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ABSTRACT

Merging images from multiple sensor systems produces a composite image that may provide 
more information than either image alone. Spatial features of SPOT panchromatic and interfero- 
metric synthetic aperture radar (IFSAR) images were merged to produce an improved IFSAR 
composite. Existing multiresolution analysis techniques were used to extract spatial edge features 
from the image pair. A neural network, trained to implement a logical OR-like function, was used 
to combine these features. The composite, or merged, image was reconstructed from the neural 
network combined edge features. These results were compared with those from an existing multi- 
resolution merging technique that combines edge information by using a maximum amplitude 
criterion. Simple visual comparisons of the reconstructed, merged IFSAR images from these two 
techniques showed many similarities; however, the neural network merging produced improved, 
noise-free edge boundaries. Also, there were promising results for IFSAR speckle-noise reduc­ 
tion, based on an existing soft-threshold technique.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.



I. INTRODUCTION

Integrating radar and visible band images can produce a composite image with information from 
both images and this composite may be more easily interpreted than either separate image. This 
study used a known multiresolution merging process to first decompose two images into multires- 
olution edge feature images and then merge the edge samples by using a maximum amplitude 
criterion. The composite image was obtained by reconstructing the image from its merged edge 
information. For comparison, a second merging method was developed. For this new method, a 
neural network (NN) was trained to approximate a logical OR-like function when given a small 
neighborhood of edge samples from each image. That is, a multilayer feedforward NN was 
trained as a function approximator by using artificial examples of the desired input-to-output data 
mapping.

All merging examples were for a SPOT panchromatic (pan) band, 10-m sample distance image 
and a C-band interferometric synthetic aperture radar image (IFSAR). Reconstructing the IFSAF 
image from merged edge images gives the composite.

Following the premise that excessive speckle noise in the IFSAR image is objectionable for some 
interpretation tasks, we tested a preliminary method for speckle reduction; this method was based 
on a variation of a reported soft-threshold modification of multiresolution derived detail images. 
Speckle is due to constructive and destructive interference of radar signals. This causes radar 
image pixels in homogeneous regions of the scene to have large differences in brightness 
(Richards, 1993). Speckle noise-reduced IFSAR images were used in the merging experiments.

The following sections briefly describe these initial tests in merging and noise reduction. They 
include discussions of the existing and new NN merging methods, the NN training process, and 
the noise reduction method. Image examples illustrate noise reduction and merging. The last 
section gives conclusions and recommendations.

II. MULTIRESOLUTION MERGING

Ogden and others (1985) described multiresolution image pyramids and methods for merging two 
images. There are three steps: (1) each of the images is decomposed into Laplacian image pyra­ 
mids, (2) Laplacian image samples of the image to be enhanced are replaced on the basis of a 
maximum amplitude selection rule, and (3) the merged, composite image is reconstructed from its 
modified Laplacian image pyramid.

Briefly, image pyramid techniques transform an image into a completely reversible (without loss) 
multiresolution representation. For complete information, see Burt and Adelson (1983). Image 
decomposition and reconstruction by pyramid techniques can be easily described (Ogden and 
others, 1985) by defining the processes known as reduce and expand. Reduce (RE) is the combi­ 
nation of low-pass spatial filtering followed by image down sampling (or subsampling) by a 
factor of 2 in each dimension. This report used the Gaussian-like filter kernel (1 464 1) (Burt, 
1985). Expand (EX) involves the two processes: upsampling by a factor of 2 in each dimension,



followed by interpolation by low-pass spatial filtering.

In the following, subscripts denote the image pyramid resolution level of Laplacian (L) or Gauss- 
ian (G) images. Image G0 at level 0 is the original image at full resolution. Image L0 is computed 
as follows:

(i)
(2) 

where G0, Gl5 G2 comprise a three-resolution level Gaussian image pyramid. Then
L0 = GO - EX(G!). (3) 

Similarly, image L± is
L! = Gj - EX(G2). (4) 

Rearranging equation 3 and combining with equation 4 shows, for example, that the original full- 
resolution image, G0 , can be reconstructed exactly from its three-level (0, 1,2) Laplacian 
(L0 , Lj, G2) pyramid as follows:

G0 = L0 + EX(GO
= L0 + EX( LI + EX(G2). (5) 

This study used the multiresolution image decomposition and reconstruction indicated by equa­ 
tions 1, 2, and 3; that is, two resolution levels of L images. The L images are comparable to the 
result of band pass-like filtering the same level G image (Lim, 1990).

The method for combining the edge pattern images (L^ a and Lk< b) derived from two images (a, b) 
at resolution level k (Ogden and others, 1985) is the following maximum amplitude selection rule: 

if I Lk b(x, y)\>\ Lk> a(x, y) I then

Lk, a(x> 30 = Lk, b(x> 30

else
Lk, a(x, y) = Lk, a(x, y}

end if. (6) 
The merged image is obtained by reconstructing (per equation 5) modified, merged image(s)
Lk,a  

In contrast to merging samples by equation 6, the following section describes a new NN-based 
technique that was developed to combine samples from images La , Lb.

III. NOISE REDUCTION

A technique for noise reduction of SAR images was reported by Lang and others, (1995). The 
technique started with a shift variant discrete wavelet transform and then computed shift invariant 
discrete wavelet transform coefficients. These coefficient values were then modified by the soft- 
threshold denoising method reported by Donoho. Following this concept, we tested a method fcr 
IFSAR image noise reduction using multiresolution image pyramids. Samples of the L image 
pyramid were merely modified, using the soft-threshold method, but without consideration fcr 
shift variant effects caused by the subsampling steps of pyramid generation. Basically, shifted 
versions of the original image will have different L image decompositions, and thus different



results to soft threshold noise reduction. This is the subject of further study.

The reported soft threshold function, Ts(L(x, y), t), of Donoho (given by Lang and others, 1995), 
as applied here to L image samples L(x, y) and threshold t is

{ sign (L(x, y)(\L(x, y)\ -t\ \L(x, y)\ > t
n IT, M ,0, \L(x,y)\< t. (7)

IFSAR denoising examples are given in a later section.

IV. NEURAL NETWORK PATTERN MERGING

An NN method was developed for merging L image samples. Figure 1 shows the two merging 
techniques: (1) maximum rule (equation 6) and (2) new NN method. Implementation of the NT T 
merging required two steps: (1) training the NN's to produce a mapping of input to desired output 
and then (2) using the trained NN's to merge the L images.The following is a very brief descrip­ 
tion of a multilayer, feedforward NN used for merging edge pattern samples. For further informa­ 
tion on NN see Rumelhart and others (1986), Pao (1989), and Wasserman (1993). An artificial 
NN, or NN, is any computing architecture that consists of massive parallel interconnections of 
simple "neural" processors (Lau and Widrow, 1990). Often (as in this study) multilayer NN's are 
computer simulations of interconnected "neural" processors or artificial neurons modeled as the 
net sum of the input signals to the neuron times the respective interconnection weight, followed 
by a nonlinear mapping of net sum to produce the neuron output. Net sum also includes a bias 
value: bias weight times +1.0 input signal. The nonlinear transfer function in this application wa^
the widely used sigmoid: f(net sum) = 1 / (1 + e"^netsum).

Starting with the inputs, a multilayer, fully connected NN consists of consecutive layers of 
neurons, and at each layer each neuron output is connected to all inputs of the next layer. 
NN's were trained as function approximators by using artificial combinations of pan image data 
that represented a logical OR-like function mapping of input to output edge patterns. The pan, 
rather than the IFSAR image, was selected simply because it had less noise and thus might 
speed up training. Training with combinations of pan and IFSAR images has not been tested. The 
OR-like mapping was achieved by training, or adjusting, the NN weights: that is, presenting the 
NN with numerous and repeated examples of input to desired output and then adjusting the 
network weights, as a function on the error between desired and actual output such that the NN 
output approximates (least squares sense) the desired output. Since hidden layer(s) have no direct 
connection to the output, the output error is propagated back to the hidden layer. Backpropagation 
training by the generalized rule with momentum (Rumelhart and others, 1986) was used.

NN inputs associated with one output sample were 5 by 5 neighbor samples from the two L 
images, respectively; thus 50 inputs. During training, therefore, the output is assumed to be 
derived from a small local area of edge samples instead of a single location.
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Figure 1. Two methods for multiresolution merging.

This shows the two methods for merging pan and IFSAR images after multiresolution decomposi­ 
tion to Laplacian image pyramids, LQ, L\, G2. (a) is the reported sample replacement merging using 

maximum amplitude criterion (equation 6). (b) is the new neural network method. Inputs to neural 
networks NN0, NNj for one output sample 1 value are 5 by 5 sample values (larger arrows) from 

^pan and AFSAR images, respectively. The merged image is obtained by reconstructing (equation 5) 

the IFSAR L image pyramid after sample replacement.



Out

Output Layer

Hidden Layer 
Neurons

(a)

Neural
Network,
(5:3:1)

l|

Inputs
1 In = Net Sum ' I
L _ _ _ _   J i

Neuron Calculation 

Figure 2. Simple one hidden layer, feedforward neural network, (NN).

(a) shows a multilayer, feedforward, fully connected NN with three 'neurons' or processing 

elements, (b) in the hidden layer, (c) shows the calculation performed by each processing 

element (b): the net sum of input, 5, times connection weight, w,-, followed by a nonlinear 

mapping of net sum to neuron output. (5:3:1) denotes the number of input, hidden layer, and 

output neurons.

Training data, which establish the mapping of input edge patterns to output edge samples, were 
created from several artificial OR-like combinations of pan L image data as shown in table 1. In 
table 1, Input! and Input2 refer to the 5 by 5 neighborhood of samples (including the center) asso­ 
ciated with a given sample location of the LPAN image. The single LPAN sample at this location is 
the desired NN output, OUT of table 1. To better simulate actual data, inputs denoted as '0' were 
small random values, with absolute value less than 0.50 gray level out of a nominal range of -128 
to 128. Note that L images have an average value of zero. The training (and test) data were from a 
small area of the LPAN image that included edge boundaries and regions of constant contrast.

Table 1: Neural network training data

INPUT!

^pan

'0'

^pan

INPUT2

'0'

^pan

^pan

OUT

^pan

^pan

^pan



Because of their generalization property (similar inputs produce similar outputs), trained NN's 
function as adaptive estimators for the remaining image data, or in this case, the LPAN and LIFSAR 
image pairs. That is, generalization allows the NN to approximate the correct output when given 
input samples similar to, but not identical to, training set samples (Wasserman, 1993).

A separate NN was trained for each L image level (0, 1), in contrast to training one NN with data 
from two resolution levels. Additional study is needed to determine if, because of generalization, 
a single NN would be sufficient.

These preliminary tests were made with one relatively small, single hidden layer of five neurons, 
NN configuration (50:5:1) because previous edge pattern mapping experiments (not reported 
here) showed 5 to 10 hidden-layer neurons were appropriate. No other sizes were tested at this 
time. Additional training should be made with more and less hidden-layer neurons to establish an 
NN that performs best with training and test data. Two simple, common methods for determining 
the number of hidden neurons (and (or) hidden layers) are to (1) begin with a large number of 
hidden-layer neurons and reduce their number until performance degrades, or (2) begin with a 
small number of neurons and increase their number until performance stops improving.

Next, untrained 50:5:1 networks were trained in increments of a fixed number of training samples 
and the network weights (which are modified during training) saved after each increment of train­ 
ing (NeuralWare, 1993). Backpropagation training with momentum was used and weights were 
updated after each training sample presentation. Learning rate and momentum values were, 
respectively, (a) output layer, 0.0750, 0.0075, and (b) hidden layer, 0.1000, 0.0100 (NeuralWare, 
1993). In these very preliminary tests, the training increment size was approximately, instead of 
exactly, equal to the number of training samples.

Network performance on the test data set (that is, RMS error) was computed after each incremen­ 
tal training cycle to give a measure of generalization. As incremental training progressed, each 
NN (level 0, 1) had a local minimum error to the test data; these NN's were retained for this study. 
With further training, this error increased and then decreased a small amount. Although this may 
be due to local minimum conditions, the lesser trained NN's were used in this study. This emr 
variation may be due to the unequal training increment size and training file size, and thus not all 
training samples are presented during each training increment. Further testing is needed to resolve 
this.

It is likely that the NN's trained quickly, that is, after about twopresentations of the training file 
samples, because the training files contained many redundant training samples. Network perfor­ 
mance on training and test data is summarized in tables 2 and 3; the RMS error is for the NN 
output range 0 to 1. NN's used in this study are denoted with "*." The fact that test set error is less 
than training set error is possibly because the test file contained many more input-output patterns 
that have lower RMS error; that is, input-output samples from non-edge regions.



Table 2: Neural network, level 0 performance versus training; 
25,200 training and test samples

NN 
no.

1

2

3

**4**

5

6

7

Cumul. 
no. of 

samples, 
thousands

25

50

75

100

125

150

175

RMS
training 

error

0.0300

0.0276

0.0266

0.0261

0.0259

0.0254

0.0254

RMS test 
error

0.0271

0.0255

0.0248

0.0246

0.0247

0.0246

0.0245

Table 3: Neural network, level 1 performance versus training; 
6,930 training and test samples

NN 
no.

1

2

3

**4**

5

6

7

Cumul. 
no. of 

samples, 
thousands

7

14

21

28

35

42

49

RMS 
training 

error

0.0342

0.0324

0.0313

0.0306

0.0299

0.0297

0.0289

RMS test 
error

0.0295

0.0284

0.0277

0.0264

0.0265

0.0263

0.0253

VI. TEST RESULTS

The following examples were made with a SPOT pan image acquired in 1993, and a C-band 
(IFSAR) image acquired in June 1993, by the JPL TOPSAR system aboard a DC-8 aircraft 
(Giglio and Carlisle, 1995). The pan image was a georeferenced SPOT "Digital Ortho-Image" 
from the SPOT View sampler (SPOT View, 1995). It was geometrically coregistered (with cubic 
interpolation) to the IFSAR image. In these examples, the IFSAR image has been converted, and 
compressed, from 32-bit real data to 256 gray level, logarithm of intensity (magnitude) by the



following /og 10 (intensity) to gray level mapping: -3.5 to 0 and 0.5 to 255 (Decision-Science 
Applications, Inc., 1995, unpub. data). A linear, gray-level stretch was applied to all the following 
images to enhance the illustrations.

Figure 3 shows IFSAR images before (a) and after (b) noise reduction by soft threshold modifica­ 
tion (threshold = 10.0) of only the LQ image. This arbitrary threshold appears to give reasonable 
noise reduction without loss of image detail; however, more quantitative methods for its selection 
are needed for this application.

The SPOT pan and the previous noise-reduced (fig. 3(b)) IFSAR images are shown in figure 4 for 
comparison with the later merging examples of figures 5 and 6. Figure 5 compares the maximum 
amplitude criterion merged pan-IFSAR image and the IFSAR image.

Figure 6 compares the neural network merged pan-IFSAR image with the IFSAR image. 
Although merging results (figures 5, 6) for the two methods of combining edge information are. 
visually similar, the NN merged image has improved edge boundaries with less noise. Future 
work will include a quantitative evaluation.

VI. CONCLUSION

A new NN-based technique for merging SPOT pan and IFSAR images was developed. Existing 
multiresolution analysis techniques were used to extract spatial edge features from the image pair, 
and an NN was trained to combine multiresolution edge patterns on the basis of a logical OR-like 
function. A composite image was reconstructed from the NN combined edge features. These 
image results were compared with those from an existing multiresolution merging technique that 
combines edge information on the basis a maximum amplitude criterion. Simple visual compari­ 
sons of the reconstructed, merged IFSAR images from these two techniques show many similari­ 
ties; however, the NN merging produced improved, relatively noise-free edge boundaries. Also 
described were results of a simple test of an IFSAR noise-reduction process that used multresolu- 
tion image pyramids. This process was loosely based on a reported soft-thresholding of multires­ 
olution derived wavelet coefficients. Although these preliminary results are promising, further 
quantitative evaluation is needed.
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(b) Noise reduced 
IFSAR

Figure 3. Noise-reduced IFSAR image.

(a) and (b) are the raw and noise-reduced IFSAR images, respectively. Image (b) is the result of soft threshold modification

(threshold = 10.0) applied to the L0 pyramid image of (a).
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(a) SPOT
panchromatic

magnified (a)

(b) Noise-reduced 
IFSAR

magnified (b)

Figure 4. SPOT panchromatic and noise-reduced IFSAR image.

(a) and (b) are the SPOT panchromatic and noise-reduced IFSAR images, respectively used for the following me^g-

ing tests.
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Figure 5. Maximum amplitude merged IFSAR images.

(a) is the result of maximum amplitude edge pattern merging of SPOT pan and noise-reduced IFSAR (b) images. A com­ 

parison between the maximum merged image (a) here with image (a) of the next figure 6 (neural network merged) shows 

the improved (with less noise) edge boundary structure for the NN method.
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(a) NN merged (b) IFSAR

magnified (a) magnified (b)

magnified (a) magnified (b)

Figure 6. Neural network merged IFSAR images.

(a) is the result of neural network edge pattern merging of SPOT pan and noise-reduced IFSAR (b) images. A compari­ 

son between the NN merged image (a) here with image (a) of the previous figure 5 (maximum amplitude merged) shows 

improved (with less noise) edge boundary structure for the NN method.
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