LEVEL II SCOUR ANALYSIS FOR BRIDGE 31 (BRNATH00470031) on TOWN HIGHWAY 47, crossing LOCUST CREEK, BARNARD, VERMONT

U.S. Geological Survey Open-File Report 96-384

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 31 (BRNATH00470031) on TOWN HIGHWAY 47, crossing LOCUST CREEK, BARNARD, VERMONT

By Erick M. Boehmler and Micheal A. Ivanoff

U.S. Geological Survey Open-File Report 96-384

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	
Level II summary	•••••
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	1
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure BRNATH00470031 viewed from upstream (October 12, 1994)	
4. Downstream channel viewed from structure BRNATH00470031 (October 12, 1994)	
5. Upstream channel viewed from structure BRNATH00470031 (October 12, 1994)	
6. Structure BRNATH00470031 viewed from downstream (October 12, 1994).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BRNATH00470031 on Town Highway 47, crossing Locust Creek,	
Barnard, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
BRNATH00470031 on Town Highway 47, crossing Locust Creek,	
Barnard, Vermont.	
,	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BRNATH00470031 on Town Highway 47, crossing Locust Creek,	
Barnard, Vermont.	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BRNATH00470031 on Town Highway 47, crossing Locust Creek, Barnard, Vermont	1
Dallialu. Veillioiil.	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 31 (BRNATH00470031) ON TOWN HIGHWAY 47, CROSSING LOCUST CREEK, BARNARD, VERMONT

By Erick M. Boehmler and Micheal A. Ivanoff

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BRNATH00470031 on town highway 47 crossing Locust Creek, Barnard, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from VTAOT files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic province of central Vermont in the town of Barnard. The 4.47-mi² drainage area is a predominantly rural and forested basin. In the vicinity of the study site, the banks have dense woody vegetation coverage except for areas of grass and brush on the upstream banks.

In the study area, Locust Creek has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 34 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble (D_{50} is 55.2 mm or 0.181 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 12, 1994, indicated that the reach was stable.

The town highway 47 crossing of Locust Creek is a 28-ft-long, one-lane bridge consisting of one 25-foot span concrete slab superstructure (Vermont Agency of Transportation, written commun., August 23, 1994). The bridge is supported by vertical, concrete abutments with concrete wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees.

The scour protection measures at the site were type-2 stone fill (less than 36 inches diameter) on the right and left abutments and all wingwalls. The banks upstream and downstream are not protected. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.6 to 9.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

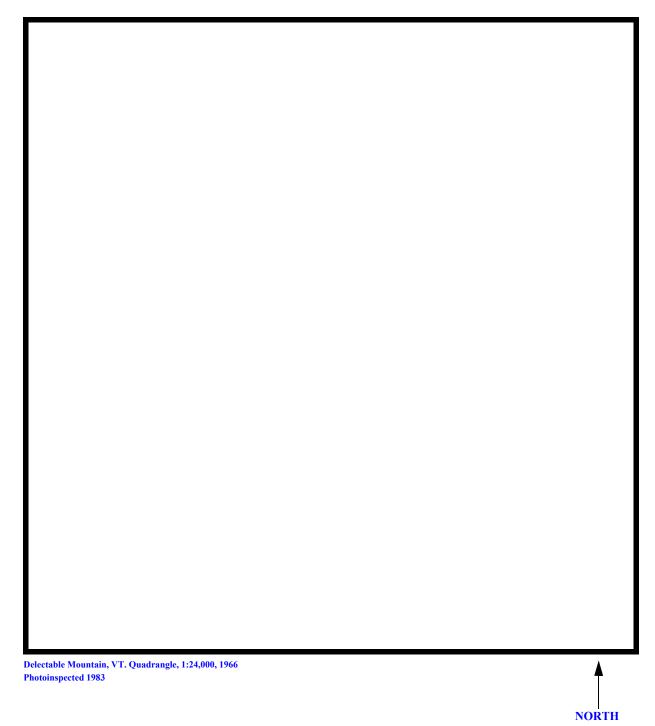
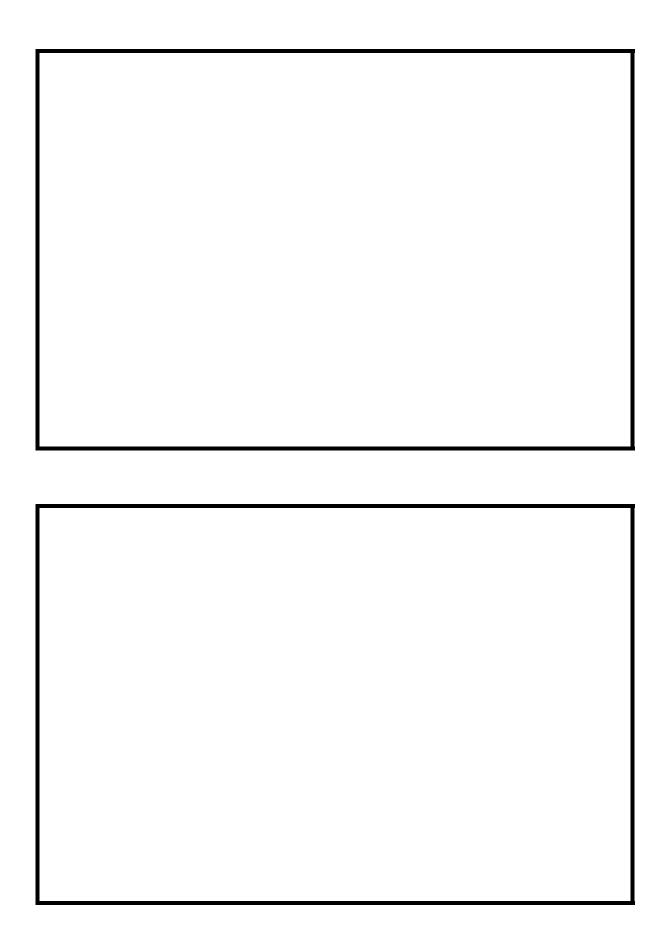



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

			•		
enty Winds	or	— Road —	TH 47	District —	04
	Descri	ption of Bridg	ge		
Bridge length	ft Bridge w	17.5		span length	25
Alignment of b	ridge to road (on curve or Vertical	straight) —	Straight	Vertical	
Abutment type	Yes	 Embankn	$\frac{10}{10}$	/12/94	
Stone fill on abu	ıtmant?	Date of ins right and left at	n <i>act</i> ion		ight
winowall and d	lownstream left and right w		outilients, upst	104111 1011 4114 1	-8
Is buides shows	nd to flood flow gooding	40 N. Janes		Y	_20
····· g - ·····	ed to flood flow according			Y Angle	20
····· g - ·····	lation on bridge at time of		el II site visit:	.,,	·,
····· g - ·····	lation on bridge at time of	Level I or Lev	el II site visit:	.,,	c ahangel
Debris accumu Level I Level II localized	lation on bridge at time of Date of inspection 10/12/94 10/12/94 Moderate. With a control of the control of	F Level I or Lev Percent of blocked no	el II site visit:	Percent of blocked v	C observed to the control of the con
Debris accumu Level I Level II	lation on bridge at time of Date of inspection 10/12/94 10/12/94 Moderate. With a control of the control of	F Level I or Lev Percent of blocked no	el II site visit:	Percent of blocked v	C observed of the control of the con

Description of the Geomorphic Setting

General topo	Ography The channel is located within a 185 foot-wide valley, with steep to
moderately s	sloping valley walls on both sides.
Geomorphi	ic conditions at bridge site: downstream (DS), upstream (US)
Date of insp	pection <u>10/12/94</u>
DS left:	Gradually sloping channel bank to steep valley wall.
DS right:	Gradually sloping channel bank to moderately sloping valley wall.
US left:	Moderately sloping channel bank to steep valley wall
US right:	Moderately sloping channel bank to moderately sloped valley wall.
	Description of the Channel
	34
Average to	op width Gravel / Cobble Average depth Cobble / Boulder
Predomina	nt bed material Bank material Sinuous but stable
with semi-al	lluvial to non-alluvial channel boundaries and no flood plains.
	10/12/94
Vegetative o	CO' Trees and shrubs
DS left:	Trees, shrubs, and brush
DS right:	Grass and brush giving way to trees and brush.
US left:	Grass and brush giving way to trees, shrubs, and brush.
US right:	<u>Y</u>
Do banks a	ppear stable? Localized zones of instability are evident beyond the study area. A
cut-bank is	s noted on the left bank upstream with some trees leaning over the channel.
The asses	ssment of 10/12/94 indicated the stone fill on each abutment constricts the lowest
	quarter of the channel
through the	e bridge.
Describe an	ny obstructions in channel and date of observation.

Hydrology

Drainage area $\frac{4.47}{}$ mi ²						
Percentage of drainage area in physiographic p	provinces: (ap	proximate)				
Physiographic province Green Mountain						
Is drainage area considered rural or urban? None. urbanization:	Rural	— Describe any significant				
Is there a USGS gage on the stream of interest?	No_					
USGS gage description						
USGS gage number						
Gage drainage area	mi ²	No				
Is there a lake/p						
	d Discharges	1,600				
$Q100$ ft^3/s The 1	<i>Q50</i> 00-year discha	0 ft ³ /s arge is taken from flood				
frequency estimates in the VTAOT database (VTA						
The 500-year discharge was extrapolated from the	e available dat	a. The discharges used in the				
model were in a range defined by several empirica	al methods (Po	otter, 1957a&b Johnson and				
Tasker, 1974; Benson, 1962; FHWA, 1983; Talbot	:, 1887).					

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	Add 1597 feet to the USGS
survey to obtain VTAOT plan's datum.	
Description of reference marks used to determine USGS dat	um. RM1 is a chiseled "X"
on top of the DS end of the right abutment (elev. 96.76 ft, arb	
"X" on top of the US end of the right abutment (elev. 96.92 ft	t. arbitrary datum).

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-36	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	12	1	Road Grade section
APPRO	47	2	Modelled Approach section (Templated from APTEM)
APTEM	59	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.060.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.006 ft/ft which was estimated from surveyed thalweg points downstream of the site.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0291 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

The modeled 100- and 500-year discharges do not overtop the roadway embankments or the bridge deck.

Although the upstream channel is skewed to the bridge opening, flow was assumed to align with the abutment walls when passing through the bridge.

Bridge Hydraulics Summary

Average bridge embankment elevation 97.8 ft Average low steel elevation 95.8 ft	
100-year discharge 1,200 ft ³ /s Water-surface elevation in bridge opening 90.4 ft Road overtopping? N Discharge over road Area of flow in bridge opening 118 ft ² Average velocity in bridge opening 10.2 ft/s Maximum WSPRO tube velocity at bridge 12.5 ft/s	0 ,,,,\$
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 0.5 †	91.7
500-year discharge 1,600 ft ³ /s Water-surface elevation in bridge opening 91.3 ft Road overtopping? N Discharge over road 0 Area of flow in bridge opening 137 ft ² Average velocity in bridge opening 11.7 ft/s Maximum WSPRO tube velocity at bridge 14.6 /s	, - /s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	93.2
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1993, p. 35, equation 18) for the 500-year discharge. For the 100-year discharge, contraction scour was computed by use of the live-bed contraction scour equation (Richardson and others, 1993, p. 33, equation 16). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. In this case, the 500-year discharge model resulted in the worst case contraction scour with a scour depth of 1.5 ft. Armoring depths computed suggest that streambed armoring will not limit the depth of contraction scour.

Abutment scour for each modelled discharge was computed by use of the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	•	500-yr discharge	Incipient overtopping discharge
	(S	cour depths in fee	<i>t)</i>
Main channel	0.0	1.5	
Live-bed scour			
Clear-water scour	9.8	26.2	
Depth to armoring	- _		
Left overbank			
Right overbank			
Local scour:			
Abutment scour	7.1	9.2	
Left abutment	6.6-	7.8-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
			Incipient overtopping
	100-yr dischargo		
		(D ₅₀ in feet)	
Abutments:	2.0	2.4	
Left abutment	2.0	2.4	
Right abutment	_	_	_
Piers:			
Pier 1			
Pier 2			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BRNATH00470031 on town highway 47, crossing Locust Creek, Barnard, Vermont.

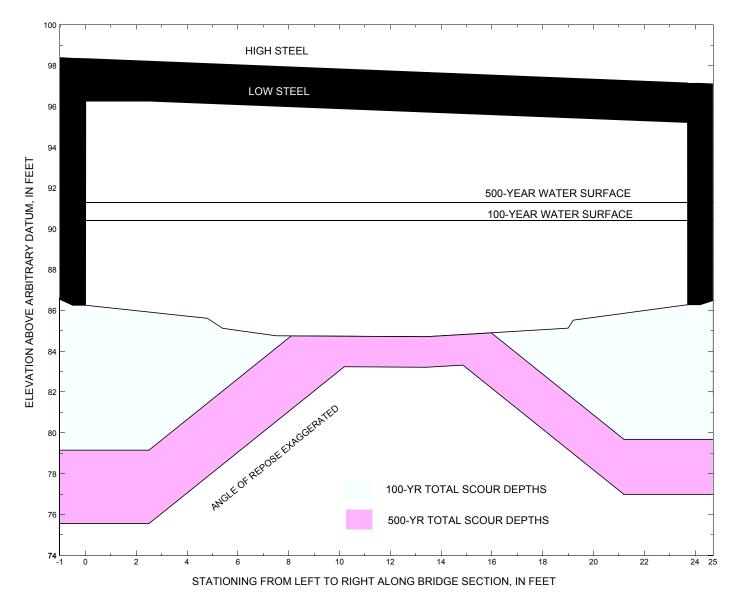


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BRNATH00470031 on town highway 47, crossing Locust Creek, Barnard, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BRNATH00470031 on Town Highway 47, crossing Locust Creek, Barnard, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT plans' bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 1,200	cubic-feet per sec	cond				_
Left abutment	0.0	1693.6	96.4	82	86.2	0.0	7.1		7.1	79.1	-3
Right abutment	23.7	1692.4	95.2	82	86.3	0.0	6.6		6.6	79.7	-2

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BRNATH00470031 on Town Highway 47, crossing Locust Creek, Barnard, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT plans' bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,600	cubic-feet per sec	cond				
Left abutment	0.0	1693.6	96.4	82	86.2	1.5	9.2		10.7	75.5	-7
Right abutment	23.7	1692.4	95.2	82	86.3	1.5	7.8		9.3	77.0	-5

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M.A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terraine, U.S. Geological Survey Water-supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V., Harrison, L.J., Richardson, J.R., and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1966, Delectable Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial Photographs, 1964; Photoinspected 1983, Scale 1:24,000, Contour Interval, 20 feet.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
T1
          U.S. Geological Survey WSPRO Input File brna031.wsp
T2
          Hydraulic analysis for structure BRNATH00470031 Date: 31-JAN-96
          Town Highway 47 crossing of Locust Creek, Barnard, VT
Т3
                                                                               EMB
           1200.0, 1600.0
Ω
SK
           0.0060,
                     0.0060
*
           6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
XS
     EXITX
              -36
                              -24.0, 93.93
16.2, 84.84
70.8, 94.40
                                                -8.7, 87.37
20.9, 85.29
122.9, 96.63
GR
             -41.7, 103.09
                                                                    0.0, 85.40
                                                                   34.0, 88.06
GR
              6.7, 84.47
             41.1, 91.01
GR
            0.060
N
*
               0 * * * 0.0125
XS
     FULLV
*
*
              SRD
                     LSEL
                               XSSKEW
BR
     BRIDG
               0
                      95.8
                                15.0
                               0.0, 86.25
13.4, 84.71
23.7, 95.20
                                                 4.8, 85.61
19.0, 85.13
              0.0, 96.39
                                                                   5.4, 85.12
19.2, 85.52
GR
GR
              7.5,
                    84.76
             23.7, 86.28
                                                  0.0, 96.39
GR
*
*
            BRTYPE BRWDTH
CD
                       23.7
              1
Ν
            0.045
*
*
*
              SRD
                      EMBWID
                               IPAVE
XR
     RDWAY
               12
                        17.5
             -76.9, 103.54
                                                0.0, 98.34
                              -31.6, 100.31
                                                                   25.9, 97.16
GR
             83.3, 96.13
                              136.8, 96.65
GR
ВР
             1.1
*
XT
     APTEM
               59
GR
            -96.1, 101.06
                              -46.1, 98.51
                                                -41.3, 95.96
                                                                  -24.7, 95.18
             -10.4, 94.16
                               0.0, 89.24
                                                 7.5, 86.32
                                                                 10.4, 85.88
GR
GR
             13.0, 85.45
                               16.1, 85.92
                                                 17.0, 86.28
                                                                   18.3, 86.68
             21.4, 87.57
92.5, 95.23
                              24.5, 90.21
109.2, 99.08
GR
                                                 34.2, 94.54
                                                                   66.5, 94.57
GR
*
AS
     APPRO
               47
             -0.35
GT
            0.060
Ν
*
HP 1 BRIDG
              90.42 1 90.42
HP 2 BRIDG
              90.42 * * 1200
HP 1 APPRO
              91.70 1 91.70
HP 2 APPRO
              91.70 * * 1200
*
              91.26 1 91.26
HP 1 BRIDG
              91.26 * * 1600
HP 2 BRIDG
HP 1 APPRO
              93.17 1 93.17
              93.17 * * 1600
HP 2 APPRO
ΕX
ER
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

1 WSPRO V042094	FEDERAL HI MODEL	GHWAY ADMINI						/EY	
7012031	*** RUN DATE				.1122 00.	0	20110		
T1 T2 T3	U.S. Geologi Hydraulic an Town Highway	alysis for s	struct	ure BRN	IATH00470	031	Date:		EMB
CROSS-	SECTION PROPER	TIES: ISEQ	= 3;	SECID	= BRIDG	; SRD	=	0.	
WSEL	SA# AREA 1 118			WETP	ALPH	LEW	REW	QCR 1513	
90.42		9321				0	24		
	TY DISTRIBUTIO	N: ISEQ =	3; S	ECID =	BRIDG; S	SRD =		0.	
W 90	SEL LEW .42 0.0	REW ARE 23.7 117.	EA . 6	K 9321.	Q 1200.	VEL 10.20			
X STA.		2.6							
A(I) V(I)	5.61	6.8 8.81		9.70	10.84		5.2 11.46		
X STA.		8.3							
A(I) V(I)	5.0 11.92	4.9 12.24	1	4.8 2.38	4.8 12.51		4.8		
	11.9								
A(I) V(I)	4.8 12.54	4.8 12.53	1	4.8 2.48	5.0 11.97		5.1 11.87		
X STA.	16.4							23.7	
A(I) V(I)	5.2 11.58	5.4 11.07		6.3 9.50	6.7 8.90		10.7 5.61		
1 CROSS-	SECTION PROPER	TIES: ISEQ	= 5;	SECIE	= APPRO	; SRD	=	47.	
WSEL	SA# AREA		TOPW	WETP	ALPH	LEW	REW	QCR	
91.70	1 135 135	7920 7920	35 35	37 37	1.00	-5	29	1521 1521	
1 VELOCI	TY DISTRIBUTIO	N: ISEQ =	5; S	ECID =	APPRO;	SRD =	4	17.	
	SEL LEW .70 -5.9								
X STA.	-5.9		3.6		5.2	6.5		7.6	
A(I) V(I)		8.6 6.98							
X STA.		8.6							
A(I) V(I)		5.6 10.75							
X STA.	12.1	12.9	13.7	1	.4.6	15.4		16.4	
A(I) V(I)		5.2 11.52							
	16.4	17.4	18.5	1	9.9	21.6		28.6	
	6.0 10.04	6.3 9.53							
1 CROSS-	SECTION PROPER	TIES: ISEQ	= 3;	SECID	= BRIDG	; SRD	=	0.	
WSEL	SA# AREA 1 137	K 11591		WETP		LEW	REW	QCR 1899	
91.26 1	137	11591				0	24		

WSPRO OUTPUT FILE (continued)

	VEL	OCITY	DISTR	IBUTIO	N: IS	EQ =	3;	SECID	= BF	RIDG;	SRD =		0.
		WSE 91.2		LEW	REW 23.7			11591		Q 1600.			
	STA. A(I) V(I)			13.0 6.16		7.8		7.2		6.4	4	6.0	7.4
Х	STA. A(I) V(I)		7.4		8.3	5.7	9.2	2 5.5	10.	1 5.!	11.0	5.5	
	STA. A(I) V(I)			5.5 14.49		5.5		5.6		5.	7	5.8	16.4
	STA. A(I) V(I)			6.0		6.5		7.2		7.	7	13.0	
-		SS-SE	CTION	PROPERT	TIES:	ISEÇ	2 = 5	5; SE	CID =	= APPRO	O; SRI) =	47.
1			A# 1	AREA 191 191	12	517	41	L	45			REW 32	QCR 2339 2339
	VEL	OCITY	DISTR	IBUTIO	N: IS	EQ =	5;	SECID	= AI	PPRO;	SRD =	4	7.
		WSE 93.1		LEW 9.0	REW 31.9			12517		Q 1600.			
	STA. A(I) V(I)			17.6 4.56		11.8		10.3		9.3	1	8.8	
	STA. A(I) V(I)			8.3 9.62		7.8		7.5		7.5	5	7.4	12.0
	STA. A(I) V(I)			7.3 11.00		7.3		7.5		7.8	8	8.0	
	STA. A(I) V(I)		16.8	8.4 9.55		8.9		9.9		11.8		18.1	31.9
1	* EX												
+-	++ BEG	INNIN	G PROF	'ILE CAI	CULAT	IONS		2					
2			SRDL FLEN	LEW REW			VHD ALPH				CRWS FR#	VE	Q WSEL L
E			*****					*****			88.68 0.42		0 90.87 3
F	ULLV:F	0			14	271	1.00	0.02	C	0.00	***** 0.46 STRICTE	5.2	
ŧ	===125	FR#		S FNTES									1.00
=	===110	WSEL	NOT F	OUND AT								0.5	0
:	===115	WSEL	NOT F	OUND AT								91.	00
=	===135	CONV	EYANCE	RATIO				OMMEND KRAT					

WSPRO OUTPUT FILE (continued)

APPRO:AS									91.20
47	47				0.58		0.93 NSTRICTEI		
	. CIIII AI	JOVE RESO	DIO KE	PHECI	NORTH	d (ONCO	NOTRICIE) FEOW>	
	<<< <res< td=""><td>SULTS REF</td><td>LECTIN</td><td>G THE</td><td>CONSTR</td><td>ICTED FL</td><td>OW FOLLOW</td><td>V>>>></td><td></td></res<>	SULTS REF	LECTIN	G THE	CONSTR	ICTED FL	OW FOLLOW	V>>>>	
XSID:CODE SRD		LEW REW			HF HO			Q VEL	WSEL
BRIDG:BR 0							89.70 0.79		90.42
		C 1.000 *					B XRAB		
XSID:COI RDWAY:RG							R (RTOPPED>:		L
XSID:CODE SRD		LEW REW				EGL ERR		Q VEL	
APPRO:AS		-5 29					91.00 0.79		91.70
		KQ 8608.							
						ATIONS>>	~~~		
FIRST USEF	R DEFINEI		D 01 D	KIDGE	COMPOR	1110110			
WATE GOT			DEL		•	**	2002		HODE
XSID:COL EXITX:XS						K 5487	AREA 244.	VEL 4 93	WSEL 90 87
FULLV: FV						1271.	230.		91.08
BRIDG:BR				120		9333.	118.		
RDWAY:RG	12	*****				*****		2.00**	
APPRO:AS	47	-6.	29.	120	00.	7932.	136.	8.85	91.70
XSID:COI APPRO:AS		24.							
SECOND USEF	R DEFINEI	TABLE.							
XSID: COL			# Y				HO VHD		
EXITX:XS	88.6	0.4	2 84	.47	103.09*	******	*** 0.38	91.2	4 90.87
FULLV: FV	*****	** 0.4	6 84	.92	103.54	0.23 0	.02 0.42	91.5	0 91.08
BRIDG:BR									
RDWAY:RG									******
APPRO:AS	91.0	0.7	9 85	.10	100.71	0.49 0	.39 1.22	92.9	2 91.70
XSID:CODE SRD	SRDL FLEN				HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
EXITX:XS *	****						89.29 0.43		91.93
FULLV:FV	36	-18	204	0.46	0.22	02 50	*****	1600	92.13
0 - 0 - 0 - 0	36				0.23		0.45		92.13
-							NSTRICTEI		>>>>
===125 FR#		FNTEST A						91.	88
===110 WSEI		JND AT SE VSLIM1,WS					AY. 100.71	0.50	
===115 WSEI							CRWS.	91.88	
===135 CONV			SIDE O	F RECO	OMMENDEI	D LIMITS			
			"APPR	.0"	KRATIO	0.4	8		
APPRO:AS	47	-6	152	1.72	0.67	93.89	91.88	1600	92.17
47	47	30	9250	1.00	0.63	0.00	0.91	10.52	

WSPRO OUTPUT FILE (continued)

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSI	D:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRID	G:BR	36	0	137	2.12	0.39	93.39	90.62	1600	91.26
	0	36	24	11598	1.00	0.67	0.01	0.84	11.69	
	TYPE PP	CD FLOW	C	P/A	LSE	L BLEN	N XLAB	XRAB		
	1. **	** 1.	1.000	*****	95.8	0 *****	* *****	*****		
	XSID:COD	E SRD	FLEN	I HF	VHD	EGL	ERR	Ç	WSEL	
R	DWAY:RG	12.		<<< <e< td=""><td>MBANKM</td><td>ENT IS N</td><td>NOT OVER</td><td>ropped>></td><td>>>></td><td></td></e<>	MBANKM	ENT IS N	NOT OVER	ropped>>	>>>	
XSI	D:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	CPD	ELEM	DEM	K	AT.DH	ПO	FDD	ED#	TOT	

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

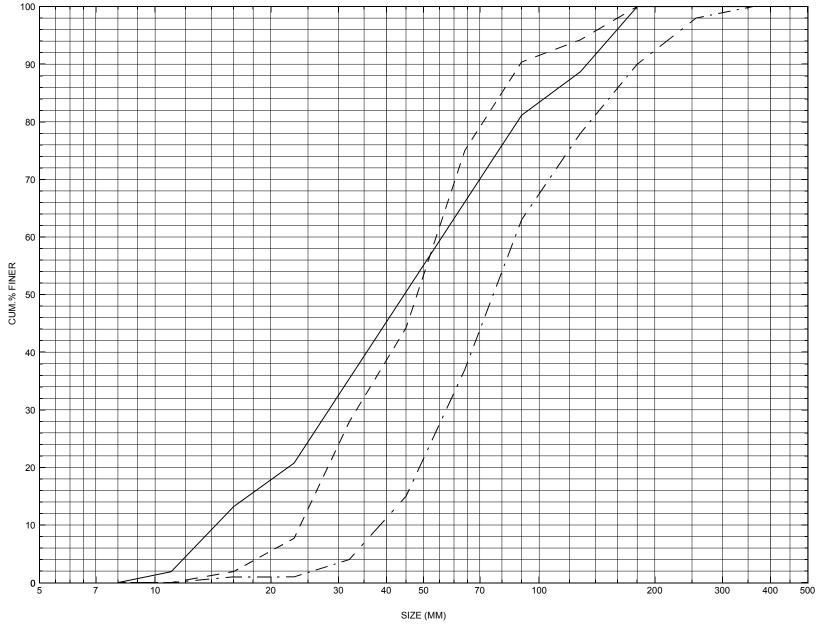
APPRO:AS 23 -8 191 1.09 0.42 94.26 91.88 1600 93.17 47 24 32 12507 1.00 0.45 0.00 0.68 8.39

M(G) M(K) KQ XLKQ XRKQ OTEL 0.353 0.000 13029. 0. 24. 92.68

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-36.	-19.	49.	1600.	20641.	310.	5.16	91.93
FULLV:FV	0.	-19.	47.	1600.	19367.	294.	5.45	92.13
BRIDG:BR	0.	0.	24.	1600.	11598.	137.	11.69	91.26
RDWAY:RG	12.**	******	****	0.*	*****	*****	2.00**	*****
APPRO:AS	47.	-9.	32.	1600.	12507.	191.	8.39	93.17


XSID:CODE XLKQ XRKQ KQ APPRO:AS 0. 24. 13029.

SECOND USER DEFINED TABLE.

XSID:COD	E CRWS	FR#	YMIN	XAMY	HF	HO	VHD	EGL	WSEL
EXITX:XS	89.29	0.43	84.47	103.09*	*****	****	0.41	92.34	91.93
FULLV:FV	*****	0.45	84.92	103.54	0.23	0.02	0.46	92.59	92.13
BRIDG:BR	90.62	0.84	84.71	96.39	0.39	0.67	2.12	93.39	91.26
RDWAY:RG	******	*****	96.13	103.54*	*****	*****	*****	*****	*****
APPRO:AS	91.88	0.68	85.10	100.71	0.42	0.45	1.09	94.26	93.17
ER									

¹ NORMAL END OF WSPRO EXECUTION.

APPENDIX C: **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure BRNATH00470031, in Barnard, Vermont.

APPENDIX D: HISTORICAL DATA FORM