
list of the available projections. Table 1 also includes an overview of the required proj parameters
for the specific projection. The list is not intended to be a definitive description of the projections.
Rather it is a brief summary of the required proj parameters. User's should be completely familar
with the cartographic requirements of their selected projection.

The input file (-i) MUST be a sidescan sonar image that has NOT been velocity stretched. Mapit
will apply the velocity corrections as each swath is processed. The velocity correction is applied
by the program by first computing the distance travelled between consecutive swaths and then the
number of times an individual line should be duplicated to fill the image to the position of the next
swath. Velocity stretching of a sidescan sonar image is accomplished by duplicating individual
swath lines in an attempt to produce an image with the same across and along-track resolution.
The velocity correction may not be necessary for mid or low-range sidescan sonar which have
'square' pixels.

Because the output file (-o) to be created is an image map, the user must supply the cartographic
information to the program and the geographic bounds of the map area. The information is
supplied to the program in the mapit control file (-c). The file must contain three lines of
information. The first line is the projection parameters required by proj. The second and third
line must contain the geographic coordinates of the upper left and lower right bounds respectively.
The map bounds may be specified in the DMS format acceptable to proj. The final piece of
information needed to define the map image is the output image resolution (-r) specified by the
user on the program run-line.

The program begins by calculating the number of times the individual line to be processed should
be duplicated so it will meet the following line and reduce the gap in the map space between the
consecutive lines. The duplication factor is calculated first by determining the distance travelled
between a pair of consecutive lines contained in the sidescan sonar image. The distance travelled
between the consecutive swaths is determined by comparing the position coordinates contained in
the sidescan sonar header. With the distance travelled between the consecutive lines known, the
program then computes the number of times a line should be duplicated to fill the image space up
to the placing of the next swath based on the sidescan sonar image input resolution (-r) specified
by the user.

46

As each individual swath is processed, the geographic coordinate of each pixel is computed using
the heading value contained in the sidescan sonar attribute field, the sonar position associated with
the scan line, and the user supplied resolution value. The resolution value (-r) is the pixel
resolution, in meters, of the input image file. As each individual line is duplicated, a new nadir
position is calculated based on the sonar resolution (-r) and the heading contained in the sidescan
sonar header. Geographic coordinates are then computed for the pixels contained in the duplicate
lines to allow the proper placement of the swaths and to reduce the gaps which can occur between
swaths.

The program computes the geographic coordinates of the pixels and, if necessary, the new
positions of the duplicate lines by a simple distance computation the ellipsoid specified by the user
on the proj parameter line of the control file. This is a significant change from program gss_vel
because the user know may select from any of the ellipsoids available to proj. Additionally, the
user MUST specify an ellipsoid as part of the proj initialization. A default ellipsoid is no longer
used. Not specifying an ellipsoid may cause unknown results.

As each of the geographic coordinates for the sonar pixels are computed, they are projected to their
cartesian values based on the user map specifications. The projected coordinates are then
compared to see if they fall within the image space. If the coordinate is outside of the map area it
is ignored and processing continues with the next sonar pixel. Pixels outside of the map area can
be common due to heading fluctuations or where track lines are oriented along a map edge
resulting in a portion of the swath being outside the map area. By checking each pixel, the entire
image map area can be filled and easily produce a clipped sidescan image without the user being
concerned with what portion of a file may fall within the image area.

If the sonar pixel's cartesian coordinates falls within the map, it's value is placed directly in the
output file. It is important to note that the pixel placement is done on a pixel-by-pixel basis. When
multiple dn values are computed for the same location, mapit will always place the last pixel input
in the output location regardless of the coordinates previous content.

By default, the program will process every image line and sample contained in the input file. The
user may select which lines of the image to process by specifying the -I option. When this option
is specified, the user must specify the starting line and ending line to process within the image.
The user may also optionally specify the number of samples (nsamps) to be processed within each
scan by selecting either the -s program option. Each sonar image line is processed from nadir to
the specified far range with the port side being processed first, followed by the starboard side.

The fish_heading value contained in the sidescan sonar header fish attributes field may be adjusted
by the user by selecting the -h option. When this option is selected, the user must also specify a
heading adjustment value (heading_adjustment) to be added to the fish heading value before the
pixel coordinates are computed. This option, along with the ability to select a portion of the input
image to be processed, provides a simple way to "tweak" a segment of a sonar line when the
navigation data may not accurately reflect the track of the sonar fish. Hopefully this option will
assist in adjusting the sonar swaths and provide a simple way to lineup adjacent swaths.

The maximum and minimum geographic coordinates computed by the program are output to the
program print file along with the exact location of the map bounds and their location in the image.
The contents of the mapit control file is also logged to the program print file for the user's
reference.

The following run-line options must be specified and can occur in any order.

-i inputjlle

specifies the input file to be processed. The input file must be 8 or 16-bit.

47

The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and processing
will stop.

-o output_file
specifies the output file to be created. If the file exists, it will be openned for updating if
it passes two simple checks. The first check is to verify that the number of lines and
pixels in the existing file are equal to the number of lines and pixels computed from
projection parameters. The second check is to verify that the input image and output
image are the same bittype. When creating the output file, the file bittype is determined
from the input file.

-c control_file

specifies the mapit control file which contains the projection information and geographic
coordinates of the map bounds. The file must contain three lines of information and are
summarized as follows:

1) the proj (projection) parameters
2) the upper left geographic coordinates of the map in DMS
3) the lower right geographic coordinates of the map in DMS

-r resin, resout
specifies the resin and resout, in meters, of the sidescan sonar input data and the desired
pixel resolution of the output image. The resin value is used to compute the position of
the pixel values from the known position at nadir.

Options: The following run-line commands are optional to the execution of the program.

-\sl,el

specifies a sub-area of the input file to be processed. The sub-area is specified by
entering the starting line (si) and the ending line (el) of the sonar image file to be
processed. This option, along with -s, may be selected to specify a sub-area of the sonar
image to process.

-h heading^adjustment

specifies a user supplied value to be added to the fish heading value before computing the
pixel coordinates. This option may be used to adjust the fish heading and swath
orientation if the user suspects the fish coordinates do not accurately reflect the direction
of the fish.

-s nsamps

specifies the number of samples (nsamps), port and starboard, to be processed from nadir.
For example specifying nsamps as 225 would flag the program to process 225 samples
from either side of nadir resulting in a total of 450 samples being output per scan. This
option, along with -1, may be selected to specify a sub-area of the sonar image to process.
If the user specifies nsamps as greater than the number of samples actually contained in
each side of the image scan, the value will be set to half the actual number of samples
contained in a line of the image file resulting in the entire swath being processed

-R

48

flags the program to round-up the number of times a sidescan sonar swath is to be
duplicated to accommodate the velocity stretching. For example, when the program
computes a line duplication factor of 3.5, the program, by default, will output the line
only three times. If the -R option has been selected on the program run-line, line
duplication factor would be rounded-up and the specific line being processed would be
duplicated four times.

This option may help reduce the gaps which can exist between adjacent lines as they are
placed in the map space. It will also increase the processing time and will affect the
resultant image by increasing the blockiness of the sonar map image.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The program accepts only 8 or 16-bit sidescan data.

The created output file will have the same bittype as the input file.

NOTES
This program combines the functions of programs gss_vel, proj and projss. By combining the
individual programs and eliminating the need for piping the information from program to program,
program mapit has been timed and reduces the overall processing time by 20-25% from previous
methods.

EXAMPLE
The example below shows a simple application of the program to one swath of GLORIA sidescan
sonar data and create an output image named east.map. The data resolution is specified as
50meters for the GLORIA sonar data and the desired output image will be created with a lOOmeter
pixel resolution. The contents of the mapit control file (mapit.dai) is shown first followed by the
program run-line.

% more mapit.dat
proj=merc lat_ts=27.25n ellps=clrk66
29d30' -94
25.0 -88

% mapit -I T2F10.hdg -o odd.map -c mapit.dat -r 50,100

The example below shows the program usage to select a specified number of lines (275 lines) and
width (375 samples per side) from a second GLORIA sidescan sonar file. The -R option has been
selected to help reduce the gaps between the placement of the consecutive sidescan sonar swaths.

% more mapit2.dat
proj=utm ellps=clrk66 south lon_0=-lll
-34 -114
-36 -112

% mapit -i pass!2.avg_head -o east.map -c mapit2.dat \
-r 45,100 -1 201,475 -s 375 -R

49

SEE ALSO
avg_heading(l), avg_position(l), gss(l), gssv(l), gss_vel(l), projss(l), sshead(l), sumss(l)

WHIPS(5), whips_sonar(5)

"Digital Processing of Side-Scan Sonar data with the Woods Hole Image Processing System
Software": U. S. Geological Survey Open-File Report 92-204, lip.

"Digital Mapping of Side-Scan Sonar Data with the Woods Hole Image Processing system
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

"MAPIT: An improved method for mapping digital sidescan sonar data using the Woods Hole
Image Processing System (WHIPS) Software": U.S. Geological Survey Open-File Report 96-xxx,
nnp.

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

BUGS
The 16-bit option has not been completely tested.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

50

NAME
medianB - apply a 3-by-3 median filter to an image

SYNOPSIS
medianS -i input -o output [-z] [-H]

DESCRIPTION
The medianS program allows the user to apply a 3-by-3 median filter to a WHIPS image.
Median3 will modify the value centered on a 3-by-3 boxcar with the median value computed from
the neighborhood distribution. The neighborhood, n, consists of 9 values (3x3), and the median
value is computed as i,j = 5 = (n+l)/2 after the data has been arranged in increasing order.

The user may apply this program to fill zero values contained within an image by selecting the -z
option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including those equal to zero, are
used to compute the median value.

MedianS is most suitable for data that has a skewed distribution. However, the value obtained for
the median may not be representative if the individual items do not tend to cluster at the center of
the distribution.

Special processing takes place to handle the first and last lines of the image file. Adjacent lines are
weighted to allow for unfolding to take place during the processing. When computing the 3-by-3
median of the first image line from the input file, the second line is read twice and used in the
computation. To process the last line contained in the image line, the next to last line is read twice
and used for the computation.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last samples contained in
the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i input_file

specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-z

flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 3-by-3 median filter as a zero only replacement
filter.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

51

RESTRICTIONS
The output file to be created must not currently exist.

EXAMPLE

% medians -i map.cdf -o map.medS

NOTES
Though a histogram method could be employed to calculate the median value for 8-bit data, the
histogram method would be more difficult to implement for 16 and 32-bit data. Therefore
median3 is set-up to sort (via the UNIX library function qsort) the data values and can be quickly
applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO
Iowpass2b2(l), filter(l), mode3(l), mode5(l)

WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS
The 16 and 32-bit options have not been thoroughly tested.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

52

NAME
mode3 - apply a 3-by-3 mode filter to an image

SYNOPSIS
mode3 -i input -o output [-z] [-Z] [-H]

DESCRIPTION
The mode3 program allows the user to apply a 3-by-3 mode filter to a WHIPS image. Mode3
will modify the value centered on a 3-by-3 boxcar with the mode value computed from the
neighborhood distribution. The neighborhood, n, consists of 9 values (3x3), and the mode value is
the value which occurs most often within the neighborhood. In a neighborhood of 9 values it is
possible that no mode value can be determined. For example, 9 different values may occur within
the neighborhood or 2 different values may occur 4 times. When no mode value can be computed
for the neighborhood, the input pixel value for that location is output unchanged.

The user may apply this program to replace zero values contained within an image by selecting the
-z option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including those equal to zero, are used
to compute the mode value.

In addition to the zero replacement option (-z), the user may select not to include the zero values
from the image when computing the mode value by selecting the -Z program option. When this
option is selected, the zero values for the neighborhood are not included when totalling the
occurrences of the unique values for the neighborhood. The -z and -Z options are not mutually
exclusive and may be selected individually or together during a single execution of the program.
Selection of these program options is at the user's discretion depending on the results he or she
wishes to achieve.

Special processing takes place to handle the first and last lines of the image file. Adjacent lines are
weighted to allow for unfolding to take place during the processing. When computing the 3-by-3
mode of the first image line from the input file, the second line is read twice and used in the
computation. To process the last line contained in the image line, the next to last line is read twice
and used for the computation.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last samples contained in
the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i input_file

specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

-z

53

flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 3-by-3 mode filter as a zero only replacement
filter.

-Z

flags program not to include zero values when computing the mode value. This option
can be helpful when trying to apply the mode as a zero replacement filter and the mode in
some neigborhoods are zero.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The output file to be created must not currently exist.

EXAMPLE
The example below shows a simple execution of the program.

% mode3 -i map.cdf -o map.modeS

The example below shows a possible execution of the program to replace zero values within the
image while excluding any zero values from the mode computation.

% modeS -i map.cdf -o map.modeSzr -z -Z

NOTES
Though a histogram method could be employed to calculate the mode value for 8-bit data, that
method would be more difficult to implement for 16 and 32-bit data. Therefore mode3 is set-up to
sort (via the UNIX library function qsort) the data values and then count the number of times a
unique value occurs within the neighborhood. The program will then compute the mode value and
this technique can be applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO
Iowpass2b2(l), filter(l), median3(l), mode5(l)

WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS
The 16 and 32-bit options have not been thoroughly tested.

54

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

55

NAME
modeS - apply a 5-by-5 mode filter to an image

SYNOPSIS
modeS -i input -o output [-z] [-Z] [-H]

DESCRIPTION
The modeS program allows the user to apply a 5-by-5 mode filter to a WHIPS netCDF image.
ModeS will modify the value centered on a 5-by-5 boxcar with the mode value computed from the
neighborhood distribution. The neighborhood, n, consists of 25 values (5x5), and the mode value
is the value which occurs most often within the neighborhood. In a neighborhood of 25 values it
is possible that no mode value can be determined. For example, 25 different values may occur
within the neighborhood or 5 different values may occur 5 times. When no mode value can be
computed for the neighborhood, the input pixel value for that location is output unchanged.

The user may apply this program to fill zero values contained within an image by selecting the -z
option on the run-line. When this option is selected, only those pixel values from the input file
equal to zero are modified. However, all input pixel values, including those equal to zero, are used
to compute the mode value.

In addition to the zero replacement option (-z), the user may select not to include the zero values
from the image when computing the mode value by selecting the -Z program option. When this
option is selected, the zero values for the neighborhood are not included when totalling the
occurrences of the unique values for the neighborhood. The -z and -Z options are not mutually
exclusive and may be selected individually or together during a single execution of the program.
Selection of these program options is at the user's discretion depending on the results he or she
wishes to achieve.

Special processing takes place to handle the first two and last two lines of the image file. Adjacent
lines are weighted to allow for unfolding to take place during the processing. When computing the
5-by-5 mode of the first image line from the input file, the second and third lines are read twice
and used in the computation. To process the second line in the input file, the third and fourth lines
are read once and the first line is read twice to allow for the foldover processing. Similarly, the
last two lines contained in the image are handled with unique weighting done to the adjacent lines.

In addition to the special line processing, the program applies a similar overlapping procedure to
the samples at the beginning and ending of each line. For the first and last two samples contained
in the image lines, the neighboring pixels are doubly weighted to allow for the foldover
computations.

The following run-line options must be specified and can appear in any order.

-i inputs/lie

specifies the input file to be processed. The input file may be 8, 16 or 32-bit image.

-o output_file

specifies the output file to be created.

Options: The following run-line commands are optional to the execution of the program.

56

-z

flags the program to apply the filter only when the center value of the neighborhood is
zero. This will allow the user to apply the 5-by-5 mode filter as a zero only replacement
filter.

-Z

flags program not to include zero values when computing the mode value. This option
can be helpful when trying to apply the mode as a zero replacement filter and the mode in
some neigborhoods are zero.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The output file to be created must not currently exist.

EXAMPLE
The example below shows a simple execution of the program.

% mode5 -i map.cdf -o map.modeS

The example below shows a possible execution of the program to replace zero values within the
image while excluding any zero values from the mode computation.

% mode5 -i map.cdf -o map.modeSzr -z -Z

NOTES
Though a histogram method could be employed to calculate the mode value for 8-bit data, that
method would be more difficult to implement for 16 and 32-bit data. Therefore modeS is set-up to
sort (via the UNIX library function qsort) the data values and then count the number of times a
unique value occurs within the neighborhood. The program will then compute the mode value and
this technique can be applied to 16 and 32-bit data as well as 8-bit.

SEE ALSO
Iowpass2b2(l), filter(l), median3(l), mode3(l)

WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS
The 16 and 32-bit options have not been thoroughly tested.

57

AUTHOR/MAINTENANCE
Valerie Paskevich, USGS, Woods Hole, MA.

58

NAME
projss - place projected side-scan sonar data in a map/image space

SYNOPSIS
projss -o output < std_in [-H]

DESCRIPTION
Projss will take the sidescan sonar data output from one of the sidescan sonar geographic
coordinate computation programs (gss, gss_vel or gssv) and proj and create a WHIPS netCDF
image which represents a map of the sonar data for a specific area, projection and scale. The first
four input records must contain the map area bounds, in meters, for the user selected desired map
area. Subsequent data records must contain the sidescan sonar pixel coordinate and their
associated pixel value. Each pixel coordinate contained in the sidescan sonar data must have been
previously converted to geographic coordinates by either program gss, gss_vel or gssv, and,
further, converted to meter coordinates for the selected map area by program proj. The map
coordinates must be in y x (latitude longitude) order and the coordinate pairs must be integer
values.

Program input is through std_in. As stated above, the actual input to program projss is the
sidescan sonar pixel coordinates which have been converted to meter values based on a specific
map projection and scale. The first four records of the input file MUST BE the map corner
coordinates, in meters, for the map projection and scale. The map corner coordinates must be
specified in the following order:

upper left
upper right
lower right
lower left

For example, if the user desires to create a 2° map at a scale of 1:100 for an area bounded by 35° to
37° latitude and -75° to -77° longitude for a simple mercator map, the first four records of the input
file would contain the following information:

44132 -85717
44132 -83491
41391 -83491
41391 -85717

Program projss will begin by reading the first four pairs of coordinates from the input file. Once
the program has obtained this information it will calculate the size of the image (number of lines
and number of samples). When the size of the WHIPS netCDF image has been computed, projss
will then create the image file on disk and fills the image with blank lines before beginning to place
the pixel values in the image.

The remainder of data in the input file must be the pixel coordinates and pixel values which projss
will place in the appropriate map space. The information which follows must be the pixel
coordinates, in meters, along with the 8-bit pixel value. Program projss accepts and calculates the
location (the actual image line and sample coordinate) within the map space for the input pixel dn
values. The program then places, on a pixel-by-pixel basis, the sidescan sonar dn values. It is
important to note that the pixel placement is done on a pixel-by-pixel basis. When multiple dn

59

values are computed for the same location, projss will always place the last pixel input in the
output location regardless of the coordinates previous content.

Program proj is essential in creating the final map product. The user should be familiar with its
usage and various options. Some proj options must be specified to create the proper data output
for program projss.

The following run-line options must be specified and can occur in any order.

-o output_file

specifies the output file to be created. The output file will be an 8-bit WHIPS image.

Options: The following run-line commands are optional to the execution of the program.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS
The output file to be created must not currently exist.

The input meter coordinates must be recorded as integer values.

EXAMPLE
The example below shows a simple execution of the program. The first four pairs of coordinates
contained in the file, projectdat, must be the projected map area bounds.

% projss -o map2.cdf <projec.dat

The following is a typical example using program gss and proj as filters to complete the
processing and mapping of a sidescan sonar image. The input image to program gss, gloria, wco,
contains a pixel resolution of 50 meters. The data is to be mapped at 100 meter resolution to an
Albers Equal Area projection using standard parallels and a central longitude of 85°. The file,
bounds.dat, must contain the map corner coordinates and is show below.

% gss -i gloria.wco -r 50 | \
proj +proj=aea +lon_0=-85 +lat_l=29.5 +lat_2=45.5 -r -s \
-m 1:100 -f v %.0f bounds.dat - | projss -o map2.cdf

% more bounds.dat
25.5 -85 # upper left corner
25.5 -84 # upper right corner
24.5 -84 # lower right corner
24.5 -85 # lower left corner

SEE ALSO

gss(l), gss_vel(l), gssv(l), proj(l)

filter(l), medianS(l), mode3(l), mode5(l)

60

WHIPS(5)

User's Manual for MAPGEN (UNIX version): a method of transforming digital cartographic data
to a map: U. S. Geological Survey Open-File Report 85-706, 134 p.

Cartographic Projection Procedures for the UNIX Environment - A User's Manual: U. S.
Geological Survey Open-File Report 90-284, 62p.

"Digital Mapping of Side-Scan Sonar Data with the Woods Hole Image Processing System
Software": U.S. Geological Survey Open-File Report 92-536, 90p.

NOTE
There are three major drawbacks to the pixel-by-pixel method employed in this program/mapping
procedure and they are discussed below. Note of the drawbacks are made in an attempt to warn
the user of possible problems which could affect the quality of their final mosaic when using the
gss I proj I projss processing scenario, and to discuss possible future processing alternatives.

The first and second drawbacks are due to the random order of the input pixels being placed. This
random input results in a last-in placement for coordinates which may have two or more valid
pixels. Since the program can not place in order the multiple values for a given coordinate, the
program must deal with each pixel as a unique value and is placed in its coordinate location
regardless of any pixel values which may have been previously placed. Even a simple comparison
for placement of pixels in non-zero locations and averaging of the pixels would be restrictive due
to the overhead placed in computing. Secondly, if the input pixels could be placed in sorted order
from the image origin down to the last line and last sample to be placed, processing could be
accomplished by "building" a complete image line. This would result in fewer writes to the output
file since a complete line of image data could be written rather than the many single writes which
must be done for each pixel input Fewer writes would hopefully speed up processing. However,
when processing over a half million pixels at a time (a modest file at best), speed may be best
accomplished by increased workstation performance. The sorted order of the data would also be
beneficial by allowing the program to compare multiple pixel values for a specific coordinate and
select the final output pixel value by averaging or selecting either the minimum or maximum value.

The third drawback is the "holes" which may develop as the pixels are placed in the map space.
These "holes" may be best eliminated, or reduced in number, by the user carefully selecting the
resolution of the sonar data being processed with the goal in mind of the final resolution of the
map to be created. If the user selects to process their sonar strips at .5 meters and their final map
resolution is 1 meter, fewer "holes" will develop from the pixel placement. An obvious drawback
is the volume of pixels that will have to be processed resulting in longer execution time. The user
must consider the trade-off of processing such enormous volumes of data or what "holes" may be
created in the mapping process. These "holes" must be filled in some manner. The preferred
method would be some form of interpolation based on the orientation of the scan line and the
appropriate neighboring pixels. To accomplish such a task, the sonar data must be processed on a
swath-by-swath basis with two consecutive swath's being processed at a time. Unfortunately, the
ability to handle the data on a pixel-by-pixel basis is the only option currently available. This
results in the "holes" or gaps that may by created to be filled in some manner after the sonar map
has been created. Possible options are either a low-pass filter replacing zero values, a 3-by-3 mode
or median filter, a 5-by-5 median filter or some combination of the former. The "filtering" options
are less than perfect since the zero pixels are filled relative to the orientation of the boxcar passing
over the image, not the orientation of the scan lines. It may be with careful selection and
application of the filters, the image will not be degraded significantly.

DIAGNOSTICS

61

The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

BUGS
The program was written to assist in testing the necessary programs and steps to utilize program
proj while prototyping the sidescan sonar line-by-line mapping. Program projss was not intended
to be a final product program and does not contain sufficient user input checks. Therefore, the
program may appear to run successfully and yet produce wild results based on the user's incorrect
input.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

62

NAME
qmos - quick mosaic of two WHIPS netCDF images

SYNOPSIS
qmos -i input -o output [-1 1 -O I -A] [-H]

DESCRIPTION
Program qmos will mosaic (overlay) the specified input file (-i) over the specified output (-o) file.
The program will either overlay where the input file has priority over the existing output file (-1,
program default), where the output file has priority (-O) over the input file, or average (-A) non­
zero pixel values together from the input and existing output file.

The following run-line options must be specified and can occur in any order.

-i inputJile

specifies the input file to be processed. The input file may be 8, 16 or 32-bit.

-o outputJile

specifies the output file to be modified. The output file must currently exist.

Options: The following run-line commands are optional to the execution of the program.

-I

flags the program that non-zero pixel values in the input file are to take precedence. This
is the program default. When the input file takes precedence, the non-zero value of a
specific pixel coordinate will be replaced by the non-zero input pixel value for that
location.

-O

flags the program that non-zero pixel values in the output file are to take precedence.
When the output file takes precedence, the non-zero value of a specific pixel coordinate
will not be replaced by the non-zero input pixel value for that location.

-A

flags the program to average non-zero pixel values from the input and output files. When
averaging of the files is selected, the non-zero pixel values for a specific image coordinate
are averaged together and the output pixel value is replaced with the new value.

-H

displays the usage help information for the program. If this option is selected, the program
ignores any other run-line options specified.

RESTRICTIONS
The selected input and output file must be the same size.

63

Unlike the majority of WHIPS programs where the output file must not exist and is created by the
application program, the output file to be modified must currently exist for this application to
execute successfully.

EXAMPLE

% qmos -o map.comp -i 126.map

SEE ALSO
WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

64

NAME
sshead - computes simple heading for a WHIPS netCDF sidescan sonar image

SYNOPSIS
sshead -i input -o output [-h heading_adjustment] [-H]

DESCRIPTION
Program sshead reads a WHIPS netCDF sidescan sonar file and computes the heading value from
swath to swath. The new heading value is then recorded in the sonar-attribute field in the output
file. The heading is computed from the sonar position values contained in the header information
of a WHIPS sidescan sonar image.

The new heading value is computed from consecutive coordinate pairs. Since the first valid
computed heading value is for the second swath of the sonar image, a valid heading cannot be
computed for the first swath. Therefore, the new heading of the first record is assumed to be the
same as the heading for the second swath and is set accordingly.

The user may specify a value to be added to the computed heading value by selecting the program
option -h. This allows the user a simple way to adjust the heading value computed from the
navigation if they feel the navigation does not accurately reflect the track of the sonar fish.

The following run-line options must be specified and can occur in any order.

-i input_file

specifies the input file to be processed. The input file must be 8-bit.

The input file must contain the necessary sidescan sonar header information. If the user
selects a file which does not contain the proper sidescan sonar header information, the
program will display the message ncvarid: variable "date" not found and the
processing will stop.

-o outputJlle

specifies the output file to be created. The output file contains the sidescan sonar header
information from the input file with the new heading values.

Options: The following run-line commands are optional to the execution of the program.

-h headingjadjustment

specifies a heading adjustment value to be added to the computed heading value.

-H

displays the usage help information for the program. If this option is selected, the
program ignores any other run-line options specified.

RESTRICTIONS

65

Program currently accepts only 8-bit image files. The input file must contain the necessary
sidescan sonar header information.

The output file to be created must not currently exist.

EXAMPLE

% sshead -i gloria.wcox -o gloria.head

SEE ALSO
WHIPS(5), whips_sonar(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

ncvarid: variable "date" not found - the selected input file does not contain the proper
sidescan sonar header information

atanl: DOMAIN error - may be displayed during programming. Processing continues until the
end-of-file is encountered and the file is useable. The source of this
error is assumed to be generated when trying to compute a heading
between consecutive records with the same position.

Version 1.3 of the program was modified to compare consecutive
positions, and when duplicates are found, output the last good heading
value computed. This additional check will add some time to the
processing but will hopefully eliminate the error problem. This change,
however, does not eliminate the need to clean-up the navigation data set
as much as possible to eliminate the large number of consecutive
duplicate positions that can be found in something like the EG&G data
sets. It is also highly recommended that the dataset have good unique
positions at the beginning of the file so the heading can be computed
accurately to start.

AUTHOR/MAINTENANCE
Valeric Paskevich
U. S. Geological Survey
Marine and Coastal Geology Program
384 Woods Hole Rd.
Quissett Campus
Woods Hole, MA 02543

66

NAME
whips2raw - convert a WHIPS netCDF image file to a raw, binary image file

SYNOPSIS
whips2raw -i input -o output [-H]

DESCRIPTION
Program whips2raw converts a WHIPS netCDF image file to a raw binary stream image file. The
output of the program may then be converted to other image formats or imported to other software
packages.

The following run-line options must be specified and can appear in any order.

-i input_file

specifies the netCDF file to be processed.

-o output_file

specifies the binary stream input file to be converted. The input file may be 8, 16 or 32-
bit.

Options: The following run-line commands are optional to the execution of the program.

-H

displays the usage help information for the program. If this option is selected, the program
ignores any other run-line options specified.

RESTRICTIONS
none known

EXAMPLE

% whips2raw -i mickey.cdf -o mickey.raw

SEE ALSO
raw2whips(l), WHIPS(5)

DIAGNOSTICS
The program exit status is 0 if no errors are encountered during processing and the program
completes processing.

67

BUGS
none known

AUTHOR/MAINTENANCE
Valeric Paskevich, USGS, Woods Hole, MA.

68

APPENDIX B

The control file for program mapit is simpler to define than the previously used mapping procedure.
Program mapit requires only one control file which contains the projection information and map area
bounds. The previous mapping procedure required two control files: 1- contained the projection
information; 2- contained the map area bounds. Below is an example of defining the mapit control file
followed by the same mapping program specifications from USGS OPF-92-536. The contents of the
mapit.dat file are shown and it's placement in the mapit run-line is highlighted for easier identification.

% more mapit.dat
proj=utm ellps=clrk66 south lon_0=-lll
-34 -114
-36 -112

% mapit -i pass!2.avg_head -o east.map -c mapit.dat -r 45,100

% more bounds.dat
-34 -114
-34 -112
-36 -112
-36 -114

% more utm-proj
proj +proj=utm +lon_0=-lll -r -s -m 1:100 -f % %.0f bounds.dat -

% gss_vel -i pass!2.avg_head -r 45 -s 490 | utm-proj | projss -o pass!2. map

69

APPENDIX C

Below is a summary of the steps used to complete the mapping and processing of the three components
(east, west and south) of the two degree GLORIA sidescan sonar map. Mapping was accomplished in a
sub-directory from where the individual passes were stored. The required programs and their parameters,
along with any UNIX required commands, were entered into a file and executed as a single script. The
required map control file, mapit.dat, is shown first.

The script files closely matches the script file utilized in USGS Open-File Report 92-536
(Paskevich,1992c). However, it would be more practical to apply all pre-processing to the sonar swaths
before beginning the mapping procedure. In other words, if the sonar heading values are to be smoothed by
program avg_heading, this program should be applied to the swaths as part of the pre-processing and
should be completed before starting the digital mapping. Unecessary processing will only increase the time
required to complete the digital mapping process.

% more mapit.dat
proj=utm ellps=clrk66 south lat_0=-110
-34 -114
-36 -112

% more do-map

do_east com
#TT
#
avg_heading -i
mapit -i pass41
#
avg_heading -i
mapit -i pass42
#
avg_heading -i
mapit -i pass43
#
avg_heading -i
mapit -i passll
#
avg_heading -i
mapit -i pass 12
#
avg_heading -i
mapit -i pass!3
#
avg_heading -i
mapit -i pass26
#
avg_heading - i
mapit -i pass27

it

ponent

. . /pass41 .
 avg_head

. . /pass42 .
 avg_head

. . /pass43 .
 avg_head

. . /passll.
 avg_head

. . /pass!2 .
 avg_head

. . /pass!3 .
 avg_head

. . /pass26 .
 avg_head

. . /pass27.
 avg_head

head -o
-o east

head -o
-o east

head -o
-o east

head -o
-o east

head -o
-o east

head -o
-o east

head -o
-o east

head -o
-o east

pass41
.map -c

pass42
.map -c

pass43
.map -c

passll
.map -c

pass!2
.map -c

pass!3
.map -c

pass26
.map -c

pass27
.map -c

 avg_head
mapit .dat

 avg_head
mapit.dat

. avg_head
mapit . dat

 avg_head
mapit . dat

 avg_head
mapit .dat

 avg_head
mapit.dat

 avg_head
mapit.dat

 avg_head
mapit.dat

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

-1 9
-r 45,

100

100

100

100

100

100

100

100

fill gaps in east component map

mode3 -i east.map -o east.modeB -z -Z
mode5 -i east.modeB -o east.modeS -z -Z

71

#
rm east.mode3
#
mode3 -i east.modeS -o east.mode3
#
filter -i east.mode3 -o east.lpfz -z -b 3,3
rm east.mode3 east.modeS
#
#
do_west component
TT

#

avg_heading -i ../pass37.head -o pass37.avg_head -1 9
mapit -i pass37.avg_head -o west.map -c mapit.dat -r 45,100
#
avg_heading -i ../pass38.head -o pass38.avg_head -1 9
mapit -i pass38.avg_head -o west.map -c mapit.dat -r 45,100
#
avg_heading -i ../pass39.head -o pass39.avg_head -1 9
mapit -i pass39.avg_head -o west.map -c mapit.dat -r 45,100
#
avg_heading -i ../pass25.head -o pass25.avg_head -1 9
mapit -i pass25.avg_head -o west.map -c mapit.dat -r 45,100
#
mapit -i pass26.avg_head -o west.map -c mapit.dat -r 45,100 -1 1,302
#

fill gaps in west component map

#
mode3 -i west.map -o west.mode3 -z -Z
modeS -i west.mode3 -o west.modeS -z -Z
#
rm west,mode3
#
mode3 -i west.modeS -o west.mode3 -z -Z
#
filter -i west.modeS -o west.lpfz -z -b 3,3
rm west.modeS west.modeS
#
$ **^
do_south component

#
mapit - pass26.avg_head -o south.map -c mapit.dat -r 45,100 -1 324,588
#

fill gaps in south component map

#
mode3 -i south.map -o south.mode3 -z -Z
modeS -I south.mode3 -o south.modeS -z -Z
#
rm south.mode3
#
mode3 -i south.modeS -o south.mode3 -z -Z
#
filter -i south.mode3 -o south.Ipfz -z -b 3,3
rm south.mode3 south.modeS

72

REFERNCES

Adobe Systems Incorporated2, 1994, Adobe Photoshop 3.0 User Guide.

Chavez, Pat S., 1986, Processing Techniques for Digital Sonar Images from GLORIA, Photogrammetric
Engineering and Remote Sensing, vol. 52, No. 8, pp. 1133-1145.

Corel Corporation3, 1994, CorelDraw User's Manual, Vol. 1, version 5.0, pp. 423-478.

Evenden, Gerald I., 1990, Cartographic Projection Procedures for the UNIX Environment - A User's
Manual, Open-File Report 90-284, 62 p.

Evenden, Gerald I., 1994, Cartographic Projection Procedures Release 4 Interim Report, 42 p.

Evenden, Gerald I., 1994, Cartographic Projection Procedures Release 4 Second Interim Report, 21 p.

Mazel, C., 1985, Side scan sonar training manual, Klein Associates, Inc., Salem, N.H.

Miller, Richard L., Dawn, Fa S. and Cheng, Chiu-Fu, 1991, Digital Preprocessing Techniques for GLORIA
II Sonar Images, Geo-Marine Letters, 11:32-31.

Paskevich, Valeric, 1992a, Woods Hole Image Processing System Software Implementation: Using
NetCDF as a Software Interface for Image Processing, Open-File Report 92-25, 72 p.

Paskevich, Valeric, 1992b, Digital Processing of Side-scan Sonar data with the Woods Hole Image
Processing System Software, Open-File Report 92-204, 9p.

Paskevich, Valeric, 1992c, Digital Mapping of Side-Scan Sonar Data with the Woods Hole Image
Processing System Software, Open-File Report 92-536, 89 p.

PCI1 , GCPWorks Reference Manual: Version 6.0, November 1995, 145 p.

Snyder, J.P., 1987, Map projections - A working manual: U.S. Geological Survey Professional Paper 1453,
249 p.

Snyder, J. P. and Voxland, R.M., 1990, An album of map projections: U.S. Geological Survey Professional
Paper 1453, 249 p.

Unidata Program Center, NetCDF User's Guide: An Interface for Data Access, vl.l 1, March 1991, 150 p.

1 PCI Remote Sensing Corporation http://www.pci.on.ca

2 Adobe Systems Incorporated http://www.adobe.com

3 Corel Corporation http://www.corel.com

73

