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ABSTRACT

A method for spatial resolution enhancement, or sharpening of three bands of a Landsat thematic 
mapper (TM) multispectral image by a higher resolution SPOT panchromatic (pan) image, is 
described. Visible band TM images having positive correlation with the geometrically coregis- 
tered pan image are sharpened with a reported multiresolution sharpening technique. Application 
of neural network estimation technique is described to improve sharpening of near-infrared bands 
specifically when there are reverse contrast patterns at respective edge boundaries of the pan and 
TM images. Unless corrections are made for reverse patterns there will be degraded sharpening. 
Thus multilayer feedforward neural networks are trained to adaptively estimate, at multiple reso­ 
lutions, pan edge patterns that have the same contrast as the TM edge patterns. Using this esti­ 
mated data with a reported multiresolution sharpening technique gives spatial resolution 
enhancement. Image examples illustrate opposite contrast edges of pan and near-infrared TM 
bands. Other examples show improved sharpening when neural network modified edge informa­ 
tion is combined with the multiresolution sharpening methods.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.



I. INTRODUCTION

There are many reported techniques for sharpening or enhancing the resolution of a multispectral 
image by integrating spatial information from a higher resolution panchromatic image. This 
report describes a technique developed specifically to improve sharpening when opposite contrast 
patterns occur at edge boundaries of panchromatic (pan) and multispectral (MS) images. In this 
case, a reported multiresolution technique that transfers edge information to the lower resolution 
image is used for sharpening, but edge data are first modified to correct for opposite contrast con­ 
ditions. Without this modification, there is degraded sharpening. The sharpening process is 
described for three thematic mapper (TM) 30-m bands and a SPOT 10-m pan image.

II. BACKGROUND

Schowengerdt (1980) reported early experiments in multispectral sharpening by the addition of 
edge information obtained by high-pass filtering of a higher resolution image and described prob­ 
lems that occur when contrast reversals exist at edge boundaries of MS images. Roughly, the 
high-pass filtered image with zero average value has localized positive-negative transitions at 
contrast boundaries. Opposite contrast boundaries have a reversed positive-negative transition, 
hence reversed or opposite signs.

The sign of multispectral edges can change from band to band; for example at soil/vegetation 
boundaries. Schowengerdt (1980) described an adaptive procedure that changed edge signs, 
depending upon band-to-band contrast reversals and a mechanism for detecting such boundaries: 
the sign of the product of high-pass derived edges is negative for opposite contrast edges patterns. 
Without the sign correction step, there is degraded sharpening because the edges subtract, instead 
of add, to the edge boundary.

Another sharpening technique, described by Tom, Carlotto, and Scholten (1985) makes use of the 
local correlation between TM multispectral band images at contrast boundaries. They developed a 
least-squares (LS) modeling approach to optimally model the 120-m resolution infrared-band (IR) 
image from its local correlation to the remaining six MS bands. To sharpen IR data, the remaining 
six 30-m TM bands were first filtered to give 120-m spatial resolution. At each sample location of 
this reduced resolution imagery, a spatially localized (5-by 5-sample window) LS estimator fcr 
the IR data was computed from the remaining TM bands. An optimal prediction of the IR image 
at higher spatial resolution (30 m) was computed from the LS model and remaining 30-m images. 
This IR image was high-pass filtered and the resulting edges (with same sign) added to the origi­ 
nal IR image to produce sharpened IR data.

A method for sharpening by a factor of two, using multiresolution image analysis and neural net­ 
work (NN) prediction techniques was described by Iverson and Lersch (1994) for a SPOT par 
(resampled to 15m) and 30-m TM image. Their sharpening was described for Laplacian (L) 
image pyramids. Basically, the images were decomposed into multiresolution, L pyramid edge 
detail images at sample distances of 30 and 15m. At reduced resolution, where there was high 
local spatial correlation between the 30-m pan and TM edge images, a NN was trained to predict



TM edge samples given a small neighborhood pan edge samples. At the higher resolution level, 
(15 m) of the L image pyramid, the previously trained NN predicted a higher resolution TM edge 
image given the 15-m pan edge image. Finally, the sharpened image was reconstructed from the 
TM image pyramid and predicted TM edge image.

Multiresolution L image pyramid techniques for sharpening images with different degrees of bhr 
was described by Ogden and others (1985). A sharpened image is produced by retaining or 
replacing individual edge samples of the lower resolution image with those from the higher reso­ 
lution image based on a maximum selection rule (MR) and then reconstructing the lower resolu­ 
tion image.

Burt and Kolczynski (1993) observe that for opposite contrast edge patterns, maximum selection 
can be unstable and result in pattern cancellations. They describe a method to identify opposite 
contrast edge features based on a local measure of correlation. Depending on the correlation 
value, which ranges from -1 to 1 for opposite to same contrast patterns, edge information is eithe^ 
combined by weighted average, or for extreme values combined by selection.

This report describes an improvement to multiresolution sharpening by maximum replacement of 
edge samples when there are opposite contrast patterns. Basically, NN estimation techniques were 
developed that modify the higher resolution edge information so that the maximum selection (for 
sharpening) is between same sign edge patterns.

HI. OVERALL APPROACH

One way to improve the stability of maximum selection of opposite sign edges is to reverse the 
edge signs, based on local contrast patterns. This technique shares similarities with the previously 
described predictive sharpening (Iverson and Lersch, 1994), which used multiresolution tech­ 
niques and NN's (trained at lower resolutions) to predict higher resolution MS edge images. Com­ 
mon to both are NN's trained with data from Laplacian pyramid images.

However, in this application sharpening is the result of combining (by MR) given edge images 
after sign modification by NN's, instead of predicting higher resolution edge images. Inputs to the 
NN are the pan edge image and a mask image calculated from pan and TM edge images. The 
function of the mask image is similar to the previously mentioned product image (Schowengerdt, 
1980) for locating opposite sign edges. However, there are major differences: (1) the mask image 
is derived from L pyramid images, (2) a different product-like calculation was used, and (3) adap­ 
tive gray-scale normalization of the L edge images was used.

Toet and others (1989) described image fusion with ratio image pyramids (similar to L pyramids) 
and a maximum selection rule to fuse visible and near-infrared images. This gives sharpening 
when image pairs only differ in blur, and contrast image fusion when spatial detail differ, because 
the 'best' (that is, larger amplitude) edge information from either image is selected, sample by 
sample. As described later, NN's were trained specifically to preserve both sharpening and fusion 
properties inherent with maximum selection of edge samples.



IV. MULTIRESOLUTION SHARPENING

The following is a brief overview of Gaussian (G) and Laplacian (L) image pyramids; see Ogden 
and others (1985) and Burt and Adelson (1983) for additional details. Figure 1 shows G and L 
image pyramids for a SPOT pan image; the numeric subscript denotes the pyramid level.
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Figure 1. Example of Gaussian (G) and Laplacian (L) multiresolution image pyramids for 
SPOT panchromatic (pan) data.

GO , GI , GI-, are a three resolution level (levels 0, 1, 2) G image pyramid for the full resolu­ 
tion, 10-m ground sample distance SPOT (SPOT, 1988) pan image, GQ. Images LQ and Lj 
are pyramid derived L edge data from GQ and G, respectively. To ensure positive values for 
display, a gray-level value of 128 was added to the L images. The original pan image, GQ 
can be reconstructed exactly from L0, LI, and G2 ; that is, the Laplacian-Gaussian pyramid 
decomposition of GQ.

The L images contain edge features derived at multiple resolutions. They are comparable to the 
results of band-pass-like filtering the G images with nondirectional filters. The images were com­ 
puted as follows. Starting with the original image at full resolution level 0 (that is G0), image Gj



is the result of low-pass filtering G0 followed by subsampling by a factor of two. This process is 
called reduce, (RE). Each G image is reduced in size, in each dimension, relative to original 
image G0 by 2~k , where k is the image pyramid level.

Image L0 at level 0 is generated by first up-sampling (by a factor of two) image G± followed by 
interpolation; subtracting this result from G0 gives L0. Up-sampling followed by interpolation is 
called expand, (EX). Similarly L± is computed by applying RE and EX to G\ followed by subtrac­ 
tion from GI.

Low-pass filtering and interpolation was done by convolution with Gaussian-like filters. This 
study used the separable kernel (1, 4, 6, 4, 1) (Burt, 1985). G and L image pyramid generation is 
as follows (Ogden and others, 1985):

(i)
(2)

G2 = RE(G{ ] (3) 
L! = G! - EX[ G2]

= G l -EX[RE[Gl ]]. (4)

Rearranging equation 2 shows that GO can be reconstructed exactly from LQ and G\.

G0 = L0 + £X[G 1 ]. (5) 

Also from equations 4 and 5, G0 can be reconstructed exactly from

2 ]]. (6)

The sharpening of one image with another of higher resolution was reported by Ogden and others 
(1985) using L image pyramids and a maximum selection rule for replacing their samples. For use 
in later discussion, this rule is described for TM and pan images and three level pyramid decom­ 
position as in equation (6).

Given registered TM and higher resolution pan images, each decomposed into Laplacian pyramid 
images, the maximum selection rule (Ogden and others, 1985) to get the new edge image L'TM is

if I LP (x, y) I > I L^*, y) I then
L'TM(X, y) = LP(x, y) 

else

end if
where LP and L^ are L pyramid images. Reconstructing the TM image from L'TM and highest 
pyramid level G^TM by equation 6 produces the sharpened image. Note that in areas where there 
are no pan edges (that is, LP is zero), the TM image will be recovered exactly. Similarly, if there 
are no TM edges, pan edge details will be transferred and integrated into the reconstructed image. 
Figure 1 showed the reversible, without reconstruction error L, G pyramid image decomposition



for three resolution levels (&=0, 1, 2).

This study developed NN techniques that modify the sign of pan edges, (LP\ prior to the mar 
selection of equation 7.

V. NEURAL NETWORK PROCESSING

The following is a brief description of a multilayer, feedforward (MLFF) neural network. For fur­ 
ther information on NN's see Rumelhart and others (1986).

NN or artificial NN is any computing architecture that consists of massively parallel interconnec­ 
tion of simple "neural" processors (Lau and Widrow, 1990). Often (as in this study) multilayer 
NN's are computer simulations of interconnected "neural" processors or artificial neurons mod­ 
eled as the net sum of the input signal to the neuron -times- interconnection weight, followed by a 
nonlinear mapping of net sum to produce the neuron output. Net sum also includes a bias value 
input; it is equal to the bias weight times its corresponding +1.0 input signal. The nonlinear trans­ 
fer function in this application was the common sigmoid: f(net sum) = 1 / (1 + e"^net sum)).

Starting with the inputs, a MLFF NN consists of consecutive layers of neurons, and at each layer, 
each neuron output is connected to all inputs of the next layer. A simple, one hidden layer MLFF 
NN (that is, two layer network, Hertz and others, 1991) is shown in figure 2. The NN's for this 
study had 50 inputs, 1 hidden layer of 5 neurons, and 1 output neuron, denoted (50:5:1).
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Figure 2. Simple one hidden layer, feedforward neural network (NN).

(a) Shows a multilayer, feedforward, fully connected NN with three 'neurons' or processing elements, (b) in 

the hidden layer, (c) Shows the calculation performed by each processing element (b): the net sum of input,5/ 

times connection weight, w/, followed by a nonlinear mapping of net sum to neuron output.



VI. NEURAL NETWORK TRAINING

The NN's were trained with simulated edge data to implement a mapping of input edge patterns to the 
output: pan edge sample with sign modification. This mapping is achieved by training, or adjusting the 
NN weights, that is, presenting the NN with numerous and repeated examples of input-to-desired out­ 
put and then adjusting the network weights, as a function of the error between desired and actual out­ 
put such that the NN output approximates the desired output. Because the hidden layer(s) have no 
direct connection to the output, the output error is propagated back to the hidden layer. Backpropaga- 
tion training by the generalized rule with momentum (Rumelhart and others, 1986) was used.

NN inputs for one output sample were the 5-by 5-neighbor samples from pan edge and mask images, 
respectively. Thus the output is estimated from a small local area of edge samples instead of a single 
location.

To make a TM-like image for training (denoted TMS) that simulates positive or reverse contrast condi­ 
tions, or both, of pan-TM images, a SPOT pan image was simply low-pass filtered (Gaussian filter) 
until it visually matched the TM visible band 3 image and, as required, its gray scale reversed.

Mask image, m(x, y) was calculated as:

m(x, y) = sign[L(x, y)] [ I L(x, y) I I L(x, y) I ] m (8)
n, TM n, pan n> TM

with 1/2 power to reduce the numerical range. Ln TM, Ln pan are normalized images with approxi­ 
mately equal amplitude edges. They were computed by dividing each sample, L(x, y), by the average 
of the absolute values of the sample and its 3-by-3 neighbors. The sign of m(x, y) is either the same or 
opposite to the pan edge sign, depending on whether Lpan and LYM nave same or opposite contrast edge 
patterns.

The overall sharpening process for the TM near-IR band 4 image sharpened by SPOT pan image, and 
including NN correction for opposite contrast edge patterns, is shown in figure 3 for a two Laplacian 
level pyramid. The third level has the reduced level Gaussian image (see equation 6).

The NN training data, used to establish the mapping of input edge patterns to output edge sample, 
were derived from several combinations of the pan image and a simulated (blurred, gray-scale 
reversed pan) MS image, denoted TMS .

Table 1 illustrates the objectives of NN training for the following conditions: (a) sign modification 
(1,2); (b) pan edges when no TMS edges (3); and (c) TMS edges and no pan edges (4). Note that NN 
inputs are the pan and mask images.

The right column of table 1 shows the result of maximum selection of TM edge samples when applied 
to NN output and TM samples. To preserve the fusion of pan edge information, NN output for training 
condition 3 was defined to be pan edge samples. That is, NN's were trained to produce pan edge pat­ 
terns when there are no TM edge patterns. Small random number values were used in place of mask 
image values of zero to better simulate noise in the edge data.



Pan

Figure 3. Multiresolution sharpening of a TM band image with neural network correction for 

opposite contrast patterns.

This shows the overall sharpening process after the pan and XS images are decomposed to mul- 

tiresolution, Laplacian pyramid images. Neural networks NN0, NN], whose inputs are 5 by 5 

samples from each pan and edge mask image, adaptively modify (reverse sign) the pan edge 

sample when pan-TM images have opposite contrast patterns.

TM edge pattern samples are replaced using a maximum (max) selection and replacement rule 

applied to TM and modified pan edge data. Sharpened TM results from reconstructing the TM 

image from its replaced edge samples.

For training condition 4, maximum selection preserves the TM image details. Because NN inputs 
are pan and mask edge images, training data for these conditions occur where there are no pan 
edges. Data for conditions 1 and 4 were collected from pan image in areas that included 
edge boundaries and contrast regions

A NN was trained for each L image level (0,1). Because of their generalization property (similar 
inputs produce similar outputs), the trained NN's function as estimators for the remaining image,



or other similar images. That is, generalization allows the NN to approximate the correct output 
when given input samples similar to, but not identical to training set samples (Wassermarj, 
1993). Separate training and test data sets were from adjacent areas of the L edge images..

Table 1: Network Training Conditions

Training 

condition

1

2

3

4

Edges present

pan

yes

yes

yes

no

TM

yes

yes

no

yes

TMg-pan 
contrast 
patterns

same

opposite

pan only

TMonly

Mask 
image

pan*TM<j

- pan*TMg

zero 1

zero

Neural 
Network   
Output

pan edge

- pan edge

pan edge

zero

Result of 
maximum 
replacement

sharpened

sharpened

fusion: pan

fusion: TM

NN inputs are the pan and mask images. 
Zero = small random number values.

To obtain a small NN, because fewer parameters (that is, number of weights or neurons, or both) 
improve generalization (Hertz and others, 1991), training started with a larger NN (50:10:1) and 
reduced the number of hidden layer neurons. Thus a 5 hidden layer NN (50:5:1) was picked 
because both 5 and 10 neuron hidden layer NN had comparable performance to test set data. This 
is a relatively simple NN configuration; no other NN sizes were tested.

Next, 2 untrained 50:5:1 neuron networks were trained in increments of about l(or 3) presenta­ 
tions of the training file. Learning rate and momentum were, respectively: (a) output layer, 
0.0750, 0.0075 and (b) hidden layer, 0.1500, 0.0150 . Weight updates were after each sample pre­ 
sentation (NeuralWare, 1993).

Network performance (that is, RMS error) to the test data was computed after each incremental 
training cycle to give a measure of generalization. Both NN's (level 0, 1) had, for incremental 
training, a local minimum error to the test data; they were retained for this study. Test enxr 
increased and then decreased with further training; this may be because of overtraining.

It is likely that the NN's trained quickly because of many redundant training samples. Networl* 
performance to training and test data are summarized in tables 2 and 3; the RMS error is for the 
NN output range of 0 to 1. The fact that test set error is less than training set error is possibly 
because of the test file containing many input-output patterns that have low RMS error. The arrow 
indicates NN's for this study.



Table 2: Neural Network, level 0
performance versus training; 18,432

training and test samples.

NN 
no.

1

2 «-

3

4

5

Cumul. no. 
of samples, 
thousands

20

   40

60

80

100

RMS
training 
error,

0.0589

0.0579

0.0578

0.0573

0.0567

RMS
test error

0.0513

0.0504

0.0509

0.0509

0.0500

Table 3: Neural Network, level 1 
performance versus training; 8064 

training and test samples.

NN 
no.

1

2 «-

3

4

Cumul. no. 
of samples, 
thousands

25

   50

75

100

RMS
training 

error

0.0441

0.0435

0.0435

0.0430

RMS
test error

0.0395

0.0386

0.0388

0.0387

VII. TEST RESULTS

The mask images of figure 4, which illustrate opposite contrast edge patterns, were computed 
from the product of pan and simulated or actual TM Laplacian level 0 edge images, per equation 
8. Mask images are for (a) pan and simulated same contrast TM, (b) pan and simulated opposite 
contrast TM, and (c) pan and actual TM near-IR band 4 image. A comparison of image 4(c) with 
4(b) shows, for example, that there are opposite contrast patterns at the shoreline and highway- 
vegetation boundaries. Figure 4 includes the SPOT (SPOT, 1988) pan 4 (e) and TM band 4 (d) 
images.

Figure 5 compares TM near-IR band 4 sharpening with (fig. 5(a)) and without (fig. 5(b)) the NN 
edge modification/correction for opposite contrast conditions. For the two methods, maximum 
selection was applied to either pan edge data after its modification by the NN processing to cor­ 
rect for opposite contrast patterns, or unchanged pan edge data.

Sharpening improvements due to NN processing are as follows. Mask image (fig. 4(c)) indicate? 
the location (that is light-to-dark transitions) of sharpened contrast boundaries of figure 5(a), 
because the mask was derived from the product of pan and TM edge patterns. Thus a comparisor 
between mask (fig. 4(c)), raw TM band-4 (fig. 4(d)), and the NN sharpened TM image (fig. 5(a)) 
shows where many of the larger contrast boundaries have been sharpened. One example of sharp­ 
ening with correction for reverse contrast patterns can be seen by comparing (figs. 4(c), 5(a), and 
5(b)) the long, narrow feature, that is located parallel to the shore line, and to the upper left of the 
group of 4-by-3 circular features. This feature is dark (correct) in the NN sharpened image figure 
5(a), but light (incorrect) for the maximum selection sharpening of figure (5)b.
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Note in figure 5(b) that the result of maximum sharpening is roughly the superposition of edge 
feature details from the pan image, without compensation for opposite contrast boundaries. Alsc, 
the shore line is not as 'sharp' as that of figure 5(a), a result of maximum selection between oppo­ 
site contrast edge patterns. The 'blocky' appearance of figure 5(a) is possibly related to the mask 
image, one of the NN inputs of figure 4(c) and is the subject of further study.

Because the spectral response of TM visible bands 3 or 2 is within the SPOT panchromatic band 
(Richards, 1993), it was assumed that these TM-pan bands have only same contrast edges. Thus 
bands 3 and 2 were sharpened by maximum selection, without correction for contrast conditions. 
Also, to improve coregistration of their edge boundaries, the sharpening was performed in the 
lightness, hue, and saturation domain: (1) TM bands 2, 3, 3 (as red, green, blue) were transformed 
to lightness, hue, and saturation, (2) the lightness image sharpened, and (3) the sharpened light­ 
ness with original hue and saturation images were then transformed to red, green, blue to give 
sharpened TM2, TM3, TM3. A simpler process is the subject of further study.

Figure 6 shows color images of TM bands 4 (red), 3 (green), and 2 (blue) before and after sharp­ 
ening. The sharpened image, figure 6(a) is the same figure 5(a),(c),(e); and band 4 included the 
NN correction for opposite contrast.

VIII. CONCLUSION

Neural networks trained to modify edge features were applied to a reported multiresolution image 
sharpening process to improve sharpening when there are opposite contrast edge patterns. ¥o*~ 
sharpening, edge samples of the lower resolution image are replaced with those from a higher res­ 
olution image by way of a reported maximum replacement rule. To improve sharpening and pre­ 
vent pattern cancellations, a NN technique for preprocessing edge samples was developed; it 
ensures that the maximum rule is applied to same sign edge samples. Thus NN's modify (reverse 
sign) the higher resolution edge samples depending on local edge patterns of the two images. 
Also, NN's were trained to transfer edge pattern information from the higher to lower resolution 
image when the latter had no edge information. Thus, the combined image includes edge informa­ 
tion from either image. For the NN preprocessing technique, preliminary results indicate that 
sharpening of reverse contrast edges is improved. Although these results are promising, furthe^ 
study to improve this technique is needed.
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(c)

Figure 4. Mask images for opposite contrast boundaries.

Mask images (a), (b), and (c) were derived from resolution 

level 0 edge images for the following: (a) pan and simu­ 

lated same contrast multispectral (MS), (b) pan and simu­ 

lated opposite contrast MS, and (c) pan and actual TM 

near-IR band 4 data. The location of opposite contrast 

boundaries in (c) can be seen by comparison with (b). 

Images (d) and (e) are coregistered Thematic Mapper (TM) 

band 4 (originally 28.5-m sample distance) and SPOT 

(SPOT, 1988) 10-m panchromatic images, respectively.
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(d)

Figure 5. Thematic Mapper (TM) bands 432 sharpened 
by SPOT panchromatic image.

Sharpening with correction for opposite contrast patterns 
is shown in (a). It is TM near-IR band 4 sharpened by 
SPOT panchromatic band image where the maximum 
rule for combining edge samples was applied to the 
neural network (NN) modified edge image. For compari­ 
son, (b) is TM 4 sharpened without correction for con­ 
trast boundaries. Figure (d) is the SPOT image.

Figures (c) and (e) show TM visible bands 3, 2 sharpened 
by max selection, without the NN edge modification step. 
Sharpening was done in intensity, hue, saturation domain; 
see text for details.
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(a)

(b)

Figure 6. Color examples of sharpened and unsharpened TM band 432 images.

TM bands are displayed as 4 (red) 3 (green) 2 (blue). Image (a) is the sharpened TM band 432 image, 
with NNedge correction process applied to band 4. This is the color display of figure 6 (a,b,c). 
Image (b) is the unsharpened TM image.


