# LEVEL II SCOUR ANALYSIS FOR BRIDGE 25 (CRAFTH00220025) on TOWN HIGHWAY 22, crossing the WILD BRANCH LAMOILLE RIVER, CRAFTSBURY, VERMONT

U.S. Geological Survey Open-File Report 96-312

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

# LEVEL II SCOUR ANALYSIS FOR BRIDGE 25 (CRAFTH00220025) on TOWN HIGHWAY 22, crossing the WILD BRANCH LAMOILLE RIVER, CRAFTSBURY, VERMONT

By Erick M. Boehmler and Michael A. Ivanoff

U.S. Geological Survey Open-File Report 96-312

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

### U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

## CONTENTS

| Introduction and Summary of Results                             | 1  |
|-----------------------------------------------------------------|----|
| Level II summary                                                | 7  |
| Description of Bridge                                           | 7  |
| Description of the Geomorphic Setting                           | 8  |
| Description of the Channel                                      | 8  |
| Hydrology                                                       | 9  |
| Calculated Discharges                                           | 9  |
| Description of the Water-Surface Profile Model (WSPRO) Analysis | 10 |
| Cross-Sections Used in WSPRO Analysis                           | 10 |
| Data and Assumptions Used in WSPRO Model                        | 11 |
| Bridge Hydraulics Summary                                       | 12 |
| Scour Analysis Summary                                          | 13 |
| Special Conditions or Assumptions Made in Scour Analysis        | 13 |
| Scour Results                                                   | 14 |
| Riprap Sizing                                                   | 14 |
| References                                                      | 18 |
| Appendixes:                                                     |    |
| A. WSPRO input file                                             | 19 |
| B. WSPRO output file                                            | 22 |
| C. Bed-material particle-size distribution                      | 29 |
| D. Historical data form                                         | 31 |
| E. Level I data form                                            | 37 |
| F. Scour computations                                           | 47 |

#### FIGURES

| 1. Map showing location of study area on USGS 1:24,000 scale map               | 3  |
|--------------------------------------------------------------------------------|----|
| 2. Map showing location of study area on Vermont Agency of Transportation town |    |
| highway map                                                                    | 4  |
| 3. Structure CRAFTH00220025 viewed from upstream (November 9, 1994)            | 5  |
| 4. Downstream channel viewed from structure CRAFTH00220025 (November 9, 1994). | 5  |
| 5. Upstream channel viewed from structure CRAFTH00220025 (November 9, 1994).   | 6  |
| 6. Structure CRAFTH00220025 viewed from downstream (November 9, 1994).         | 6  |
| 7. Water-surface profiles for the 100- and 500-year discharges at structure    |    |
| CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River,        |    |
| Craftsbury, Vermont                                                            | 15 |
| 8. Scour elevations for the 100- and 500-year discharges at structure          |    |
| CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River,        |    |
| Craftsbury, Vermont                                                            | 16 |
|                                                                                |    |

#### TABLES

| 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure |    |
|--------------------------------------------------------------------------------------|----|
| CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River,              |    |
| Craftsbury, Vermont                                                                  | 17 |
| 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure |    |
| CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River,              |    |
| Craftsbury, Vermont                                                                  | 17 |
|                                                                                      |    |

| Multiply                                                                            | Ву                | To obtain                                                                 |
|-------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------|
|                                                                                     | Length            |                                                                           |
| inch (in.)                                                                          | 25.4              | millimeter (mm)                                                           |
| foot (ft)                                                                           | 0.3048            | meter (m)                                                                 |
| mile (mi)                                                                           | 1.609             | kilometer (km)                                                            |
|                                                                                     | Slope             |                                                                           |
| foot per mile (ft/mi)                                                               | 0.1894            | meter per kilometer (m/                                                   |
| n)                                                                                  |                   |                                                                           |
|                                                                                     | Area              |                                                                           |
| square mile (mi <sup>2</sup> )                                                      | 2.590             | square kilometer (km <sup>2</sup> )                                       |
| •                                                                                   | Volume            | • • • • •                                                                 |
| cubic foot $(ft^3)$                                                                 | 0.02832           | cubic meter $(m^3)$                                                       |
|                                                                                     | Velocity and Flow |                                                                           |
| foot per second (ft/s)                                                              | 0.3048            | meter per second (m/s)                                                    |
| cubic foot per second $(ft^3/s)$                                                    | 0.02832           | cubic meter per second                                                    |
| n <sup>3</sup> /s)                                                                  |                   | _                                                                         |
| cubic foot per second per<br>square mile<br>[(ft <sup>3</sup> /s)/mi <sup>2</sup> ] | 0.01093           | cubic meter per<br>second per square<br>kilometer [(m <sup>3</sup> /s)/kn |

#### CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

#### OTHER ABBREVIATIONS

| BF                     | bank full                       | LWWleft wingwall                      |
|------------------------|---------------------------------|---------------------------------------|
| cfs                    | cubic feet per second           | MCmain channel                        |
| D <sub>50</sub>        | median diameter of bed material | RABright abutment                     |
| DS                     | downstream                      | RABUT face of right abutment          |
| elev.                  | elevation                       | RBright bank                          |
| f/p<br>ft <sup>2</sup> | flood plain                     | ROBright overbank                     |
| ft <sup>2</sup>        | square feet                     | RWWright wingwall                     |
| ft/ft                  | feet per foot                   | THtown highway                        |
| JCT                    | junction                        | UBunder bridge                        |
| LAB                    | left abutment                   | USupstream                            |
| LABUT                  | face of left abutment           | USGSUnited States Geological Survey   |
| LB                     | left bank                       | VTAOTVermont Agency of Transportation |
| LOB                    | left overbank                   | WSPROwater-surface profile model      |
|                        |                                 |                                       |

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic

# LEVEL II SCOUR ANALYSIS FOR BRIDGE 25 (CRAFTH00220025) ON TOWN HIGHWAY 22, CROSSING THE WILD BRANCH LAMOILLE RIVER, CRAFTSBURY, VERMONT

#### By Erick M. Boehmler and Michael A. Ivanoff

#### INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure CRAFTH00220025 on town highway 22 crossing the Wild Branch Lamoille River, Craftsbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the New England Upland physiographic province of north-central Vermont in the town of Bridgewater. The 9.52-mi<sup>2</sup> drainage area is in a predominantly rural basin with some pasture on the valley bottom. In the vicinity of the study site, the banks have less than 25% woody vegetation coverage.

In the study area, the Wild Branch Lamoille River has a meandering channel in a low relief valley setting with wide flood plains and a slope of approximately 0.0044 ft/ft, an average channel top width of 35 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel ( $D_{50}$  is 38.6 mm or 0.127 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 9, 1994, indicated that the reach was laterally unstable.

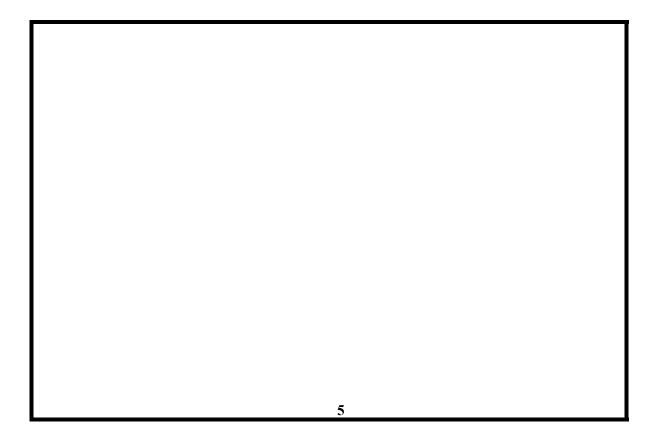
The town highway 22 crossing of the Wild Branch Lamoille River is a 31-ft-long, two-lane bridge consisting of one 29-foot span concrete slab superstructure (Vermont Agency of Transportation, written commun., August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening and the opening-skew-to-roadway is 20 degrees.

A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the left bank side of the channel upstream during the Level I assessment. There are tall, steep stone fill embankments (artificial levees) that make up both banks between 50 feet upstream and the upstream face of the bridge, which straighten and constrict the channel. Type-2 stone fill (less than 36 inches diameter) is reported on the banks upstream, the upstream wingwalls,

the abutments, the downstream left wingwall, and the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 2.5 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 4.7 to 8.6 ft. The worst-case abutment scour also occurred at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

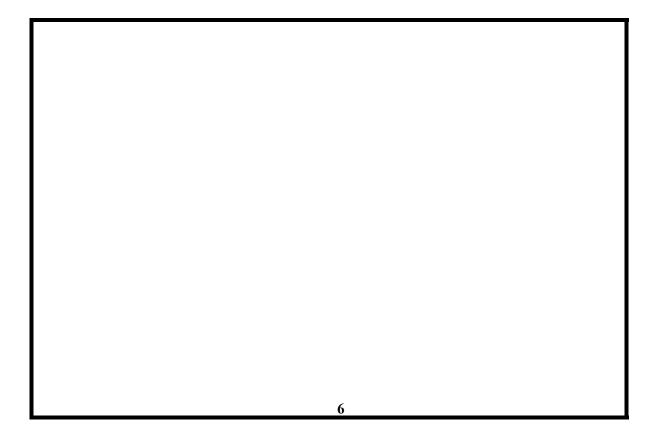





Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.





#### LEVEL II SUMMARY

| Structure Number — | CRAFTH00220025 | – Stream | Wild Branch Lamoille River |            |    |
|--------------------|----------------|----------|----------------------------|------------|----|
| County Orleans     |                | Road —   | TH 22                      | District — | 09 |

#### **Description of Bridge**

| 31                             |              |                        | 25.3                     |                  |                    | 29                   |     |
|--------------------------------|--------------|------------------------|--------------------------|------------------|--------------------|----------------------|-----|
| Bridge length                  | ft B         | Bridge width           |                          | ft               | Max span leng      | th                   | fi  |
| Alignment of bridge to<br>Vert | road (on c   | curve or straig        | ht) —                    | Curve            | Sloping            |                      |     |
| Abutment type                  | Yes          | 1                      | Embankm                  | ent type         |                    |                      |     |
| Stone fill on abutment?        | Type-2       |                        | ate of inst<br>eam banks |                  | stream wingwall    | s, the               |     |
| abutments, the downstr         |              | ingwall, and th        | ne downst                | ream lef         | t bank.            |                      |     |
|                                |              |                        |                          |                  |                    |                      |     |
|                                |              | Abutr                  | nents and                | wingwa           | Ills are concrete. |                      |     |
| <b></b>                        | <b>/ -</b> . |                        |                          |                  |                    |                      |     |
|                                |              |                        |                          |                  |                    |                      |     |
|                                |              |                        |                          |                  | Y                  | 20                   |     |
| Is bridge skewed to flo        | od flow ac   | cording to <u>Y</u>    | surve                    | y?               | Angle              |                      |     |
| There is a mild channel        | bend in the  | <u>e upstream reac</u> | ch. <u>A</u> scou        | <u>ır hole h</u> | as developed alo   | <u>ņg the left b</u> | ank |
| side of the channel.           |              |                        |                          |                  |                    |                      |     |

Debris accumulation on bridge at time of Level I or Level II site visit:

|              | Date of inspection <u>11/09/94</u> | Percent of channel<br>blocked norizontally | Percent of about the<br>block <del>ed verticatly</del> |
|--------------|------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Level I      | 11/09/94                           |                                            |                                                        |
| Level II     | High. There a                      | are some piles of tree debris a            | long the right side of the                             |
|              | stream. The channel is lat         | terally unstable with bank fail            | ure.                                                   |
| Potential fo | r debris                           |                                            |                                                        |

On 11/09/94, tall, steep embankments were noted lining the channel upstream, which will **Describe any features near or at the bridge that may affect flow (include observation date)** impede overbank flow returning to the main channel during floods.

### **Description of the Geomorphic Setting**

| Geomorphic conditions at brid                                                                           | ge site: downstream                           | n (DS), upstream (US)                   |                                       |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------|
| Date of inspection                                                                                      |                                               |                                         |                                       |
| DS left:                                                                                                |                                               |                                         |                                       |
| DS right:                                                                                               | <u>, , , , , , , , , , , , , , , , , , , </u> |                                         |                                       |
| US left:                                                                                                | . <u></u>                                     |                                         |                                       |
| US right:                                                                                               | <u> </u>                                      | <u> </u>                                |                                       |
|                                                                                                         | Description of th                             | e Channel                               |                                       |
| Average top width                                                                                       |                                               | Average depth                           |                                       |
| Predominant bed material                                                                                |                                               | Bank material                           |                                       |
| i cuominani oca maici iai                                                                               |                                               | Dank material                           |                                       |
| <b>~ ,</b>                                                                                              | · · · · · ·                                   |                                         | - <u> </u>                            |
| Vegetative co<br>DS left:<br>DS right:                                                                  | · · · · · · · · · · · · · · · · · · ·         |                                         | · · · · · ·                           |
| Vegetative co<br>DS left:<br>DS right:<br>US left:<br>US right:                                         | · · · · · · ·                                 |                                         | · · · · · · · · · · · · · · · · · · · |
| Vegetative co<br>DS left:<br>DS right:<br>US left:<br>US right:<br>DS right:<br>Do banks appear stable? | · · · · · ·                                   | Dank maieriai                           | ······                                |
| Vegetative co<br>DS left:<br>DS right:<br>US left:<br>US right:<br>DS right:<br>Do banks appear stable? | · · · · · · · · · · · · · · · · · · ·         | - · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| Vegetative co<br>DS left:<br>DS right:<br>US left:<br>US right:<br>DS right:<br>Do banks appear stable? | · · · · · · · ·                               | - · · · · · · · · · · · · · · · · · · · |                                       |
| Vegetative co<br>DS left:<br>DS right:<br>US left:<br>US right:<br>Do banks appear stable?              | · · · · · ·                                   | - · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| Vegetative co                                                                                           | · · · · · ·                                   | - · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |

### Hydrology

| ereeninge of aramage area in physiogr                                      | raphic provinces: (approximate)                                                                     |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| <i>Physiographic province</i><br>New England Upland                        | Percent of drainage area                                                                            |
| Is drainage area considered rural or urb<br><u>None</u> .<br>urbanization: | ban? <u>Rural</u> Describe any significant                                                          |
| Is there a USGS gage on the stream of in                                   | nterest?                                                                                            |
| USGS gage descr                                                            | ription                                                                                             |
| USGS gage numl                                                             | ber                                                                                                 |
| Gage drainage ar                                                           | rea mi <sup>2</sup> No.                                                                             |
| Is thava a laka'                                                           |                                                                                                     |
| Is there a lake <sup>'_</sup>                                              |                                                                                                     |
|                                                                            | Iculated Discharges 2400                                                                            |
| Cal                                                                        | Iculated Discharges $2400$<br>$Q500$ $ft^3/s$<br>The 100-year discharge is based on flood frequency |
| Cal<br>                                                                    | $\frac{2400}{2400}$ $ft^{3}/s$                                                                      |
| Cal<br>2000 ft <sup>3</sup> /s<br>                                         | $\frac{2400}{Q500} ft^{3}/s$<br>The 100-year discharge is based on flood frequency                  |

#### Description of the Water-Surface Profile Model (WSPRO) Analysis

| Datum for WSPRO analysis (USGS survey, sea level, VTA | USGS survey |                         |
|-------------------------------------------------------|-------------|-------------------------|
| Datum tie between USGS survey and VTAOT plans         | Add 987     | feet to the USGS survey |
| to obtain the VTAOT plans' datum.                     |             |                         |
| Description of reference marks used to determine USGS | datum.      | RM1 is a brass VT       |

Survey Mark on top of the US end of the left abutment (elev. 100.11 ft, arbitrary datum). RM2 is

a chiseled square on top of the DS end of the right abutment (elev. 100.27 ft, arbitrary datum).

| <sup>1</sup> Cross-section | Section<br>Reference<br>Distance<br>(SRD) in feet | <sup>2</sup> Cross-section<br>development | Comments                                                    |
|----------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| EXITX                      | -44                                               | 1                                         | Exit section                                                |
| FULLV                      | 0                                                 | 2                                         | Downstream Full-valley<br>section (Templated from<br>EXITX) |
| BRIDG                      | 0                                                 | 1                                         | Bridge section                                              |
| RDWAY                      | 15                                                | 1                                         | Road Grade section                                          |
| APPRO                      | 55                                                | 2                                         | Modelled Approach sec-<br>tion (Templated from<br>APTEM)    |
| APTEM                      | 71                                                | 1                                         | Approach section as sur-<br>veyed (Used as a tem-<br>plate) |

#### **Cross-Sections Used in WSPRO Analysis**

<sup>&</sup>lt;sup>1</sup> For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

#### Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.040, and overbank "n" values ranged from 0.035 to 0.055.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was 0.0044 ft/ft which was estimated from the topographic map (U.S. Geological Survey, 1986).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.003 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For the incipient roadway-overtopping discharge, WSPRO assumes critical depth at the bridge section. A supercritical model was developed for this discharge. Analyzing both the supercritical and subcritical profile, it can be determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumption of critical depth at the bridge section is a satifactory solution.

### Bridge Hydraulics Summary

Average bridge embankment elevation100.4Average low steel elevation98.8ft

| 100-year discharge $2,000$ ft <sup>3</sup> /s                     |                |
|-------------------------------------------------------------------|----------------|
| Water-surface elevation in bridge opening 98.8 ft                 |                |
| Road overtopping? <u>Y</u> Discharge over road                    | <u>591</u> , s |
| Area of flow in bridge opening $\frac{209}{ft^2}$ ft <sup>2</sup> |                |
| Average velocity in bridge opening 6.6 ft/s                       |                |
| Maximum WSPRO tube velocity at bridge9.1ft/s                      |                |
| Water-surface elevation at Approach section with bridge           | 99.6           |
| Water-surface elevation at Approach section without bridge        | 96.1           |
| Amount of backwater caused by bridge <u>3.5</u> t                 |                |
|                                                                   |                |
| 500-year discharge $2,400$ $ft^3/s$                               |                |
| Water-surface elevation in bridge opening98.8 _ft                 |                |
| Road overtopping? <u>Y</u> Discharge over road                    | 847            |
| Area of flow in bridge opening $\frac{209}{ft^2}$ ft <sup>2</sup> |                |
| Average velocity in bridge opening 7.3 ft/s                       |                |
| Maximum WSPRO tube velocity at bridge 10.2 /s                     |                |
| Water-surface elevation at Approach section with bridge           | 99.8           |
| Water-surface elevation at Approach section without bridge        | 98.2           |
| Amount of backwater caused by bridge 1.6                          |                |
|                                                                   |                |
| Incipient overtopping discharge ft <sup>3</sup> /s                |                |
| Water-surface elevation in bridge opening 95.8 ft                 |                |
| Area of flow in bridge opening $133 \text{ ft}^2$                 |                |
| Average velocity in bridge opening <u>12.9</u> ft/s               |                |
| Maximum WSPRO tube velocity at bridge <u>16.3</u> ft/s            |                |
| Water-surface elevation at Approach section with bridge           | 98.3           |
| Water-surface elevation at Approach section without bridge        | 95.5           |
| Amount of backwater caused by bridge 2.8 t                        |                |

#### **Scour Analysis Summary**

#### Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8. Because the computed total scour depths for the 500-year discharge were less than those for the 100-year discharge, only the 100-year total scour depths at the bridge are presented in figure 8.

The 100-year and 500-year discharges resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressureflow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Therfore, contraction scour for the 100-year and 500-year discharges was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). The results of Laursen's clear-water contraction scour for these two events were also computed and can be found in appendix F. Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the incipient road-overflow discharge. For contraction scour computations using the Laursen's equation, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. In this case, the incipient road-overflow model resulted in the worst-case contraction scour and total scour with depths of 2.5 ft. and 11.1 feet respectively.

Abutment scour for the incipient roadway-overtopping discharge at both abutments was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour for both abutments at the 100- and 500-year discharges were computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

#### **Scour Results**

| Contraction scour: | 100-yr discharge | 500-yr discharge    | Incipient<br>overtopping<br>discharge |
|--------------------|------------------|---------------------|---------------------------------------|
|                    | (                | Scour depths in fee | t)                                    |
| Main channel       |                  |                     |                                       |
| Live-bed scour     |                  |                     |                                       |
| Clear-water scour  | 0.0              | 0.0                 | 2.5                                   |
| Douth to gum oning | 0.4              | 0.9                 | N/A                                   |
| Depth to armoring  |                  |                     | *                                     |
| Left overbank      |                  |                     |                                       |
| Right overbank     |                  |                     |                                       |
| Local scour:       |                  |                     |                                       |
| Abutment scour     | 5.7              | 5.2                 | 8.6                                   |
| Left abutment      | 6.0-             | 4.7-                | 6.6-                                  |
| Right abutment     |                  |                     |                                       |
| Pier scour         |                  |                     |                                       |
| Pier 1             |                  |                     |                                       |
| Pier 2             |                  |                     |                                       |
| Pier 3             |                  |                     |                                       |

### **Riprap Sizing**

|                |                  | 0                   | Incipient<br>vertopping |
|----------------|------------------|---------------------|-------------------------|
|                | 100-yr discharge | 500-yr discharge    | discharge               |
|                |                  | ( $D_{50}$ in feet) |                         |
| Abutments:     | 0.9              | 1.1                 | 2.1                     |
| Left abutment  | 0.9              | 1.1                 | 2.1                     |
| Right abutment |                  |                     |                         |
| Piers:         |                  |                     |                         |
| Pier 1         |                  |                     |                         |
| Pier 2         |                  |                     |                         |

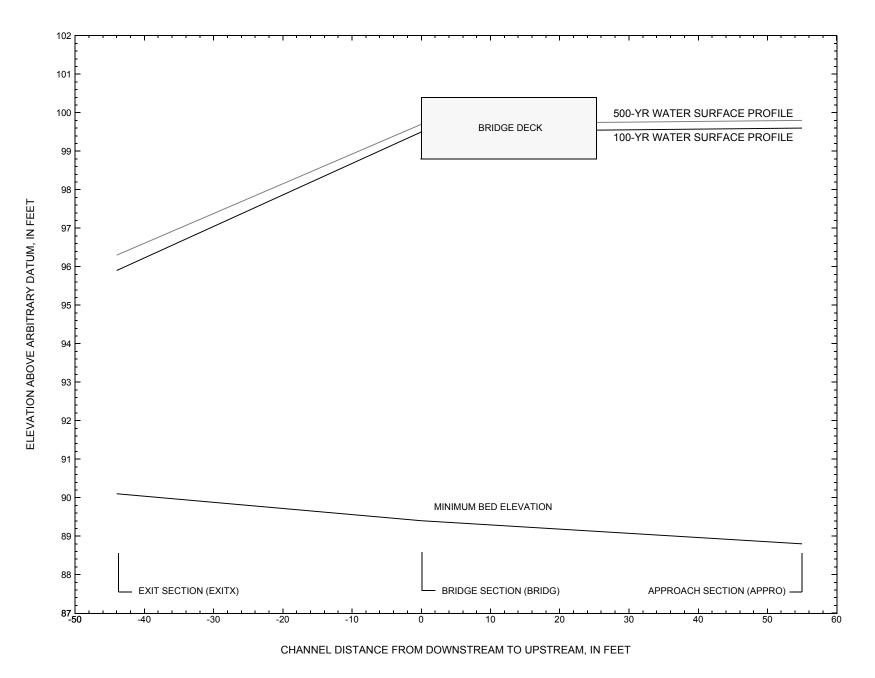



Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure CRAFTH00220025 on town highway 22, crossing the Wild Branch Lamoille River, Craftsbury, Vermont.

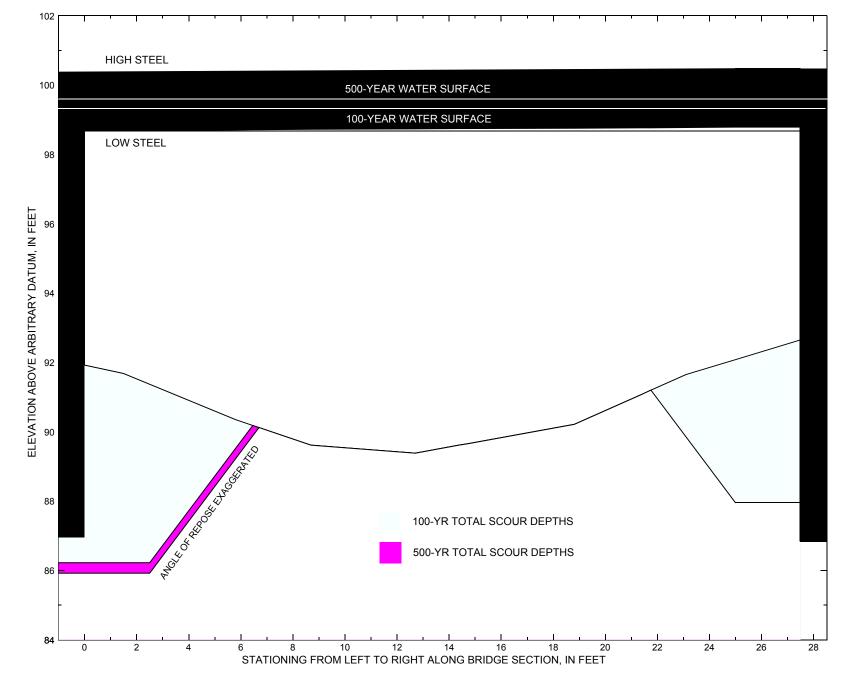



Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure CRAFTH00220025 on town highway 22, crossing the Wild Branch Lamoille River, Craftsbury, Vermont.

# Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River, Craftsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

| Description    | Station <sup>1</sup> | VTAOT<br>minimum<br>low-chord<br>elevation<br>(feet) | Surveyed<br>minimum<br>low-chord<br>elevation <sup>2</sup><br>(feet) | Bottom of<br>footing<br>elevation <sup>2</sup><br>(feet) | Channel<br>elevation at<br>abutment/<br>pier <sup>2</sup><br>(feet) | Contraction<br>scour depth<br>(feet) | Abutment<br>scour<br>depth<br>(feet) | Pier<br>scour<br>depth<br>(feet) | Depth of<br>total scour<br>(feet) | Elevation of<br>scour <sup>2</sup><br>(feet) | Remaining<br>footing/pile<br>depth<br>(feet) |
|----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|
|                |                      |                                                      |                                                                      | 100-yr.                                                  | discharge is 2,000                                                  | ) cubic-feet per sec                 | cond                                 |                                  |                                   |                                              |                                              |
| Left abutment  | 0.0                  | 1085.                                                | 98.6                                                                 | 87.                                                      | 91.9                                                                | 0.0                                  | 5.7                                  |                                  | 5.7                               | 86.2                                         | -1                                           |
| Right abutment | 27.5                 | 1086.                                                | 98.9                                                                 | 87.                                                      | 92.6                                                                | 0.0                                  | 5.2                                  |                                  | 5.2                               | 87.4                                         | 0                                            |

<sup>1.</sup> Measured along the face of the most constricting side of the bridge.

<sup>2.</sup> Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CRAFTH00220025 on Town Highway 22, crossing Wild Branch Lamoille River, Craftsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

| Description    | Station <sup>1</sup> | VTAOT<br>minimum<br>low-chord<br>elevation<br>(feet) | Surveyed<br>minimum<br>low-chord<br>elevation <sup>2</sup><br>(feet) | Bottom of<br>footing<br>elevation <sup>2</sup><br>(feet) | Channel<br>elevation at<br>abutment/<br>pier <sup>2</sup><br>(feet) | Contraction<br>scour depth<br>(feet) | Abutment<br>scour<br>depth<br>(feet) | Pier<br>scour<br>depth<br>(feet) | Depth of<br>total scour<br>(feet) | Elevation of<br>scour <sup>2</sup><br>(feet) | Remaining<br>footing/pile<br>depth<br>(feet) |
|----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|
|                |                      |                                                      |                                                                      | 500-yr.                                                  | discharge is 2,400                                                  | cubic-feet per sec                   | cond                                 |                                  |                                   |                                              |                                              |
| Left abutment  | 0.0                  | 1085.                                                | 98.6                                                                 | 87.                                                      | 91.9                                                                | 0.0                                  | 6.0                                  |                                  | 6.0                               | 85.9                                         | -1                                           |
| Right abutment | 27.5                 | 1086.                                                | 98.9                                                                 | 87.                                                      | 92.6                                                                | 0.0                                  | 4.7                                  |                                  | 4.7                               | 87.9                                         | 1                                            |

<sup>1.</sup> Measured along the face of the most constricting side of the bridge.

<sup>2</sup> Arbitrary datum for this study.

#### SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M.A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain, U.S. Geological Survey Water-supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.

# APPENDIX A:

# **WSPRO INPUT FILE**

### WSPRO INPUT FILE

| T1 U.S. | Geological | Survey | WSPRO | Input | File | craf025.wsp |
|---------|------------|--------|-------|-------|------|-------------|
|---------|------------|--------|-------|-------|------|-------------|

T2 Hydraulic analysis for structure CRAFTH00220025 Date: 12-FEB-96

MB

· 1

г г

```
*
HP 1 BRIDG 98.75 1 98.75
HP 2 BRIDG 98.75 * * 1372
HP 2 RDWAY 99.47 * * 591
HP 1 APPRO 99.58 1 99.58
HP 2 APPRO 99.58 * * 2000
*
*
HP 1 BRIDG 98.75 1 98.75
HP 2 BRIDG 98.75 * * 1537
HP 2 RDWAY 99.70 * * 847
HP 1 APPRO 99.84 1 99.84
HP 2 APPRO 99.84 * * 2400
*
HP 1 BRIDG 95.77 1 95.77
HP 2 BRIDG 95.77 * * 1714
HP 1 APPRO 98.31 1 98.31
HP 2 APPRO 98.31 * * 1714
ΕX
ER
```

# APPENDIX B: WSPRO OUTPUT FILE

## WSPRO OUTPUT FILE

| CROSS-S | SECTION | PROPERTIES: | ISEQ | = 3; | SECID | = BRIDG | ; SRD | =   | 0.  |
|---------|---------|-------------|------|------|-------|---------|-------|-----|-----|
| WSEL    | C 7 #   | AREA        | к    | тори | WETP  |         | LEW   | REW | OCR |
| WSEL    | SA#     | AREA        | K.   | TOPW | WEIP  | ALPH    | LEW   | REW | OCR |

V(I) 4.71 4.61 4.27 3.47 2.16

| CROSS-SECTION | PROPERTIES: | ISEQ | = 3; | SECID | = BRIDG | ; SRD | =   | 0.  |
|---------------|-------------|------|------|-------|---------|-------|-----|-----|
| WSEL SA#      | AREA        | к    | TOPW | WETP  | ALPH    | LEW   | REW | OCR |

| CROS           | S-SECTI         | ON PROPERT                         | IES: ISE(               | 2 = 3;           | SECII        | D = BRIDG      | ; SRD         | =            | 0.           |
|----------------|-----------------|------------------------------------|-------------------------|------------------|--------------|----------------|---------------|--------------|--------------|
| WSE            | L SA#<br>1      | AREA<br>133                        |                         |                  |              | ALPH           | LEW           | REW          | QCR<br>1711  |
| 95.7           |                 |                                    | 14165                   |                  |              |                | 0             | 28           |              |
| VELO           | CITY DI         | STRIBUTION                         | : ISEQ =                | 3; 5             | ECID =       | BRIDG;         | SRD =         |              | 0.           |
|                | WSEL<br>95.77   | LEW<br>0.0                         | REW AH<br>27.5 132      | REA<br>2.9 1     | K<br>4165.   | Q<br>1714.     | VEL<br>12.89  |              |              |
| X STA.         |                 | 0.0                                |                         |                  |              |                |               |              | 8.4          |
| A(I)<br>V(I)   |                 | 11.9<br>7.23                       | 7.7<br>11.06            | 1                | 6.9<br>2.44  | 6.2<br>13.72   |               | 5.9<br>14.45 |              |
| X STA.         | ;               | 8.4                                |                         |                  |              |                |               | 5.3          | 13.0         |
| A(I)<br>V(I)   |                 | 15.25                              | 5.5<br>15.65            | 1                | 5.68         | 16.29          |               |              |              |
| X STA.         | 1               | 3.0                                |                         |                  |              |                |               |              | 17.9         |
| A(I)<br>V(I)   |                 | 5.4<br>15.92                       | 5.4<br>15.74            | 1                | 5.5<br>5.59  | 5.7<br>15.16   |               | 5.8<br>14.74 |              |
| X STA.         | 1               | 7.9                                |                         |                  |              |                |               |              | 27.5         |
| A(I)<br>V(I)   |                 | 6.1<br>14.00                       | 6.6<br>13.04            | 1                | 6.9<br>2.43  | 8.1<br>10.54   |               | 11.6<br>7.36 |              |
| CROS           | S-SECTI         | ON PROPERT                         | IES: ISEQ               | 2 = 5;           | SECII        | D = APPRC      | ; SRD         | =            | 55.          |
| WSE            | L SA#<br>1      | AREA<br>154                        |                         |                  |              | ALPH           | LEW           | REW          | QCR<br>822   |
| 98.3           | 2               | 250                                | 27932<br>33974          | 43               | 48           |                | -189          | 32           | 3421<br>2571 |
|                |                 | STRIBUTION                         |                         |                  |              |                |               |              |              |
|                |                 |                                    |                         |                  |              |                |               |              |              |
|                |                 | LEW<br>-190.0                      |                         |                  |              |                |               |              |              |
| X STA.<br>A(I) | -19             | 0.0 -1                             | 49.6 -<br>40.1          |                  |              |                |               |              | 1.0          |
| V(I)           |                 | 2.14                               | 2.14                    |                  | 2.08         | 1.66           |               | 4.37         |              |
| X STA.         | :               | 1.0                                |                         |                  |              |                | 7.3           |              |              |
| A(I)<br>V(I)   |                 | 5.52                               | 13.5<br>6.32            |                  | 13.0<br>6.61 | 7.05           |               | 12.0<br>7.14 |              |
| X STA.         | :               | 8.5                                |                         |                  |              |                |               |              | 15.1         |
| A(I)<br>V(I)   |                 |                                    | 11.6<br>7.38            |                  |              |                |               | 12.2<br>7.02 |              |
| X STA.         | 1               | 5.1                                |                         |                  |              |                |               |              | 31.9         |
| A(I)<br>V(I)   |                 | 12.8<br>6.70                       | 13.4<br>6.39            |                  | 15.0<br>5.73 | 17.3<br>4.95   |               | 26.7<br>3.21 |              |
| EX<br>+++ BEGI | NNING P         | ROFILE CAL                         |                         |                  |              |                |               |              |              |
| XSID:CO        | DE SRI          | DL LEW                             | AREA                    | VHD              | HF           | EGL            | CRWS          |              | Q WSEL       |
| S              | RD FL           | EN REW                             | K                       | ALPH             | HO           | ERR            | FR#           | VE           | L            |
| EXITX:XS<br>-  | ****<br>43 **** | ** -48<br>** 76                    | 355<br>30143            | 0.63 *<br>1.28 * | ****         | 96.57<br>***** | 95.23<br>0.67 | 200<br>5.6   | 0 95.94<br>3 |
| FULLV:FV       |                 | 44 -49                             |                         |                  |              | 96.76 **       |               |              | 0 96.18      |
|                |                 | 44 77<br>HE ABOVE R                |                         |                  |              |                |               |              |              |
| ===110         | WSEL NO'        | I FOUND AT<br>WSLIM1               | SECID "AP<br>,WSLIM2,DP |                  |              |                |               | 0.5          | 0            |
| ===115         | WSEL NO'        | I FOUND AT<br>WSLIM1               | SECID "AN<br>,WSLIM2,CH |                  |              |                |               | 96.          | 06           |
| ===130         |                 | L WATER-SU<br>NERGY EQUA<br>WSBEG, |                         | T B_A            | _L_A_N       | _C_E_D A       | T SECI        | D "APP       | RO"          |

| APPRO:AS<br>55<br><<                                 |                                                                                                                                                               | 28                                                                                                                                | 15880     | 1.00 *         | **** **         | ****         | 96.06<br>1.00<br>STRICTED | 12.27        |                |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------|--------------|---------------------------|--------------|----------------|
| ===215 FLO                                           | W CLASS 1<br>WS1,WSSD,                                                                                                                                        |                                                                                                                                   |           |                |                 |              | VERFLOW.<br>96.33         |              | 24             |
| ===260 ATT                                           | EMPTING H                                                                                                                                                     | FLOW CLA                                                                                                                          | SS 4 SO   | LUTION.        |                 |              |                           |              |                |
| ===240 NO                                            |                                                                                                                                                               | E BALANC                                                                                                                          |           |                |                 | 1.           | 1999                      |              |                |
| ===280 REJ                                           |                                                                                                                                                               |                                                                                                                                   |           |                |                 |              | 1999.                     |              |                |
| ===245 ATT                                           | EMPTING H                                                                                                                                                     | FLOW CLA                                                                                                                          | SS 2 (5   | ) SOLUI        | TION.           |              |                           |              |                |
|                                                      | <<< <res< td=""><td>SULTS RE</td><td>FLECTIN</td><td>G THE C</td><td>CONSTRIC</td><td>TED FLO</td><td>W FOLLOW:</td><td>&gt;&gt;&gt;&gt;</td><td></td></res<> | SULTS RE                                                                                                                          | FLECTIN   | G THE C        | CONSTRIC        | TED FLO      | W FOLLOW:                 | >>>>         |                |
| XSID:CODE<br>SRD                                     |                                                                                                                                                               | LEW<br>REW                                                                                                                        | AREA<br>K | VHD<br>ALPH    | HF<br>HO        | EGL<br>ERR   | CRWS<br>FR#               | Q<br>VEL     | WSEL           |
| BRIDG:BR<br>0                                        | 44<br>*****                                                                                                                                                   |                                                                                                                                   |           |                |                 |              |                           |              | 98.75          |
|                                                      | PCD FLOW<br>*** 5.                                                                                                                                            |                                                                                                                                   |           |                |                 |              |                           |              |                |
|                                                      | DE SRI<br>15.                                                                                                                                                 |                                                                                                                                   |           |                |                 |              |                           |              |                |
| LT: 5                                                | Q WLE<br>91. 172                                                                                                                                              |                                                                                                                                   |           |                |                 |              | VAVG HAV<br>3.9 1         |              |                |
| RT:                                                  | 0. 238                                                                                                                                                        | 3. 13                                                                                                                             | . 251     | . 1.0          | 0.9             | 5.4          | 6.2 1                     | .5 2.9       |                |
| XSID:CODE<br>SRD                                     |                                                                                                                                                               | LEW<br>REW                                                                                                                        | AREA<br>K | VHD<br>ALPH    | HF<br>HO        | EGL<br>ERR   | CRWS<br>FR#               | Q<br>VEL     | WSEL           |
| APPRO:AS<br>55                                       | 17<br>18                                                                                                                                                      |                                                                                                                                   |           |                |                 |              |                           | 2000<br>2.87 | 99.58          |
|                                                      | M(K)<br>*****                                                                                                                                                 | ~                                                                                                                                 | ~         | -              | -               |              |                           |              |                |
|                                                      |                                                                                                                                                               | <<< <e< td=""><td>ND OF B</td><td>RIDGE (</td><td>COMPUTAT</td><td>'IONS&gt;&gt;&gt;</td><td>&gt;&gt;</td><td></td><td></td></e<> | ND OF B   | RIDGE (        | COMPUTAT        | 'IONS>>>     | >>                        |              |                |
| FIRST USE                                            | R DEFINEI                                                                                                                                                     | D TABLE.                                                                                                                          |           |                |                 |              |                           |              |                |
|                                                      | DE SRI                                                                                                                                                        |                                                                                                                                   |           |                | Q               |              |                           | VEL          |                |
| EXITX:XS<br>FULLV:FV                                 |                                                                                                                                                               | -49.<br>-50.                                                                                                                      |           |                | ). 301<br>) 317 | 43.<br>74.   |                           | 5.63<br>5.42 | 95.94<br>96 18 |
| BRIDG:BR                                             |                                                                                                                                                               |                                                                                                                                   |           |                |                 | 27.          |                           | 6.55         |                |
| RDWAY:RG                                             | 15.                                                                                                                                                           | . * * * * * * *                                                                                                                   | 591.      | 591            | . * * * * * *   | ***          | 0.                        | 2.00         | 99.47          |
| APPRO:AS                                             | 55.                                                                                                                                                           | -196.                                                                                                                             | 58.       | 2000           | ). 647          | 58.          | 696.                      | 2.87         | 99.58          |
|                                                      | DE XLKÇ<br>******                                                                                                                                             |                                                                                                                                   |           | ~              |                 |              |                           |              |                |
| SECOND USE                                           | R DEFINEI                                                                                                                                                     | D TABLE.                                                                                                                          |           |                |                 |              |                           |              |                |
| XSID:CO<br>EXITX:XS                                  |                                                                                                                                                               |                                                                                                                                   |           |                |                 |              | HO VHD<br>** 0.63         |              |                |
| FULLV:FV                                             | ******                                                                                                                                                        | ** 0.                                                                                                                             | 63 90     | .20 10         | 3.72 0          | .18 0.       | 00 0.58                   | 96.76        | 96.1           |
|                                                      |                                                                                                                                                               |                                                                                                                                   |           |                |                 |              | ** 0.67                   |              |                |
| BRIDG:BR                                             |                                                                                                                                                               |                                                                                                                                   |           |                |                 |              | ** 0.16<br>00 0.16        |              |                |
| BRIDG:BR<br>RDWAY:RG<br>APPRO:AS                     |                                                                                                                                                               |                                                                                                                                   |           | VHD            | HF              | EGL          | CRWS                      | Q            | WSEL           |
| RDWAY:RG<br>APPRO:AS<br>XSID:CODE                    |                                                                                                                                                               |                                                                                                                                   |           |                |                 |              | <del>р</del> р.44         | 17171        |                |
| RDWAY:RG<br>APPRO:AS<br>XSID:CODE<br>SRD             | FLEN                                                                                                                                                          | REW                                                                                                                               | K         | ALPH           | HO              | ERR          | FR#                       | VEL          |                |
| RDWAY:RG<br>APPRO:AS<br>XSID:CODE<br>SRD<br>EXITX:XS | FLEN                                                                                                                                                          | REW<br>-52                                                                                                                        | K<br>412  | ALPH<br>0.68 * | HO              | ERR<br>97.02 | 95.57                     | 2400         | 96.34          |

===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 95.84 103.72 0.50 ===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 95.84 103.72 95.70 
 7
 44
 -53
 448
 0.61
 0.18
 97.21
 95.70
 2400

 0
 44
 211
 38678
 1.36
 0.00
 0.01
 0.84
 5.35
 FULLV:FV 2400 96.61 <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>> ===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 96.11 111.98 0.50 ===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 96.11 111.98 98.19 ===130 CRITICAL WATER-SURFACE ELEVATION A \_ S \_ S \_ U \_ M \_ E \_ D !!!!! ENERGY EQUATION N\_O\_T B\_A\_L\_A\_N\_C\_E\_D AT SECID "APPRO" WSBEG, WSEND, CRWS = 98.19 111.98 98.19 AS 55 -188 378 0.93 \*\*\*\*\* 99.12 98.19 2400 98.19 55 55 32 32023 1.48 \*\*\*\*\* \*\*\*\*\*\*\* 1.02 6.35 APPRO:AS <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>> ===215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW WS1,WSSD,WS3,RGMIN = 100.83 0.00 97.07 98.24 ===260 ATTEMPTING FLOW CLASS 4 SOLUTION. ===240 NO DISCHARGE BALANCE IN 15 ITERATIONS. WS,QBO,QRD = 100.98 0. 2400. ===280 REJECTED FLOW CLASS 4 SOLUTION. ===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION <<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>> Q XSID:CODE SRDL LEW AREA VHD HF EGL CRWS WSEL SRD FLEN REW K ALPH HO ERR FR# VEL 44 0 209 0.84 \*\*\*\*\* 99.59 95.42 1537 98.75 BRIDG:BR 0 \*\*\*\*\* 28 22627 1.00 \*\*\*\* \*\*\*\*\*\* 0.47 7.34 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. \*\*\*\* 5. 0.408 0.000 98.75 \*\*\*\*\* \*\*\*\*\*\* \*\*\*\*\* XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL 15. 30. 0.03 0.19 100.00 -0.01 847. 99.70 RDWAY:RG Q WLEN LEW REW DMAX DAVG VMAX VAVG HAVG CAVG LT: 847. 183. -206. -23. 1.5 1.1 5.2 4.4 1.3 3.0 RT: 0. 238. 13. 251. 1.1 0.9 5.5 6.3 1.5 2.9 XSID:CODE SRDL LEW AREA VHD HF EGL CRWS O WSEL ERR SRD FLEN REW K ALPH HO FR# VEL. 17 -196 763 0.19 0.06 100.03 98.19 2400 99.84 APPRO:AS 55 25 71 72925 1.26 0.00 -0.01 0.37 3.14 M(G) M(K) KQ XLKQ XRKQ OTEL \*\*\*\*\* \*\*\*\*\* \*\*\*\*\*\* \*\*\*\*\*\* \*\*\*\*\*\* <<<<END OF BRIDGE COMPUTATIONS>>>>

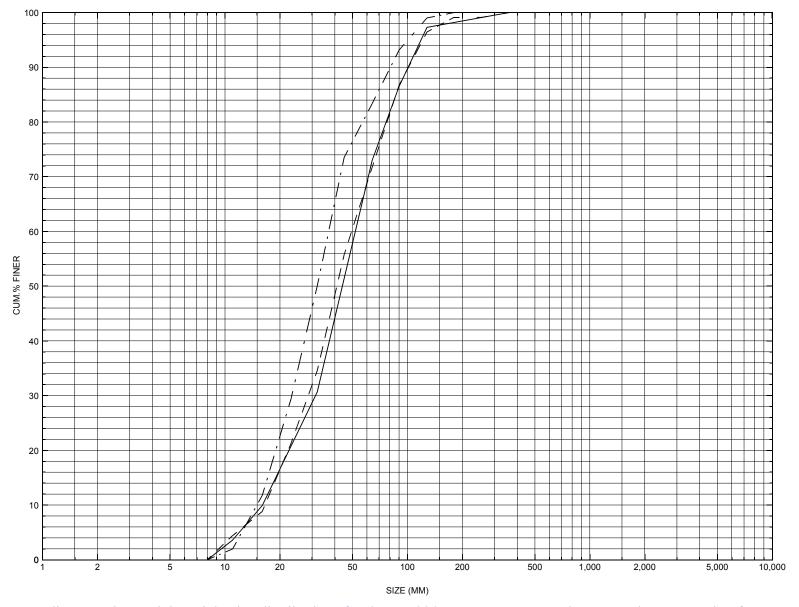
| FIRST USER DE | FINED 7 | FABLE. |      |        |                 |      |      |       |
|---------------|---------|--------|------|--------|-----------------|------|------|-------|
| XSID:CODE     | SRD     | LEW    | REW  | Q      | K               | AREA | VEL  | WSEL  |
| EXITX:XS      | -44.    | -53.   | 209. | 2400.  | 36147.          | 412. | 5.82 | 96.34 |
| FULLV:FV      | 0.      | -54.   | 211. | 2400.  | 38678.          | 448. | 5.35 | 96.61 |
| BRIDG:BR      | 0.      | 0.     | 28.  | 1537.  | 22627.          | 209. | 7.34 | 98.75 |
| RDWAY:RG      | 15.**   | *****  | 847. | 847.** | * * * * * * * * | 0.   | 2.00 | 99.70 |
| APPRO:AS      | 55.     | -197.  | 71.  | 2400.  | 72925.          | 763. | 3.14 | 99.84 |
|               |         |        |      |        |                 |      |      |       |

XSID:CODE XLKQ XRKQ KQ APPRO:AS \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| SECOND USER                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| XSID:COD                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| EXITX:XS                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | ******                                                                                                                                  |                                                                                                                 |                                                                              |                                                  |
| FULLV:FV                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | 0.18 0                                                                                                                                  |                                                                                                                 |                                                                              |                                                  |
| BRIDG:BR                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | ******                                                                                                                                  |                                                                                                                 |                                                                              |                                                  |
| RDWAY:RG                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| APPRO:AS                                                                                                                                                                    | 98.19                                                                                                                                                                       | 9 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 88.                                                                                                                                | .76 11                                                                                                                                    | 1.98                                                                                                   | 0.06 0                                                                                                                                  | .00 0.19                                                                                                        | 100.03                                                                       | 99.84                                            |
| XSID:CODE                                                                                                                                                                   |                                                                                                                                                                             | LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | VHD<br>ALPH                                                                                                                               | HF<br>HO                                                                                               | EGL<br>ERR                                                                                                                              | CRWS<br>FR#                                                                                                     | -                                                                            | WSEL                                             |
| SKD                                                                                                                                                                         | FILEN                                                                                                                                                                       | KEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K                                                                                                                                     | ADFN                                                                                                                                      | по                                                                                                     | ERK                                                                                                                                     | r R#                                                                                                            | VEL                                                                          |                                                  |
| EXITX:XS **<br>-43 **                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | 96.21<br>******                                                                                                                         |                                                                                                                 |                                                                              | 95.62                                            |
| FULLV:FV                                                                                                                                                                    | 4.4                                                                                                                                                                         | - 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220                                                                                                                                   | 0 54                                                                                                                                      | 0 1 0                                                                                                  | 96.41                                                                                                                                   | ******                                                                                                          | 1714                                                                         | 05 06                                            |
| FOLLIV:FV<br>0                                                                                                                                                              | 44<br>44                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27289                                                                                                                                 |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 | 5.21                                                                         | 95.00                                            |
| 0                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | L" (UNCOL                                                                                                                               |                                                                                                                 |                                                                              |                                                  |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       | шет                                                                                                                                       | NOIGH.                                                                                                 |                                                                                                                                         | NO INI CI DL                                                                                                    | , 1100.22                                                                    | ~~~                                              |
| ===125 FR# 1                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | TRIALS CO<br>1.01                                                                                                                       |                                                                                                                 |                                                                              | 7                                                |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| ===110 WSEL                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 | 0 50                                                                         |                                                  |
|                                                                                                                                                                             | Wa                                                                                                                                                                          | SLIMI,WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SLIMZ,Di                                                                                                                              | SLIAY =                                                                                                                                   | 5                                                                                                      | 5.36                                                                                                                                    | 111.98                                                                                                          | 0.50                                                                         |                                                  |
| ===115 WSEL                                                                                                                                                                 | NOT FOUR                                                                                                                                                                    | ND AT SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTD "A                                                                                                                                | PPRO":                                                                                                                                    | USED                                                                                                   | WSMIN =                                                                                                                                 | CRWS.                                                                                                           |                                                                              |                                                  |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | 36 1:                                                                                                                                   |                                                                                                                 | 95.47                                                                        |                                                  |
|                                                                                                                                                                             |                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| ===135 CONV                                                                                                                                                                 | EYANCE RA                                                                                                                                                                   | ATIO OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSIDE OF                                                                                                                              | F RECOM                                                                                                                                   | MENDE                                                                                                  | D LIMITS                                                                                                                                |                                                                                                                 |                                                                              |                                                  |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "APPRO                                                                                                                                | )″                                                                                                                                        | KRATI                                                                                                  | 0 = 0.49                                                                                                                                | Э                                                                                                               |                                                                              |                                                  |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| APPRO:AS                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | 97.70                                                                                                                                   |                                                                                                                 |                                                                              | 95.47                                            |
| 55                                                                                                                                                                          | 55                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13403                                                                                                                                 |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 | 11.96                                                                        |                                                  |
| <<<-                                                                                                                                                                        | < <the abo<="" td=""><td>OVE RESU</td><td>JLTS REI</td><td>FLECT "</td><td>NORMA</td><td>L" (UNCO</td><td>ISTRICTED</td><td>) FLOW&gt;&gt;</td><td>·&gt;&gt;&gt;</td></the> | OVE RESU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JLTS REI                                                                                                                              | FLECT "                                                                                                                                   | NORMA                                                                                                  | L" (UNCO                                                                                                                                | ISTRICTED                                                                                                       | ) FLOW>>                                                                     | ·>>>                                             |
|                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       | 73 117 011                                                                                                                                | 7                                                                                                      |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
| ===285 CRIT                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                           |                                                                                                        | 1714.                                                                                                                                   |                                                                                                                 |                                                                              | 11                                               |
|                                                                                                                                                                             | 51                                                                                                                                                                          | SCID BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (IDG                                                                                                                                  | Q, CR                                                                                                                                     | .wa =                                                                                                  | 1/14.                                                                                                                                   | 95.                                                                                                             | //                                                                           |                                                  |
|                                                                                                                                                                             | DECI                                                                                                                                                                        | ידיים מידידי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                           |                                                                                                        |                                                                                                                                         |                                                                                                                 |                                                                              |                                                  |
|                                                                                                                                                                             | <<<< <red(< td=""><td>JUIS KEI</td><td>FLECTING</td><td>3 THE C</td><td>ONSTR</td><td>ICTED FLO</td><td>OW FOLLOW</td><td>1&gt;&gt;&gt;&gt;&gt;</td><td></td></red(<>       | JUIS KEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLECTING                                                                                                                              | 3 THE C                                                                                                                                   | ONSTR                                                                                                  | ICTED FLO                                                                                                                               | OW FOLLOW                                                                                                       | 1>>>>>                                                                       |                                                  |
|                                                                                                                                                                             | <<<< <re31< td=""><td>JLIS KEI</td><td>FLECTING</td><td>G THE C</td><td>ONSTR</td><td>ICTED FLO</td><td>OW FOLLOW</td><td></td><td></td></re31<>                            | JLIS KEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLECTING                                                                                                                              | G THE C                                                                                                                                   | ONSTR                                                                                                  | ICTED FLO                                                                                                                               | OW FOLLOW                                                                                                       |                                                                              |                                                  |
| XSID:CODE                                                                                                                                                                   | SRDL                                                                                                                                                                        | LEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA                                                                                                                                  | VHD                                                                                                                                       | HF                                                                                                     | EGL                                                                                                                                     | CRWS                                                                                                            | Q                                                                            | WSEL                                             |
|                                                                                                                                                                             | SRDL                                                                                                                                                                        | LEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA                                                                                                                                  | VHD                                                                                                                                       | HF                                                                                                     |                                                                                                                                         | CRWS                                                                                                            | Q                                                                            | WSEL                                             |
| SRD                                                                                                                                                                         | SRDL<br>FLEN                                                                                                                                                                | LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K                                                                                                                             | VHD<br>ALPH                                                                                                                               | HF<br>HO                                                                                               | EGL<br>ERR                                                                                                                              | CRWS<br>FR#                                                                                                     | Q<br>VEL                                                                     |                                                  |
| SRD                                                                                                                                                                         | SRDL<br>FLEN                                                                                                                                                                | LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K                                                                                                                             | VHD<br>ALPH                                                                                                                               | HF<br>HO                                                                                               | EGL<br>ERR                                                                                                                              | CRWS<br>FR#                                                                                                     | Q<br>VEL<br>1714                                                             |                                                  |
|                                                                                                                                                                             | SRDL<br>FLEN                                                                                                                                                                | LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K                                                                                                                             | VHD<br>ALPH                                                                                                                               | HF<br>HO                                                                                               | EGL<br>ERR                                                                                                                              | CRWS<br>FR#                                                                                                     | Q<br>VEL<br>1714                                                             |                                                  |
| SRD<br>BRIDG:BR<br>0                                                                                                                                                        | SRDL<br>FLEN<br>44<br>44                                                                                                                                                    | LEW<br>REW<br>0<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>K<br>133<br>14172                                                                                                             | VHD<br>ALPH<br>2.58 *<br>1.00 *                                                                                                           | HF<br>HO<br>****<br>****                                                                               | EGL<br>ERR<br>98.35<br>*****                                                                                                            | CRWS<br>FR#<br>95.77<br>1.00                                                                                    | Q<br>VEL<br>1714                                                             |                                                  |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP0                                                                                                                                            | SRDL<br>FLEN<br>44<br>44<br>CD FLOW                                                                                                                                         | LEW<br>REW<br>0<br>28<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K<br>133<br>14172<br>P/A                                                                                                      | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL                                                                                                   | HF<br>HO<br>****<br>****<br>BI                                                                         | EGL<br>ERR<br>98.35<br>*****<br>EN XLAH                                                                                                 | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB                                                                          | Q<br>VEL<br>1714                                                             |                                                  |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP0                                                                                                                                            | SRDL<br>FLEN<br>44<br>44<br>CD FLOW                                                                                                                                         | LEW<br>REW<br>0<br>28<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K<br>133<br>14172<br>P/A                                                                                                      | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL                                                                                                   | HF<br>HO<br>****<br>****<br>BI                                                                         | EGL<br>ERR<br>98.35<br>*****                                                                                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB                                                                          | Q<br>VEL<br>1714                                                             |                                                  |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP0<br>1. ***                                                                                                                                  | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.                                                                                                                                | LEW<br>REW<br>0<br>28<br>C<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>K<br>133<br>14172<br>P/A<br>*****                                                                                             | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75                                                                                          | HF<br>HO<br>****<br>*<br>BL<br>****                                                                    | EGL<br>ERR<br>98.35<br>******<br>EN XLAH<br>** *****                                                                                    | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* *****                                                               | Q<br>VEL<br>1714<br>12.89                                                    | 95.77                                            |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE                                                                                                                     | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL                                                                                                                        | LEW<br>REW<br>0<br>28<br>C<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA                                                                                    | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD                                                                                   | HF<br>HO<br>****<br>****<br>BI<br>****<br>HF                                                           | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** *****<br>EGL                                                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* ******                                                              | Q<br>VEL<br>1714<br>12.89<br>Q                                               |                                                  |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE                                                                                                                     | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL                                                                                                                        | LEW<br>REW<br>0<br>28<br>C<br>1.000 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA                                                                                    | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD                                                                                   | HF<br>HO<br>****<br>****<br>BI<br>****<br>HF                                                           | EGL<br>ERR<br>98.35<br>******<br>EN XLAH<br>** *****                                                                                    | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* ******                                                              | Q<br>VEL<br>1714<br>12.89<br>Q                                               | 95.77                                            |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE                                                                                                                     | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL                                                                                                                        | LEW<br>REW<br>0<br>28<br>C<br>1.000 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA                                                                                    | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD                                                                                   | HF<br>HO<br>****<br>****<br>BI<br>****<br>HF                                                           | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** *****<br>EGL                                                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* ******                                                              | Q<br>VEL<br>1714<br>12.89<br>Q                                               | 95.77                                            |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE                                                                                                                     | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN                                                                                                                | LEW<br>REW<br>0<br>28<br>C<br>1.000 7<br>LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K                                                                               | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD<br>ALPH                                                                           | HF<br>HO<br>****<br>****<br>BI<br>****<br>HF<br>HO                                                     | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** *****<br>EGL<br>ERR                                                                     | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#                                                 | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE<br>SRD                                                                                                              | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN                                                                                                                | LEW<br>REW<br>0<br>28<br>C<br>1.000 7<br>LEW<br>REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K                                                                               | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD<br>ALPH                                                                           | HF<br>HO<br>****<br>****<br>BI<br>****<br>HF<br>HO                                                     | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** *****<br>EGL                                                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#                                                 | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP(<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55                                                                                             | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18                                                                                                    | LEW<br>REW<br>0<br>28<br>C<br>1.000 ,<br>LEW<br>REW<br>-10<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911                                                               | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00                                                           | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55                                            | EGL<br>ERR<br>98.35<br>******<br>EN XLAN<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01                                                     | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#                                                 | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)                                                                                      | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>N(K)                                                                                            | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>,<br>LEW<br>REW<br>-10<br>32<br>KQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ                                                       | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ                                                   | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55                                            | EGL<br>ERR<br>98.35<br>*******<br>EN XLAN<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#                                                 | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)                                                                                      | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18                                                                                                    | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>,<br>LEW<br>REW<br>-10<br>32<br>KQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ                                                       | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ                                                   | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55                                            | EGL<br>ERR<br>98.35<br>*******<br>EN XLAN<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL                                            | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#                                                 | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)                                                                                      | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>N(K)                                                                                            | LEW<br>REW<br>0<br>28<br>C<br>1.000 *<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.                                                | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.                                            | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S                                  | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24                                    | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>* *****<br>CRWS<br>FR#<br>95.47<br>0.50                               | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)                                                                                      | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>N(K)                                                                                            | LEW<br>REW<br>0<br>28<br>C<br>1.000 *<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.                                                | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.                                            | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S                                  | EGL<br>ERR<br>98.35<br>*******<br>EN XLAN<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL                                            | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>* *****<br>CRWS<br>FR#<br>95.47<br>0.50                               | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. ***<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149                                                                            | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000                                                                                   | LEW<br>REW<br>0<br>28<br>C<br>1.000 ,<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.<br><<<< <en< td=""><td>AREA<br/>K<br/>133<br/>14172<br/>P/A<br/>******<br/>AREA<br/>K<br/>250<br/>27911<br/>XLKQ<br/>-2.<br/>ND OF BF</td><td>VHD<br/>ALPH<br/>2.58 *<br/>1.00 *<br/>USEL<br/>98.75<br/>VHD<br/>ALPH<br/>0.73<br/>1.00<br/>XRKQ<br/>25.</td><td>HF<br/>HO<br/>*****<br/>BI<br/>****<br/>HF<br/>HO<br/>0.13<br/>0.55<br/>C<br/>S</td><td>EGL<br/>ERR<br/>98.35<br/>*******<br/>EN XLAH<br/>** ******<br/>EGL<br/>ERR<br/>99.04<br/>0.01<br/>TEL<br/>8.24</td><td>CRWS<br/>FR#<br/>95.77<br/>1.00<br/>8 XRAB<br/>* *****<br/>CRWS<br/>FR#<br/>95.47<br/>0.50</td><td>Q<br/>VEL<br/>1714<br/>12.89<br/>Q<br/>VEL</td><td>95.77<br/>WSEL</td></en<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BF                                    | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.                                            | HF<br>HO<br>*****<br>BI<br>****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S                                  | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24                                    | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>* *****<br>CRWS<br>FR#<br>95.47<br>0.50                               | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL                                        | 95.77<br>WSEL                                    |
| SRD<br>BRIDG:BR<br>0<br>TYPE PPO<br>1. ***<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER                                                             | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED                                                                        | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>7<br>LEW<br>REW<br>-10<br>32<br>XQ<br>30159.<br><<<< <ei<br>TABLE.</ei<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH                                    | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C                                 | HF<br>HO<br>BL<br>+****<br>HF<br>HO<br>0.113<br>0.55<br>C<br>S<br>S                                    | EGL<br>ERR<br>98.35<br>******<br>EN XLAH<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:                         | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* ******<br>CRWS<br>FR#<br>95.47<br>0.50                              | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85                        | 95.77<br>WSEL<br>98.31                           |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. ***<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:COD                                                  | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD                                                               | LEW<br>REW<br>0<br>28<br>C<br>1.000 *<br>LEW<br>REW<br>-10<br>32<br>\$<br>\$<br>30159.<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BF<br>REW                             | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C                                 | HF<br>HO<br>*****<br>BLL<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>S<br>OMPUT                           | EGL<br>ERR<br>98.35<br>*******<br>EN XLAH<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>'ATIONS>>:                      | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>* ******<br>CRWS<br>FR#<br>95.47<br>0.50                              | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85                        | 95.77<br>WSEL<br>98.31<br>WSEL                   |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. ***<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODI<br>EXITX:XS                                     | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.                                                       | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>,<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.<br><<<< <el<br>TABLE.<br/>LEW<br/>-47.</el<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>K<br>133<br>14172<br>P/A<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH<br>REW<br>75.                                | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C                                 | HF<br>HO<br>*****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>00MPUT                                      | EGL<br>ERR<br>98.35<br>********<br>EN XLAN<br>** ******<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>'ATIONS>>:<br>K<br>5819.       | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50                                | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43         | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62          |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODI<br>EXITX:XS<br>FULLV:FV                          | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.<br>0.                                                 | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>,<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.<br><<<< <en<br>TABLE.<br/>LEW<br/>-47.<br/>-48.</en<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>K<br>133<br>14172<br>P/A<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH<br>REW<br>75.<br>75.                         | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C<br>17114<br>1714                | HF<br>HO<br>*****<br>BLI<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>S<br>OMPUT<br>Q<br>2. 2<br>2. 2      | EGL<br>ERR<br>98.35<br>*******<br>EN XLAI<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:<br>K<br>5819.<br>7289. | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50<br>>>><br>AREA<br>316.<br>329. | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43<br>5.21 | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62<br>95.86 |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODI<br>EXITX:XS<br>FULLV:FV<br>BRIDG:BR              | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.<br>0.<br>0.                                           | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>C<br>1.000<br>C<br>LEW<br>REW<br>-10<br>32<br>S0159.<br><<<< <en<br>TABLE.<br/>LEW<br/>-47.<br/>-48.<br/>0.</en<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH<br>REW<br>75.<br>75.<br>28.        | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C<br>1714<br>1714<br>1714         | HF<br>HO<br>*****<br>BLI<br>*****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>COMPUT<br>Q<br>2. 22<br>. 1 | EGL<br>ERR<br>98.35<br>*******<br>EN XLAI<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:<br>K<br>5819.<br>7289. | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50<br>>>><br>AREA<br>316.<br>329. | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43<br>5.21 | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62<br>95.86 |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODD<br>EXITX:XS<br>FULLV:FV                          | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.<br>0.<br>0.                                           | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>,<br>LEW<br>REW<br>-10<br>32<br>KQ<br>30159.<br><<<< <en<br>TABLE.<br/>LEW<br/>-47.<br/>-48.</en<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH<br>REW<br>75.<br>75.<br>28.        | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C<br>1714<br>1714<br>1714         | HF<br>HO<br>*****<br>BLI<br>*****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>COMPUT<br>Q<br>2. 22<br>. 1 | EGL<br>ERR<br>98.35<br>*******<br>EN XLAI<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:<br>K<br>5819.<br>7289. | CRWS<br>FR#<br>95.77<br>1.00<br>3 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50                                | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43<br>5.21 | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62<br>95.86 |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. **<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODI<br>EXITX:XS<br>FULLV:FV<br>BRIDG:BR              | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.<br>0.<br>55.                                          | LEW<br>REW<br>0<br>28<br>C<br>1.000 -<br>LEW<br>REW<br>-10<br>32<br>XQ<br>30159.<br><<<< <en<br>TABLE.<br/>LEW<br/>-47.<br/>-48.<br/>0.<br/>-11.</en<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>K<br>133<br>14172<br>P/A<br>******<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BF<br>REW<br>75.<br>75.<br>28.<br>32. | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>LSEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C<br>1714<br>1714<br>1714         | HF<br>HO<br>*****<br>BLI<br>*****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>COMPUT<br>Q<br>2. 22<br>. 1 | EGL<br>ERR<br>98.35<br>*******<br>EN XLAI<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:<br>K<br>5819.<br>7289. | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50<br>>>><br>AREA<br>316.<br>329. | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43<br>5.21 | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62<br>95.86 |
| SRD<br>BRIDG:BR<br>0<br>TYPE PP<br>1. ***<br>XSID:CODE<br>SRD<br>APPRO:AS<br>55<br>M(G)<br>0.149<br>FIRST USER<br>XSID:CODE<br>EXITX:XS<br>FULLV:FV<br>BRIDG:BR<br>APPRO:AS | SRDL<br>FLEN<br>44<br>44<br>CD FLOW<br>** 1.<br>SRDL<br>FLEN<br>17<br>18<br>M(K)<br>0.000<br>DEFINED<br>E SRD<br>-44.<br>0.<br>55.<br>E XLKQ                                | LEW<br>REW<br>0<br>28<br>C<br>1.000<br>C<br>1.000<br>C<br>LEW<br>REW<br>C<br>30159.<br>C<br>C<br>2<br>C<br>2<br>C<br>2<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>1.000<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>2.00<br>C<br>C<br>2.00<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | AREA<br>K<br>133<br>14172<br>P/A<br>*****<br>AREA<br>K<br>250<br>27911<br>XLKQ<br>-2.<br>ND OF BH<br>REW<br>75.<br>75.<br>28.<br>32.  | VHD<br>ALPH<br>2.58 *<br>1.00 *<br>USEL<br>98.75<br>VHD<br>ALPH<br>0.73<br>1.00<br>XRKQ<br>25.<br>RIDGE C<br>1714<br>1714<br>1714<br>1714 | HF<br>HO<br>*****<br>BLI<br>*****<br>HF<br>HO<br>0.13<br>0.55<br>C<br>S<br>COMPUT<br>Q<br>2. 22<br>. 1 | EGL<br>ERR<br>98.35<br>*******<br>EN XLAI<br>** *****<br>EGL<br>ERR<br>99.04<br>0.01<br>TEL<br>8.24<br>ATIONS>>:<br>K<br>5819.<br>7289. | CRWS<br>FR#<br>95.77<br>1.00<br>8 XRAB<br>******<br>CRWS<br>FR#<br>95.47<br>0.50<br>>>><br>AREA<br>316.<br>329. | Q<br>VEL<br>1714<br>12.89<br>Q<br>VEL<br>1714<br>6.85<br>VEL<br>5.43<br>5.21 | 95.77<br>WSEL<br>98.31<br>WSEL<br>95.62<br>95.86 |

 SECOND USER DEFINED TABLE.
 XSID:CODE
 CRWS
 FR#
 YMIN
 YMAX
 HF
 HO
 VHD
 EGL
 WSEL

 EXITX:XS
 94.97
 0.68
 90.07
 103.59\*\*\*\*\*\*\*\*\*
 0.59
 96.21
 95.62


 FULLV:FV
 \*\*\*\*\*\*\*
 0.64
 90.20
 103.72
 0.18
 0.00
 0.54
 96.41
 95.86

 BRIDG:BR
 95.77
 1.00
 89.38
 98.86\*\*\*\*\*\*\*\*\*\*
 2.58
 98.35
 95.77

 APPRO:AS
 95.47
 0.50
 88.76
 111.98
 0.13
 0.55
 0.73
 99.04
 98.31

# APPENDIX C:

# **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**



Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure CRAFTH00220025, in Craftsbury, Vermont.

# APPENDIX D: HISTORICAL DATA FORM

### Structure Number CRAFTH00220025

#### **General Location Descriptive**

Data collected by (First Initial, Full last name) <u>M</u>. <u>WEBER</u>

Date (MM/DD/YY) 08 / 04 / 94

Highway District Number (I - 2; nn) 09

Town (FIPS place code; I - 4; nnnnn) 16300

Waterway (1 - 6) Wild Branch Lamoille River

Route Number TH022

Topographic Map Albany

Latitude (I - 16; nnnn.n) 44401

County (FIPS county code; I - 3; nnn) \_\_\_\_019

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): \_-

Vicinity (/ - 9) 0.1 MI TO JCT W CL3 TH21

Hydrologic Unit Code: 01110000

Longitude (i - 17; nnnnn.n) 72258

#### Select Federal Inventory Codes

FHWA Structure Number (1 - 8) \_\_\_\_\_10100600251006

| Maintenance responsibility (I - 21; nn) 03                                | Maximum span length (I - 48; nnnn) <u>0029</u>     |
|---------------------------------------------------------------------------|----------------------------------------------------|
| Year built (I - 27; YYYY) <u>1989</u>                                     | Structure length (I - 49; nnnnnn) 000031           |
| Average daily traffic, ADT (I - 29; nnnnnn) 000260                        | _ Deck Width (I - 52; nn.n) _253                   |
| Year of ADT (I - 30; YY) <u>94</u>                                        | Channel & Protection (I - 61; n) <u>8</u>          |
| Opening skew to Roadway (I - 34; nn) 20                                   | Waterway adequacy (I - 71; n) 7                    |
| Operational status (I - 41; X) A                                          | Underwater Inspection Frequency (I - 92B; XYY) $N$ |
| Structure type (I - 43; nnn) <u>101</u>                                   | Year Reconstructed (I - 106) 0000                  |
| Approach span structure type (I - 44; nnn)000                             | Clear span ( <i>nnn.n ft</i> )                     |
| Number of spans (I - 45; nnn)                                             | Vertical clearance from streambed (nnn.n ft) 008.0 |
| Number of approach spans ( <i>I - 46; nnnn</i> ) <u>0000</u><br>Comments: | Waterway of full opening (nnn.n ft <sup>2</sup> )  |

Structural inspection report of 7/20/93 indicates a concrete slab type bridge. Abutments and wingwalls in like new condition. The footings are not exposed. No channel scour. Minor road embankment erosion on downstream right bank side. The channel proceeds straight through bridge. Good riprap coverage and no point bars were reported.

|                                                                       | Bridge Hy                        | drolog          | ic Da           | ita                                    |                     |                      |
|-----------------------------------------------------------------------|----------------------------------|-----------------|-----------------|----------------------------------------|---------------------|----------------------|
| Is there hydrologic data available?                                   | <u>N</u> if No, type             | e ctrl-n h      | VTA             | OT Draina                              | ige area ( <i>n</i> | ni <sup>2</sup> ):   |
| Terrain character:                                                    |                                  |                 |                 |                                        |                     |                      |
| Stream character & type: _                                            |                                  |                 |                 |                                        |                     |                      |
|                                                                       |                                  | _               |                 |                                        |                     |                      |
| Streambed material: Boulders, rip                                     |                                  |                 | 1050            |                                        |                     |                      |
| Discharge Data ( <i>cfs</i> ): Q <sub>2.33</sub>                      |                                  | Q <sub>10</sub> | 2150            |                                        | Q <sub>25</sub>     |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
| Record flood date ( <i>MM / DD / YY</i> ): -                          |                                  |                 |                 |                                        |                     |                      |
| Estimated Discharge (cfs):<br>Ice conditions (Heavy, Moderate, Light) |                                  |                 |                 |                                        |                     | ght                  |
| The stage increases to maximum h                                      |                                  |                 |                 |                                        |                     |                      |
| The stream response is (Flashy, Not a                                 |                                  |                 |                 | iot rapidiy).                          |                     |                      |
| Describe any significant site conditi                                 |                                  |                 |                 | m that may                             | y influence         | e the stream's       |
| stage: Remains of old bridge struct                                   | ture in place up                 | ostream.        |                 |                                        | -                   |                      |
| Fish habitat stones (4 boulder<br>of the bridge. Two thirds of t      | ,                                |                 |                 | -                                      |                     |                      |
| bed according to the plans.                                           | the long united                  |                 |                 | uluel 15 5u                            | omer geu n          | nto the stream       |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
| Watershed storage area (in percent):                                  |                                  |                 |                 |                                        |                     |                      |
| The watershed storage area is:                                        | _ (1-mainly at the site)         | he headw        | aters; 2        | - uniformly c                          | listributed; 3      | -immediatly upstream |
|                                                                       | ,                                |                 |                 |                                        |                     |                      |
| Water Surface Elevation Estimates                                     | for Existing S                   | tructure        | <u>.</u>        |                                        |                     |                      |
| Peak discharge frequency C                                            | Q <sub>2.33</sub> Q <sub>1</sub> | 0 (             | ຊ <sub>25</sub> | Q <sub>50</sub>                        | Q <sub>100</sub>    | ]                    |
| Water surface elevation (ft)                                          | 1084                             | -               | 20              | -                                      | 1086.7              |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
| Velocity (ft / sec)                                                   | -                                | -               |                 | -                                      | -                   |                      |
| Long term stream bed changes: -                                       |                                  |                 |                 |                                        |                     | 1                    |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
| Is the roadway overtopped below th                                    |                                  |                 |                 |                                        |                     |                      |
| Relief Elevation (#):                                                 | Discharge ov                     | er road         | vay at          | Q <sub>100</sub> (ft <sup>3</sup> / s  | sec):               |                      |
|                                                                       |                                  |                 |                 |                                        |                     |                      |
| Are there other structures nearby?                                    |                                  |                 |                 |                                        |                     |                      |
| Upstream distance ( <i>miles</i> ):                                   |                                  |                 |                 |                                        |                     |                      |
| Highway No. : -                                                       |                                  |                 |                 |                                        |                     |                      |
| Clear span (#): Clear Heigh                                           | ht ( <i>ft</i> ):                | Full V          | /aterwa         | ay ( <i>ft<sup>2</sup></i> ): <u>-</u> |                     |                      |

| Downstream distance ( <i>miles</i> ): 1             |                                |                         |
|-----------------------------------------------------|--------------------------------|-------------------------|
| Highway No. : - Structure                           |                                |                         |
| Clear span ( <i>t</i> ): Clear Height ( <i>t</i> ): |                                | _                       |
| Comments:                                           |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
| USGS                                                | Watershed Data                 |                         |
| Watershed Hydrographic Data                         |                                |                         |
| Drainage area (DA) $9.52$ mi <sup>2</sup>           | Lake and nond area $0$         | mi <sup>2</sup>         |
| Watershed storage (ST) %                            |                                |                         |
| Bridge site elevation <u>1082.7</u> ft              | Headwater elevation 2519.7     | ft                      |
| Main channel length <u>5.65</u> mi                  |                                |                         |
| 10% channel length elevation <u>1102.4</u>          | _ft 85% channel length elev    | ration <u>1870.1</u> ft |
| Main channel slope (S) <u>181.17</u> ft / mi        |                                |                         |
| Watershed Precipitation Data                        |                                |                         |
| Average site precipitation in                       | Average headwater precipitatic | on in                   |
| Maximum 2yr-24hr precipitation event (124,2)        | in                             |                         |
| Average seasonal snowfall (Sn)1                     | t                              |                         |
| · · · · · · · · · · · · · · · · · · ·               | -                              |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |
|                                                     |                                |                         |

#### **Bridge Plan Data**

| Are plans available? $\underline{Y}$ [f no, type ctrl-n pl Date issued for construction (MM/YYYY): 05 / 1989<br>Project Number <u>BRZ 1449(17)</u> Minimum channel bed elevation: 1076.0<br>Low superstructure elevation: USLAB 1085.26 DSLAB 1085.16 USRAB 1085.47 DSRAB 1085.43<br>Benchmark location description:<br>BM#1 a VTAOT bronze disk on the top of the wall where the upstream left bank wingwall and the abut-<br>ment meet at an angle, elevation 1087.29. BM#2 on the face of the same wingwall 2 feet down from the top<br>of the wall and 1 foot over from the abutment corner is a bridge marker in the shape of Vermont. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Point (MSL, Arbitrary, Other): Other Datum (NAD27, NAD83, Other): NGVD29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| If 1: Footing Thickness 2 Footing bottom elevation: 1074.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If 3: Footing bottom elevation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Is boring information available? <u>N</u> If no, type ctrl-n bi Number of borings taken:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Briefly describe material at foundation bottom elevation or around piles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Comments: Hydraulic data available on page 1 of bridge plans; drainage area=9.4 square miles, Q10=1050 CFS high water elevation=1084.8, Q100=2150 CFS high water elevation=1086.7. The 1989 construction is replacement of an older bridge.

#### **Cross-sectional Data**

Is cross-sectional data available? Y If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

Comments: Upstream bridge face cross section.

| Station                                                                                                                           | 1.5                                        | 12             | 29.5                                 |      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|--------------------------------------|------|--|--|--|
| Feature                                                                                                                           | LCL                                        | TD             | LCR                                  |      |  |  |  |
| Low cord elevation                                                                                                                | 1086.0                                     |                | 1085.5                               |      |  |  |  |
| Bed<br>elevation                                                                                                                  | 1078.4                                     | 1077.5         | 1082.5                               |      |  |  |  |
| Low cord to bed length                                                                                                            |                                            |                |                                      |      |  |  |  |
| Station                                                                                                                           |                                            |                |                                      |      |  |  |  |
| Feature                                                                                                                           |                                            |                |                                      |      |  |  |  |
| Low cord elevation                                                                                                                |                                            |                |                                      |      |  |  |  |
| Bed<br>elevation                                                                                                                  |                                            |                |                                      |      |  |  |  |
| Low cord to bed length                                                                                                            |                                            |                |                                      |      |  |  |  |
| Source (FEMA                                                                                                                      |                                            |                |                                      |      |  |  |  |
| Source ( <i>FEMA</i><br>Comments: T                                                                                               |                                            |                |                                      | ion. |  |  |  |
|                                                                                                                                   |                                            |                |                                      | ion. |  |  |  |
| Comments: I                                                                                                                       | Downstre                                   | am bridg       | ge face cro                          | ion. |  |  |  |
| Comments: I<br>Station                                                                                                            | Downstre                                   | am bridg       | ge face cro<br>29.5                  | ion. |  |  |  |
| Comments: I<br>Station<br>Feature                                                                                                 | )ownstre<br>1.5<br>LCL<br>1086.0           | am bridg       | ge face cro<br>29.5<br>LCR           | ion. |  |  |  |
| Comments: I<br>Station<br>Feature<br>Low cord<br>elevation                                                                        | )ownstre<br>1.5<br>LCL<br>1086.0<br>1078.4 | am bridg<br>13 | ge face cro<br>29.5<br>LCR<br>1086.0 | ion. |  |  |  |
| Comments: I<br>Station<br>Feature<br>Low cord<br>elevation<br>Bed<br>elevation                                                    | )ownstre<br>1.5<br>LCL<br>1086.0<br>1078.4 | am bridg<br>13 | ge face cro<br>29.5<br>LCR<br>1086.0 | ion. |  |  |  |
| Comments: I<br>Station<br>Feature<br>Low cord<br>elevation<br>Bed<br>elevation<br>Low cord to<br>bed length                       | )ownstre<br>1.5<br>LCL<br>1086.0<br>1078.4 | am bridg<br>13 | ge face cro<br>29.5<br>LCR<br>1086.0 | ion. |  |  |  |
| Comments: I<br>Station<br>Feature<br>Low cord<br>elevation<br>Bed<br>elevation<br>Low cord to<br>bed length<br>Station            | )ownstre<br>1.5<br>LCL<br>1086.0<br>1078.4 | am bridg<br>13 | ge face cro<br>29.5<br>LCR<br>1086.0 | ion. |  |  |  |
| Comments: I<br>Station<br>Feature<br>Low cord<br>elevation<br>Bed<br>elevation<br>Low cord to<br>bed length<br>Station<br>Feature | )ownstre<br>1.5<br>LCL<br>1086.0<br>1078.4 | am bridg<br>13 | ge face cro<br>29.5<br>LCR<br>1086.0 | ion. |  |  |  |

# APPENDIX E: LEVEL I DATA FORM

| U. S. Geological Survey<br>Bridge Field Data Collection and Process<br>Structure Number                                                               |                                                          | Qa/Qc Check by:       DLS       Date: 2/9/95         Computerized by:       MI       Date: 2/9/95         Reviewd by:       EMB       Date: 3/22/96 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                       |                                                          |                                                                                                                                                     |
| A. Gene                                                                                                                                               | ral Location Descripti                                   | ive                                                                                                                                                 |
| 1. Data collected by (First Initial, Full last name) _                                                                                                | M IVANOFF                                                | Date ( <i>MM/DD/YY</i> ) <u>11</u> / <u>09</u> / <u>19</u> 94_                                                                                      |
| 2. Highway District Number                                                                                                                            | Mile marker <u>-</u>                                     |                                                                                                                                                     |
| County ORLEANS (019)                                                                                                                                  |                                                          | SBURY (16300)                                                                                                                                       |
| Waterway (I - 6) Wild Branch Lamoille Ri<br>Route Number TH022                                                                                        | Road Name -                                              | Code: 01110000                                                                                                                                      |
| 3. Descriptive comments:                                                                                                                              |                                                          |                                                                                                                                                     |
| This structure is a concrete slab type bridg                                                                                                          | e located about 0.1 mile from                            | m the intersection of TH22 with                                                                                                                     |
| TH21.                                                                                                                                                 |                                                          |                                                                                                                                                     |
|                                                                                                                                                       |                                                          |                                                                                                                                                     |
|                                                                                                                                                       |                                                          |                                                                                                                                                     |
| B. Bric                                                                                                                                               | Ige Deck Observation                                     | IS                                                                                                                                                  |
| 4. Surface cover LBUS <u>4</u> RBUS <u>4</u><br>(2b us,ds,lb,rb: <b>1-</b> Urban; <b>2-</b> Suburban; <b>3-</b> Row of                                | $\frac{4}{1}$ LBDS $\frac{4}{5}$                         | RBDS 4 Overall 4                                                                                                                                    |
| (26 Us, ds, lb, rb: 1- Urban; 2- Suburban; 3- Row $d$<br>5. Ambient water surface US <u>1</u> UB <u>1</u>                                             | crops; 4- Pasture; 5- Shrub- and DS $1$ (1- pool: 2- rif | brusniand; <b>6</b> - Forest; 7- Wetland)<br>ffle)                                                                                                  |
| 6. Bridge structure type <u>1 (</u> 1- single span; 2-<br>6- box culvert; or                                                                          |                                                          |                                                                                                                                                     |
|                                                                                                                                                       |                                                          | Bridge width 25.3 (feet)                                                                                                                            |
| Road approach to bridge:                                                                                                                              |                                                          | roach to bridge (BF):                                                                                                                               |
|                                                                                                                                                       | 45 Angle of engrander 0                                  | 16. Bridge skew: <u>20</u>                                                                                                                          |
| 8. LB <u>1</u> RB <u>0</u> ( 0 even, 1- lower, 2- higher)<br>9. LB_2 RB 2 ( 1- Paved, 2- Not paved)                                                   | Approach Angle                                           | Bridge Skew Angle                                                                                                                                   |
|                                                                                                                                                       |                                                          |                                                                                                                                                     |
| 10. Embankment slope ( <i>run / rise in feet / foot</i> ):<br>US left -:1 US right -:1                                                                |                                                          |                                                                                                                                                     |
| Protection                                                                                                                                            | ////                                                     | / /                                                                                                                                                 |
| 11.Type 12.Cond. 13.Erosion 14.Severity                                                                                                               |                                                          | Opening skew<br>to roadway                                                                                                                          |
| LBUS <u>0</u> <u>-</u> <u>0</u> <u>0</u>                                                                                                              | Q I                                                      | α= <u>20.0</u>                                                                                                                                      |
| RBUS <u>0</u> - <u>0</u> <u>0</u>                                                                                                                     | 17. Channel impact zone 1:                               | Exist? <u>Y</u> (Y or N)                                                                                                                            |
| RBDS 0 - 0 0                                                                                                                                          | Where? <u>RB</u> (LB, RB)                                | Severity 2                                                                                                                                          |
| LBDS 0 - 0 0                                                                                                                                          | Range? <u>80</u> feet <u>US</u>                          | (US, UB, DS) to <u>100</u> feet <u>US</u>                                                                                                           |
| Bank protection types: <b>0-</b> none; <b>1-</b> < 12 inches;                                                                                         | Channel impact zone 2:                                   | Exist? <u>Y</u> (Y or N)                                                                                                                            |
| <b>2-</b> < 36 inches; <b>3</b> - < 48 inches;<br><b>4-</b> < 60 inches; <b>5-</b> wall / artificial levee                                            | Where? <u>RB</u> (LB, RB)                                | Severity 2                                                                                                                                          |
|                                                                                                                                                       |                                                          |                                                                                                                                                     |
| Bank protection conditions: 1- good; 2- slumped;<br>3- eroded: 4- failed                                                                              |                                                          | (US, UB, DS) to <u>100</u> feet <u>DS</u>                                                                                                           |
| Bank protection conditions: 1- good; 2- slumped;<br>3- eroded; 4- failed<br>Erosion: 0 - none; 1- channel erosion; 2-<br>road wash; 3- both; 4- other | Range? 50 feet DS (                                      | (US, UB, DS) to <u>100</u> feet <u>DS</u><br>very slight; <b>1</b> - Slight; <b>2</b> - Moderate; <b>3</b> - Severe                                 |

| 18. Level II Bridge Type: <u>1A/4</u>                                                                                                                                                                                                                                                                                                                                                                                                            | the settle set a window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1a- Vertical abutments with wingwalls                                                                                                                                                                                                                                                                                                                                                                                                            | 1b without wingwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1a with wing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | walls                                                                                             |
| 1b- Vertical abutments without wingwalls                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 2- Vertical abutments and wingwalls, sloping embankment                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| Wingwalls perpendicular to abut. face 3                                                                                                                                                                                                                                                                                                                                                                                                          | –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 3- Spill through abutments                                                                                                                                                                                                                                                                                                                                                                                                                       | N –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 4- Sloping embankment, vertical wingwalls and abutments<br>Wingwall angle less than 90°.                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 19. Bridge Deck Comments (surface cover variations, measure approach overflow width, etc.)                                                                                                                                                                                                                                                                                                                                                       | ed bridge and spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an lengths, brid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge type variatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ons,                                                                                              |
| Measurements of the bridge dimensions are 31.0 feet                                                                                                                                                                                                                                                                                                                                                                                              | for the bridge l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ength, 29.0 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | et for the spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an length, and                                                                                    |
| 25.0 feet for the roadway width. The bridge type is 1a                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,                                                                                                |
| bridge type is 4. The surface coverage is pasture invar                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| approach to the bridge where the roadway width is at                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                 |
| C. Upstream Char                                                                                                                                                                                                                                                                                                                                                                                                                                 | nel Assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| C. Upstream Char                                                                                                                                                                                                                                                                                                                                                                                                                                 | nnel Assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al (BF) 28. Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ank erosion (BF)                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Bank materi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al (BF) 28. Ba<br>8B LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ank erosion (BF)<br>RB                                                                            |
| 21. Bank height (BF) 22. Bank angle (BF) 26. % V                                                                                                                                                                                                                                                                                                                                                                                                 | eg. cover (BF) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. Bank materi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . ,                                                                                               |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1                                                                                                                                                                                                                                                                                        | eg. cover (BF) 2<br>RB<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. Bank materi<br>LB F<br><u>1 1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RB                                                                                                |
| 21. Bank height (BF) 22. Bank angle (BF) 26. % V<br>20. SRD LB RB LB RB LB                                                                                                                                                                                                                                                                                                                                                                       | eg. cover (BF) 2<br>RB<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. Bank materi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RB                                                                                                |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2                                                                                                                                               | eg. cover (BF) 2<br>RB<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. Bank materi<br>LB F<br><u>1 1</u><br>eg depth <u>29.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LB<br>0<br>29. Bed M<br>1: LB <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB<br>0<br>Material <u>3</u><br>RB <u>1</u>                                                       |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of                                                                       | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwe<br>31. Bank prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.</u><br>ection condition<br>; 2- 26 to 50%;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LB<br>0<br>29. Bed M<br>1: LB <u>1</u><br>3- 51 to 75%;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB<br>0<br>Material <u>3</u><br>RB <u>1</u>                                                       |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2                                                                                                                                               | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwe<br>31. Bank prote<br>cover: <b>1</b> - 0 to 25%<br>2- sand, 1/16 - 2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LB<br>0<br>29. Bed M<br>1: LB <u>1</u><br>3- 51 to 75%;<br>- 64mm;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB<br>0<br>Material <u>3</u><br>RB <u>1</u>                                                       |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwa<br>31. Bank prota<br>cover: <b>1</b> - 0 to 25%<br>2- sand, 1/16 - 2m<br>256mm; <b>6</b> - bedro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.0</u><br>ection condition<br><i>;</i> 2- 26 to 50%;<br><i>m</i> ; <b>3</b> - gravel, 2<br>ck; <b>7</b> - manmad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB       0       29. Bed N       1:     LB 1       3- 51 to 75%;       - 64mm;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB<br>0<br>Material <u>3</u><br>RB <u>1</u>                                                       |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material:       0- organics; 1- silt / clay, < 1/16mm; 2 | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwo<br>31. Bank proto<br>cover: <b>1</b> - 0 to 25%<br>2- sand, 1/16 - 2m<br>256mm; <b>6</b> - bedro<br>ial; <b>3</b> - heavy fluvia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.0</u><br>ection condition<br>i; <b>2</b> - 26 to 50%,<br>m; <b>3</b> - gravel, 2<br>ck; <b>7</b> - manmag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LB       0       29. Bed N       1:     LB       3- 51 to 75%;       - 64mm;       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%                                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwe<br>31. Bank prote<br>cover: 1- 0 to 25%<br>2- sand, 1/16 - 2m<br>256mm; 6- bedro<br>ial; 3- heavy fluvia<br>res; 3- < 48 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.0</u><br>ection condition<br>i; <b>2</b> - 26 to 50%,<br>m; <b>3</b> - gravel, 2<br>ck; <b>7</b> - manmag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LB       0       29. Bed N       1:     LB       3- 51 to 75%;       - 64mm;       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%                                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.(</u><br>ection condition<br>; 2- 26 to 50%,<br>m; 3- gravel, 2<br>ck; 7- manmad<br>s; 4- < 60 inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB       0       29. Bed N       29. Bed N       1       3- 51 to 75%;       - 64mm;       9       s; 5- wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB       0         Material       3         RB       1         4- 76 to 100%         Ficial levee |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br><u>1</u><br>25. Thalwe<br>31. Bank prote<br>31. Bank prote<br>25. Thalwe<br>31. Bank prote<br>25. Thalwe<br>31. Bank prote<br>25. Thalwe<br>31. Bank prote<br>31. Bank prote<br>32. Thalwe<br>33. Bank prote<br>33. Bank prote<br>33. Bank prote<br>33. Bank prote<br>34. Bank prote<br>35. Thalwe<br>35. Th               | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2<br>ck; 7- manmad<br>al / mass wastir<br>s; 4- < 60 inche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB       LB         0       29. Bed N         29. Bed N       1         3- 51 to 75%;       - 64mm;         - 64mm;       - 64mm;         - 9       - 55. wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>Ficial levee                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br>1<br>25. Thalwa<br>31. Bank prote<br>25. Thalwa<br>25. Thalwa<br>31. Bank prote<br>25. Thalwa<br>25. Thal        | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.0</u><br>ection condition<br>action condition<br><i>;</i> 2- 26 to 50%,<br><i>m</i> ; 3- gravel, 2<br><i>ck</i> ; 7- manmad<br><i>ck</i> ; 7- manmad<br><i>ck</i> ; 7- control<br><i>ck</i> ; 7- control | B       LB         0       29. Bed N         29. Bed N       1         3- 51 to 75%;       - 64mm;         - 64mm;       - 64mm;         - 64mm; | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>ficial levee                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br>1<br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo  | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.(</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2<br>ck; 7- manmad<br>al / mass wastin<br>s; 4- < 60 inches<br>tream face of<br>another struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB    LB      0    29. Bed N      29. Bed N      3- 51 to 75%;      - 64mm;      e      g      s; 5- wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>ficial levee                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br>1<br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo  | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.(</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2<br>ck; 7- manmad<br>al / mass wastin<br>s; 4- < 60 inches<br>tream face of<br>another struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB    LB      0    29. Bed N      29. Bed N      3- 51 to 75%;      - 64mm;      e      g      s; 5- wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>ficial levee                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br>1<br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo  | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.(</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2<br>ck; 7- manmad<br>al / mass wastin<br>s; 4- < 60 inches<br>tream face of<br>another struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB    LB      0    29. Bed N      29. Bed N      3- 51 to 75%;      - 64mm;      e      g      s; 5- wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>ficial levee                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         45.1       5.0       4.5       1         23. Bank width       40.0       24. Channel width       35.0         30. Bank protection type:       LB       2       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg) of Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2       | eg. cover (BF) 2<br>RB<br>1<br>25. Thalwo<br>31. Bank proto<br>25. Thalwo<br>25. Thalwo  | 27. Bank materi<br>LB F<br><u>1</u> <u>1</u><br>eg depth <u>29.(</u><br>ection condition<br>; 2- 26 to 50%;<br>m; 3- gravel, 2<br>ck; 7- manmad<br>al / mass wastin<br>s; 4- < 60 inches<br>tream face of<br>another struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB    LB      0    29. Bed N      29. Bed N      3- 51 to 75%;      - 64mm;      e      g      s; 5- wall / artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB<br>0<br>Material <u>3</u><br>RB <u>1</u><br>4- 76 to 100%<br>ficial levee                      |

| 33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 260 35. Mid-bar width: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36. Point bar extent: <u>190</u> feet <u>US</u> (US, UB) to <u>400</u> feet <u>US</u> (US, UB, DS) positioned <u>0</u> %LB to <u>90</u> %RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37. Material: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The point bar is very large with an extensive cut bank equal and opposite this bar on the right bank. The point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bar is composed of mainly gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? <u>RB</u> (LB or RB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 41. Mid-bank distance: 300 42. Cut bank extent: 500 feet US (US, UB) to 200 feet US (US, UB, DS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43. Bank damage: <u>2</u> (1- eroded and/or creep; 2- slip failure; 3- block failure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| There is extensive erosion of the bank which has resulted in fallen trees and slumping bank material. The cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bank extends along the edge of the road embankment approaching the right side of the bridge. An additional,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| much smaller cut bank has developed on the left bank from about 50 to 100 feet upstream that shows some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| slip failure of the bank material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47. Scour dimensions: Length <u>100</u> Width <u>10</u> Depth : <u>1.5</u> Position <u>5</u> %LB to <u>60</u> %RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47. Scour dimensions. Length 100 with 10 Depth 11.5 represented to station 2 /01.5 to 000 /01.5 to 0000 /01.5 to 000 /01.5 to 000 /01.5 to 000 /01.5 |
| The channel is constricted and straightened by fill material and riprap protection on the fill placed on both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| banks upstream which may have caused the scouring of the bed here. The protection is extensive along both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| banks and prevents lateral movement of the channel as is evident further upstream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51. Confluence 1: Distance 52. Enters on ( <i>LB or RB</i> ) 53. Type ( <i>1- perennial; 2- ephemeral</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 54. Confluence comments (eg. confluence name):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NO MAJOR CONFLUENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D. Under Bridge Channel Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55. Channel restraint (BF)? LB $\frac{2}{2}$ (1- natural bank; 2- abutment; 3- artificial levee)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LB RB LB RB LB RB LB RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21.5 $3.0$ $2$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 90.0 63. Bed Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bed and bank Material: <b>0</b> - organics; <b>1</b> - silt / clay, < 1/16mm; <b>2</b> - sand, 1/16 - 2mm; <b>3</b> - gravel, 2 - 64mm; <b>4</b> - cobble, 64 - 256mm;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5- boulder, > 256mm; 6- bedrock; 7- manmade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 64. Comments (bank material variation, minor inflows, protection extent, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The predominant bed material is gravel with sand and some cobbles embedded in the sand and gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 65. <mark>Debris a</mark>                              | nd Ice                                      | s there debr                    | is accumulatio                | on? (Y o                        | rN) 66.W                                     | here? <u>Y</u> (1                                   | - Upstream; <b>2</b> -              | At bridge; <b>3</b> - Both) |
|--------------------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------|
| 67. Debris Pote                                        | ential $\underline{1}$ (                    | 1- Low; 2- N                    | Ioderate; <b>3-</b> H         | <i>igh)</i> 68. (               | Capture Effi                                 | ciency 1 ( <b>1</b>                                 | - Low; <b>2</b> - Mode              | erate; <b>3-</b> High)      |
| 69. Is there evi<br>70. Debris and<br>1                |                                             |                                 | (Y or N)                      | Ice E                           | Blockage Po                                  | otential <u>N</u> ( <b>1</b>                        | - Low; <b>2</b> - Mode              | erate; <b>3-</b> High)      |
| Debris produ                                           |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| in the channe                                          |                                             |                                 |                               |                                 |                                              | pstream and                                         | debris and io                       | e is likely to              |
| flow through                                           | the bridge                                  | without ac                      | cumulating                    | and blockin                     | g flow.                                      |                                                     |                                     |                             |
| <b>A b</b> = 1 <b>c c</b> = 1 <b>c</b>                 | 71. Atta                                    | ck 72. Slope                    | e / 73. Toe                   | 74. Scour                       | 75. Scour                                    | 76.Exposure                                         | 77. Material                        | 70 1                        |
| Abutments                                              |                                             |                                 | -                             |                                 |                                              | depth                                               |                                     | 78. Length                  |
| LABUT                                                  |                                             | 0                               | 90                            | 2                               | 0                                            | _                                                   | -                                   | 90.0                        |
|                                                        | 1                                           | 0                               | 90                            |                                 | +                                            | 2                                                   | 0                                   | 27.5                        |
| RABUT                                                  | -                                           | U                               |                               |                                 | 1                                            |                                                     |                                     | 21.5                        |
| Pushed: LB or<br>Scour cond.: <b>0</b> -<br><b>5</b> - | RB<br>not evident<br>settled; <b>6</b> - fa | ; <b>1</b> - evident (<br>ailed | Toe L<br>comment); <b>2</b> - | ocation (Loc.,<br>footing expos | ): <b>0</b> - even, 1<br>ed; <b>3</b> -under | <b>1-</b> set back, <b>2-</b> p<br>mined footing; 4 | rotrudes<br><b>4</b> - piling expos | sed;                        |
| Materials: 1- Co                                       | oncrete; 2- S                               | Stone mason                     | ry or drywall; ;              | 3- steel or me                  | al; <b>4</b> - wood                          |                                                     |                                     |                             |
| 79. Abutment co                                        | omments (eg                                 | g. undermine                    | d penetration,                | unusual scou                    | Ir processe                                  | s, debris, etc.):                                   |                                     |                             |
| -                                                      |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| 1                                                      |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| Both abutmen                                           | nt walls ar                                 | e protected                     | and the dee                   | pest part of                    | the flow t                                   | hrough the b                                        | ridge is near                       | mid-span.                   |
|                                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
|                                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
|                                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
|                                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
|                                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| 80. Wingwal                                            | ls:                                         |                                 |                               |                                 |                                              | USRWW                                               |                                     | USLWW                       |
|                                                        | <br>? Material                              |                                 |                               | 81.<br>posure Angl              | e? Length                                    |                                                     | Wingwall                            | /                           |
| USLWW:                                                 |                                             | Condition?                      | ? depth? d                    | epth?                           | 4.0                                          |                                                     |                                     |                             |
| USLVVV                                                 |                                             |                                 | <u> </u>                      |                                 |                                              | -                                                   | <u> </u>                            |                             |
| USRWW: $\underline{\mathbf{Y}}$                        |                                             | 1                               | 0                             | 2                               | .5                                           | -                                                   |                                     |                             |
| DSLWW: _                                               |                                             |                                 | <u>Y</u>                      | 3(                              | 0.5                                          | -                                                   | ਁ♥                                  |                             |
| DSRWW: 1                                               |                                             | 0                               | -                             | 31                              | .0                                           |                                                     |                                     |                             |
| Wingwall mater                                         | ials: <b>1-</b> Cor<br><b>4-</b> woo        |                                 | one masonry c                 | or drywall; <b>3</b> - s        | teel or meta                                 | Wingwall<br>al;<br>DSRWW                            | $\mathbf{Y}$                        |                             |
| 82. <u>Bank / B</u>                                    |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| Location                                               | USLWW                                       | USRWW                           | LABUT F                       |                                 | .B F                                         | RB DSLW                                             | /W DSRWV                            | V                           |
| Туре                                                   | -                                           | 0                               | Y                             | - 1                             | 1                                            | 1                                                   | 1                                   |                             |
| Condition                                              | Y                                           | -                               | 1                             | - 1                             | 1                                            | 1                                                   | 1                                   |                             |
| Extent                                                 | 1                                           | -                               | 0                             | 2 2                             | 2                                            | 2 2                                                 | -                                   |                             |
| Bank / Bridge J                                        | protection ty                               | pes: <b>0</b> - abse            | nt; <b>1</b> - < 12 inc       | hes; <b>2-</b> < 36 ii          | nches; <b>3-</b> <                           | 48 inches; <b>4</b> - <                             | 60 inches;                          | 3                           |
| Bank / Bridge p                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |
| Protection exte                                        |                                             |                                 |                               |                                 |                                              |                                                     |                                     |                             |

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

- -

- 2 1
- 2
- 0
- Piers:

|                 |           |        | _ ( / 0/ // // | туре сті-пр | ")           |      | 7                                                                                                                |
|-----------------|-----------|--------|----------------|-------------|--------------|------|------------------------------------------------------------------------------------------------------------------|
| 85.<br>Pier no. | widt      | :h (w) | feet           | elev        | vation (e) f | eet  |                                                                                                                  |
|                 | w1        | w2     | w3             | e@w1        | e@w2         | e@w3 |                                                                                                                  |
| Pier 1          |           |        |                | 50.0        | 10.0         | 20.0 |                                                                                                                  |
| Pier 2          |           |        |                | 14.5        | 20.0         | 15.0 |                                                                                                                  |
| Pier 3          |           |        | -              | 50.0        | 10.0         | -    |                                                                                                                  |
| Pier 4          | -         | -      | -              | -           | -            | -    |                                                                                                                  |
| Level 1 Pi      | er Descr  | ſ.     | 1              | 2           | 3            | 4    | ]                                                                                                                |
| 86. Locatio     | on (BF)   |        | e              | ied         | rial.        | -    | LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP                                                                        |
| 87. Type        | /         |        | entir          | by          |              | -    | 1- Solid pier, 2- column, 3- bent                                                                                |
| 88. Materia     | al        |        | e              | the         |              | -    | 1- Wood; 2- concrete; 3- metal; 4- stone                                                                         |
| 89. Shape       |           |        | base           | rip-        |              | -    | 1- Round; 2- Square; 3- Pointed                                                                                  |
| 90. Inclined    | d?        |        | s of           | rap         |              | -    | Y- yes; N- no                                                                                                    |
| 91. Attack      | ∠ (BF)    |        | the            | pro-        |              | -    |                                                                                                                  |
| 92. Pushec      | t         |        | upst           | tec-        |              | -    | LB or RB                                                                                                         |
| 93. Length      | (feet)    |        | -              | -           | -            | -    |                                                                                                                  |
| 94. # of pile   | es        |        | ream           | tion        |              | -    |                                                                                                                  |
| 95. Cross-ı     | member    | S      | wing           | over        |              | -    | <ul> <li>0- none; 1- laterals; 2- diagonals; 3- both</li> <li>0- not evident; 1- evident (comment);</li> </ul>   |
| 96. Scour (     | Conditio  | n      | walls          | back        |              | -    | <ul> <li>2- footing exposed; 3- piling exposed;</li> <li>4- undermined footing; 5- settled; 6- failed</li> </ul> |
| 97. Scour o     | depth     |        | are            | fill        |              | -    |                                                                                                                  |
| 98. Exposu      | ure depth | า      | bur-           | mate        | Ν            | -    |                                                                                                                  |

84. Are there piers? <u>Th</u> (*Y* or if N type ctrl-n pr)

| 99. Pier co            | omments (eg. undern                             | nined penetration, prote                                                                                         | ection and protection ext                                                                                                                                                                | ent, unusual scour pro                                                         | ocesses, etc.):                                  |
|------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
|                        |                                                 |                                                                                                                  | -                                                                                                                                                                                        |                                                                                |                                                  |
| 100.                   |                                                 | E. Downstrea                                                                                                     | am Channel Ass                                                                                                                                                                           | essment                                                                        |                                                  |
| SRD                    | Bank height (BF)<br>LB RB                       | Bank angle (BF)<br>LB RB                                                                                         | % Veg. cover (BF)<br>LB RB                                                                                                                                                               | Bank material (BF<br>LB RB                                                     | ) Bank erosion (BF)<br>LB RB                     |
| -                      | -                                               | -                                                                                                                |                                                                                                                                                                                          |                                                                                |                                                  |
|                        |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| Bank wid               |                                                 | Channel width (Amb) _                                                                                            |                                                                                                                                                                                          | pth (Amb) <u>-</u>                                                             | Bed Material <u>-</u>                            |
| Bank prot              | tection type (Qmax):                            | LB <u>-</u> RB <u>-</u>                                                                                          | Bank protec                                                                                                                                                                              | tion condition: LE                                                             | 3 <u></u> RB <u>-</u>                            |
| Bed and k<br>Bank Ero. | <b>4</b> - cob<br>sion: <b>0</b> - not evident; | anics; <b>1</b> - silt / clay, < 1/<br>ble, 64 - 256mm; <b>5-</b> bo<br><b>1-</b> light fluvial; <b>2-</b> model | n (Veg) cover: <b>1</b> - 0 to 255<br>16mm; <b>2</b> - sand, 1/16 - 2r<br>ulder, > 256mm; <b>6</b> - bedr<br>rate fluvial; <b>3</b> - heavy fluvi<br>: 36 inches; <b>3</b> - < 48 inches | mm; <b>3-</b> gravel, 2 - 64m<br>ock; <b>7</b> - manmade<br>ial / mass wasting | nm;                                              |
| Bank prot              | ection conditions: <b>1-</b>                    | good; 2- slumped; 3- e                                                                                           | roded; <b>4-</b> failed                                                                                                                                                                  |                                                                                |                                                  |
| Comments               | (eg. bank material va                           | ariation, minor inflows,                                                                                         | protection extent, etc.):                                                                                                                                                                |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| -                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| _                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| _                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| _                      |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
|                        |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
| 103. Drop:             | feet                                            | present? <u>N</u> (Y o<br>104. Structure n<br>(eg. downstream scour                                              | naterial: <u>O</u> ( <b>1</b> - steel si                                                                                                                                                 | 102. Distance: <u>-</u><br>heet pile; <b>2</b> - wood pile                     | feet<br>; <b>3</b> - concrete; <b>4</b> - other) |
|                        |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |
|                        |                                                 |                                                                                                                  |                                                                                                                                                                                          |                                                                                |                                                  |

| 106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point bar extent: feet 1 (US, UB, DS) to 1 feet 1 (US, UB, DS) positioned 1%LB to 1%RB<br>Material: 2<br>Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3<br>2<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Is a cut-bank present?       -       (Y or if N type ctrl-n cb)       Where? The (LB or RB)       Mid-bank distance: left         Cut bank extent: bank feet pro (US, UB, DS) to tec- feet tio (US, UB, DS)       Bank damage: n (1- eroded and/or creep; 2- slip failure; 3- block failure)       Mid-bank material is silt and clay pre-         Cut bank comments (eg. additional cut banks, protection condition, etc.):       Extends 30 feet downstream from the downstream face of the bridge. The bank material is silt and clay pre-         dominantly overlying sand and gravel.       The bed material is composed primarily of gravel with sand and cob-         bles embedded in the sand and gravel.       Mid-scour distance: |
| Scour dimensions: Length Width Depth: Positioned%LB to%RB<br>Scour comments (eg. additional scour areas, local scouring process, etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Are there major confluences? N (Y or if N type ctrl-n mc) How many? -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Confluence 1: Distance <u>NO</u> Enters on <u>DR</u> ( <i>LB or RB</i> ) Type <u>OP</u> ( <i>1- perennial; 2- ephemeral</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Confluence 2: Distance <u>STR</u> Enters on <u>UC</u> ( <i>LB or RB</i> ) Type <u>TU</u> (1- perennial; 2- ephemeral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Confluence comments (eg. confluence name):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### F. Geomorphic Channel Assessment

107. Stage of reach evolution

- 1- Constructed 2- Stable

- 3- Aggraded
  4- Degraded
  5- Laterally unstable
  6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

- N
  - N
- -
- -
- -
- -
- -
- -
- -
- -

| 109. G. Plan View Sketch _                 |                               |                                                   |            |  |  |
|--------------------------------------------|-------------------------------|---------------------------------------------------|------------|--|--|
| oint bar (pb)<br>ut-bank (Cb)<br>cour hole | debris XXX<br>rip rap or SSOL | flow►<br>cross-section +++++++<br>ambient channel | stone wall |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |
|                                            |                               |                                                   |            |  |  |

## APPENDIX F:

## **SCOUR COMPUTATIONS**

#### SCOUR COMPUTATIONS

| Structure Number:<br>Road Number:                                                                                                                                     | TH 22                                                                        |                                                                | Town:<br>County:                                              | Town: Craftsbury<br>County: Orleans              |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------|--|--|--|
| Stream:                                                                                                                                                               | Wild Branch Lam                                                              | oille River                                                    |                                                               |                                                  |         |  |  |  |
| Initials EMB                                                                                                                                                          | Date: 03/08/                                                                 | 96 Checked:                                                    | SAO                                                           | Date:                                            | 3/12/96 |  |  |  |
| Analysis of contraction scour, live-bed or clear water?                                                                                                               |                                                                              |                                                                |                                                               |                                                  |         |  |  |  |
| Critical Velocity of Bed Material (converted to English units)<br>Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65<br>(Richardson and others, 1995, p. 28, eq. 16)            |                                                                              |                                                                |                                                               |                                                  |         |  |  |  |
| Approach Section<br>Characteristic                                                                                                                                    |                                                                              | 100 yr                                                         | 500 yr                                                        | other Q                                          |         |  |  |  |
| Total discharge<br>Main Channel Ar<br>Left overbank a<br>Right overbank<br>Top width main<br>Top width L ove<br>D50 vidth R ove<br>D50 left overba<br>D50 right overb | ea, ft2<br>rea, ft2<br>area, ft2<br>channel, ft<br>rbank, ft<br>ft<br>nk, ft | 2000<br>307<br>383<br>7<br>44.7<br>184.3<br>25.5<br>0.127<br>0 | 2400<br>318<br>431<br>15<br>44.7<br>185.5<br>38<br>0.127<br>0 | 1714<br>250<br>0<br>43.1<br>0<br>0.127<br>0<br>0 |         |  |  |  |
| yl, average depth<br>yl, average depth<br>yl, average depth                                                                                                           | , LOB, ft                                                                    | 6.9<br>2.1<br>0.3                                              | 7.1<br>2.3<br>0.4                                             | 5.8<br>ERR<br>ERR                                |         |  |  |  |
| Total conveyance<br>Conveyance, mai<br>Conveyance, LOB<br>Conveyance, ROB<br>Percent discrep<br>Qm, discharge, 1<br>Ql, discharge, 1                                  | n channel<br>ancy, conveyance<br>MC, cfs                                     | 38209<br>26566<br>75<br>0 0                                    | 218<br>)<br>1335.198                                          | 27932<br>0<br>0<br>0<br>1714                     |         |  |  |  |
| Qr, discharge, 1                                                                                                                                                      | ROB, cfs                                                                     | 2.31303                                                        | 7.159767                                                      | 0                                                |         |  |  |  |
| Vm, mean velocity<br>Vl, mean velocity<br>Vr, mean velocity<br>Vc-m, crit. veloc<br>Vc-l, crit. veloc<br>Vc-r, crit. veloc                                            | , LOB, ft/s<br>, ROB, ft/s<br>ity, MC, ft/s<br>ity, LOB, ft/s                | 3.8<br>2.1<br>0.3<br>7.8<br>0.0<br>0.0                         | 4.2<br>2.5<br>0.5<br>7.8<br>0.0<br>0.0                        | 6.9<br>ERR<br>ERR<br>7.6<br>N/A<br>N/A           |         |  |  |  |

#### Results

| Live-bed(1) or Clear-Water(0) | Contraction | Scour? |     |
|-------------------------------|-------------|--------|-----|
| Main Channel                  | 0           | 0      | 0   |
| Left Overbank                 | N/A         | N/A    | N/A |
| Right Overbank                | N/A         | N/A    | N/A |

Clear Water Contraction Scour in MAIN CHANNEL

v2 = (02<sup>2</sup>/(131\*Dm<sup>(2/3)</sup>\*W2<sup>2</sup>))<sup>(3/7</sup>) Converted to English Units ys=y2-y bridge (Richardson and others, 1995, p. 32, eq. 20, 20a) Approach Section Q100 Q500 Qother Main channel Area, ft2 307 318 250 Main channel width, ft 44.7 44.7 43.1 6.868009 7.114094 5.800464 v1, main channel depth, ft Bridge Section (Q) total discharge, cfs 2000 2400 1714 (Q) discharge thru bridge, cfs 1372 1537 1714 Main channel conveyance 22627 22627 14165 Total conveyance 22627 22627 14165 Q2, bridge MC discharge,cfs 1372 1537 1714 Main channel area, ft2 209 209 133 Main channel width (skewed), ft 25.8 25.8 25.8 Cum. width of piers in MC, ft 0.0 0.0 0.0 W, adjusted width, ft 25.8 25.8 25 8 y\_bridge (avg. depth at br.), ft 8.112403 8.112403 5.151163 Dm, median (1.25\*D50), ft 0.15875 0.15875 0.15875 y2, depth in contraction,ft 6.311992 6.957297 7.638622 ys, scour depth (y2-ybridge), ft -1.80 -1.16 2.49 ys, scour depth (y2-y1), ft -0.56 -0.16 1.84 ys, scour depth (y2-yfullv), ft 0.77 0.99 N/A ARMORING 0.311 D90 0.311 0 311 D95 0.38 0.38 0.38 Critical grain size,Dc, ft 0.130518 0.163799 0.595253 Decimal-percent coarser than Dc 0.481 0.355 N/A Depth to armoring, ft 0.42 0.89 N/A Pressure Flow Scour (contraction scour for orifice flow conditions) Cq=1/Cf\*Cc Cf=1.5\*Fr^0.43 (<=1) Hb+Ys=Cq\*qbr/Vc Cc=SQRT[0.10\*(Hb/(ya-w)-0.56)]+0.79 (<=1) Chang Equation (Richardson and others, 1995, p. 145-146) Q100 Q500 OtherQ Q thru bridge main chan, cfs 1372 1537 0 Vc, critical velocity, ft/s 7.8 7.8 0 Vc, critical velocity, m/s 2.377324 2.377324 0 Main channel width (skewed), ft 25.8 25.8 0 Cum. width of piers, ft 0 0 0 W, adjusted width, ft 25.8 25.8 0 qbr, unit discharge, ft<sup>2</sup>/s 53.17829 59.57364 ERR qbr, unit discharge, m^2/s 4.939943 5.534032 N/A Area of full opening, ft<sup>2</sup> 209.3 209.3 0 Hb, depth of full opening, ft 8.112403 8.112403 ERR Hb, depth of full opening, m 2.47254 2.47254 N/A Fr, Froude number MC 0.42 0.47 1 Cf, Fr correction factor (<=1.0) 1.5 1 1 Elevation of Low Steel, ft 98.75 98.75 0 Elevation of Bed, ft 90.6376 90.6376 N/A 99.58 Elevation of approach WS, ft 99.84 0 HF, bridge to approach, ft 0.03 0.06 0 Elevation of WS immediately US, ft 99.55 99.78 0 ya, depth immediately US, ft 8.912403 9.142403 N/A ya, depth immediately US, m 2.769547 2.84102 N/A 100.42 100.42 Mean elev. of deck, ft 0 w, depth of overflow, ft (>=0) 0 0 0 Cc, vert contrac correction (<=1.0) 0.977146 0.970925 ERR

Ys, depth of scour (chang), ft

-1.13522 -0.24604 N/A

Abutment Scour

Fr>0.8 (vertical abut.)

Froehlich's Abutment Scour Ys/Y1 = 2.27\*K1\*K2\*(a'/Y1)^0.43\*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28) Left Abutment Right Abutment Characteristic 100 yr Q 500 yr Q Other Q 100 yr Q 500 yr Q Other Q (Qt), total discharge, cfs 2000 2400 1714 2000 2400 1714 a', abut.length blocking flow, ft 195.9 197.1 32.8 45.3 11.2 6.1 Ae, area of blocked flow ft2 279.6 291 32.3 42.3 52.9 16 Qe, discharge blocked abut.,cfs - -128.6 91.1 112.3 60.8 (If using Qtotal\_overbank to obtain Ve, leave Qe blank and enter Ve manually) Ve, (Qe/Ae), ft/s 2.14 2.46 3.981424 2.153664 2.122873 3.8 ya, depth of f/p flow, ft 1.43 1.48 2.88 1.29 1.17 2.62 --Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru) 0.82 0.82 K1 0.82 0.82 0.82 0.82 --Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US) theta 110 110 70 70 110 70 1.02643 1.02643 1.02643 0.967857 0.967857 0.967857 К2 Fr, froude number f/p flow 0.26 0.28 0.41 0.33 0.35 0.41 ys, scour depth, ft 11.26 12.05 8.64 6.08 6.48 6.59 HIRE equation (a'/ya > 25) $ys = 4 * Fr^0.33 * y1 * K/0.55$ (Richardson and others, 1995, p. 49, eq. 29) a'(abut length blocked, ft) 197 1 11 2 32.8 45 3 195.9 6 1 y1 (depth f/p flow, ft) 1.43 1.48 2.88 1.29 1.17 2.62 a'/y1 137.26 133.50 3.88 25.43 38.79 2.33 Skew Correction (pg. 49, fig. 16) 1.044 1.044 0.9667 0.9667 1.044 0.9667 Froude no. f/p flow 0.26 0.28 0.41 0.33 0.35 0.41 Ys w/ corr. factor K1/0.55: 6 90 7 34 ERR 6 32 5 79 ERR vertical vertical w/ ww's 6.02 ERR 5.66 ERR 4.74 5.18 spill-through 3.80 4.04 ERR 3.47 3.18 ERR Abutment riprap Sizing Isbash Relationship D50=y\*K\*Fr<sup>2</sup>/(Ss-1) and D50=y\*K\*(Fr<sup>2</sup>)<sup>0.14</sup>/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82) Characteristic 0100 0500 Oother Fr, Froude Number 0.42 0.47 1 0 42 0 47 1 (Fr from the characteristic V and y in contracted section--mc, bridge section) y, depth of flow in bridge, ft 8.1 8.1 5.1 8.1 8.1 5.1 Median Stone Diameter for riprap at: left abutment right abutment, ft 1.11 Fr<=0.8 (vertical abut.) 0.88 ERR 0.88 ERR 1.11

ERR

ERR

2.13

ERR

ERR

2.13

50