LEVEL II SCOUR ANALYSIS FOR BRIDGE 29 (CRAFTH00550029) on TOWN HIGHWAY 55, crossing the BLACK RIVER, CRAFTSBURY, VERMONT

U.S. Geological Survey Open-File Report 96-386

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 29 (CRAFTH00550029) on TOWN HIGHWAY 55, crossing the BLACK RIVER, CRAFTSBURY, VERMONT

By Erick M. Boehmler and James R. Degnan

U.S. Geological Survey Open-File Report 96-386

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerse Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	
Level II summary	•••••
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	1
Cross-Sections Used in WSPRO Analysis	1
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	1
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure CRAFTH00550029 viewed from upstream (June 7, 1995)	
4. Downstream channel viewed from structure CRAFTH00550029 (June 7, 1995)	
5. Upstream channel viewed from structure CRAFTH00550029 (June 7, 1995)	
6. Structure CRAFTH00550029 viewed from downstream (June 7, 1995).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
CRAFTH00550029 on Town Highway 55, crossing the Black River,	
Craftsbury, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
CRAFTH00550029 on Town Highway 55, crossing the Black River,	
Craftsbury, Vermont.	
5.42.65.41,	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
CRAFTH00550029 on Town Highway 55, crossing the Black River,	
Craftsbury, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
CRAFTH00550029 on Town Highway 55, crossing the Black River,	
Craftsbury, Vermont	1

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 29 (CRAFTH00550029) ON TOWN HIGHWAY 55, CROSSING THE BLACK RIVER, CRAFTSBURY, VERMONT

By Erick M. Boehmler and James R. Degnan

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure CRAFTH00550029 on town highway 55 crossing the Black River, Craftsbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the New England Upland section of the New England physiographic province of north-central Vermont in the town of Craftsbury. The 24.7-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage except for the upstream left bank and the downstream right bank, which have more brush cover than trees.

In the study area, the Black River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 41 ft and an average channel depth of 5.5 ft. The predominant channel bed material is sand and gravel (D_{50} is 44.7 mm or 0.147 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable.

The town highway 55 crossing of the Black River is a 32-ft-long, one-lane bridge consisting of one 28-foot span steel stringer superstructure with a timber deck (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 10 degrees.

A scour hole 2 ft deeper than the mean thalweg depth was evident at mid-channel immediately downstream of the bridge during the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) on the upstream right bank and road approach embankment. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.9 to 1.4 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 12.1 to 15.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

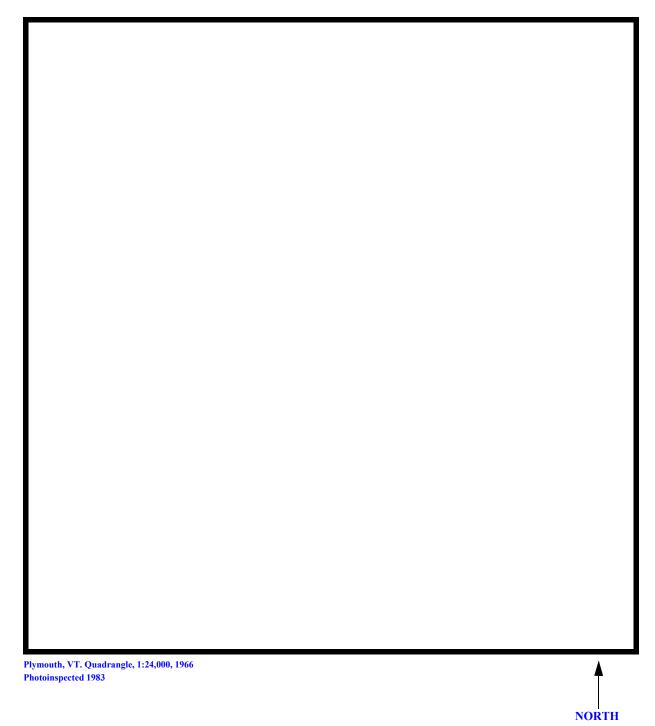
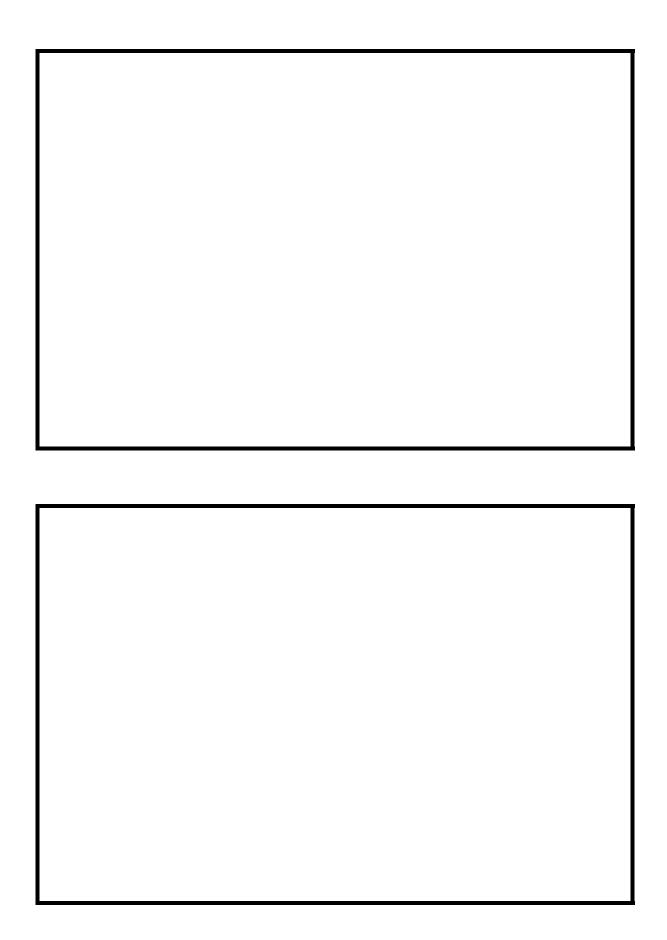



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ecture Number	CRAFTH00550029	Stream	Black Riv	/er	
onty Orleans	3	— Road —	TH 55	District —	09
	Descri	otion of Bride	ge		
Bridge length	ft Bridge wi	15.1 <u>15.1</u>	ft Max	span length	
Alignment of br	idge to road (on curve or s Vertical	straight) —	Straight	Steeply slopin	ıσ
Abutment type	No	Embankn	nent type	/95	ı <u>g</u>
Stone fill on abut		Nato of inc	naction		l annroach
Dannindian of a	- Type I on the	upstream right	ounk and apsu	team right roue	г арргоаси.
Abutments and	wingwalls are concrete. The	he concrete is v	verv weathered	l with spalls an	d pockets
		where the concr			
		viicie the conci	ette nas fanen	away.	
V					
1				40	Y
Is bridge skewed	d to flood flow according t	to There ^r surve	_	Angle	
	nel bend in the upstream re			O	
is a sergic situati	ior ochamine aponomi re	<u></u>	······	, ,	·,
Debris accumul	ation on bridge at time of				
	Date of inspection 6/7/95	Percent of object to blocked no		Percent o block ed v	or abouted to the second secon
Level I	6/7/95		<u>-</u>		
Level II	Low due to st	able banks in v	vicinity of this	site. Debris po	tential
further ups	stream may be higher but v	vas not conside	ered in this stud	dy.	
Potential fo	or debris				
None as of 6/7/9	95				
110116 as 01 0/ 1/3	,				

Description of the Geomorphic Setting

General topo	graphy	The ch	annel is probably	incised in a 70 foot-wide	valley, with no flood
plain and ste	ep valley	walls on	each side.		
Geomorphi	c conditio	ns at brid	lge site: downstred	um (DS), upstream (US)	
Date of insp	pection	6/7/95		· · · ·	
DS left:		hannel ba	ink to a flat, sand a	ınd gravel, industry parkir	ng area.
DS right:	Steep cl	hannel bar	nk to valley wall.		
	Steep ro	oad appro	ach embankment t	o a flat, sand and gravel p	arking area.
US left:	Modera	ately slope	ed bank to valley w	vall.	
US right:					
			Description of t	the Channel	
		41			5.5
Average to	op width		Sand / Gravel	Average depth	Cobble / Boulder
Predominar	nt bed ma	terial		Bank material	Sinuous but stable
with non-allu	uvial char	nnel bound	daries and no flood	d plain.	
					6/7/95
Vegetative c	o Trees a	and brush			
DS left:					
DS right:		ınd shrubs			
US left:		nd shrubs			
US right:	11000		Y		
Do banks a	nnaav stal				
_		ne:		serve wemon una type	oj insuomiy unu
date of obsi	ervanon.				
				N	one on 6/7/95.
				11	one on or 1175.
Describe an	y obstruc	ctions in c	channel and date o	f observation.	

Hydrology

Drainage area $\frac{24.7}{mi^2}$		
Percentage of drainage area in physiographic	provinces: (app	roximate)
Physiographic province/section New England / New England Upland	Per	cent of drainage area
Is drainage area considered rural or urban? None. urbanization:	Rural	Describe any significant
Is there a USGS gage on the stream of interest	Yes ? Black River a	t Coventry, VT
USGS gage description	04296000	e covering, vi
USGS gage number	122	
Gage drainage area	<u>122</u> mi ²	No
Is there a lake/p_		
$\frac{1,830}{Q100}$ Calculate	d Discharges	$\frac{2,160}{ft^3/s}$
	~	ear discharges are based on a
drainage area_relationship_[Q=Qg(24.6/122)exp (0.5] with the gag	ge, where Qg is the 100- and
500-year discharge at the gage. The 100- and 500)- year discharge	es from the gaged records were
4,080 and 4,800 respectively.		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	plans)	USGS survey		
Datum tie between USGS survey and VTAOT plans	None			
Description of reference marks used to determine USGS dat	tum.	RM1 is a chiseled "X"		
in a chisled square at the DS end of the left abutment (elev. 4)	96.98 ft, arb	oitrary datum). RM2 is		
a chiseled "X" on top of boulder (bedrock) about 10 feet US of	of the US en	d of the right abutment		
(elev. 492.60 ft, arbitrary datum).				

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-27	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
APPRO	44	2	Modelled Approach section (Templated from APTEM)
АРТЕМ	54	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.050 to 0.070, and overbank "n" values were 0.080.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the User's manual for WSPRO (Shearman, 1990). The slope used was 0.010 ft/ft which was estimated from the topographic map (U.S. Geological Survey, 1986a & b).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0125 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

While the channel approach to the bridge opening is skewed at an angle near 40 degrees, the flow was considered to align with the abutment walls through the bridge. Therefore, the opening-skew-to-roadway of 10 degrees was applied for each discharge modeled.

Bridge Hydraulics Summary

Average bridge embankment elevation 497.1 ft ft	
100-year discharge $\frac{1,830}{\text{Mater-surface elevation in bridge opening}} ft^3/s$ $\frac{494.1}{\text{ft}}$	0,s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 0.7 t	496.4
500-year discharge 2,160 ft³/s Water-surface elevation in bridge opening 497.1 ft Road overtopping? N Discharge over road Area of flow in bridge opening 240 ft² Average velocity in bridge opening 9.0 ft/s Maximum WSPRO tube velocity at bridge 11.0 /s) ,. /s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 2.4	498.9
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridget	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

The 500-year discharge resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Therefore, contraction scour for the 500-year discharge was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the 100-year discharge. The results of Laursen's clear-water contraction scour for the 500-year event were also computed and can be found in appendix F. For contraction scour computations using the Laursen's equation, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. The computed armoring depths suggest that contraction scour depths are not limited by streambed armoring.

Abutment scour at each abutment for each discharge modelled was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). The Froehlich equation gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:		500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	1.4	0.9	
Depth to armoring	11.1	2.7	
Left overbank	 	 	_
Right overbank			
Local scour:			
Abutment scour	13.9	15.5	
Left abutment	12.1-	14.6-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	l	
	100-yr discharge		Incipient overtopping discharge
		(D_{50} in feet)	
Abutments:	2.4	1.5	
Left abutment	2.4	1.5	
Right abutment	_	_	_
Piers:			
Pier 1		 	
Pier 2			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure CRAFTH00550029 on town highway 55, crossing the Black River, Craftsbury, Vermont.

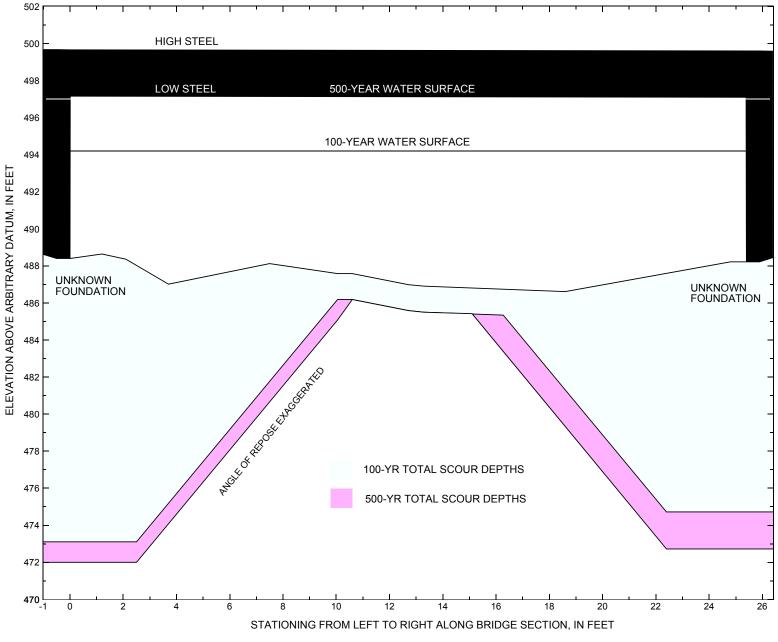


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure CRAFTH00550029 on town highway 55, crossing the Black River, Craftsbury, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CRAFTH00550029 on Town Highway 55, crossing the Black River, Craftsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 1,830 cubic-feet per second								_		
Left abutment	0.0		497.1		488.4	1.4	13.9		15.3	473.1	
Right abutment	25.4		497.1		488.2	1.4	12.1		13.5	474.7	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CRAFTH00550029 on Town Highway 55, crossing the Black River, Craftsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
500-yr. discharge is 2,160 cubic-feet per second											
Left abutment	0.0		497.1		488.4	0.9	15.5		16.4	472.0	
Right abutment	25.4		497.1		488.2	0.9	14.6		15.5	472.7	

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1986a, Albany, Vermont 7.5 Minute Series quadrangle map, provisional edition: U.S. Geological Survey Topographic Maps, Aerial photography, 1980, Contour interval, 6 meters, Scale 1:24,000.
- U.S. Geological Survey, 1986b, Craftsbury, Vermont 7.5 Minute Series quadrangle map, provisional edition: U.S. Geological Survey Topographic Maps, Aerial photography, 1980, Contour interval, 6 meters, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File craf029.wsp
T1
T2
         Hydraulic analysis for structure CRAFTH00550029 Date: 29-FEB-96
         Town Highway 55 Bridge Crossing the Black River, Craftsbury, VT EMB
Т3
Q
           1830.0
                  2160.0
          0.0100 0.0100
SK
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
XS
    EXITX
            -27
                          0.
GR
           -12.4, 498.75
                            -7.0, 493.67
                                            0.0, 488.15
                                                            5.7, 486.67
                                            23.7, 488.31
                                                            25.7, 493.46
            11.6, 485.13
                            22.3, 485.74
GR
GR
            31.6, 494.23
                           38.0, 498.79
*
                 0.080
           0.060
N
SA
                   25.7
*
    FULLV
             0 * * *
XS
                         0.0000
*
             SRD
                   LSEL
                            XSSKEW
BR
    BRIDG
             0
                  497.11
                             10.0
                            -0.1, 488.45
             0.0, 497.10
GR
                                            1.2, 488.64
                                                            2.1, 488.36
GR
             3.7, 487.01
                            7.5, 488.12
                                            13.3, 486.90
                                                           18.6, 486.61
            24.8, 488.22
                          25.4, 497.13
                                            0.0, 497.10
GR
*
         Removed: 3.7, 487.01 2.1, 487.62 These points reflect channel
                  irregularities that are not present through the bridge
                  but only at the location of the section
         BRTYPE BRWDTH
                             WWANGL
                                      WWWID
CD
                   21.9 * *
                              23.4
                                       7.5
            1
Ν
           0.050
*
XT
    APTEM
              54
                         -16.2, 493.44
           -21.8, 499.21
GR
                                            -7.9, 488.35
                                                            4.0, 487.22
                                            27.5, 488.44 33.3, 491.75
GR
            10.7, 487.14
                           19.9, 487.32
            52.9, 494.52
                           64.9, 502.85
GR
*
            GR data above was horizontally shifted by -7.9 feet to align
            more closely centered with stationing of bridge section GR data
AS
    APPRO
            44 * * * 0.0125
GT
Ν
           0.070
                       0.080
SA
                   41.2
HP 1 BRIDG 494.12 1 494.12
HP 2 BRIDG 494.12 * * 1830
HP 1 APPRO 496.37 1 496.37
HP 2 APPRO 496.37 * * 1830
HP 1 BRIDG 497.13 1 497.13
HP 2 BRIDG 497.13 * * 2160
```

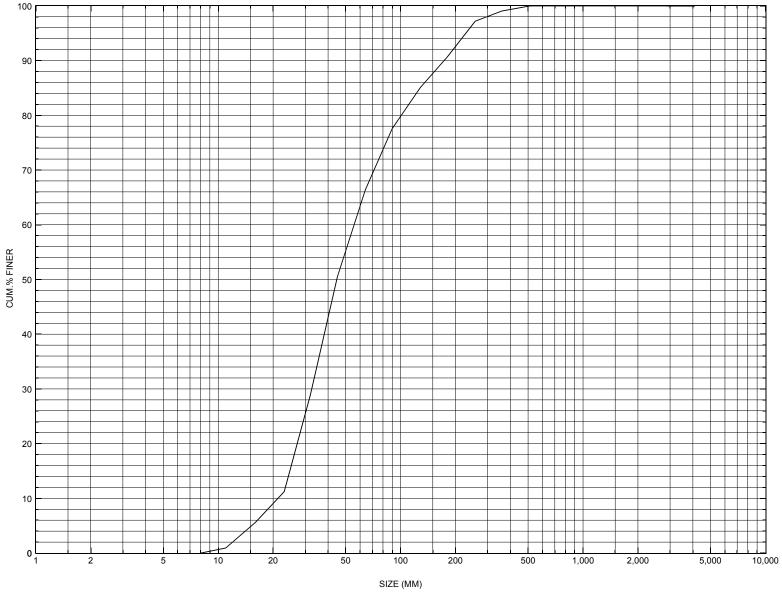
APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL SA# AREA	T1 T2 T3	Hydraulic a	nalysis for	structur	nput File craf re CRAFTH00550 g the Black Ri	0029 Date:	
1 165 13267 25 37 2410 494.12 165 13267 25 37 1.00 0 25 2410 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL LEW REW AREA K Q VEL 494.12 -0.1 25.2 164.9 13267. 1830. 11.10 X STA0.1 2.8 4.2 5.5 6.7 8.0 A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.	CROSS-	SECTION PROPE	RTIES: ISEQ) = 3;	SECID = BRIDG	; SRD =	0.
VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL LEW REW AREA K Q VEL 494.12 -0.1 25.2 164.9 13267. 1830. 11.10 X STA0.1 2.8 4.2 5.5 6.7 8.0 A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 64 6694 12 36 1165 15 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.	WSEL					LEW REW	~
WSEL LEW REW AREA K Q VEL 494.12 -0.1 25.2 164.9 13267. 1830. 11.10 X STA0.1 2.8 4.2 5.5 6.7 8.0 A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.	494.12					0 25	
X STA0.1 25.2 164.9 13267. 1830. 11.10 X STA0.1 2.8 4.2 5.5 6.7 8.0 A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.	VELOCI'	TY DISTRIBUTIO	ON: ISEQ =	3; SEC	CID = BRIDG;	SRD =	0.
X STA0.1 2.8 4.2 5.5 6.7 8.0 A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 11.65 15 15 31.6 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.					~		
A(I) 16.0 9.7 8.3 7.9 7.7 V(I) 5.72 9.44 11.03 11.53 11.85 X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.		.12 -0.1					
X STA. 8.0 9.2 10.3 11.4 12.4 13.3 A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.							
A(I) 7.4 7.2 6.9 6.8 6.6 V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.							
V(I) 12.40 12.78 13.22 13.47 13.93 X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							13.3
X STA. 13.3 14.2 15.1 16.1 17.0 17.9 A(I) 6.5 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							
A(I) 6.5 6.5 6.7 6.7 6.8 V(I) 14.08 13.98 13.72 13.74 13.38 X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44.	V CTA	10 0	14 2	15 1	16 1	17 0	17 0
X STA. 17.9 18.9 19.9 21.0 22.5 25.2 A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							
A(I) 7.0 7.4 7.9 9.4 15.5 V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL	V(I)	14.08	13.98	13.	.72 13.74	13.38	
V(I) 13.02 12.38 11.54 9.72 5.92 CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							
CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR	, ,						
WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR 1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							
1 438 33538 60 64 6694 2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL	CROSS-	SECTION PROPE	RTIES: ISEQ) = 4;	SECID = APPRO); SRD =	44.
2 36 1165 15 15 316 496.37 474 34703 75 79 1.06 -18 56 6556 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL	WSEL					LEW REW	~
VELOCITY DISTRIBUTION: ISEQ = 4; SECID = APPRO; SRD = 44. WSEL LEW REW AREA K Q VEL							
WSEL LEW REW AREA K Q VEL	496.37	474	34703	75	79 1.06	-18 56	6556
	VELOCI'	TY DISTRIBUTION	ON: ISEQ =	4; SEC	CID = APPRO;	SRD =	14.
496.37 -19.2 55.7 473.6 34703. 1830. 3.86							
	496	.37 -19.2	55.7 473	3.6 347	703. 1830.	3.86	
X STA19.2 -9.4 -6.2 -3.5 -1.0 1.3							
A(I) 39.1 25.9 22.7 22.0 20.7 V(I) 2.34 3.53 4.03 4.16 4.43		39.1	25.9	22	2.7 22.0	20.7	
X STA. 1.3 3.6 5.7 7.8 9.9 11.9 A(I) 20.4 19.7 19.5 19.3 19.3							
V(I) 4.49 4.65 4.70 4.74 4.73							
X STA. 11.9 14.0 16.1 18.2 20.3 22.6	X STA.	11.9	14.0	16.1	18.2	20.3	22.6
A(I) 19.3 19.2 19.3 19.9 20.1		19.3	19.2	19	9.3 19.9	20.1	
V(I) 4.75 4.77 4.73 4.60 4.56	V(I)	4.75	4.77	4.	.73 4.60	4.56	
X STA. 22.6 25.0 27.7 31.5 38.3 55.7							
A(I) 21.1 21.7 26.2 31.4 46.8 V(I) 4.33 4.21 3.49 2.91 1.96		21.1	21.7 4 21	26 3	5.2 31.4 49 2.91	46.8 1 96	
1		1.33	1.21	J .	2. 2.	1.50	

WSPRO OUTPUT FILE (continued)

	CRO	SS-S	ECTION	PROPER	RTIES:	ISEQ	= 3;	SECI	D = BRII	OG; SRD) =	0.
	WS	SEL	SA#	AREA					ALPH	LEW	REW	QCR
			1	240								0
	497.	.13		240	16	500	0	68	1.00	0	25	0
	VEI	LOCIT	Y DIST	RIBUTIC	ON: IS	EQ =	3; S	ECID =	BRIDG;	SRD =		0.
		WS	EL	LEW	REW	AR	EA	K	Ç	Q VEL	ı	
		497.	13	-0.1	25.4	239	.6 1	6500.	2160	9.02		
Х	STA.		-0.	1	2.5		3.9		5.2	6.4		7.6
	A(I)								11.		11.1	
	V(I)								9.5		9.69	
Х	STA.		7.	6	8.8		10.0		11.1	12.1		13.1
	A(I)		, •						10.			
	V(I)								10.7			
x	STA.		13	1	14 1		15 1		16.0	17 0		18 0
	A(I)		13.	9.9		10.0			10.0			
	V(I)			10.88	1	0.81	1	1.01	10.7	78	10.52	
	~			_								
Х	STA.								21.3			
	A(I) V(I)								13. 8.2			
	V (±)			10.27	_	.0.05		J.03	0.2		3.02	
	CRO	SS-S	ECTION	PROPER	RTIES:	ISEQ	= 4;	SECI	D = APPI	RO; SRD) =	44.
	WS	SEL	SA#	AREA		K	TOPW	WETP	ALPH	LEW	REW	QCR
	WS	SEL	1	591	53	401	63	68		LEW	REW	10297
				591 76	53 3	401 509	63 18	68 20				10297 888
	WS 498.		1	591	53 3	401 509	63 18	68 20				10297
	498.	. 86	1 2	591 76 668	53 3 56	401 509 910	63 18 81	68 20 87		-21	59	10297 888 10514
	498.	.86 LOCIT WS	1 2 Y DIST	591 76 668 RIBUTIC	53 3 56 DN: IS REW	401 509 910 EQ =	63 18 81 4; S	68 20 87 ECID = K	1.07 APPRO;	-21 SRD = Q VEL	59	10297 888 10514
	498.	.86 LOCIT WS	1 2 Y DIST	591 76 668 RIBUTIC	53 3 56 DN: IS REW	401 509 910 EQ =	63 18 81 4; S	68 20 87 ECID = K	1.07 APPRO;	-21 SRD = Q VEL	59	10297 888 10514
х	498. VEI	.86 LOCIT WS 498.	1 2 Y DIST EL 86 -	591 76 668 RIBUTIC LEW 21.6	53 3 56 DN: IS REW 59.3	401 509 910 EQ = AR 667	63 18 81 4; S EA	68 20 87 ECID = K 6910.	1.07 APPRO;	-21 SRD = Q VEL . 3.24	59	10297 888 10514
	498. VEI	.86 LOCIT WS 498.	1 2 Y DIST EL 86 -	591 76 668 RIBUTIC LEW 21.6	53 3 56 DN: IS REW 59.3	401 509 910 EQ = AR 667	63 18 81 4; S EA .6 5	68 20 87 ECID = K 6910.	1.07 APPRO; 2160	-21 SRD = VEL 3.24 -1.0	59	10297 888 10514 44.
	498. VEI	.86 LOCIT WS 498.	1 2 TY DIST EL 86 -	591 76 668 RIBUTIC LEW 21.6	53 3 56 DN: IS REW 59.3	401 509 910 EQ = AR 667	63 18 81 4; S EA .6 5	68 20 87 ECID = K 6910.	1.07 APPRO; 2160	-21 SRD = VEL 3.24 -1.0	59	10297 888 10514 44.
	498. VEI STA. A(I) V(I)	.86 LOCIT WS 498.	1 2 TY DIST EL 86 -	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93	53 3 56 ON: IS REW 59.3	401 509 910 EQ = AR 667 38.4 2.81	63 18 81 4; S EA .6 5	68 20 87 ECID = K 6910.	1.07 APPRO; 21603.8 31.	-21 SRD = VEL 3.24 -1.0	59 29.2 3.70	10297 888 10514 44.
X	498. VEI STA. A(I)	.86 LOCIT WS 498.	1 2 TY DIST EL 86 -	591 76 668 RIBUTIO LEW 21.6 6 55.9 1.93	53 3 56 ON: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910.	1.07 APPRO; 2160 -3.8 31 3.4	-21 SRD = Q VEL 3.24 -1.0 .2 17	59 , , , , , , , , ,	10297 888 10514 44.
Х	498. VEI STA. A(I) V(I) STA.	.86 LOCIT WS 498.	1 2 TY DIST EL 86 -	591 76 668 RIBUTIO LEW 21.6 6 55.9 1.93	53 3 56 ON: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910.	1.07 APPRO; 21603.8 31.	-21 SRD = Q VEL 3.24 -1.0 .2 17	59 , , , , , , , , ,	10297 888 10514 44.
Х	498. VEI STA. A(I) V(I) STA. A(I) V(I)	.86 LOCIT WS 498.	1 2 Y DIST EL 86 - -21.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84	53 356 DN: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35	1.07 APPRO; 21603.8 31. 3.4 8.7 27. 4.0	-21 SRD = Q VEL 3.24 -1.0 .2 47 10.9	59 29.2 3.70 26.9 4.01	10297 888 10514 44.
x	498. VEI STA. A(I) V(I) STA. A(I) V(I)	.86 LOCIT WS 498.	1 2 Y DIST EL 86 - -21.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84	53 356 ON: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35	1.07 APPRO; 2160 -3.8 31. 3.4 8.7 27. 4.0	-21 SRD = VEL 3.24 -1.0 .2 47 10.9 .0 00 22.5	29.2 3.70 26.9 4.01	10297 888 10514 44. 1.6
X X	498. VEI STA. A(I) V(I) STA. A(I) V(I)	.86 LOCIT WS 498.	1 2 Y DIST EL 86 - -21.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2	53 356 DN: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96	1.07 APPRO; 2160 -3.8 31. 3.4 8.7 27. 4.0	-21 SRD = VEL 3.24 -1.0 .2 47 10.9 .0 00 22.5	59 29.2 3.70 26.9 4.01	10297 888 10514 44. 1.6
x	498. VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	.86 LOCIT WS 498.	1 2 YY DIST ELL 86 - -21.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2 2 26.9 4.01	53 356 DN: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96	1.07 APPRO; 2160 -3.8 31 3.4 8.7 27 4.0 20.1 27 3.9	-21 SRD = VEL . 3.24 -1.0 .2 .47 10.9 .0 .0 .22.5	29.2 3.70 26.9 4.01 28.2 3.84	10297 888 10514 44. 1.6 13.2
x x	498. VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I) STA.	.86 LOCIT WS 498.	1 2 YY DIST ELL 86 - -21. 1.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2 26.9 4.01	53 356 DN: IS REW 59.3 -10.6	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84 26.8 4.03	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96 27.0 4.00	1.07 APPRO; 2160 -3.8 31, 3.4 8.7 27, 4.0 20.1 27, 3.9	-21 SRD = Q VEL 3.24 -1.0 22 47 10.9 00 22.5	29.2 3.70 26.9 4.01 28.2 3.84	10297 888 10514 44. 1.6 13.2 25.0
x x	498. VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) A(I) A(I)	.86 LOCIT WS 498.	1 2 YY DIST EL 86 - -21. 1.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2 26.9 4.01	53 356 DN: IS REW 59.3 -10.6 4.0	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84 26.8 4.03	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96 27.0 4.00	1.07 APPRO; 2160 -3.8 31, 3.4 8.7 27, 4.0 20.1 27, 3.9 36.6 41,	-21 SRD = Q VEL 3.24 -1.0 .2 47 10.9 .0 00 22.5 .4 94 43.1	59 29.2 3.70 26.9 4.01 28.2 3.84	10297 888 10514 44. 1.6 13.2 25.0
x x	498. VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I) STA.	.86 LOCIT WS 498.	1 2 YY DIST EL 86 - -21. 1.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2 26.9 4.01	53 356 DN: IS REW 59.3 -10.6 4.0	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84 26.8 4.03	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96 27.0 4.00	1.07 APPRO; 2160 -3.8 31, 3.4 8.7 27, 4.0 20.1 27, 3.9	-21 SRD = Q VEL 3.24 -1.0 .2 47 10.9 .0 00 22.5 .4 94 43.1	59 29.2 3.70 26.9 4.01 28.2 3.84	10297 888 10514 44. 1.6 13.2 25.0
x x	498. VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) A(I) A(I)	.86 LOCIT WS 498.	1 2 YY DIST EL 86 - -21. 1.	591 76 668 RIBUTIC LEW 21.6 6 55.9 1.93 6 28.1 3.84 2 26.9 4.01	53 356 DN: IS REW 59.3 -10.6 4.0	401 509 910 EQ = AR 667 38.4 2.81 28.1 3.84 26.8 4.03	63 18 81 4; S EA .6 5 -6.8	68 20 87 ECID = K 6910. 32.3 3.35 27.2 3.96 27.0 4.00	1.07 APPRO; 2160 -3.8 31, 3.4 8.7 27, 4.0 20.1 27, 3.9 36.6 41,	-21 SRD = Q VEL 3.24 -1.0 .2 47 10.9 .0 00 22.5 .4 94 43.1	59 29.2 3.70 26.9 4.01 28.2 3.84	10297 888 10514 44. 1.6 13.2 25.0


WSPRO OUTPUT FILE (continued)

+++ BEGINNI	NG PROFII	LE CALCULA	TIONS		2				
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	FLEN						FR#		
EXITX:XS	*****	-7	236	0.96	****	495.49	491.80	1830	494.53
-26	*****	32 1	8295	1.03	****	*****	0.57	7.74	
FULLV:FV	27	-7	251	0.86	0.25	495.74	*****	1830	494.88
	27						0.53		
<<	<< <the af<="" td=""><td>BOVE RESUL</td><td>TS REF</td><td>LECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTE</td><td>) FLOW:</td><td>>>>></td></the>	BOVE RESUL	TS REF	LECT	"NORM	AL" (UNC	ONSTRICTE) FLOW:	>>>>
===135 CON	MEVANCE I	פתוות חותק	IDE OF	r RECC	MMENIDI	יידאד.ז מי	3		
200 001						IO = 1.4			
APPRO:AS	44	-17	423	0.31	0.25	495.99	*****	1830	495.68
44	44	55 2	9459	1.06	0.00	0.00	0.33	4.33	
<<	<< <the af<="" td=""><td>BOVE RESUL'</td><td>rs ref</td><td>LECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTEI</td><td>) FLOW:</td><td>>>>></td></the>	BOVE RESUL'	rs ref	LECT	"NORM	AL" (UNC	ONSTRICTEI) FLOW:	>>>>
	<<< <res< td=""><td>SULTS REFL</td><td>ECTING</td><td>THE</td><td>CONST</td><td>RICTED FI</td><td>LOW FOLLOW</td><td>√>>>></td><td></td></res<>	SULTS REFL	ECTING	THE	CONST	RICTED FI	LOW FOLLOW	√>>>>	
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
BRIDG:BR	27	0	165	1 92	0 37	496 03	493 00	1830	494 12
		25 1							
ייעסד נ	DCD FI.OW	С	D/A	T.QI	7T. BI	EN YI.	AR YPAR		
		1.000 **							
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
APPRO:AS	22	-18	474	0.25	0.17	496.62	491.66	1830	496.37
44	24	56 3	4740	1.06	0.42	0.01	0.28	3.86	
M(G)	M(K)	KQ	XLKO	XRI	(O (OTEL			
		21570.							
		<<< <end< td=""><td>OF BE</td><td>RIDGE</td><td>COMPUT</td><td>ΓATIONS>:</td><td>>>></td><td></td><td></td></end<>	OF BE	RIDGE	COMPUT	ΓATIONS>:	>>>		
דוספד וופד	R DEFINEI	ייא פו.ד							
XSID:CC			REW		0	K	AREA	VEL	WSEL
EXITX:XS			32.			18295.	236.		494.53
FULLV:FV			33.			19781.	251.	7.30	494.88
BRIDG:BF			25.			13254.	165.	11.11	494.12
APPRO: AS			56.			34740.	474.		496.37
XSID:CO	DE XLKO) XRKQ	ĸ	Q					
APPRO: AS	-	. 23.	21570						
SECOND USE	ER DEFINEI	TARLE							
XSID:CO			ΥN	IIN	YMAX	HF	HO VHD	E	GL WSEL
EXITX:XS						*****			
	7 *****						0.00 0.86		
BRIDG:BF						0.37			
APPRO: AS					502.73		0.42 0.25		

WSPRO OUTPUT FILE (continued)

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
EXITX:XS	*****	-8	268	1.06	****	496.35	492.44	2160	495.30
-26	*****	33	21599	1.05	****	*****	0.57	8.07	
FULLV:FV	27	-8	283	0.95	0.25	496.61	*****	2160	495.66
0	27	34	23256	1.05		0.01			133.00
<<	<< <the a<="" td=""><td>BOVE RES</td><td>ULTS RE</td><td>FLECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTED</td><td>) FLOW></td><td>>>>></td></the>	BOVE RES	ULTS RE	FLECT	"NORM	AL" (UNC	ONSTRICTED) FLOW>	>>>>
===135 CON	VEYANCE I	RATIO OU'	TSIDE O	F RECO	OMMENDE	ED LIMITS	S.		
			"APPR	.0"	KRAT]	10 = 1.	55		
APPRO:AS	44	-18	485	0.33	0.25	496.85	*****	2160	496.53
44	44	56	35959	1.06	0.00	0.00	0.32	4.45	
<<	<< <the a<="" td=""><td>BOVE RES</td><td>ULTS RE</td><td>FLECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTED</td><td>) FLOW></td><td>>>>></td></the>	BOVE RES	ULTS RE	FLECT	"NORM	AL" (UNC	ONSTRICTED) FLOW>	>>>>
===220 FLO	W CLASS 1	L (4) SO	LUTION	INDICA	ATES PO	OSSIBLE 1	PRESSURE F	LOW.	
,	ws3,wsiu	WS1,LSE	L = 4	94.75	49	97.16	497.33	497.	11
===245 ATT	EMPTING I	TIOW CTA	SS 2 (5) SOLI	TTTON				
			35 2 (3	, 5010	311011.				
	<<< <res< td=""><td>SULTS RE</td><td>FLECTIN</td><td>G THE</td><td>CONSTR</td><td>RICTED F</td><td>LOW FOLLOW:</td><td>>>>></td><td></td></res<>	SULTS RE	FLECTIN	G THE	CONSTR	RICTED F	LOW FOLLOW:	>>>>	
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
BRIDG:BR	27	0	240	1 23	****	498 36	493.60	2130	497.13
	****	25				*****		8.89	137.13
			- /-						
	PCD FLOW *** 2.	C 0.435	•			LEN XL2	AB XRAB ** *****		
XSID:CODE SRD	SRDL	LEW	AREA K		HF	EGL		Q	WSEL
SKD	FLEN	REW	K	АБРП	НО	ERR	FR#	VEL	
APPRO:AS	22	-21	668	0.17	0.12	499.04	492.19	2160	498.86
44	24	59	56956	1.07	0.45	-0.01	0.21	3.23	
M(G)	M(K)	KQ	XLKQ	XRI	KQ (OTEL			
****	*****	******	*****	****	** 49	98.83			
		<<< <el< td=""><td>ND OF B</td><td>RIDGE</td><td>COMPUT</td><td>TATIONS>:</td><td>>>></td><td></td><td></td></el<>	ND OF B	RIDGE	COMPUT	TATIONS>:	>>>		
FTD 6 # 110 F									
FIRST USE XSID:CO			REW		Q	К	AREA	VET.	WSEL
EXITX:XS						21599.	268.		495.30
FULLV:FV	Ō				50. 2	23256.	283.	7.63	495.66
BRIDG:BR	0	. 0.	25.	213	30. 1	L6500.	240.	8.89	497.13
APPRO:AS	44	-22.	59.	216	50. 5	56956.	668.	3.23	498.86
XSID:CO	DE XLK(Q XRKQ		KQ					
APPRO:AS	*****	*****	*****	**					
SECOND USE	R DEFINEI	TABLE.							
XSID:CO			R# Y	MIN	YMAX	HF	HO VHD	EG	L WSEL
EXITX:XS			57 485	.13 4	198.79	*****	**** 1.06	496.3	5 495.30
FULLV:FV						0.25			1 495.66
BRIDG:BR							**** 1.23		6 497.13
APPRO:AS ER	492.3	L9 U.	∠⊥ 487	.02 5	002.73	0.12	0.45 0.17	499.0	498.86
1 NORMAL E	ND OF V	SPRO E	XECUTIO	N.					

APPENDIX C: **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for one pebble count transect at the approach cross-section for structure CRAFTH00550029, in Craftsbury, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number CRAFTH00550029

General Location D	Descriptive
Data collected by (First Initial, Full last name) M. WEBER	
Date (MM/DD/YY) <u>08</u> / <u>04</u> / <u>94</u>	
Highway District Number (I - 2; nn)	County (FIPS county code; I - 3; nnn)019
Town (FIPS place code; I - 4; nnnnn) 16300	Mile marker (I - 11; nnn.nnn) 000000
Waterway (I - 6) BLACK RIVER	Road Name (I - 7):
Route Number <u>TH055</u>	Vicinity (1 - 9) 0.03 MI TO JCT W CL2 TH4
Topographic Map Craftsbury	Hydrologic Unit Code: 01110000
Latitude (I - 16; nnnn.n) 44382	Longitude (i - 17; nnnnn.n) 72222

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10100600291006 Maintenance responsibility (I - 21; nn) 03 Maximum span length (I - 48; nnnn) 0028 Year built (1 - 27; YYYY) 1925 Structure length (I - 49; nnnnnn) 000032 Average daily traffic, ADT (I - 29; nnnnnn) 000030 Deck Width (I - 52; nn.n) 151 Channel & Protection (I - 61; n) 7 Year of ADT (1 - 30; YY) 91 Opening skew to Roadway (1 - 34; nn) 00 Waterway adequacy (1 - 71; n) 6 Operational status (I - 41; X) B Underwater Inspection Frequency (I - 92B; XYY) N Year Reconstructed (1 - 106) 0000 Structure type (I - 43; nnn) 302 Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) -Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 010.5 Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) ____ Comments:

Structural inspection of 07/22/93 indicated the ambient water surface velocity was 2 ft/s. The structure is a steel stringer type bridge with a timber deck. Deep spalling was noted along the bottom right abutment and random spalling on wingwalls. Footings of the abutments and wingwalls were indicated as boulders and/or bedrock. The report also indicates the protection at this site is the bedrock or native boulder material in good condition on the banks and abutments. There is a sharp channel bend into the bridge and a small silt point bar along the left abutment. Roadway embankment erosion is noted as minor and there is no channel scour.

	Brid	ge Hydr	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctr	i-n h VTA	OT Drain	age area <i>(mi²)</i> :	
Terrain character:						
Stream character & type: _						
Streambed material: STONES,	BOULDE	RS AND S	AND			
Discharge Data (cfs): Q _{2.33}					Q ₂₅ -	
					Q ₅₀₀	
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs):						
Ice conditions (Heavy, Moderate, Li	ght) : LIGI	HT [Debris <i>(Hea</i> r	vy, Moderat	e, Light): MOD-F	<u>IEAV</u>
The stage increases to maximur	•		•	Not rapidly):		
The stream response is (Flashy, I	• , •			() (-1
Describe any significant site cor stage: -	iditions up	stream or	downstrea	m that ma	y influence the	stream's
_						
Watershed storage area (in perce	ent): <u>-</u> %					
The watershed storage area is:		ainly at the h e site)	neadwaters; 2	?- uniformly	distributed; 3-imme	diatly upstream
	Or an	c site)				
Water Surface Elevation Estima	tes for Exi	sting Stru	cture:		, 	
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (ft))	-	-	-	-	-	
	_	_	_	_	_	
Velocity (ft / sec)						
Long term stream bed changes:	-					
Is the roadway overtopped below	w the O	2 (Vas Na	Unknown):	_	Frequency: -	
Relief Elevation (#):						
1 teller 2 levation (it).	Biodile	go	iodaway at	Q100 (// /		
Are there other structures nearb	v2 (Van Na	Linknown'	. U			
Upstream distance (<i>miles</i>):						
Highway No. :						
Clear span (ft): Clear He						

Downstream distance (miles): Structure No. : Structure Type: Clear span (#): Clear Height (#): Full Waterway (#²): Comments:
USGS Watershed Data
10% channel length elevation ft
Average site precipitation in Average headwater precipitation in
Maximum 2yr-24hr precipitation event (124,2) in
Average seasonal snowfall (Sn) ft

Bridge Plan Data
Are plans available? N If no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number Minimum channel bed elevation:
Low superstructure elevation: USLAB <u>-</u> DSLAB <u>-</u> USRAB <u>-</u> DSRAB <u>-</u> Benchmark location description: -
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other):
Foundation Type: 4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness Footing bottom elevation: - If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? N If no, type ctrl-n bi Number of borings taken:
Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around piles:
Comments: NO PLANS

Cross-sectional Data Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs Source (FEMA, VTAOT, Other)? _-____ Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature Low cord elevation Bed elevation Low cord to bed length Source (FEMA, VTAOT, Other)? ____ Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature

Low cord elevation

Bed elevation Low cord to bed length

APPENDIX E:

LEVEL I DATA FORM

Structure Number CRAFTH00550029

Qa/Qc Check by: CG Date: 02/12/96

Computerized by: CG Date: 02/12/96

EMB Date: **04/15/96** Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name)	J	Degnan	Date	(MM/DD/YY)	06	/	07	/ 19	95
---	---	--------	------	------------	----	---	-----------	------	----

2. Highway District Number 09 Mile marker 0 County Orleans (019) Town Craftsbury (16300) Waterway (I - 6) Black River

Road Name -Hydrologic Unit Code: 01110000 Route Number TH 055

3. Descriptive comments:

This is a wooden bridge going to a town highway garage. The frame consists of 4 steel I-beams supporting a wooden deck. It is 0.03 Mi to the junction with CL 2 TH 4.

B. Bridge Deck Observations

- RBDS 5 4. Surface cover... LBUS_6___ RBUS 6 LBDS 5 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 1 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 32 (feet)

Span length _____ (feet) Bridge width _____ (feet)

Road approach to bridge:

8. LB 1 RB 2 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US right **0.0:1** 0.0:1 US left

	Pr	otection		14.Severity	
	11.Type	12.Cond.	13.Erosion		
LBUS		-	-	-	
RBUS	1	1	0	0	
RBDS		-			
LBDS	_0			-	

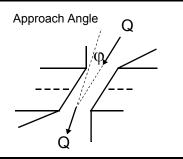
Bank protection types: **0**- none; **1**- < 12 inches;

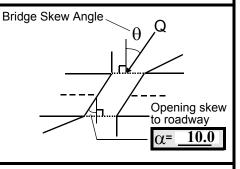
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 40 15. Angle of approach: 45

17. Channel impact zone 1:

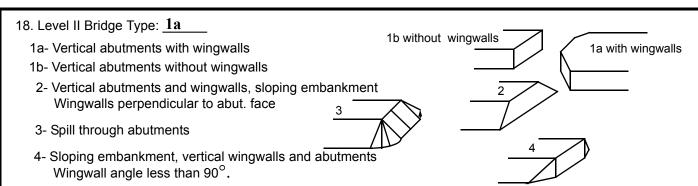
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 3

Range? 15 feet DS (US, UB, DS) to 40 feet US

Channel impact zone 2:


Exist? N (Y or N)

Where? _-__ (LB, RB)

Severity -

Range? _____ feet ___ (US, UB, DS) to ____ feet ___

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. The upstream banks are forested, but beyond in the overbank area there are a few barns and parking lots. This is probably much higher than high water, but the parking lot on the left bank is about low steel level.
- 7. measured bridge length = 31 feet, measured span length = 26 feet, measured bridge width = 15 feet The span length is measured from abutment to abutment. The width is from curb to curb.
- 11-17. The right bank doesn't appear to have artificial protection on much of its impact zone except upstream, but bedrock extends from 10 feet upstream to as far as you can see downstream. This bedrock provides excellent natural protection.

C. Upstream Channel Assessment

2	1. Bank he	ight (BF)	22. Bank	angle (BF)	26. % Ve	g. cover (BF)	27. Bank	material (BF)	28. Bank	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
36.0	5.0			3.5	2	3	35	54	1	2
23. Bank w	vidth <u>30</u>	.0	24. Cha	nnel width	30.0	25. Thal	weg depth	<u>49.5</u>	9. Bed Mate	erial <u>543</u>
			0	1		0.4 5				1

30 .Bank protection type: LB $\underline{0}$ RB $\underline{1}$ 31. Bank protection condition: LB $\underline{-}$ RB $\underline{1}$

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

Two minor inflows occur at 15 feet and 35 feet upstream on the right bank. They have a steep gradient and only the 35 feet upstream inflow in currently flowing.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 20 35. Mid-bar width: 2
36. Point bar extent: 0 feet US (US, UB) to 40 feet US (US, UB, DS) positioned 0 %LB to 5 %RB
37. Material: <u>34</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): The point bar is very narrow.
39. Is a cut-bank present? N (Y or if N type ctrl-n cb) 40. Where? - (LB or RB)
41. Mid-bank distance: feet (US, UB) to feet (US, UB, DS)
43. Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
NO CUT BANKS
- le channel commune ant O. V
45. <u>Is channel scour present? Y</u> (<i>Y or if N type ctrl-n cs</i>) 46. Mid-scour distance: 35'
47. Scour dimensions: Length $10'$ Width $10'$ Depth: $1'$ Position 90 %LB to 100 %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
This could be related to the minor inflow which enters here.
40 Are there major confluences? No (Verital time et la ma) 50 Herrimonia -
49. <u>Are there major confluences?</u> N (Y or if N type ctrl-n mc) 50. How many? - 51. Confluence 1: Distance - 52. Enters on - (LB or RB) 53. Type - (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Haday Dyidaa Channal Assassant
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB
35.5 1.0 2 7 7 1
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material _1
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7- manmade
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
523 Abutments are poured over large boulders. The left bank abutment has been refaced and currently has no
footing. The bottom of the old face upstream wingwall has been damaged; large chunks are missing. The
right abutment has a footing and hasn't been refaced. Most of the footing on the upstream side has fallen into
the channel.

65. Debris and Ice	Is there debris accumulation?	(Y or N)	66. Where? N	_ (1-	Upstre	am;	2 - /	At br	idge; :	3 - Boti	h
OZ Delevie Detectiel	(4 1 2 2 0 1 1 2 2 2 2 2 2 2 2		1								

67. Debris Potential ____ (1- Low; 2- Moderate; 3- High)

68. Capture Efficiency 1 (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? $\frac{1}{N}$ (Y or N)

Ice Blockage Potential \underline{Y} (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

1

Ice scars are seen on the right side on the abutment face and on trees about 4.5 feet above present water level.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	90	2	1	0	-	90.0
RABUT	1	45	90	 	l 1	0	2	25.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; 6- failed

Materials: **1**- Concrete; **2**- Stone masonry or drywall; **3**- steel or metal; **4**- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1' 2

-1

The right abutment footing is eroded and undermined in some places.

The left abutments has no footing, but is scoured out on the upstream end where no rock is under it. It's at the present water level though and is only one inch in depth.

80. Wingwalls:

USRWW: Y 1 1 25.0 1 1.5	_
USRWW: Y 1 1 1.5	
DSLWW: $0 0 Y 18.5$	
DSRWW: 1 1 0 19.0	

USRWW Wingwall length

Q
Wingwall angle
DSRWW

USLWW

USLWW

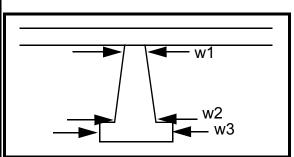
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	0	1	Y	0	ı	-	-	-
Condition	Y	0	1	0	-	-	-	-
Extent	1	0	1	0	0	0	0	0

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

85.							
Pier no.	widt	h (w) f	eet	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1				25.0	11.0	25.0	
Pier 2	5.5			5.0	14.5	55.0	
Pier 3		-	-	16.5	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e	betw	der	been
87. Type	wing	een	it sits	erod
88. Material	walls	the	on.	ed,
89. Shape	have	upst	The	but
90. Inclined?	no	ream	upst	it is
91. Attack ∠ (BF)	foot-	right	ream	pres-
92. Pushed	ings.	wing	left	ently
93. Length (feet)	-	-	-	-
94. # of piles	Ther	wall	wing	abov
95. Cross-members	e is a	and	wall	e
96. Scour Condition	one	the	con-	wate
97. Scour depth	inch	large	crete	r
98. Exposure depth	gap	boul-	has	level.

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed;3- piling exposed;4- undermined footing;5- settled;6- failed

99. Pier comments (eg. under The downstream wingwa wall.	•		,	ne bottom of the wing-
N				
100.	E. Downstrea	m Channel Ass	essment	
Bank height (BF) SRD LB RB	LB RB	% Veg. cover (BF) LB RB	Bank material (BF LB RB 	LB RB
Bank width (BF) Bank protection type (Qmax)	Channel width (Amb) : LB - RB -		epth (Amb) - LE	Bed Material <u>-</u> 3 - RB -
SRD - Section ref. dist. to US Bed and bank Material: 0- or, 4- co Bank Erosion: 0- not evident, Bank protection types: 0- abs Bank protection conditions: 1 Comments (eg. bank material)	face % Vegetation ganics; 1- silt / clay, < 1/1 bble, 64 - 256mm; 5- bot 1- light fluvial; 2- modera ent; 1- < 12 inches; 2- e	6mm; 2 - sand, 1/16 - 2i ulder, > 256mm; 6 - bedr ate fluvial; 3 - heavy fluv 36 inches; 3 - < 48 inche roded; 4 - failed	mm; 3- gravel, 2 - 64m ock; 7 - manmade ial / mass wasting	
- - - - -				
- - - -				
101. Is a drop structure 103. Drop: feet 105. Drop structure comments	104. Structure m	aterial: <u>-</u> (1 - steel s	102. Distance:	feet ; 3- concrete; 4- other)

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar distance: - Mid-bar width: -
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material: Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
- - - -
Is a cut-bank present? N (Y or if N type ctrl-n cb) Where? O (LB or RB) Mid-bank distance: PIE Cut bank extent: RS feet (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 2
Scour dimensions: Length $\underline{1}$ Width $\underline{53}$ Depth: $\underline{5}$ Positioned $\underline{0}$ %LB to $\underline{0}$ %RB Scour comments (eg. additional scour areas, local scouring process, etc.): $\underline{52}$ $\underline{0}$ $\underline{0}$
Are there major confluences? - (Y or if N type ctrl-n mc) How many? The
Confluence 1: Distance <u>bank</u> Enters on <u>mat</u> (LB or RB) Type <u>erial</u> (1- perennial; 2- ephemeral) Confluence 2: Distance <u>near</u> Enters on <u>the</u> (LB or RB) Type <u>dow</u> (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): nstream left wingwall is gravel; the bouldrs are about 20 feet downstream near the cross section.
F. Geomorphic Channel Assessment
107. Stage of reach evolution 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):					
1					

	109. G. F	Plan View Sketch	<u>.</u>	N
point bar pb cut-bank cb scour hole	debris rip rap or stone fill	flow Q cross-section ++++++ ambient channel —	stone wall	

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: CRAFTH00550029 Town: CRAFTSBURY Road Number: TH 55 County: ORLEANS

Stream: BLACK RIVER

Initials EMB Date: 3/20/96 Checked: Date:

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

(Richardson and Others, 1995, p. 28	, eq. 16)		
Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	1830	2160	0
Main Channel Area, ft2	438	591	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	36	76	0
Top width main channel, ft	60.4	62.8	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	14.5	18.1	0
D50 of channel, ft	0.147	0.147	0
D50 left overbank, ft	0	0	0
D50 right overbank, ft	0	0	0
y1, average depth, MC, ft	7.3	9.4	ERR
yl, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	2.5	4.2	ERR
Total conveyance, approach	34386	55238	0
Conveyance, main channel	33250	51927	0
Conveyance, LOB	0	0	0
Conveyance, ROB	1137	3311	0
Percent discrepancy, conveyance	-0.00291	0	ERR
Qm, discharge, MC, cfs	1769.543	2030.528	ERR
Ql, discharge, LOB, cfs	0	0	ERR
Qr, discharge, ROB, cfs	60.51038	129.4717	ERR
Vm, mean velocity MC, ft/s	4.0	3.4	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	1.7	1.7	ERR
Vc-m, crit. velocity, MC, ft/s	8.2	8.6	N/A
Vc-l, crit. velocity, LOB, ft/s	N/A	N/A	N/A
Vc-r, crit. velocity, ROB, ft/s	0.0	0.0	N/A
Danulta			

Results

Live-bed(1) or Clear-Water(0)	Contraction	Scour?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	1	1	N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units ys=y2-y_bridge
(Richardson and others, 1995, p. 32, eq. 20, 20a)

Approach Section	Q100	Q500	Qother
Main channel Area, ft2 Main channel width, ft y1, main channel depth, ft	438 60.4 7.251656	591 62.8 9.410828	0 0 ERR
Bridge Section			

(Q) total discharge, cfs	1830	2160	0
(Q) discharge thru bridge, cfs	1830	2143	
Main channel conveyance	13267	16500	
Total conveyance	13267	16500	
Q2, bridge MC discharge,cfs	1830	2143	ERR
Main channel area, ft2	165	240	0
Main channel width (skewed), ft	24.7	24.9	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	24.7	24.9	0
y_bridge (avg. depth at br.), ft	6.676113	9.62249	ERR
Dm, median (1.25*D50), ft	0.18375	0.18375	0
y2, depth in contraction,ft	8.043872	9.14615	ERR
ys, scour depth (y2-ybridge), ft	1.37	-0.48	N/A
ys, scour depth (y2-y1), ft	0.79	-0.26	N/A
va agour donth (v2-vfully) ft		1 05	

ys,	scour	depth	(y2-ybridge), ft	1.37	-0.48	N/A
ys,	scour	depth	(y2-y1), ft	0.79	-0.26	N/A
ys,	scour	depth	(y2-yfullv), ft		1.05	

ARMORING

0.568 0.568
0.746 0.746
0.503669 0.283872 ERR
0.12 0.237
11.08071 2.741699 ERR

Pressure Flow Scour (contraction scour for orifice flow conditions)

	Q100	Q500	OtherQ
Q thru bridge main chan, cfs	0	2160	0
Vc, critical velocity, ft/s	0	8.6	0
Vc, critical velocity, m/s	0	2.621152	0
Main channel width (skewed), ft	0	25.1	0
Cum. width of piers, ft	0	0	0
W, adjusted width, ft	0	25.1	0
qbr, unit discharge, ft^2/s	ERR	86.05578	ERR
qbr, unit discharge, m^2/s	N/A	7.994063	N/A
Area of full opening, ft^2	0	239.6	0
Hb, depth of full opening, ft	ERR	9.545817	ERR
Hb, depth of full opening, m	N/A	2.909423	N/A
Fr, Froude number MC	1	0.51	1
Cf, Fr correction factor (<=1.0)	1.5	1	1.5
Elevation of Low Steel, ft	0	497.11	0
Elevation of Bed, ft	N/A	487.5642	N/A
Elevation of approach WS, ft	0	498.86	0
HF, bridge to approach, ft	0	0.12	0
Elevation of WS immediately US, ft	0	498.74	0
ya, depth immediately US, ft	N/A	11.17582	N/A
ya, depth immediately US, m	N/A	3.472908	N/A
Mean elev. of deck, ft	0	499.63	0
w, depth of overflow, ft (>=0)	0	0	0
Cc, vert contrac correction (<=1.0)	ERR	0.961508	ERR
Ys, depth of scour (chang), ft	N/A	0.86126	N/A

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

Characteristic		Left Abutment 100 yr Q 500 yr Q Other Q			Right Abutment 100 yr Q 500 yr Q Other Q		
(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal_overbank to obta Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft		2160 21.5 167.9 469.4 ave Qe bla 2.795712 7.81			2160 34.2 206.1 536.1 anually) 2.601164 6.03	0 0 0 0 0 ERR ERR	
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert	i. w/ win	gwall; 0. 0.82	55, spill 0.82	thru) 0	
Angle (theta) of embankment (<90 theta K2	80	points DS 80 0.984805	0	100	nts US) 100 1.013791	0 0	
Fr, froude number f/p flow	0.24	0.18	ERR	0.25	0.19	ERR	
ys, scour depth, ft	13.88	15.49	N/A	12.11	14.65	N/A	
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49	, eq. 29)						
a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1 Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical vertical w/ ww's spill-through	19.2 6.14 3.13 0.96 0.24 ERR ERR ERR	21.5 7.81 2.75 0.96 0.18 ERR ERR ERR	0 ERR ERR 0.96 N/A ERR ERR	30.8 4.12 7.47 1.02 0.25 ERR ERR ERR	34.2 6.03 5.68 1.02 0.19 ERR ERR ERR	0 ERR ERR 1.02 N/A ERR ERR ERR	
Abutment riprap Sizing							
Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82)							
Characteristic	Q100	Q500	Qother				
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.76 y in con 6.7	0.51 tracted se	ectionm	0.76 c, bridge 6.8	0.51 section) 9.6		
Median Stone Diameter for riprap at Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	: left ab 2.39 ERR	utment 1.54 ERR	0.00 ERR	right ab	utment, f 1.54 ERR	t O ERR	