LEVEL II SCOUR ANALYSIS FOR BRIDGE 8 (BARTTH00020008) on TOWN HIGHWAY 2, crossing ROARING BROOK, BARTON, VERMONT

U.S. Geological Survey Open-File Report 96-404

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 8 (BARTTH00020008) on TOWN HIGHWAY 2, crossing ROARING BROOK, BARTON, VERMONT

By Erick M. Boehmler and Michael A. Ivanoff

U.S. Geological Survey Open-File Report 96-404

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
•	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure BARTTH00020008 viewed from upstream (October 18, 1994)	
4. Downstream channel viewed from structure BARTTH00020008 (October 18, 1994)	
5. Upstream channel viewed from structure BARTTH00020008 (October 18, 1994)	
6. Structure BARTTH00020008 viewed from downstream (October 18, 1994)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BARTTH00020008 on Town Highway 2, crossing Roaring Brook,	
Barton, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
BARTTH00020008 on Town Highway 2, crossing Roaring Brook,	
Barton, Vermont.	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BARTTH00020008 on Town Highway 2, crossing Roaring Brook,	
Barton, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BARTTH00020008 on Town Highway 2, crossing Roaring Brook,	
Barton, Vermont	1
DALLAND. V CHIIVIII.	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 8 (BARTTH00020008) ON TOWN HIGHWAY 2, CROSSING ROARING BROOK, BARTON, VERMONT

By Erick M. Boehmler and Michael A. Ivanoff

INTRODUCTION

This report provides the results of a detailed Level II analysis of scour potential at structure BARTTH00020008 on town highway 2 crossing Roaring Brook, Barton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from VTAOT files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the New England Upland section of the New England physiographic province of North-central Vermont in the town of Barton. The 9.89-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage except for the downstream left bank, which has a few trees and grass and brush coverage.

In the study area, Roaring Brook has an incised, sinuous channel with a slope of approximately 0.019 ft/ft, an average channel top width of 35 ft and an average channel depth of 3 ft. The predominant channel bed material is gravel/cobble (D_{50} is 49.1 mm or 0.161 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 18, 1994 indicated that the reach was laterally unstable. A cut-bank on the downstream right bank and overall channel configuration in the valley are indications of the lateral instability at this site.

The town highway 2 crossing of Roaring Brook is a 30-ft-long, two-lane bridge consisting of one 26-foot span concrete T-beam type superstructure (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.

A scour hole 2.5 ft deeper than the mean thalweg depth was observed near mid-channel downstream of the bridge during the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) on the left upstream and downstream roadway embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows.

Contraction scour for all modelled flows ranged from 1.4 to 2.8 feet and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.5 to 16.5 feet and the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

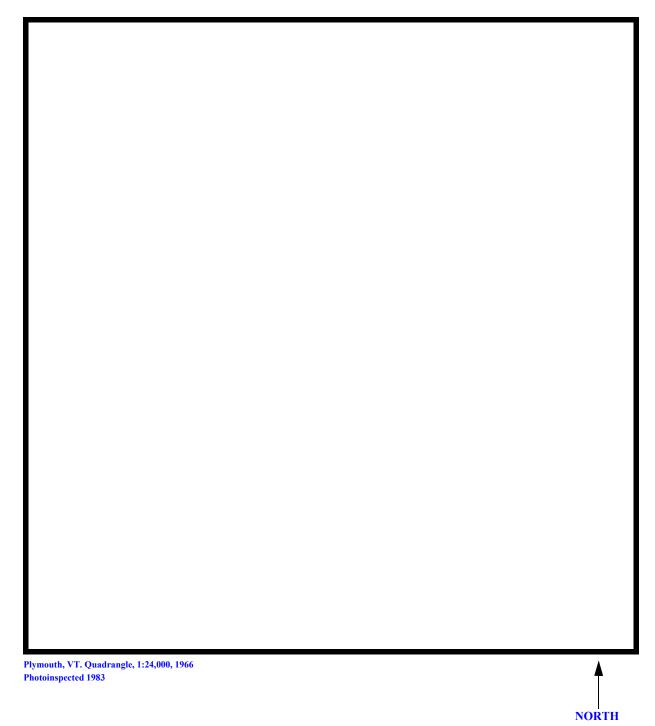
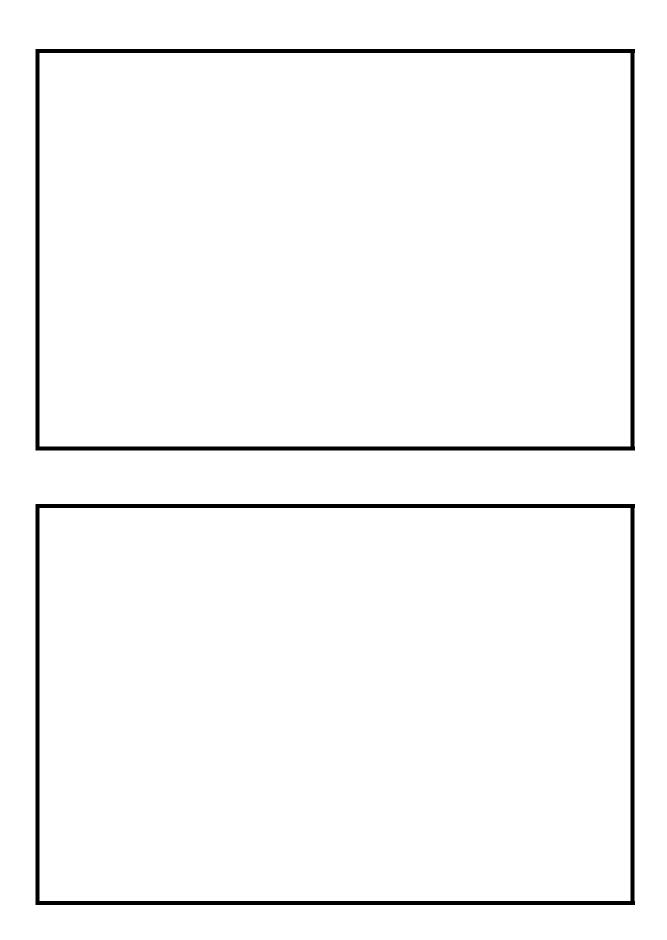



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ecture Number –	BARTTH00	020008	– Stream	Roaring	g Brook	
Orleans			Road —	TH 2	— District –	09
		Descripti	on of Brid	ge		
Bridge length	30 ft	Bridge width	23.6	ft Mo	ax span length	26
Alignment of brid	dge to road (or Vertical		aight) Embankn	nent type	Sloping 0/18/94	
Stone fill on abuth	mant?		Nato of ins It upstream a	naction	eam roadway em	ıbankmen
Abutments are co	oncrete. There	is a scour hol	e about two	and a half fe	eet deep near mi	d-channel
		dov	vnstream of	the bridge.		
Y					15	Y
Is bridge skewed	to flood flow	according to	There surv	ey?	Angle	
is a mild channel	bend in the up	stream reach	followed_by	a moderate l	bend immediate	l <u>y</u> ,
downstream of the	e bridge.					
Debris accumula	tion on bridge Date of inst 10/18/9	n <i>ect</i> ion	evel I or Lev Percent of blocked no	channal	Percent o	of observed to vertically
Level I	10/18/9			<u>-</u>		
Level II		_		ly unstable ar	nd the banks hav	/e
Potential for	vegetation cov r debris	erage near the	e channel.			
·						
Large, apparently	and the second second					

Description of the Geomorphic Setting

General topog	graphy The channel is located in a moderate relief valley setting configured with
a steep valley	wall on the USRB but moderately sloped elsewhere.
Geomorphic	conditions at bridge site: downstream (DS), upstream (US)
Date of insp	ection <u>10/18/94</u>
DS left:	Moderate bank slope to a more gradual, irregular overbank slope.
DS right:	Steep bank slope to a flat overbank.
US left:	Moderate bank slope to a gradual, irregular overbank slope.
US right:	Moderate bank slope to steep valley wall.
	Description of the Channel
	35
Average to	p width Gravel / Cobbles Average depth Gravel/Sand
Predominan	t bed material Bank material Sinuous and laterally
unstable with	semi-alluvial channel boundaries.
Var atativa a	<u>10/18/94</u>
	Brush with a few trees
DS left:	Trees
DS right:	Trees
US left:	Trees
US right:	<u>N</u>
	pear stable? On 10/18/94 a cut-bank with slumping bank material was evident on
the right ba	nk immediately downstream of the bridge. Additionally, a land-slide type bank rvation.
_	evident on the right bank about 200 feet upstream with a co-existing point bar on the
left bank sic	le.
	The assessment of
	oted large, apparently native, boulders on the right bank downstream, which partially a obstructions in channel and date of observation. The partial
	ned near mid-channel

Hydrology

Drainage area $\frac{9.89}{}$ mi ²	
Percentage of drainage area in physiographic p	rovinces: (approximate)
Physiographic province/section New England / New England Upland	Percent of drainage area
Is drainage area considered rural or urban? — None. urbanization:	Rural Describe any significant
Is there a USGS gage on the stream of interest?	No_
USGS gage description	
USGS gage number	
Gage drainage area	mi ² No
Is there a lake/p	· · · · · · · · · · · · · · · · · · ·
Calculated	I Discharges 1,730
Q100 ft ³ /sThe 10	Q500 ft ³ /s 00-year discharge is based on a drainage area
relationship $[Q100 = 1400(9.9/8.9)]$ with bridge n	umber 32 in Barton, for which there were
flood frequency estimates available in the VTAOT	database (Written communication, VTAOT,
May 4, 1995), and results from several empirical r	elationships (Benson, 1962; FHWA, 1983;
Johnson and Tasker, 1974; Potter, 1957a & b; Talb	ot, 1887). Each flood frequency curve was
extrapolated to obtain the 500-year discharge. Bec	ause bridge 32 in Barton may be visually
observed upstream from this site, the difference in	the 100-year discharge is assumed to result
nrimarily due to the change in area	

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT p	olans) USGS survey
Datum tie between USGS survey and VTAOT plans	None
Description of reference marks used to determine USGS data	um. RM1 is a chiseled "X"
in a chiseled square on top of the right abutment's US end (elev	v. 96.84 ft., arbitrary datum). RM2
is the high point of a chiseled square on top of a boulder locate	d about 20 feet downstream of the
downstream bridge face along the right bank edge of the chan	anel (elev. 90.71 ft., arbitrary
datum).	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT1	-42	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXIT1)
BRIDG	0	1	Bridge section
RDWAY	12	1	Road Grade section
APPR1	48	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.055, and the exit left overbank "n" value was 0.065.

Normal depth at the exit section (EXIT1) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0188 ft/ft, which was estimated from surveyed channel points at and downstream of the EXIT1 section.

The surveyed approach section (APPR1) was surveyed approximately one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For the 100-year discharge, WSPRO assumes critical depth at the bridge section. A supercritical model was developed for this discharge. Analyzing both the supercritical and subcritical profiles, it can be determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumption of critical depth at the bridge is a satisfactory solution.

The 100- and 500-year discharges modeled did not result in roadway overtopping.

Bridge Hydraulics Summary

Average bridge embankment elevation 99.6 ft	
Average low steel elevation 96.2 ft	
100-year discharge 1,180 ft ³ /s Water-surface elevation in bridge opening 93.1 ft	
Road overtopping?N Discharge over road	$\begin{bmatrix} 0 \\ J \end{bmatrix}$
Area of flow in bridge opening 100 ft ² Average velocity in bridge opening 11.9 ft/s Maximum WSPRO tube velocity at bridge 14.3 ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.8 †	95.7
500-year discharge $1,730$ ft^3/s Water-surface elevation in bridge opening 96.2 ft Road overtopping? N Discharge over road	0/s
Road overtopping? Discharge over road Area of flow in bridge opening ft^2 Average velocity in bridge opening 10.4 ft/s Maximum WSPRO tube velocity at bridge 12.2 /s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 4.5	99.4
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge openingft	
Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge	-
Water-surface elevation at Approach section without bridge Amount of backwater caused by bridget	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

The 500-year discharge resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Therefore, contraction scour for the 500-year discharge was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). For the 100-year discharge, contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). For contraction scour computations using the Laursen's equation, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. The results of Laursen's clear-water contraction scour for the 500-year event were also computed and can be found in appendix F. The depths to streambed armoring computed suggest the contraction scour will not be limited by armoring.

Abutment scour for each discharge modeled was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(S	cour depths in feet)	
Main channel			
Live-bed scour	 		
Clear-water scour	1.4 N/A	2.8 7.5	
Depth to armoring	N/A -	7.3 -	
Left overbank	<u></u>	<u></u>	
Right overbank			
Local scour:			
Abutment scour	8.5	11.4	
Left abutment	12.3-	16.5-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	I	
			Incipient overtopping
	100-yr discharg	e 500-yr discharge	discharge
	1.0	$(D_{50} in feet)$	
Abutments:	1.8	2.1	
Left abutment	1.8	2.1	
Right abutment	_	<u>-</u>	_
Piers:			
Pier 1		 	
Pier 2			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BARTTH00020008 on town highway 2, crossing Roaring Brook, Barton, Vermont.

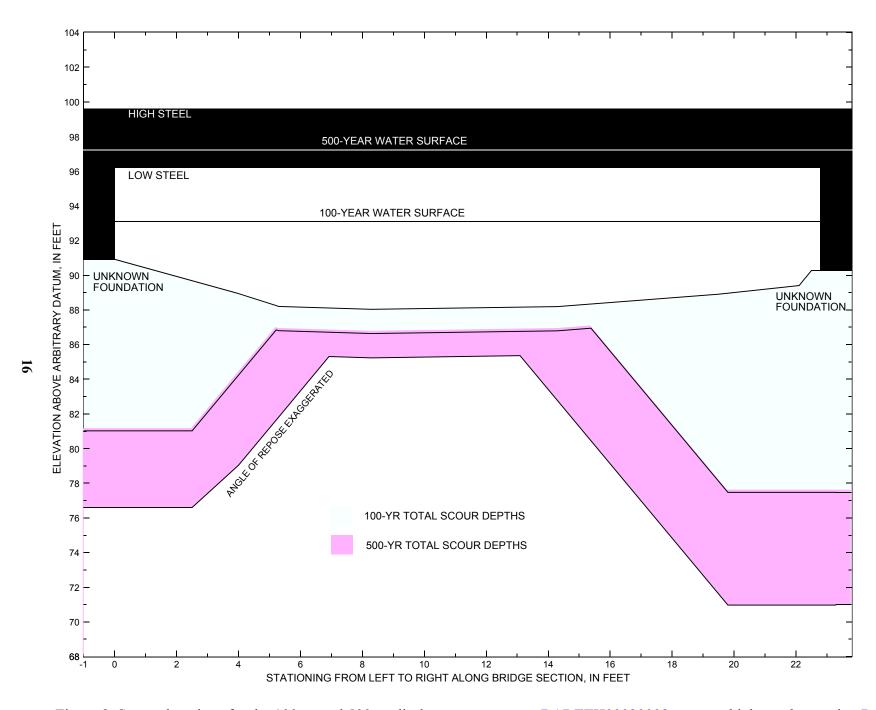


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BARTTH00020008 on town highway 2, crossing Roaring Brook, Barton, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BARTTH00020008 on Town Highway 2, crossing Roaring Brook, Barton, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 1,180 cubic-feet per second										
Left abutment	0.0		96.2		90.9	1.4	8.5		9.9	81.0	
Right abutment	22.8		96.2		90.3	1.4	12.3		13.7	76.6	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BARTTH00020008 on Town Highway 2, crossing Roaring Brook, Barton, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,730	cubic-feet per sec	cond				
Left abutment	0.0		96.2		90.9	2.8	11.4		14.2	76.7	
Right abutment	22.8		96.2		90.3	2.8	16.5		19.3	71.0	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M.A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain, U.S. Geological Survey Water-supply Paper 1580 B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1986, Crystal Lake, Vermont 7.5 Minute Series quadrangle map, Provisional edition: U.S. Geological Survey Topographic Maps, aerial photography, 1980, contour interval, 6 meters, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File bart008.wsp
         Hydraulic analysis for structure BARTTH00200008 Date: 12-MAR-96
         Town Highway 20 Bridge Crossing Roaring Brook, Barton, VT
Т3
                                                                      EMB
          1180.0, 1730.0
Q
          0.0188, 0.0188
SK
*
J3
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
*
XS
            -42
           -43.3, 99.63
                                                          0.0, 88.28
                         -23.6, 90.77
                                           -4.1, 90.12
GR
            1.4, 87.79
                           5.6, 87.93
                                           11.2, 87.22
                                                         17.9, 87.31
GR
                          23.3, 89.83
                                           26.5, 97.79
                                                       35.4, 99.11
           20.6, 88.34
GR
*
            0.065
                        0.055
Ν
SA
                   -4.1
*
    FULLV
             0 * * * 0.0123
XS
*
*
            SRD
                   LSEL
                           XSSKEW
BR
    BRIDG
             0
                  96.19
                            0.0
                                           4.0, 88.94
GR
            0.0, 96.19
                           0.0, 90.92
                                                          5.3, 88.20
                           14.3, 88.19
            8.3, 88.03
                                          19.5, 88.90
                                                          22.1, 89.40
GR
                                                          0.0, 96.19
            22.5, 90.27
                          22.5, 90.39
                                           22.8, 96.18
GR
*
*
         BRTYPE BRWDTH
CD
           1
                 24.3
           0.040
N
*
*
                 EMBWID
                          IPAVE
           SRD
XR
    RDWAY
            12
                  23.6
                           1
GR
          -271.5, 105.01 -193.0, 102.80
                                        -126.1, 101.45
                                                        -86.4, 100.87
          -32.0, 100.12
                          -0.6, 99.75
                                          -0.6, 103.32
                                                          0.0, 103.30
GR
GR
            0.0, 102.59
                           1.9, 102.53
                                         26.3, 102.44
                                                         35.5, 102.41
GR
           35.6, 103.23
                          38.0, 103.22
                                         38.0, 99.51
                                                        63.8, 100.42
           138.2, 100.75 138.2, 105.00
GR
ВP
           1.8
*
    APPR1
AS
            48
                         0.
                                        -13.7, 95.22
                         -32.9, 98.31
GR
           -55.3, 100.47
                                                         -4.8, 92.35
                                                         14.9, 88.24
                          4.1, 88.14
                                          9.3, 88.09
GR
            0.0, 89.04
                                          34.0, 92.03
GR
           18.6, 88.36
                         21.1, 88.95
                                                          47.1, 94.90
           71.8, 104.83
GR
*
          0.055
Ν
*
HP 1 BRIDG
           93.13 1 93.13
HP 2 BRIDG
           93.13 * * 1180
            95.73 1 95.73
HP 1 APPR1
HP 2 APPR1
            95.73 * * 1180
HP 1 BRIDG
           96.19 1 96.19
HP 2 BRIDG
          96.19 * * 1730
HP 1 APPR1 99.43 1 99.43
HP 2 APPR1 99.43 * * 1730
EΧ
ER
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

C	ROSS-SE	CTION PR	OPERTIES	: ISEQ	= 3;	SECID	= BRIDG	; SRD	=	0.
		A# A	REA 100				ALPH	LEW	REW	QCR 1185
9	3.13						1.00	0	23	1185
V	ELOCITY	DISTRIB	BUTION:	ISEQ =	3; SE	CID = B	RIDG;	SRD =		0.
	WSE	L LE	W RE	W AR	EA	K	Q	VEL		
	93.1	3 0.	0 22.	6 99	.6 8	466.	1180.	11.85		
X STA			2.							7.3
A(I V(I	•		8.7 .81							
v cma			8.							
X STA A(I			4.2							11.4
V(I)	13	.90	14.11	14	.06	14.28	1	L4.34	
X STA		11.4	12.							15.7
A(I V(I		14	4.2	4.1 14 25	14	4.2 14	4.3		4.3	
V (±	•									
X STA A(I			16. 4.6							22.6
•)		.78							
C	ROSS-SE	CTION PR	OPERTIES	: ISEQ	= 5;	SECID	= APPR1	; SRD	=	48.
							ALPH	LEW	REW	QCR
9	5.73	1	297 297	21360	66 66	69 69	1 00	-16	49	3571 3571
V	ELOCITY	DISTRIB	BUTION:	ISEQ =	5; SE	CID = A	.PPR1;	SRD =	4	8.
			W RE 9 49.							
X STA A(I		-16.9	-2. 37.7	18 3	0.5	2 4 5	.6	4.3	12 9	6.0
V(I			.13	3.23	1	1.5	13.0		12.7	
)	2		3.23	4	.06	4.54		4.59	
X STA										13.8
X STA A(I)	6.0	7.	6	9.1	10	.7	12.2		13.8
)	6.0		6	9.1	10	.7	12.2		13.8
A(I V(I X STA)	6.0 1 4	7. 1.9 94	6 11.7 5.03	9.1 1 4	10 1.8 .99	.7 11.6 5.08	12.2	11.6 5.11	
A(I V(I)) 	6.0 1 4	7. 1.9 94 15.	6 11.7 5.03 3 11.8	9.1 1 4	10 1.8 .99 18	.7 11.6 5.08 .5	12.2	11.6 5.11 12.8	
A(I V(I X STA A(I V(I X STA))	6.0 1 4 13.8 1 5	7. 1.9 94 15. 1.5	6 11.7 5.03 3 11.8 5.01	9.1 1 4 16.9 1 4 26.9	10 1.8 .99 18 2.1 .89	.7 11.6 5.08 .5 12.3 4.78	12.2 20.2 34.8	11.6 5.11 12.8 4.61	22.1
A(I V(I X STA A(I V(I))	6.0 1 4 13.8 1 5 22.1	7. 1.9 94 15. 1.5	6 11.7 5.03 3 11.8 5.01 3 14.6	9.1 1 4 16.9 1 4 26.9	10 1.8 .99 18 2.1 .89 30 6.4	.7 11.6 5.08 .5 12.3 4.78	12.2 20.2 34.8	11.6 5.11 12.8 4.61	22.1

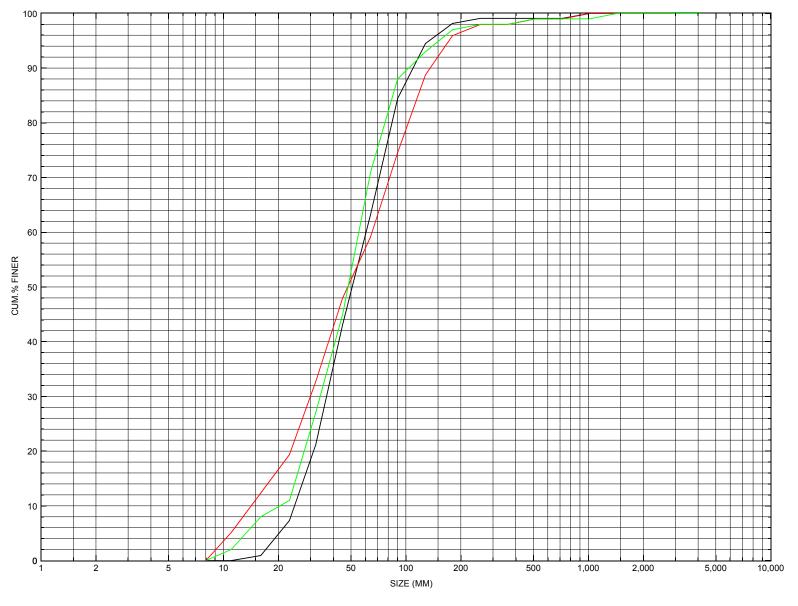
	S-SECTION	PROPER'	TIES:	ISEQ	= 3;	SECI	D = E	BRIDG	; SRD	=	0.
WSE	L SA#	AREA		K	TOPW	WETP	ALE	Н	LEW	REW	QCR
	1										0
96.1	9	169	12	872	0	58	1.0	0	0	23	0
VELO	CITY DIST	RIBUTIO	N: IS	EQ =	3; S	SECID =	BRII)G; S	SRD =		0.
	WSEL										
	96.19	0.0	22.8	169	.0 1	.2872.	17	30.	10.24		
X STA.	0.0)	2.4		3.8		5.0		6.0		6.9
A(I)		14.4		9.5		8.8		7.9		7.4	
V(I)		6.01		9.06		9.78	1	0.89	:	11.62	
X STA.	6.9	9	7.9		8.8		9.6		10.5		11.4
A(I)											
V(I)		7.3 11.80	1	1.79	1	1.96	1	2.14	-	12.17	
X STA.	11.4	1	12.3		13.2		14.1		15.0		16.0
A(I)		7.2		7.2		7.2		7.3		7.5	
V(I)		12.04	1	2.08	1	1.97	1	1.90	-	11.48	
X STA.	16.0										22.8
A(I)		7.7				8.5					
V(I)		11.25	1	0.80	1	.0.13		9.13		5.92	
CROS	S-SECTION	PROPER	TIES:	ISEQ	= 5;	SECI	D = P	PPR1	; SRD	=	48.
WSE	L SA#							PΗ	LEW	REW	QCR
		603									8290
99.4	3	603	51	977	103	106	1.0	0	-44	58	8290
VELO	CITY DIST	RIBUTIO	N: IS	EQ =	5; S	SECID =	APPF	21; 5	SRD =	4	18.
	WSEL	LEW									
			REW	ARI	EΑ	K		Q	VEL		
	99.43 -	14.5	58.4	ARI 603	EΑ .3 5	K 1977.	17	Q '30.	VEL 2.87		
X STA.	99.43 -44.!	14.5	58.4	603	.3 5	1977.	17	30.	2.87		4.7
X STA. A(I)		44.5 5 -	58.4	603	.3 5 -4.6	1977.	17 -0.5	30.	2.87		4.7
	-44.	44.5 5 -	58.4	603 43.2	.3 5 -4.6	35.0	17 -0.5	30.2	2.87	26.7	
A(I)	-44.! 4.	44.5 66.4 1.30	58.4 -11.8	603 43.2 2.00	.3 5 -4.6 9.1	35.0 2.47	17 -0.5	30.2 2.87	2.87 2.3	26.7 3.24	15.4
A(I) V(I)	-44.! 4.	66.4 1.30	58.4 -11.8	603 43.2 2.00	.3 5 -4.6 9.1	35.0 2.47	17 -0.5	30.2 2.87	2.87 2.3	26.7 3.24	15.4
A(I) V(I) X STA.	-44 .! 4 .'	44.5 66.4 1.30	58.4 -11.8 7.0	43.2 2.00	.3 5 -4.6 9.1	35.0 2.47	17 -0.5	30.2 2.87 23.3	2.87 2.3	26.7 3.24	15.4
A(I) V(I) X STA. A(I)	-44.! 4.'	44.5 66.4 1.30 7 25.4	58.4 -11.8 7.0	43.2 2.00 24.5 3.53	.3 5 -4.6 9.1	35.0 2.47 23.7 3.65	17 -0.5	30.2 2.87 23.3 3.71	2.87 2.3	26.7 3.24 23.2 3.73	15.4
A(I) V(I) X STA. A(I) V(I)	-44.! 4.'	44.5 66.4 1.30 7 25.4 3.41 4 22.6	58.4 -11.8 7.0	603 43.2 2.00 24.5 3.53	.3 5 -4.6 9.1	35.0 2.47 23.7 3.65	17 -0.5 11.2	30.2 2.87 23.3 3.71	2.87 2.3 13.3	26.7 3.24 23.2 3.73	15.4 26.6
A(I) V(I) X STA. A(I) V(I) X STA.	-44.! 4.'	44.5 66.4 1.30 7 25.4 3.41	58.4 -11.8 7.0	603 43.2 2.00 24.5 3.53	.3 5 -4.6 9.1	35.0 2.47 23.7 3.65	17 -0.5 11.2	30.2 2.87 23.3 3.71	2.87 2.3 13.3	26.7 3.24 23.2 3.73	15.4 26.6
A(I) V(I) X STA. A(I) V(I) X STA. A(I) V(I)	-44.! 4.'	44.5 66.4 1.30 7 25.4 3.41 4 22.6 3.83	58.4 -11.8 7.0	43.2 2.00 24.5 3.53 22.4 3.86	.3 5 -4.6 9.1 19.4	35.0 2.47 23.7 3.65 23.3 3.71	17 -0.5 11.2 21.6	30.2 2.87 23.3 3.71 23.7 3.65	2.87 2.3 13.3	26.7 3.24 23.2 3.73 25.0 3.46	15.4 26.6
A(I) V(I) X STA. A(I) V(I) X STA. A(I) V(I)	-44.! 4.7	44.5 66.4 1.30 7 25.4 3.41 4 22.6 3.83	58.4 -11.8 7.0 17.4	603 43.2 2.00 24.5 3.53 22.4 3.86	.3 5 -4.6 9.1 19.4	35.0 2.47 23.7 3.65 23.3 3.71	17 -0.5 11.2 21.6	30.2 2.87 23.3 3.71 23.7 3.65	2.87 2.3 13.3 24.0	26.7 3.24 23.2 3.73 25.0 3.46	15.4 26.6
A(I) V(I) X STA. A(I) V(I) X STA. A(I) V(I) X STA.	-44.! 4.7	44.5 66.4 1.30 7 25.4 3.41 4 22.6 3.83	58.4 -11.8 7.0 17.4	43.2 2.00 24.5 3.53 22.4 3.86	.3 5 -4.6 9.1 19.4	35.0 2.47 23.7 3.65 23.3 3.71	17 -0.5 11.2 21.6	30.2 2.87 23.3 3.71 23.7 3.65	2.87 2.3 13.3 24.0	26.7 3.24 23.2 3.73 25.0 3.46	15.4 26.6

+++ BEGINNIN	IG PROFIL	E CALCUI	LATIONS		2				
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	FLEN		K				FR#		
EXIT1:XS *									92.16
-41 *	****	24	8605	1.18	****	*****	0.87	7.82	
FULLV:FV	42	-27	172	0.86	0.66	93.93	*****	1180	93.07
0	42	24					0.72		
<<<	< <the ab<="" td=""><td>OVE RESU</td><td>JLTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNC</td><td>ONSTRICTEI</td><td>)) FLOW></td><td>>>>></td></the>	OVE RESU	JLTS RE	FLECT	"NORMA	L" (UNC	ONSTRICTEI)) FLOW>	>>>>
APPR1:AS	48	- 8	187	0.62	0.56	94.48	*****	1180	93.86
48	48	42	11605	1.00	0.00	-0.01	0.59	6.31	
<<<	< <the ab<="" td=""><td>OVE RESU</td><td>JLTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNC</td><td>ONSTRICTED</td><td>) FLOW></td><td>>>>></td></the>	OVE RESU	JLTS RE	FLECT	"NORMA	L" (UNC	ONSTRICTED) FLOW>	>>>>
===285 CRIT	S	ECID "BF	RIDG"	Q,(CRWS =	1180	U _ M _ E . 93.	13	111
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
BRIDG:BR	42	0	100	2.19	****	95.31	93.13	1180	93.13
0	42	23	8454	1.00	****	*****	1.00	11.86	
TYPE PF 1. **	PCD FLOW	C 1.000 *	P/A	LSI 96.1	EL BL 19 ****	EN XLA	AB XRAB ** *****		
							AB XRAB ** ***** RR Ç) WSE	L
XSID:COD	DE SRD	FLEN	HF	VHD	EG	L EI		=	L
XSID:COD RDWAY:RG	DE SRD	FLEN	HF <<< <e< td=""><td>VHD MBANKI</td><td>EG MENT IS</td><td>L EI NOT OVI</td><td>RR Ç ERTOPPED>></td><td>>>>></td><td></td></e<>	VHD MBANKI	EG MENT IS	L EI NOT OVI	RR Ç ERTOPPED>>	>>>>	
XSID:COD	DE SRD	FLEN	HF <<< <e< td=""><td>VHD MBANKI</td><td>EG MENT IS</td><td>L EI NOT OVI</td><td>RR Ç ERTOPPED>></td><td>>>>></td><td></td></e<>	VHD MBANKI	EG MENT IS	L EI NOT OVI	RR Ç ERTOPPED>>	>>>>	
XSID:COD RDWAY:RG XSID:CODE SRD	DE SRD 12. SRDL FLEN	FLEN LEW REW	HF <<< <e AREA K</e 	VHD MBANKI VHD ALPH	EG MENT IS HF HO	L EI NOT OVI EGL ERR	RR Ç ERTOPPED>> CRWS FR#	Q VEL	WSEL
XSID:COD RDWAY:RG XSID:CODE SRD APPR1:AS	DE SRD 12. SRDL FLEN 24	FLEN LEW REW	HF <<< <e AREA K 297</e 	VHD MBANKI VHD ALPH 0.25	EG MENT IS HF HO 0.19	EL EI NOT OVI EGL ERR 95.98	RR Ç ERTOPPED>> CRWS FR#	Q VEL 1180	WSEL
XSID:COD RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G)	DE SRD 12. SRDL FLEN 24	FLEN LEW REW -16 49	HF <<< <e AREA K 297 21357</e 	VHD MBANKI VHD ALPH 0.25 1.00	EGMENT IS HF HO 0.19 0.47	NOT OVI EGL ERR 95.98 0.00	RR Ç ERTOPPED>> CRWS FR# 92.44	Q VEL 1180	WSEL
XSID:COD RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G)	SRDL FLEN 24 25 M(K)	FLEN LEW REW -16 49 KQ 16859.	HF <<< <e AREA K 297 21357 XLKQ 1.</e 	VHD MBANKI VHD ALPH 0.25 1.00	EGMENT IS HF HO 0.19 0.47	NOT OVI EGL ERR 95.98 0.00	CRWS FR# 92.44 0.33	Q VEL 1180	WSEL
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563	SRDL FLEN 24 25 M(K) 0.210	FLEN LEW REW -16 49 KQ 16859.	HF <<< <e AREA K 297 21357 XLKQ 1.</e 	VHD MBANKI VHD ALPH 0.25 1.00	EGMENT IS HF HO 0.19 0.47	EGL EINOT OVI EGL ERR 95.98 0.00 TEL 5.65	CRWS FR# 92.44 0.33	Q VEL 1180	WSEL
XSID:COD RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G)	SRDL FLEN 24 25 M(K) 0.210	FLEN LEW REW -16 49 KQ 16859.	HF <<< <e AREA K 297 21357 XLKQ 1.</e 	VHD MBANKI VHD ALPH 0.25 1.00	EGMENT IS HF HO 0.19 0.47	EGL EINOT OVI EGL ERR 95.98 0.00 TEL 5.65	CRWS FR# 92.44 0.33	Q VEL 1180	WSEL
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563	SRDL FLEN 24 25 M(K) 0.210 R DEFINED	FLEN LEW REW -16 49 KQ 16859. <<< <en< td=""><td>HF <<<<e AREA K 297 21357 XLKQ 1.</e </td><td>VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE</td><td>EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT</td><td>EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 CATIONS</td><td>CRWS FR# 92.44 0.33</td><td>Q VEL 1180</td><td>WSEL</td></en<>	HF <<< <e AREA K 297 21357 XLKQ 1.</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE	EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT	EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 CATIONS	CRWS FR# 92.44 0.33	Q VEL 1180	WSEL
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563	SRDL FLEN 24 25 M(K) 0.210 R DEFINED	FLEN LEW REW -16 49 KQ 16859. <<< <en< td=""><td>HF <<<<<e AREA K 297 21357 XLKQ 1.</e </td><td>VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE</td><td>EGMENT IS HF HO 0.19 0.47 CQ 0 COMPUT</td><td>EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 CATIONS</td><td>CRWS FR# 92.44 0.33</td><td>Q VEL 1180 3.98</td><td>WSEL 95.73</td></en<>	HF <<<< <e AREA K 297 21357 XLKQ 1.</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE	EGMENT IS HF HO 0.19 0.47 CQ 0 COMPUT	EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 CATIONS	CRWS FR# 92.44 0.33	Q VEL 1180 3.98	WSEL 95.73
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563 FIRST USER XSID:COD	SRDL FLEN 24 25 M(K) 0.210 C DEFINED E SRD -42. 0.	FLEN LEW REW -16 49 KQ 16859. <	HF <<<< <e AREA K 297 21357 XLKQ 1. ND OF B</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE	EGMENT IS HF HO 0.19 0.47 CQ 0 1. 9 COMPUT	EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 CATIONS	CRWS FR# 92.44 0.33	VEL 7.82	WSEL 95.73 WSEL 92.16
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563 FIRST USER XSID:COD EXIT1:XS	SRDL FLEN 24 25 M(K) 0.210 C DEFINED E SRD -42.	FLEN LEW REW -16 49 KQ 16859. <	HF <<<< <e AREA K 297 21357 XLKQ 1. ND OF B</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 22 RIDGE	EGMENT IS HF HO 0.19 0.47 CQ 0 COMPUT	EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 EATIONS > 1 K 8605.0267.	CRWS FR# 92.44 0.33	VEL 7.82	WSEL 95.73 WSEL 92.16 93.07
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563 FIRST USER XSID:COD EXIT1:XS FULLV:FV	DE SRDL SRDL FLEN 24 25 M(K) 0.210 2 DEFINED 2 SRD -42. 0. 0.	FLEN LEW REW -16 49 KQ 16859. <	HF <<< <e AREA K 297 21357 XLKQ 1. ND OF B REW 24. 24. 23.</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 22 RIDGE	EGMENT IS HF HO 0.19 0.47 COMPUT Q 30. 30. 130.	EL EN NOT OVI EGL ERR 95.98 0.00 TEL 5.65 EATIONS > 1 K 8605.0267.	CRWS FR# 92.44 0.33	VEL 7.82 6.88 11.86	WSEL 95.73 WSEL 92.16 93.07
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563 FIRST USER XSID:COD EXIT1:XS FULLV:FV BRIDG:BR	DE SRDL SRDL FLEN 24 25 M(K) 0.210 2 DEFINED 2 SRD -42. 0. 0. 12.	FLEN LEW REW -16 49 KQ 16859. <<< <en -2728.="" 0.<="" lew="" table.="" td=""><td>HF <<<<e AREA K 297 21357 XLKQ 1. ND OF B REW 24. 24. 23.</e </td><td>VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE</td><td>EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT Q 30. 30. 1</td><td>EL EI EGL ERR 95.98 0.00 PTEL 5.65 PATIONS >: 8605.0267.8454.</td><td>CRWS FR# 92.44 0.33</td><td>VEL 7.82 6.88 11.86</td><td>WSEL 95.73 WSEL 92.16 93.07 93.13 ******</td></en>	HF <<< <e AREA K 297 21357 XLKQ 1. ND OF B REW 24. 24. 23.</e 	VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE	EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT Q 30. 30. 1	EL EI EGL ERR 95.98 0.00 PTEL 5.65 PATIONS >: 8605.0267.8454.	CRWS FR# 92.44 0.33	VEL 7.82 6.88 11.86	WSEL 95.73 WSEL 92.16 93.07 93.13 ******
XSID:CODE RDWAY:RG XSID:CODE SRD APPR1:AS 48 M(G) 0.563 FIRST USER XSID:COD EXIT1:XS FULLV:FV BRIDG:BR RDWAY:RG	SRDL FLEN 24 25 M(K) 0.210 DE SRD -42. 0. 0. 12. 48.	FLEN LEW REW -16 49 KQ 16859. <<< <en *******<="" -2728.="" 0.="" lew="" table.="" td=""><td>HF <<<<e ******="" 1.="" 21357="" 23.="" 24.="" 297="" 49.<="" area="" b="" k="" nd="" of="" rew="" td="" xlkq=""><td>VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE</td><td>EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT Q 30. 30. 1</td><td>EL EI EGL ERR 95.98 0.00 PTEL 5.65 PATIONS >: 8605.0267.8454.</td><td>CRWS FR# 92.44 0.33</td><td>VEL 7.82 6.88 11.86 1.00**</td><td>WSEL 95.73 WSEL 92.16 93.07 93.13 ******</td></e></td></en>	HF <<< <e ******="" 1.="" 21357="" 23.="" 24.="" 297="" 49.<="" area="" b="" k="" nd="" of="" rew="" td="" xlkq=""><td>VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE</td><td>EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT Q 30. 30. 1</td><td>EL EI EGL ERR 95.98 0.00 PTEL 5.65 PATIONS >: 8605.0267.8454.</td><td>CRWS FR# 92.44 0.33</td><td>VEL 7.82 6.88 11.86 1.00**</td><td>WSEL 95.73 WSEL 92.16 93.07 93.13 ******</td></e>	VHD MBANKN VHD ALPH 0.25 1.00 XRI 24 RIDGE	EGMENT IS HF HO 0.19 0.47 KQ O 1. 9 COMPUT Q 30. 30. 1	EL EI EGL ERR 95.98 0.00 PTEL 5.65 PATIONS >: 8605.0267.8454.	CRWS FR# 92.44 0.33	VEL 7.82 6.88 11.86 1.00**	WSEL 95.73 WSEL 92.16 93.07 93.13 ******

APPR1:AS 1. 24. 16859.

SECOND USER DEFINED TABLE.

BECOND OBER	. DEFINED	TADLE.							
XSID:COD	E CRW	S F	R# Y	MIN	YMAX	HF	HO VHD	EGL	WSEL
EXIT1:XS									
FULLV:FV						0.66 0.			
BRIDG:BR						*****			
RDWAY:RG						*****			
APPR1:AS						0.19 0.			
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	FLEN	REW	K	ALPH	НО		FR#		
EXIT1:XS *	****	-28	199	1.36	****	94.44	92.72	1730	93.08
-41 *	****	25	12614	1.16	****	*****	0.85	8.70	
FULLV:FV	42	-29	222	1.08	0.67	95.11 *	****	1730	94.03
0	42	25	14766	1.15	0.00	0.00	0.73	7.78	
<<<	< <the ab<="" td=""><td>OVE RES</td><td>ULTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNCON</td><td>STRICTED)</td><td>) FLOW>></td><td>>>></td></the>	OVE RES	ULTS RE	FLECT	"NORMA	L" (UNCON	STRICTED)) FLOW>>	>>>
APPR1:AS	48	-12	245	0.77	0.59	95.68 *	****	1730	94.91
48	48	47	16591	1.00	0.00	-0.02	0.61	7.06	
<<<	< <the ab<="" td=""><td>OVE RES</td><td>ULTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNCON</td><td>STRICTED)</td><td>) FLOW>></td><td>>>></td></the>	OVE RES	ULTS RE	FLECT	"NORMA	L" (UNCON	STRICTED)) FLOW>>	>>>
===220 FLOW	CLASS 1	(4) SO	LUTION	INDIC	ATES PO	SSIBLE PR	ESSURE F	LOW.	
W	S3,WSIU,	WS1,LSE	L =	94.40	9	7.47	97.64	96.1	9
===245 ATTE	MPTING F	LOW CLA	SS 2 (5) SOLI	JTION.				
	<<< <res< td=""><td>ULTS RE</td><td>FLECTIN</td><td>G THE</td><td>CONSTR</td><td>ICTED FLC</td><td>W FOLLOW:</td><td>>>>></td><td></td></res<>	ULTS RE	FLECTIN	G THE	CONSTR	ICTED FLC	W FOLLOW:	>>>>	
XSID:CODE		LEW				EGL		Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRIDG:BR						97.87			96.19
0 *	****	23	12872	1.00	****	*****	0.67	10.39	
	~~ ~~ ~~	~	- /-						
			P/A			EN XLAE			
1. **	** 2.	0.491	*****	96.	19 ****	** *****	*****		
WATE GOD	T	DT DN		IIIID	ПС			мапт	
	E SRD		HF	VHD	EG.		~		ı
RDWAY:RG	12.		<<<<吐	MBANKI	MENT IS	NOT OVER	TOPPED>>:	>>>	
VCID. CODE	CDDI	T TOM	ע בו כו ע	MID	1117	ECT	CDWC	_	MCET
XSID:CODE	FLEN	REW				EGL ERR		Q	WSEL
SKD	LUEN	KEW	IV.	АПЬЦ	пО	EKK	rk#	ΛΕΤ	
APPR1:AS	24	_ 1 1	603	0 13	0 11	99.56	02 /2	1720	99.43
48		58				0.02			33.43
40	23	30	31911	1.00	0.49	0.02	0.21	2.07	
M(G)	M(K)	KΟ	XI.KU	YDI	χ Ω Ω	TET.			
	*****					9.40			
					,	J.40			
		<<<<< F.	ND OF B	RIDGE	COMPITE	ATIONS>>>	·>>		
			J. D.		20111 01				
FIRST USER	DEFINED	TABLE							
XSID:COD	E SRD	LEW	REW		Q	K	AREA	VEL	WSEL
EXIT1:XS									
FULLV: FV						4766.			
BRIDG:BR									
RDWAY:RG	12	· · · * * * * *	 *****		0.***	2872. *******	****	1.00***	****
APPR1:AS						1977.			
III I KI . AB	40.	49.	50.	Ι/.			000.	2.07	JJ. 4J


XSID: CODE	E XLKQ	XRKQ	KQ
APPR1:AS	*****	*****	*****

SECOND USER DEFINED TABLE.

XSID:COD	E CRWS	FR#	YMIN	YMAX	HF	НО	VHD	EGL	WSEL
EXIT1:XS	92.72	0.85	87.22	99.63*	*****	****	1.36	94.44	93.08
FULLV:FV	*****	0.73	87.74	100.15	0.67	0.00	1.08	95.11	94.03
BRIDG:BR	94.46	0.67	88.03	96.19*	*****	****	1.68	97.87	96.19
RDWAY:RG	******	*****	99.51	105.01*	*****	****	0.09	100.58**	*****
APPR1:AS	93.43	0.21	88.09	104.83	0.11	0.49	0.13	99.56	99.43
ER									

NORMAL END OF WSPRO EXECUTION.

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure BARTTH00020008, in Barton, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BARTTH00020008

General	L	ocation.	Descr	ipt	ive
_	_				

Data collected by (First Initial, Full last name) M. WEBER

Date (MM/DD/YY) __08 / _04 / _94

Highway District Number (I - 2; nn) 09 County (FIPS county code; I - 3; nnn) 019

Town (FIPS place code; I - 4; nnnnn) 03550 Mile marker (I - 11; nnn.nnn) 000000

Waterway (1 - 6) Roaring Brook Road Road Name (1 - 7): Roaring Brook Road

Route Number TH002 Vicinity (1 - 9) 0.05 MI TO JCT W C3 TH43

Topographic Map Crystal.Lake Hydrologic Unit Code: 01110000

Latitude (I - 16; nnnn.n) 44443 Longitude (i - 17; nnnnn.n) 72128

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) <u>10100200081002</u>

Maintenance responsibility (1 - 21; nn) 03 Maximum span length (1 - 48; nnnn) 0026

Year built (1 - 27; YYYY) 1928 Structure length (1 - 49; nnnnnn) 000030

Average daily traffic, ADT (I - 29; nnnnnn) 000730 Deck Width (I - 52; nn.n) 236

Year of ADT (1 - 30; YY) 91 Channel & Protection (1 - 61; n) 6

Opening skew to Roadway (*I* - 34; nn) 00 Waterway adequacy (*I* - 71; n) 6

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 104 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) __000 __ Clear span (nnn.n ft) __-

Number of spans (*I - 45; nnn*) 001 Vertical clearance from streambed (*nnn.n ft*) 007.0

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) _____

Comments:

Structural inspection report of 7/18/92 indicates settlement on the left abutment. The fascia T-beams have heavy section loss and exposed rebar spalling. Extensive spalling at the bottom left abutment with large aggregate exposed. Moderate channel turn upstream then sharp turn downstream with bank erosion. The bridge is in fair to poor condition. Photos with bridge record show large scour holes at unspecified wing walls above the ambient water surface. Also the photos show rail damage.

	Bridg	ge Hydro	ologic Da	ata		
Is there hydrologic data available	e? <u>Y</u> if	No, type ctrl	-n h VTA	OT Draina	age area (m	ni²): 9.92
Terrain character:						
Stream character & type: _						
Streambed material: Stones and						
Discharge Data (cfs): Q _{2.33} _	-	Q ₁	0		Q ₂₅	
						
Record flood date (MM / DD / YY):	<u>-</u> /	/ -	Water surf	face eleva	tion <i>(ft)</i> :	
Estimated Discharge (cfs):						D AWYW.
Ice conditions (Heavy, Moderate, Lig						
The stage increases to maximur	_		•	Not rapidly):		
The stream response is (Flashy, I						
Describe any significant site con stage: -	ditions up	stream or	downstrea	m that ma	y influence	the stream's
Watershed storage area (in perce	nt): - 0/					
The watershed storage area is:	· ——	ainly at the h	eadwaters: 2)_ uniformly (distributed: 3	immediatly unstream
The watershed storage area is.		e site)	eauwalers, 2	urmorriny (iistributeu, s	-iiiiiieuialiy upsiieaiii
Water Surface Elevation Estimate	tes for Exi	sting Struc	<u>ture:</u>			_
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (ft))	-	-	-	-	-	
Velocity (ft / sec)	-	-	-	-	-	
Long torm stroom had shanges:	Į	1		Į	<u> </u>	I
Long term stream bed changes:	_					
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	U	Frequenc	cy: <u>-</u>
Relief Elevation (ft):	Discha	arge over r	oadway at	Q_{100} (ft ³ /s	sec): <u>-</u>	
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n. tvpe ctrl-n	OS
Upstream distance (miles):						
Highway No. :						
Clear span (ft): Clear He	eight (ft):	F	ull Waterw	ay (#²): <u>-</u>		

Downstream distance (<i>miles</i>):				
Clear span (#): - Clear Heigh				_
Comments:		- J ()	<i>,</i>	
Comments.				
	USGS Waters	shed Data		
Watershed Hydrographic Data				
Drainage area (DA) mi ²	Lake	and pond area	0.47 mi ²	
Watershed storage (ST) 4.8	%			
Bridge site elevation		water elevation	ft	
Main channel length				
10% channel length elevation _		85% channel le	ength elevation <u>1750</u> ft	
Main channel slope (S) 117.9	ft / mi			
Watershed Precipitation Data				
Average site precipitation	in Avera	age headwater p	precipitation in	
Maximum 2yr-24hr precipitation e	vent (124,2)	in		
Average seasonal snowfall (Sn)	ft			

Bridge Plan Data
Are plans available? NIf no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number Minimum channel bed elevation:
Low superstructure elevation: USLAB DSLAB USRAB DSRAB Benchmark location description:
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness Footing bottom elevation:
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? N If no, type ctrl-n bi Number of borings taken: Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: -
Comments: NO PLANS

Cross-sectional Data Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs Source (FEMA, VTAOT, Other)? _____ Comments: NO CROSS SECTION INFORMATION AVAILABLE. Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature Low cord elevation Bed elevation Low cord to bed length Source (FEMA, VTAOT, Other)? ____ Comments: -Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature

Low cord elevation

Low cord to bed length

Bed elevation

APPENDIX E:

LEVEL I DATA FORM

Structure Number BARTTH00020008

Qa/Qc Check by: EMB Date: 2/9/95

Computerized by: MAI Date: 3/17/95

EMB Date: 4/25/96 Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name)	M _. IVANOFF	Date (MM/DD/YY) 1	10 /	18 /	<u> 19</u> 94
---	------------------------	-------------------	------	-------------	----------------------

Mile marker 0

2. Highway District Number 09 County Orleans (019)

Town Barton (03550)

Waterway (I - 6) Roaring Brook Road Name Roaring Brook Road Hydrologic Unit Code: 01110000 Route Number TH002

3. Descriptive comments:

Located 0.005 miles from the junction of TH 2 and TH 43 and 1.5 miles west of the intersection of TH 2 and VT 16.

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_6___ RBUS 6 LBDS 5 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 1 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length <u>30</u> (feet)

Span length 26 (feet) Bridge width 23.6 (feet)

Road approach to bridge:

8. LB **0** RB **2** (**0** even, **1**- lower, **2**- higher)

9. LB 1 RB 1 (1- Paved, 2- Not paved)

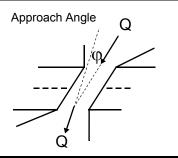
10. Embankment slope (run / rise in feet / foot): **0.0:1** US right **0.0:1** US left

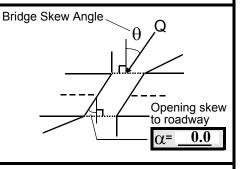
	Pr	otection	10 Erasian	14 Coverity
	11.Type	12.Cond.	13.Erosion	14.Severity
LBUS	1	1	2	1
RBUS	_0	0	0	0
RBDS	_0	0	2	1
LBDS	_1	1	_0	_0

Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;


3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other

Erosion Severity: **0** - none: **1**- slight: **2**- moderate: 3- severe

Channel approach to bridge (BF):

15. Angle of approach: 15 16. Bridge skew: 15

17. Channel impact zone 1:

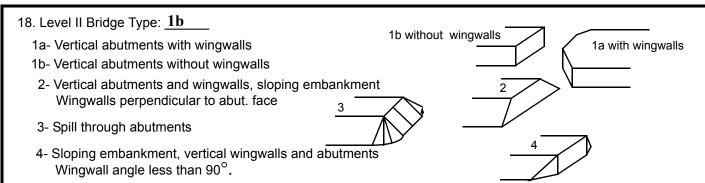
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 0

Range? 30 feet DS (US, UB, DS) to 60 feet DS

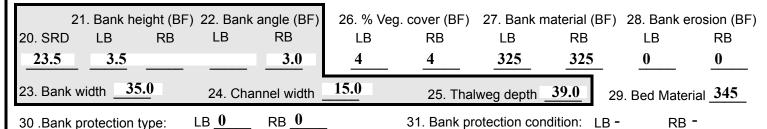
Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 0 feet US (US, UB, DS) to 15 feet UB


Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

Surface coverage on the right bank downstream is trees along banks (conifers) with a house and paved driveway 30 ft. from the channel. The measured bridge length was 30 feet, span length was 25 feet, and deck width was 23 ft. A road wash eroded gully is developing under the corner of the railing through holes in pavement and washing away material behind the downstream end of the right abutment.

C. Upstream Channel Assessment

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: 0- absent: 1- < 12 inches: 2- < 36 inches: 3- < 48 inches: 4- < 60 inches: 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

Bank material is gravel mixed with sand and some boulders along the right and left banks while the bed material is gravel with cobbles and some boulders.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 200 35. Mid-bar width: 50				
36. Point bar extent: 150 feet US (US, UB) to 250 feet US (US, UB, DS) positioned 0 %LB to 60 %RB				
37. Material: <u>423</u>				
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):				
This point bar is well developed but also is far away from influencing flow near the bridge. The predominant bar materials are gravel and sand with some cobbles.				
Sur materials are graver and said with some copoles.				
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)				
41. Mid-bank distance: 200 42. Cut bank extent: 150 feet US (US, UB) to 240 feet US (US, UB, DS)				
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)				
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):				
Cut bank is located along a power line right of way which has been cleared of large vegetation (trees).				
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 200				
47. Scour dimensions: Length 40 Width 8 Depth : 1.5 Position 10 %LB to 70 %RB				
48. Scour comments (eg. additional scour areas, local scouring process, etc.):				
Local scouring process due to a sharp channel bend within the cut bank zone.				
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -				
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)				
Confluence 2: Distance <u>-</u> Enters on <u>-</u> (<i>LB or RB</i>) Type <u>-</u> (<i>1- perennial; 2- ephemeral</i>)				
54. Confluence comments (eg. confluence name):				
NO MAJOR CONFLUENCES				
D. Under Bridge Channel Assessment				
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)				
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)				
LB RB LB RB LB RB				
<u> </u>				
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material				
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;				
5- boulder, > 256mm; 6- bedrock; 7- manmade Pank Fracion: 0, not evident: 1, light fluvial: 3, moderate fluvial: 3, heavy fluvial / mass westing				
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.):				
345				
Bed material is gravel with cobbles and some boulders.				

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? Y ___ (1- Upstream; 2- At bridge; 3- Both) 67. Debris Potential <u>3</u> (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency (1- Low; 2- Moderate; 3- High) 69. Is there evidence of ice build-up? 2 (Y or N) Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

Moderate accumulation of debris near the bridge. Trees are on the banks and the channel through the upstream reach, which is locally unstable laterally and meandering. Historical form notes heavy debris accumulation. Debris capture is moderate due to high channel gradient and the span length only 64% of the upstream bank width.

Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	85	2	2	0	1	90.0
RABUT	1	15	85	[2	2	23.5

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1.5

The right abutment has a sub-footing in front of the "original" footing with the entire height and length of the "original" footing exposed. The top of the sub-footing is exposed at the streambed elevation along the upstream half of the right abutment wall. Scour under the bridge is due to constriction of flow through the opening. The scour holes indicated in the structural inspection report (VTAOT, 7/18/92) were not observed at the time of this assessment.

80. Winawalls:

	,	•				81.	
	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						23.5	
							
USRWW:	N		-		-	1.0	
DSLWW:					NI	24.0	
DSLVVVV.					<u>N</u>		
DSRWW:	_		_		_	24.5	

USRWW USLWW Wingwall length Wingwall angle **DSRWW** DSLWW

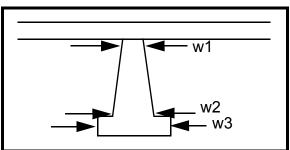
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	-	N	-	ı	-	1	-
Condition	N	-	-	-	-	-	1	-
Extent	-	-	-	-	-	-	-	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? An (Y or if N type ctrl-n pr)

85. Pier no.	width (w) feet			elev	vation (e) f	eet
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1	-	-	-		-	-
Pier 2	-	-	-	-	-	-
Pier 3	-	-	-	-	-	-
Pier 4	-	-	-	-	-	-

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	addi-	ream	the	d on
87. Type	tiona	right	sketc	the
88. Material	l	appr	h on	right
89. Shape	wall	oach	the	bank
90. Inclined?	and	to	field	dow
91. Attack ∠ (BF)	rail-	the	form	nstre
92. Pushed	ing	brid).	am
93. Length (feet)	-	-	-	-
94. # of piles	were	ge	Boul	to
95. Cross-members	adde	(see	ders	pro-
96. Scour Condition	d to	phot	have	tect
97. Scour depth	the	o #6	been	the
98. Exposure depth	upst	and	place	bank

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, unusual scour processes, etc.): and private drive above.
${f N}$
E. Downstream Channel Assessment
Bank height (BF) Bank angle (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF) LB RB LB RB LB RB LB RB
Bank width (BF) Channel width (Amb) Thalweg depth (Amb) Bed Material
Bank protection type (Qmax): LB - RB - Bank protection condition: LB - RB -
SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100% Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Comments (eg. bank material variation, minor inflows, protection extent, etc.):
101. Is a drop structure present? - (Y or N, if N type ctrl-n ds) 102. Distance: - feet 103. Drop: - feet 104. Structure material: - (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other) 105. Drop structure comments (eg. downstream scour depth):

106. Point/Side bar present? (Y or N. if N type of	etrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet Material: Point or side bar comments (Circle Point or Side; note additional	(<i>US, UB, DS</i>) positioned %LB to %RB
- - - -	
Is a cut-bank present? N (Y or if N type ctrl-n cb) Cut bank extent: RS feet (US, UB, DS) to feet Bank damage: 1- eroded and/or creep; 2- slip failure; 3- Cut bank comments (eg. additional cut banks, protection conditions)	(US, UB, DS) block failure)
Is channel scour present? (Y or if N type ctrl-n of Scour dimensions: Length 2 Width 235 Depth: 125 Scour comments (eg. additional scour areas, local scouring process 345 0 0	Positioned $\underline{0}$ %LB to $\underline{3}$ %RB
Are there major confluences? - (Y or if N type of Confluence 1: Distance left	B or RB) Type $\underline{\mathbf{k}}$ (1- perennial; 2- ephemeral) B or RB) Type $\underline{\mathbf{is}}$ (1- perennial; 2- ephemeral) of the right bank is silt/ clay, as revealed at the impact
F. Geomorphic Cha	annel Assessment
ion <u>otago or rodom overatiom</u>	1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):					
1					

109. G. Plan View Sketch						
point bar pb	debris	***	flow Q	stone wall		
cut-bank cb	rin ran or	2000	cross-section ++++++	other wall		
scour hole	rip rap or Stone fill	99UV	ambient channel ——			

 \mathbf{N}

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Town: BARTON County: ORLEANS Structure Number: BARTTH00020008 Road Number: TH 2

Stream: ROARING BROOK

Date: 4/12/96 Checked: SAO Initials EMB Date: 4/15/96

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach	Section
Character	ristic

100 yr	500 yr	other Q
1180	1730	0
296.8	603.3	0
0	0	0
0	0	0
66.1	102.9	0
0	0	0
0	0	0
0.161	0.161	0.161
0	0	0
0	0	0
4.5	5.9	ERR
ERR	ERR	ERR
ERR	ERR	ERR
21360	51977	0
21360	51977	0
0	0	0
0	0	0
0	0	ERR
1180	1730	ERR
0	0	ERR
0	0	ERR
4.0	2.9	ERR
ERR	ERR	ERR
ERR		ERR
7.8		,
N/A	,	N/A
N/A	N/A	N/A
	1180 296.8 0 0 66.1 0 0 0.161 0 0 4.5 ERR ERR 21360 0 0 0 1180 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Results

Live-bed(1) or Clear-Water(0) Contraction Scour? N/A Main Channel

46

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units ys=y2-y_bridge
(Richardson and others, 1995, p. 32, eq. 20, 20a)

Approach Section	Q100	Q500	Qother
Main channel Area, ft2	296.8	603.3	0
Main channel width, ft	66.1	102.9	0
y1, main channel depth, ft	4.490166	5.862974	ERR

Bridge Section

	1730	0
1180	1730	
8466	12872	
8466	12872	
1180	1730	ERR
100	169	0
22.6	22.8	0.0
0.0	0.0	0.0
22.6	22.8	0
4.40708	7.412281	ERR
0.20125	0.20125	0.20125
5.806414	7.999347	ERR
1.40	0.59	N/A
1.32	2.14	N/A
	2.75	
	1180 8466 8466 1180 100 22.6 0.0 22.6 4.40708 0.20125 5.806414 1.40	1180 1730 8466 12872 8466 12872 1180 1730 100 169 22.6 22.8 0.0 0.0 22.6 22.8 4.40708 7.412281 0.20125 0.20125 5.806414 7.999347 1.40 0.59 1.32 2.14

ARMORING

D90	0.388	0.388
D95	0.511	0.511
Critical grain size,Dc, ft	0.582005	0.355658 ERR
Decimal-percent coarser than Dc	N/A	0.124
Depth to armoring, ft	N/A	7.537653 ERR

Pressure Flow Scour (contraction scour for orifice flow conditions)

Cq=1/Cf*Cc Cf=1.5*Fr^0.43 (<=1) Cc=SQRT[0.10*(Hb/(ya-w)-0.56)]+0.79 (<=1) Hb+Ys=Cq*qbr/Vc Chang Equation (Richardson and others, 1995, p. 145-146)

	0100	0500	0+10
O bloom had does made about 160	Q100	Q500	OtherQ
Q thru bridge main chan, cfs	0	1730	0
Vc, critical velocity, ft/s	0	8.2	0
Vc, critical velocity, m/s	0	2.499238	
Main channel width (skewed), ft	0	22.8	0
Cum. width of piers, ft	0	0	0
W, adjusted width, ft	0	22.8	0
qbr, unit discharge, ft^2/s	ERR	75.87719	ERR
qbr, unit discharge, m^2/s	N/A	7.048534	N/A
Area of full opening, ft^2	0	169	0
Hb, depth of full opening, ft	ERR	7.412281	ERR
Hb, depth of full opening, m	N/A	2.259153	N/A
Fr, Froude number MC	1	0.67	1
Cf, Fr correction factor (<=1.0)	1.5	1	1.5
Elevation of Low Steel, ft	0	96.19	0
Elevation of Bed, ft	N/A	88.77772	N/A
Elevation of approach WS, ft	0	99.43	0
HF, bridge to approach, ft	0	0.11	0
Elevation of WS immediately US, ft	0	99.32	0
ya, depth immediately US, ft	N/A	10.54228	N/A
ya, depth immediately US, m	N/A	3.276035	N/A
Mean elev. of deck, ft	0	102.47	0
w, depth of overflow, ft (>=0)	0	0	0
Cc, vert contrac correction (<=1.0)	ERR	0.909625	ERR
Ys, depth of scour (chang), ft	N/A	2.760396	

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Abu	tment		Right Ab	utment	
Characteristic		500 yr Q	Other Q	_		Other Q
(Qt), total discharge, cfs	1180	1730	0	1180	1730	0
a', abut.length blocking flow, ft	16.9	44.5	0	26.6	35.6	0
Ae, area of blocked flow ft2	42.95	149.99	0	88.22	201.65	0
Qe, discharge blocked abut.,cfs	108.17	274.95	0	281.59	562.25	0
(If using Qtotal_overbank to obta						
Ve, (Qe/Ae), ft/s	2.51851	1.833122			2.788247	
ya, depth of f/p flow, ft	2.54	3.37	ERR	3.32	5.66	ERR
Coeff., K1, for abut. type (1.0,	verti.; 0	.82, vert		gwall; 0.	55, spill	thru)
K1	1	1	0	1	1	0
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi	nts US)	
theta	90	90	0	90	90	0
K2	1	1	0	1	1	0
Fr, froude number f/p flow	0.28	0.18	ERR	0.31	0.21	ERR
ys, scour depth, ft	8.51	11.41	N/A	12.32	16.49	N/A
HIRE equation (a'/ya > 25)						
$ys = 4*Fr^0.33*y1*K/0.55$						
(Richardson and others, 1995, p. 49	eq. 29)					
a'(abut length blocked, ft)	16.9	44.5	0	26.6	35.6	0
y1 (depth f/p flow, ft)	2.54	3.37	ERR	3.32	5.66	ERR
a'/y1	6.65	13.20	ERR	8.02	6.28	ERR
- /1-						
Froude no. f/p flow	0.28	0.18	N/A	0.31	0.21	N/A
Ys w/ corr. factor K1/0.55:						
vertical	ERR	ERR	ERR	ERR	ERR	ERR
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR
spill-through	ERR	ERR	ERR	ERR	ERR	ERR
Abutment riprap Sizing						
Isbash Relationship						
D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr	^2)^0.14/	(Ss-1)				
(Richardson and others, 1995, p112,						
(, F,	-4,-	_,				
Characteristic	0100	Q500	Oother			
Characteristic	QIOO	Q300	QUEITEL			
Fr, Froude Number	1	0.67		1	0.67	
(Fr from the characteristic V and	l y in con	tracted s	ectionm	c, bridge	section)	
y, depth of flow in bridge, ft		7.412281		4.40708	7.412281	
Median Stone Diameter for riprap at	· left ab	utment		right ab	utment, f	+
Fr<=0.8 (vertical abut.)	ERR	2.06	0.00	ERR	2.06	0
Fr>0.8 (vertical abut.)	1.84	ERR	ERR	1.84	ERR	ERR
1170.0 (Vererear abac.)	2.01	Litte	Litte	1.01	2111	2200