LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (MNTGTH00020004) on TOWN HIGHWAY 2, crossing WADE BROOK, MONTGOMERY, VERMONT

U.S. Geological Survey Open-File Report 96-561

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (MNTGTH00020004) on TOWN HIGHWAY 2, crossing WADE BROOK, MONTGOMERY, VERMONT

By Erick M. Boehmler

U.S. Geological Survey Open-File Report 96-561

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	27
D. Historical data form	29
E. Level I data form	35
F. Scour computations	45

FIGURES

1.	Map showing location of study area on USGS 1:24,000 scale map	3
2.	Map showing location of study area on Vermont Agency of Transportation town	
	highway map	4
3.	Structure MNTGTH00020004 viewed from upstream (November 8, 1994)	5
4.	Downstream channel viewed from structure MNTGTH00020004 (November 8, 1994)	5
5.	Upstream channel viewed from structure MNTGTH00020004 (November 8, 1994)	6
6.	Structure MNTGTH00020004 viewed from downstream (November 8, 1994).	6
7.	Water-surface profiles for the 100- and 500-year discharges at structure	
	MNTGTH00020004 on Town Highway 2, crossing Wade Brook,	
	Montgomery, Vermont.	15
8.	Scour elevations for the 100- and 500-year discharges at structure	
	MNTGTH00020004 on Town Highway 2, crossing Wade Brook,	
	Montgomery, Vermont.	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
MNTGTH00020004 on Town Highway 2, crossing Wade Brook,	
Montgomery, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
MNTGTH00020004 on Town Highway 2, crossing Wade Brook,	
Montgomery, Vermont.	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Ву	To obtain
Length	
25.4	millimeter (mm)
0.3048	meter (m)
1.609	kilometer (km)
Slope	
0.1894	meter per kilometer (m/km)
Area	
2.590	square kilometer (km ²)
Volume	
0.02832	cubic meter (m^3)
Velocity and Flow	
0.3048	meter per second (m/s)
0.02832	cubic meter per second (m ³ /s
0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²]
	Length 25.4 0.3048 1.609 Slope 0.1894 Area 2.590 Volume 0.02832 Velocity and Flow 0.3048 0.02832

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D ₅₀	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (MNTGTH00020004) ON TOWN HIGHWAY 2, CROSSING WADE BROOK, MONTGOMERY, VERMONT

By Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure MNTGTH00020004 on town highway 2 crossing Wade Brook, Montgomery, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from VTAOT files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic province of north-central Vermont in the town of Montgomery. The 1.68-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage.

In the study area, Wade Brook has an incised, sinuous channel with a slope of approximately 0.0454 ft/ft, an average channel top width of 30 ft and an average channel depth of 2 ft. The predominant channel bed materials are gravel and cobbles (D_{50} is 77.7 mm or 0.255 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 8, 1994, indicated that the reach was degraded. There were no scour holes observed during the Level I assessment. However, general streambed lowering was evident as both abutments were undermined equally with no localized scour on one abutment over the other.

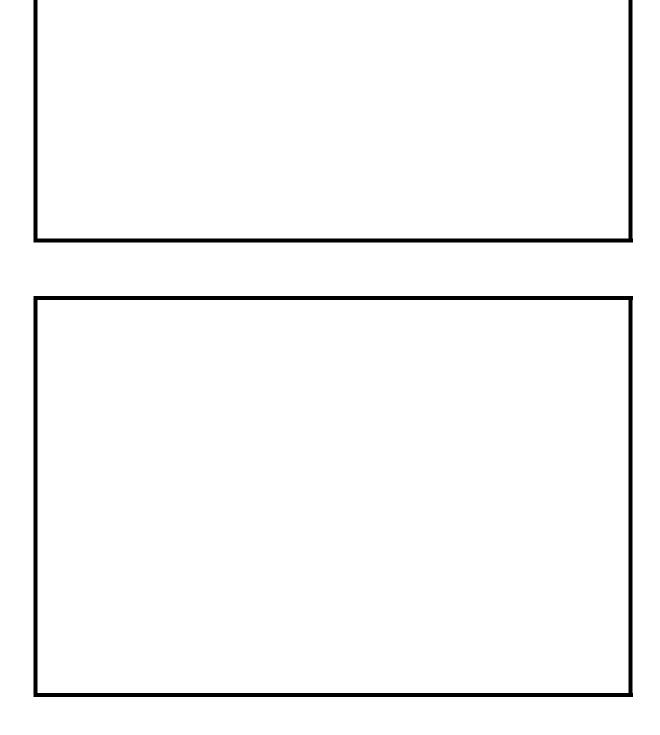
The town highway 2 crossing of Wade Brook is a 23-ft-long, two-lane bridge consisting of one 20-foot concrete slab span (Vermont Agency of Transportation, written communication, August 3, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the computed opening-skew-to-roadway is 25 degrees.

The scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the upstream right wingwall and all road approach embankments, type-2 stone fill (less than 36 inches diameter) on the left abutment, and a "laid-up" stone wall at the

upstream end of the upstream left wingwall and in front of the upstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows was 0.1 ft. The worst-case contraction scour occurred at the 100-year and 500-year discharges. Abutment scour ranged from 3.9 to 5.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

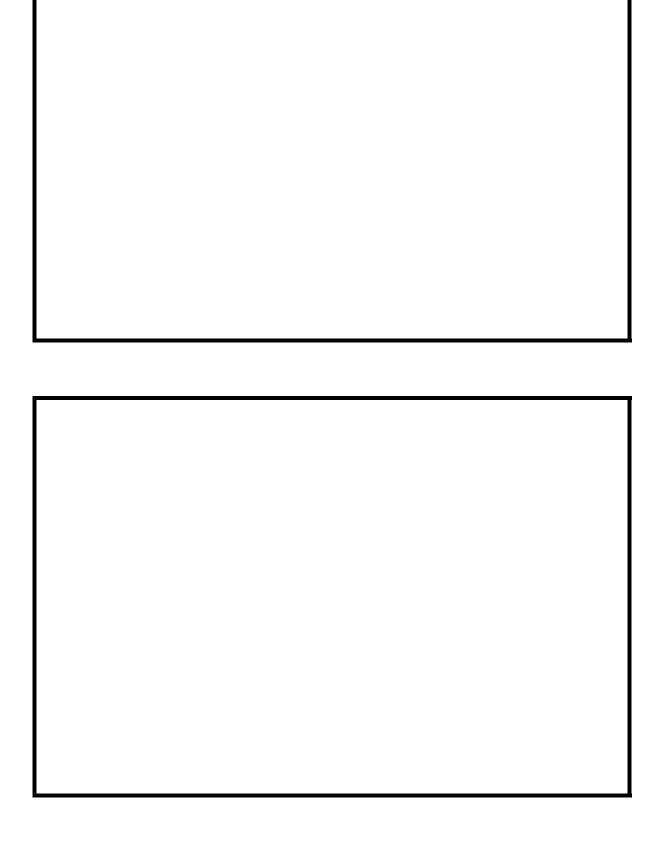


Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number —	MNTGTH00020004	_ Stream _	ream Wade Brook		
County Franklin		Road —	TH 2	District —	08

Description of Bridge

23			26.0			20
Bridge length	ft	Bridge width		ft	Max span length	ft
Alignment of bridge to	road (o	n curve or straig	ght) —	On a	Curve	
Vert	ical				Sloping	
Abutment type	Yes		Embankme	ent type	? 11/08/94	
Stone fill on abutment?	Тур		approach er		ments and the upstr	eam right
wingwall and a "laid-up		wall on the upst	tream left ba	nk to tl	ne upstream end of	the upstream
left wingwall.						
		Abut	tments and v	vingwa	alls are concrete.	
	, . .					
					Y	_30
Is bridge skewed to floo	od flow	according to <u>Y</u>	survey	?	Angle	
There is a moderate cha	nnel be	<u>nd in the upstrea</u>	am reach.		<u>,,, -</u>	,

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection 11/08/94	Percent of channel blo cked norizontall y	Percent of other nel block ed verticatiy
Level I	11/08/94	0	0
<i>Level II</i> significant	<u>Moderate. Th</u> accumulation in any one	nere is some debris scattered a location.	tround the channel but no
Potential fo			

None evident on 11/08/94.

Describe any features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topo	ography	The ch	annel is located	d within a	narrow, high relie	f valley setting, with
little to no fl	lood plain	and steep	valley walls or	n both sid	es.	
Geomorphi	ic conditio	ns at brid	ge site: downsi	tream (DS	S), upstream (US)	
Date of insp	pection	11/08/94	4			
<i>DS left:</i> Steep channel bank to TH 2 roadway and valley wall.						
DS right: Steep channel bank to a narrow flood plain and valley wall.						
US left:	Steep cl	hannel bar	nk to a narrow	flood plai	n and valley wall.	
y US right:	Steep cl	hannel bai	nk to valley wa	.11.		
			Description (of the Cł	nannel	
		30				2.5
Average to	op width		Gravel/Cobb	les	Average depth	Gravel to Boulders
Predomina	nt bed ma	terial			Bank material	Perennial, incised,
and sinuous	but lateral	lly stable	with non-alluvi	ial channe	l boundaries.	
						11/08/94
Vegetative c	c o Town h	ighway 2	roadway surfa	ce and for	rest.	
DS left:	Forest.					
DS right:	Forest.					
US left:	Forest.					
US right:		_}	[
Do banks a	nnear stal	ble? -				vj_msuvmy_mu
date of obs				,		
<i>uuic 0j 005</i>	civation.					
]	None evident on
11/08/94.					_	<u> </u>
Describe an	ıy obstruc	tions in c	hannel and da	te of obse	rvation.	

Hydrology

Percentage of drainage area in physiographic p	provinces: (appr	oximate)	
<i>Physiographic province</i> Green Mountain	Percent of drainage area		
Is drainage area considered rural or urban? - <u>None</u> urbanization:	Rural	Describe any significant	
Is there a USGS gage on the stream of interest?	<u>No</u>		
USGS gage description	-		
USGS gage number			
Gage drainage area	mi ²	No	
Is there a lake/p		· ·· ·	
_460 Calculated	d Discharges	490	
$Q100 ft^3/s$	<i>Q500</i> 00-year dischar	ft^3/s ge is based on the results of	
several empirical relationships (FHWA, 1983; Joh	nnson and Taske	r, 1974; Potter 1957a&b and	
Talbot, 1887). The flood frequency curves for eac	•	•	
he 500 wear discharge applied was based on the	extrapolated curv	ve estimates from each	
he 500-year discharge applied was based on the e elationship.			

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey
Datum tie between USGS survey and VTAOT plans	None	

 Description of reference marks used to determine USGS datum.
 RM1 is the center point

 of a chiseled "X" on top of the DS end of the right abutment: elev. 496.02 ft, arbitrary survey

 datum. RM2 is the center point of a chiseled "X" on top of a boulder located approximately 30

 feet upstream on the left bank side of the channel: elev. 497.72 ft, arbitrary survey datum.

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-19	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	15	1	Road Grade section
APPRO	46	2	Modelled Approach sec- tion (Templated from APTEM)
APTEM	58	1	Approach section as sur- veyed (Used as a tem- plate)

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.055 to 0.065, and the overbank "n" value applied was 0.035.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0454 ft/ft which was estimated from the topographic map (U.S. Geological Survey, 1986).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0680 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For the 100- and 500-year discharge, WSPRO assumes critical depth at the at the bridge section. Supercritical models were developed for these discharges. Analyzing both the supercritical and subcritical profiles for each discharge, the results indicate that the water surface profile passes through critical depth within the bridge opening. Thus, the assumptions of critical depth at the bridge are satisfactory solutions.

Bridge Hydraulics Summary

Average bridge embankment elevation496.9ftAverage low steel elevation494.0ft

100-year discharge $\frac{460}{\text{ft}^3/\text{s}}$	
Water-surface elevation in bridge opening 490.4 ft	
Road overtopping? <u>N</u> Discharge over road	, s
Area of flow in bridge opening 49 ft ²	
Average velocity in bridge opening 9.5 ft/s	
Maximum WSPRO tube velocity at bridge11.4ft/s	
Water-surface elevation at Approach section with bridge	493.1
Water-surface elevation at Approach section without bridge	492.5
Amount of backwater caused by bridge 0.6 t	
500-year discharge $\frac{490}{ft^3/s}$	
Water-surface elevation in bridge opening 490.5 ft	
Road overtopping? <u>N</u> Discharge over road	/s
Area of flow in bridge opening 51 ft ²	
Average velocity in bridge opening 9.7 ft/s	
Maximum WSPRO tube velocity at bridge 11.8 /s	
Water-surface elevation at Approach section with bridge	493.3
Water-surface elevation at Approach section without bridge	492.6
$Amount of backwater caused by bridge \qquad 0.7$	
Incipient overtopping discharge ft ³ /s	
Water-surface elevation in bridge opening - ft	
Area of flow in bridge opening <u>-</u> ft ²	
Average velocity in bridge opening ft/s	
Maximum WSPRO tube velocity at bridgeft/s	
Water-surface elevation at Approach section with bridge	-
Water-surface elevation at Approach section without bridge	-
Amount of backwater caused by bridget	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the 100-year and 500-year discharges. For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Abutment scour for each modeled discharge was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

The length to depth ratio of the embankment blocking flow exceeded 25 for the 100year discharge at both abutments. Although the HIRE equation (Richardson and others, 1993, p. 50, equation 25) generally is applicable when this ratio exceeds 25, the results from the HIRE equation were not used. Hydraulic Engineering Circular 18 recommends that the field conditions be similar to those from which the HIRE equation was derived (Richardson and others, 1993). Since the equation was developed from Army Corp. of Engineers' data obtained for spurs dikes in the Mississippi River, the HIRE equation was not adopted for the narrow, incised, upland valley at this site.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
		Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	0.1	0.1	
	12.1	13.0	
Depth to armoring			
Left overbank			
Right overbank			
Local scour:			
Abutment scour	4.3	5.2	
Left abutment	3.9-	4.0-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Riprap Sizing

		01	Incipient vertopping
	100-yr discharge	500-yr discharge	discharge
		(D_{50} in feet)	
Abutments:	1.2	1.2	
Abuiments. Left abutment	1.2	1.2	
Right abutment			
Piers:			
Pier 1			
Pier 2			

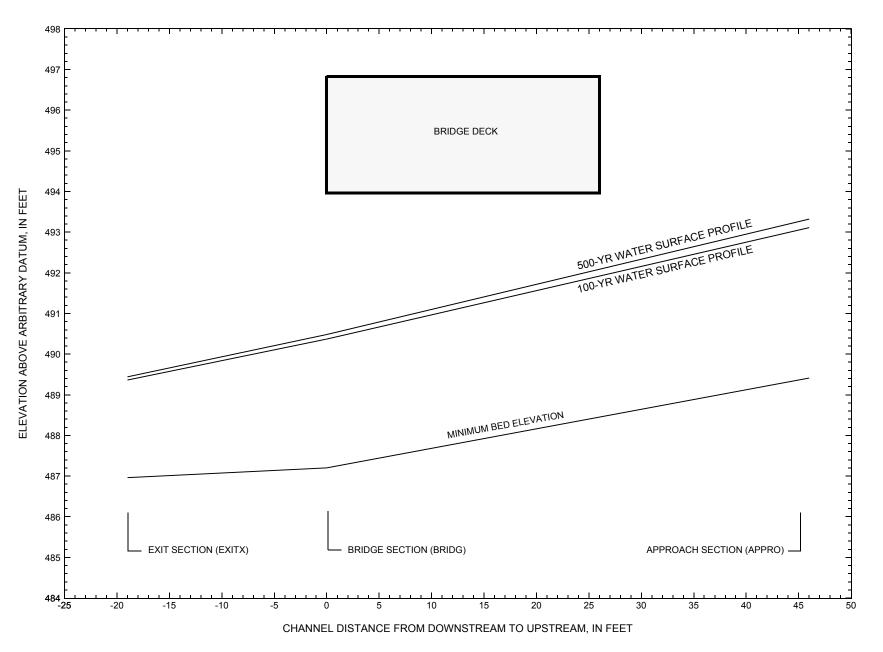


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure MNTGTH00020004 on town highway 2, crossing Wade Brook, Montgomery, Vermont.

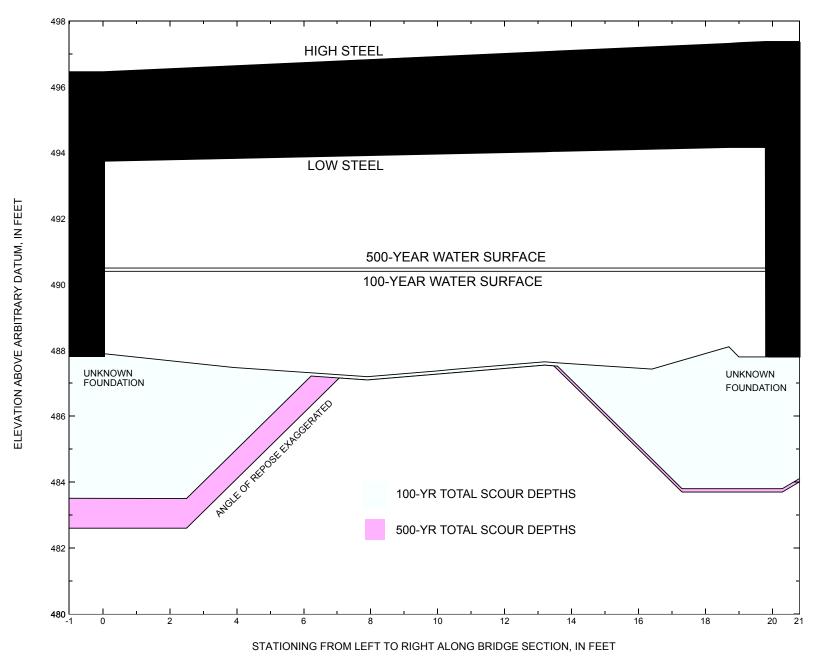


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure MNTGTH00020004 on town highway 2, crossing Wade Brook, Montgomery, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure MNTGTH00020004 on Town Highway 2, crossing Wade Brook, Montgomery, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr	discharge is 460	cubic-feet per seco	ond				
Left abutment	0.0		493.5		487.9	0.1	4.3		4.4	483.5	
Right abutment	19.8		494.4		487.8	0.1	3.9		4.0	483.8	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure MNTGTH00020004 on Town Highway 2, crossing Wade Brook, Montgomery, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-уг	discharge is 490	cubic-feet per seco	ond				
Left abutment	0.0		493.5		487.9	0.1	5.2		5.3	482.6	
Right abutment	19.8		494.4		487.8	0.1	4.0		4.1	483.7	

^{1.} Measured along the face of the most constricting side of the bridge.

². Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads

Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads

- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1986, Hazens Notch, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps; aerial photography, 1980, contour interval, 6 meters; Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

U.S. Geological Survey WSPRO Input File mntg004.wsp Τ1 Т2 Hydraulic analysis for structure MNTGTH00020004 Date: 08-MAR-96 Т3 Town Highway 2 (VT 58) Bridge Crossing Wade Brook, Montgomery, VT EMB Q 460.0 490.0 0.0454 0.0454 SK * 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 J3 * XS EXITX -19 Ο. GR -100.8, 506.89 -84.9, 493.40 -51.9, 494.49 -22.5, 493.76 0.0, 487.15 -13.0, 490.42 -9.5, 487.89 -6.4, 487.61 GR GR 7.2, 486.96 10.1, 487.01 15.8, 487.31 20.8, 488.52 24.1, 491.40 43.6, 493.78 76.6, 509.45 GR * Ν 0.035 0.065 SA -22.5 * XS FULLV 0 * * * 0.0454 * * SRD LSEL XSSKEW BR BRIDG 0 493.96 25.0 0.1, 487.89 0.0, 493.48 GR 0.2, 488.14 3.9, 487.48 16.4, 487.43 18.7, 488.11 GR 7.9, 487.20 13.2, 487.65 19.8, 494.45 19.0, 487.82 0.0, 493.48 GR * * BRTYPE BRWDTH WWANGL WWWID 34.8 * * 5.0 1 48 CD 0.055 Ν * * SRD EMBWID IPAVE XR RDWAY 15 26.0 2 GR -117.5, 505.00 -102.8, 493.40 -70.0, 494.49 -6.1, 496.43 14.4, 501.49 -5.9, 500.75 -3.4, 500.78 0.0, 500.61 GR GR 16.9, 501.53 18.2, 501.33 18.3, 497.31 58.4, 500.22 118.5, 506.69 GR * ХT APTEM 58 -96.8, 506.17 -71.0, 499.73 -26.0, 499.83 GR -19.8, 493.73 -3.7, 493.43 0.0, 491.42 3.4, 490.65 6.1, 490.23 GR GR 19.2, 493.10 8.9, 490.52 12.6, 490.53 15.0, 491.16 22.4, 495.73 108.0, 502.29 129.8, 513.35 GR * AS APPRO 46 * * * 0.0680 GT Ν 0.065 * HP 1 BRIDG 490.37 1 490.37 HP 2 BRIDG 490.37 * * 460 HP 1 APPRO 493.05 1 493.05 HP 2 APPRO 493.05 * * 460 * HP 1 BRIDG 490.48 1 490.48 HP 2 BRIDG 490.48 * * 490

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

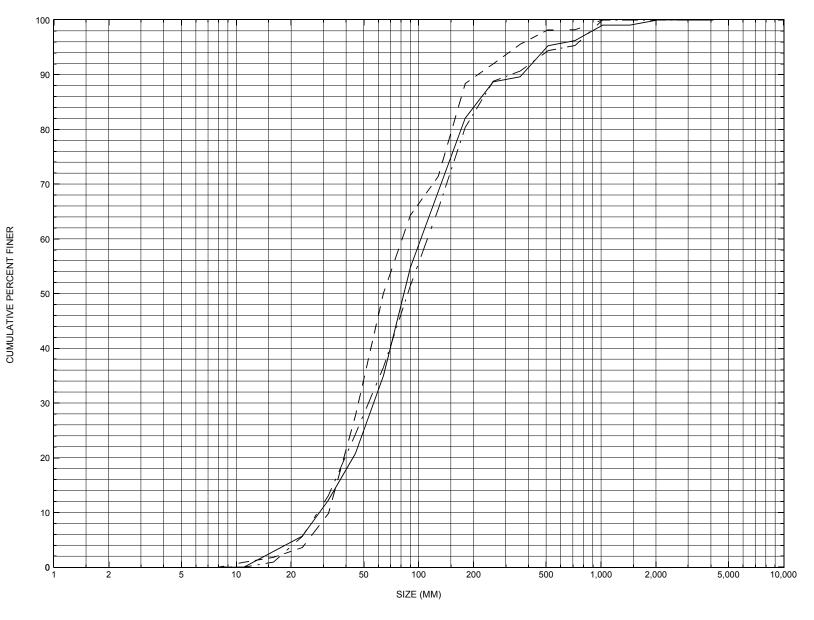
EMB

Ψ1	U.S. Geologi	cal Survey	WSPRO Inp	ut File mntc	1004.wsp	
T2	Hydraulic ar	-	-	-	-	e: 08-MAR-96
Т3	Town Highway	7 2 (VT 58)	Bridge Cro	ossing Wade	Brook, Mo	ntgomery, VI
CROSS-	SECTION PROPER	TIES: ISEÇ) = 3; SI	ECID = BRIDO	; SRD =	0.
WSEL				ETP ALPH	LEW R	EW QCR
490.37	1 49 49	2189 2189	17 17	23 23 1.00	0	460 19 460
	TY DISTRIBUTIO					
	ISEL LEW					
).37 0.1					
X STA.	0.1	2.1	3.2	4.2	5.0	5.8
A(I)	4.3					
V(I)	5.30	8.47	9.3	5 10.17	10.	59
X STA.	5.8	6.6	7.3	8.0	8.7	9.5
A(I)	2.1			2.0		.1
V(I)	10.80	11.35	11.3	5 11.34	11.	21
X STA.	9.5	10.2		11.8		13.5
A(I)	2.0					.2
V(I)	11.34	11.23	10.7	5 10.73	10.	66
X STA.	13.5	14.4	15.3	16.2	17.2	19.3
A(I)	2.2			3 2.7		
V(I)	10.33	9.81	9.7	9 8.65	5 5.3	34
CROSS-	SECTION PROPER	RTIES: ISEÇ) = 5; SI	ECID = APPRC	; SRD =	46.
WSEL	SA# AREA	K	TOPW W	ETP ALPH	LEW R	EW QCR
	1 68			42		505
493.11	68	2172	40	42 1.00	-19	20 505
VELOCI	TY DISTRIBUTIO	N: ISEQ =	5; SECI	O = APPRO;	SRD =	46.
W 493	NSEL LEW 3.11 -20.0	REW AR 20.2 68	EA	K Q 2. 460.	VEL 6.74	
	-20.0					4.9
A(I)	-20.0					
V(I)	2.37	4.32	5.5	5 6.12	2. 7.	05
X STA.	4.9	5 8	6 6	73	8 1	8.8
A(I)	3.1	2.9	2.			
V(I)				7 8.66		
X STA.	8.8	9.6	10.3	11.0	11.8	12.5
	2 F	о F	2		<u> </u>	4
A(I)		0.14	9.3	5 2.4 5 9.41	9.	55
A(I) V(I)	9.13	9.14				
V(I)	9.13			15.1		
V(I)	9.13 12.5 2.5	13.2	14.1	15.1 3 3.2	16.3 2 4	20.2
V(I) X STA.	9.13 12.5 2.5	13.2	14.1	15.1	16.3 2 4	20.2

	WSEL	SA#			ĸ	TOPW	WET	'P AL	PH	LEW	REW	(
		1	51		320							4
	490.48		51	2	320	17	2	3 1.	00	0	19	4
	VELOCI	TY DIST	RIBUTIO	N: IS	EQ =	3;	SECID	= BRI	DG;	SRD =		0.
	W	SEL	LEW	REW	AR	EA	K	:	Q	VEL		
	490	.48	0.1	19.3	50	.5	2320.		490.	9.70		
Х	STA.	0.	1	2.1		3.2		4.2		5.0		5.8
	A(I)		4.5 5.40		2.8		2.6		2.3		2.3	
	V(I)		5.40	1	8.66		9.59		10.44		10.87	
	STA.	5.	8	6.6		7.3		8.0		8.7		9.5
	A(I)		2.2		2.1		2.1		2.1		2.1	
	V(I)		11.09	1	1.67		11.40		11.80		11.66	
	STA.	9.										
	A(I)		2.1		2.1		2.2		2.2		2.3	
	V(I)		11.56	1	1.44		11.34		11.04		10.71	
	STA.	13.										
	A(I) V(I)		2.3 10.57		2.4		2.5		2.8		4.5	
	WSEL	SA#	AREA									
		1		2					PH	LEW	REW	(
	493.32	1	77		615	41	4	2				!
	493.32 VELOCI	1	77 77	2	615 615	41 41	4 4	2 2 1.	00	-19	20	:
	VELOCI	1 TY DIST	77 77 RIBUTIO	2) 2) N: IS	615 615 EQ =	41 41 5;	4 4 SECID	2 2 1. = APP	00 PRO;	-19 SRD =	20	:
	VELOCI	1	77 77 RIBUTIO	2) 2) N: IS	615 615 EQ =	41 41 5;	4 4 SECID	2 2 1. = APP	00 PRO;	-19 SRD =	20	:
	VELOCI W 493 STA.	1 TY DIST SEL .32 -	77 77 RIBUTIO LEW 20.2 2	2) 2) N: IS REW 20.5 -2.8	615 615 EQ = AR 76	41 41 5; EA .8 0.3	4 4 SECID K 2615.	2 1. = APF	00 PRO; Q 490.	-19 SRD = VEL 6.38 3.2	20	46. 4.3
	VELOCI W 493 STA. A(I)	1 TY DIST SEL .32 -	77 77 RIBUTIO LEW 20.2 2 9.9	2) 2) N: IS REW 20.5 -2.8	615 615 EQ = AR 76 6.2	41 41 5; 5 EA .8 0.3	4 4 SECID K 2615. 4.9	2 1. = APF	00 PRO; Q 490. 4.2	-19 SRD = VEL 6.38 3.2	20	46. 4.3
	VELOCI W 493 STA. A(I) V(I)	1 TY DIST SEL .32 - -20.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47	20 21 N: IS REW 20.5 -2.8	615 615 EQ = AR 76 6.2 3.94	41 41 5; 5 EA .8 0.3	4 4 SECID K 2615. 4.9 5.01	2 2 1. = APP : 1.9	00 RO; Q 490. 4.2 5.88	-19 SRD = VEL 6.38 3.2	20 3.7 6.55	46. 4.3
х	VELOCI W 493 STA. A(I) V(I) STA.	1 TY DIST SEL .32 -	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3	20 21 N: IS REW 20.5 -2.8	615 615 EQ = AR 76 6.2 3.94	41 41 5; 5 EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01	2 1. = APP : 1.9 6.8	00 RO; 490. 4.2 5.88	-19 SRD = VEL 6.38 3.2 7.6	20 3.7 6.55	46. 4.3 8.4
х	VELOCI W 493 STA. A(I) V(I) STA. A(I)	1 TY DIST SEL .32 - -20.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4	21 21 N: ISE REW 20.5 -2.8 5.2	615 615 EQ = AR 76 6.2 3.94 3.3	41 41 5; 5 EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01 3.1	2 1. = APF : 1.9 6.8	00 RO; 490. 4.2 5.88 3.0	-19 SRD = VEL 6.38 3.2 7.6	20 3.7 6.55 2.9	46. 4.3 8.4
х	VELOCI W 493 STA. A(I) V(I) STA.	1 TY DIST .32 - -20. 4.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18	20 20 N: ISJ REW 20.5 -2.8 5.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47	41 41 5; 5 EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01 3.1 7.95	2 1. = APP 1.9 6.8	00 PRO; Q 490. 4.2 5.88 3.0 8.22	-19 SRD = VEL 6.38 3.2 7.6	20 3.7 6.55 2.9 8.40	46. 4.3 8.4
X	VELOCI W 493 STA. A(I) V(I) STA. A(I) V(I) STA.	1 TY DIST .32 - -20. 4.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18 4	21 20 N: ISJ REW 20.5 -2.8 5.2 9.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47	41 41 5; 5 EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01 3.1 7.95	2 1. = APF 1.9 6.8	00 RO; 490. 5.88 3.0 8.22	-19 SRD = VEL 6.38 3.2 7.6 11.5	20 3.7 6.55 2.9 8.40	46. 4.3 8.4 12.3
x	VELOCI W 493 STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	1 TY DIST .32 - -20. 4.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18 4 2.9	21 21 N: IS REW 20.5 -2.8 5.2 9.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47 2.8	41 41 5; : EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01 3.1 7.95 2.8	2 1. = APF : 1.9 6.8	00 RO; 490. 4.2 5.88 3.0 8.22 2.8	-19 SRD = VEL 6.38 3.2 7.6 11.5	20 3.7 6.55 2.9 8.40 2.8	46. 4.3 8.4 12.3
x	VELOCI W 493 STA. A(I) V(I) STA. A(I) V(I) STA.	1 TY DIST .32 - -20. 4.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18 4 2.9	21 20 N: ISJ REW 20.5 -2.8 5.2 9.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47 2.8	41 41 5; : EA .8 0.3 6.0	4 4 SECID K 2615. 4.9 5.01 3.1 7.95 2.8	2 1. = APF : 1.9 6.8	00 RO; 490. 4.2 5.88 3.0 8.22 2.8	-19 SRD = VEL 6.38 3.2 7.6 11.5	20 3.7 6.55 2.9 8.40 2.8	46. 4.3 8.4 12.3
x x x	VELOCI W 493 STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I) STA.	1 TY DIST 32 - -20. 4. 8.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18 4 2.9 8.42 3	21 21 N: IS: REW 20.5 -2.8 5.2 9.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47 2.8 8.73	41 41 5; 5 EA .8 0.3 6.0 10.0	4 SECID K 2615. 4.9 5.01 3.1 7.95 2.8 8.81	2 1. = APF 1.9 6.8 10.8	00 RO; 490. 4.2 5.88 3.0 8.22 2.8 8.67	-19 SRD = VEL 6.38 3.2 7.6 11.5	20 3.7 6.55 2.9 8.40 2.8 8.72	46. 4.3 8.4 12.3 20.5
x x x	VELOCI W 493 STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	1 TY DIST 32 - -20. 4. 8.	77 77 RIBUTIO LEW 20.2 2 9.9 2.47 3 3.4 7.18 4 2.9 8.42	21 24 N: ISJ REW 20.5 -2.8 5.2 9.2	615 615 EQ = AR 76 6.2 3.94 3.3 7.47 2.8 8.73 2.9	41 41 5; 5 EA .8 0.3 6.0 10.0	4 4 SECID K 2615. 4.9 5.01 3.1 7.95 2.8 8.81 3.2	2 1. = APF : 1.9 6.8 10.8	00 PRO; Q 490. 4.2 5.88 3.0 8.22 2.8 8.67 3.6	-19 SRD = VEL 6.38 3.2 7.6 11.5 16.4	20 3.7 6.55 2.9 8.40 2.8 8.72 5.3	46. 4.3 8.4 12.3 20.5

+++ BEGINNING PROFILE CALCULATIONS 2
1 WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V042094 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS
U.S. Geological Survey WSPRO Input File mntg004.wsp Hydraulic analysis for structure MNTGTH00020004 Date: 08-MAR-96 Town Highway 2 (VT 58) Bridge Crossing Wade Brook, Montgomery, VT EMB *** RUN DATE & TIME: 04-30-96 10:59
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
EXITX:XS ***** -11 63 0.83 ***** 490.19 489.28 460 489.36 -18 ***** 22 2158 1.00 ***** ****** 0.94 7.32
===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.93 490.23 490.14
===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 488.86 510.31 0.50
===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 488.86 510.31 490.14
FULLV:FV 19 -11 63 0.83 0.86 491.06 490.14 460 490.23 0 19 22 2174 1.00 0.00 0.01 0.93 7.28 <<<< <the (unconstricted)<="" above="" reflect<"normal"="" results="" td=""> FLOW>>>>></the>
===120 YTOL NOT SATISFIED AT SECID "APPRO": TRIALS CONTINUED. YTOL,WSLIM1,WSLIM2 = 0.02 489.73 490.73
===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 1.16 492.50 493.02
===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 489.73 512.53 0.50
===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 489.73 512.53 493.02
===130 CRITICAL WATER-SURFACE ELEVATION A S S U M E D !!!!! ENERGY EQUATION N_O_T B_A_L_A_N_C_E_D AT SECID "APPRO" WSBEG,WSEND,CRWS = 493.02 512.53 493.02
APPRO:AS 46 -19 65 0.79 ***** 493.81 493.02 460 493.02 46 46 20 1988 1.00 ***** ****** 0.99 7.12 <<<<< <the above="" reflect<="" results="" td=""> "NORMAL" (UNCONSTRICTED) FLOW>>>></the>
===285 CRITICAL WATER-SURFACE ELEVATION A S S U M E D !!!!! SECID "BRIDG" Q,CRWS = 460. 490.37
<<<< <results constricted="" flow="" follow="" reflecting="" the="">>>>></results>
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
BRIDG:BR 19 0 49 1.39 ***** 491.76 490.37 460 490.37 0 19 19 2190 1.00 ***** 1.00 9.46
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ****** 493.96 ****** ****** ******
XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 15. <<< <embankment is="" not="" overtopped="">>>></embankment>
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
APPRO:AS 11 -19 68 0.71 0.51 493.82 493.02 460 493.11 46 12 20 2172 1.00 1.54 -0.01 0.91 6.74
M(G) M(K) KQ XLKQ XRKQ OTEL 0.519 0.000 2664. 0. 19. 492.22
<<< <end bridge="" computations="" of="">>>></end>

<<<<END OF BRIDGE COMPUTATIONS>>>>


XSID:COD	e srd	LEW	REW	0	K	AREA	VEL	WSEL
EXITX:XS				460.	2158.	63.	7.32	
FULLV:FV				460.	2174.		7.28	
BRIDG:BR		0.	19.	460.	2190.	49.	9.46	
RDWAY:RG		******					2.00**	
APPRO:AS	46.	-20.	20.	460.	2172.	68.	6.74	493.11
XSID:COD	e xlkq	XRKQ	KQ					
APPRO:AS	0.	19.	2664.					
SECOND USER	DEFINED 7	TABLE.						
XSID:COD	E CRWS	FR#	YMIN	I YMAX	K HF	HO VHD	EG	L WSE
EXITX:XS						**** 0.83		
FULLV:FV						0.00 0.83		
						**** 1.39		
BRIDG:BR								

APPRO:AS	493.02	0.91	489.41	512.53	3 0.51	1.54 0.71	493.8	2 493.1
XSID:CODE	SRDL I	LEW	AREA V	/HD HI	F EGL	CRWS	Q	WSEL
SRD	FLEN H	REW	K AI	-PH HO	D ERR	FR#	VEL	
XITX:XS **	****	-11	65 0	07 ****	* 100 21	489.35	490	100 11
-18 **						489.35		489.44
===125 FR# 1								
	FNTEST, H	FR#,WSEL	,CRWS =	0.80	0.94	490.31	490.3	22
===110 WSEL	NOT FOINT	ם איד פידים	י דוזיקיי כדי	ע"י סדי	יידר הדימונ	тау		
тто машы						510.31	0.50	
		, -	,					
===115 WSEL	NOT FOUND	D AT SEC	ID "FULI	LV": USE	ED WSMIN	= CRWS.		
	WSI	LIM1,WSL	IM2,CRWS	5 = 488	3.94	510.31	490.22	
ULLV:FV		-11			5 491.17	490.22	490	490.31
0	19	22						
				00 0.00			7.45	
<<<•	< <the abov<="" td=""><td></td><td></td><td></td><td></td><td>0.94 ONSTRICTED</td><td></td><td>>>>></td></the>					0.94 ONSTRICTED		>>>>
<<<<		VE RESUL	TS REFLE	ECT "NORM	MAL" (UNC	ONSTRICTED) FLOW>	>>>>
		VE RESUL SFIED AT	TS REFLE	ECT "NORM `APPRO" :	MAL" (UNC TRIALS	ONSTRICTED) FLOW>	
===120 YTOL	NOT SATIS	VE RESUL SFIED AT YTOL,	TS REFLE 'SECID ' WSLIM1,W	CT "NORM APPRO": ISLIM2 =	MAL" (UNC TRIALS 0.02	ONSTRICTED CONTINUED. 489.81) FLOW>	
===120 YTOL	NOT SATIS	VE RESUL SFIED AT YTOL, NTEST AT	TS REFLE SECID WSLIM1,W SECID	CT "NORM `APPRO": NSLIM2 = `APPRO":	MAL" (UNC TRIALS 0.02	ONSTRICTED CONTINUED. 489.81 CONTINUED.) FLOW>	81
===120 YTOL ===125 FR# 1	NOT SATIS EXCEEDS FN FNTEST, H	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL	TS REFLE SECID ` WSLIM1,W SECID ` ,CRWS =	CT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80	MAL" (UNC TRIALS 0.02 TRIALS 1.17	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86) FLOW>	81
===120 YTOL ===125 FR# 1	NOT SATIS EXCEEDS FN FNTEST, F NOT FOUND	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC	TS REFLE SECID * WSLIM1,W SECID * ,CRWS =	CT "NORN APPRO": ISLIM2 = 'APPRO": 0.80 RO": REI	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY.	490. 493.	81
===120 YTOL ===125 FR# 1	NOT SATIS EXCEEDS FN FNTEST, F NOT FOUND	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC	TS REFLE SECID * WSLIM1,W SECID * ,CRWS =	CT "NORN APPRO": ISLIM2 = 'APPRO": 0.80 RO": REI	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86	490. 493.	81
===120 YTOL ===125 FR# 1 ===110 WSEL	NOT SATIS EXCEEDS FN FNTEST, H NOT FOUNI WS1	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT	CT "NORN APPRO": NSLIM2 = APPRO": 0.80 RO": REI CAY = 4	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53	490. 493.	81
===120 YTOL ===125 FR# 1 ===110 WSEL	NOT SATIS EXCEEDS FN FNTEST, F NOT FOUNI WSI NOT FOUNI	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT	CT "NORN APPPRO": NSLIM2 = APPPRO": 0.80 CO": REI CAY = 4 CO": USH	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS.	<pre>490. 493. 0.50</pre>	81
===120 YTOL ===125 FR# 1 ===110 WSEL	NOT SATIS EXCEEDS FN FNTEST, F NOT FOUNI WSI NOT FOUNI	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT	CT "NORN APPPRO": NSLIM2 = APPPRO": 0.80 CO": REI CAY = 4 CO": USH	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS.	490. 493.	81
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI NOT FOUNI WSI	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL LIM1,WSL	TS REFLE SECID V WSLIM1,W SECID V CRWS = ID APPF IM2,DELT ID APPF IM2,CRWS	CT "NORN "APPRO": USLIM2 = "APPRO": 0.80 CO": REI CAY = 4 CO": USH S = 485	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53	<pre>) FLOW> 490. 493. 0.50 493.07</pre>	81
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL	NOT SATIS EXCEEDS FN FNTEST, F NOT FOUNI NOT FOUNI WSI ICAL WATEF	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT ID *APPF IM2,CRWS E ELEVAT	CT "NORN "APPRO": ISLIM2 = "APPRO": 0.80 CO": REI CAY = 4 CO": USH S = 485 CION A _	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U_M_E	<pre>) FLOW> 490. 493. 0.50 493.07 </pre>	81 07
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL	NOT SATIS EXCEEDS FM FNTEST, F NOT FOUNI WSI NOT FOUNI WSI ICAL WATEH ENERGY F	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION	TS REFLE SECID * WSLIM1,W SECID * CRWS = TID *APPF IM2,DELT CID *APPF IM2,CRWS E ELEVAT N_O_T	CT "NORN "APPRO": NSLIM2 = "APPRO": 0.80 CO": REI CAY = 4 CO": USH S = 489 CION A B_A_L_2	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U_M_E AT SECID	<pre>) FLOW> 490. 493. 0.50 493.07 ` ` ``</pre>	81 07
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL	NOT SATIS EXCEEDS FM FNTEST, F NOT FOUNI WSI NOT FOUNI WSI ICAL WATEH ENERGY F	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION	TS REFLE SECID * WSLIM1,W SECID * CRWS = TID *APPF IM2,DELT CID *APPF IM2,CRWS E ELEVAT N_O_T	CT "NORN "APPRO": NSLIM2 = "APPRO": 0.80 CO": REI CAY = 4 CO": USH S = 489 CION A B_A_L_2	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U_M_E	<pre>) FLOW> 490. 493. 0.50 493.07 ` ` ``</pre>	81 07
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT:	NOT SATIS EXCEEDS FN FNTEST, H NOT FOUNI WSI ICAL WATEH ENERGY H WSI	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN	TS REFLE SECID * WSLIM1,W SECID * CRWS = TID *APPF IM2,DELT D *APPF IM2,CRWS E ELEVAT N_0_T D,CRWS =	ECT "NORN "APPRO": SLIM2 = "APPRO": 0.80 RO": REI CAY = 4 RO": USH S = 489 CION A B A L 4 = 493.0	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 SS AC_E_D 07 51	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U_M_E AT SECID 2.53 4	<pre>) FLOW> 490. 493. 0.50 493.07 ^ PPRO 93.07</pre>	31 07 !!!!
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19	TS REFLE SECID * WSLIM1,W SECID * SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS E ELEVAT D,CRWS = 67 0.	ECT "NORN `APPRO": NSLIM2 = `APPRO": 0.80 RO": RO": RAY = CO": USI CO": USI CO": USI CO": USI CO": USI S = 489 CION A B A 493.0 84	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D 07 51 * 493.91	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07	<pre>) FLOW> 490. 493. 0.50 493.07 </pre>	31 07 !!!!
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46 - 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20	TS REFLE SECID * WSLIM1,W SECID * SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS TE ELEVAT D,CRWS = 67 0. 2095 1.	ECT "NORN `APPRO": NSLIM2 = `APPRO": 0.80 RO": RO": RAY = CO": USI CO": USI CO": USI CO": USI CO": USI S = 483 CION A B A 493.0 84 00 *****	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00	<pre>) FLOW> 490. 493. 0.50 493.07 </pre>	31 07 !!!! " 493.07
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46 - 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20	TS REFLE SECID * WSLIM1,W SECID * SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS TE ELEVAT D,CRWS = 67 0. 2095 1.	ECT "NORN `APPRO": NSLIM2 = `APPRO": 0.80 RO": RO": RAY = CO": USI CO": USI CO": USI CO": USI CO": USI S = 483 CION A B A 493.0 84 00 *****	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07	<pre>) FLOW> 490. 493. 0.50 493.07 </pre>	31 07 !!!! " 493.07
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<<	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY I WSI 46 46 < <the abov<="" td=""><td>VE RESUL SFIED AT YTOL, WTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL</td><td>TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS E ELEVAT N_0_T D,CRWS = 67 0. 2095 1. TS REFLE</td><td>ECT "NORN `APPRO": NSLIM2 = `APPRO": 0.80 RO": REI 'APPRO": 'APPRO": RO": REI 'APPRO": 'APPRO":</td><td>MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ******</td><td>ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 CRWS. 512.53 U_M_E AT SECID 2.53 4 493.07 1.00 ONSTRICTED</td><td><pre>) FLOW> 490. 493. 0.50 493.07 *_PPRO 93.07 490 7.34) FLOW></pre></td><td>81 07 !!!!! 493.07 >>>></td></the>	VE RESUL SFIED AT YTOL, WTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS E ELEVAT N_0_T D,CRWS = 67 0. 2095 1. TS REFLE	ECT "NORN `APPRO": NSLIM2 = `APPRO": 0.80 RO": REI 'APPRO": 'APPRO": RO": REI 'APPRO":	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ******	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 CRWS. 512.53 U_M_E AT SECID 2.53 4 493.07 1.00 ONSTRICTED	<pre>) FLOW> 490. 493. 0.50 493.07 *_PPRO 93.07 490 7.34) FLOW></pre>	81 07 !!!!! 493.07 >>>>
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<<	NOT SATIS EXCEEDS FM FNTEST, F NOT FOUNI WSI ICAL WATEH 46 < <the abov<br="">ICAL WATEH</the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL R-SURFAC 20 VE RESUL R-SURFAC	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS E ELEVAT N_O_T D,CRWS = 67 0. 2095 1. TS REFLE E ELEVAT	ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RO": RO": USH S = 489 CION A B_A_L_A = 493.0 84 ***** CCT "NORN TION A CTON A	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D 07 51 * 493.91 * *******	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E	<pre>) FLOW> 490. 493. 0.50 493.07 * * * * 93.07 490 7.34 7.34 FLOW> </pre>	81 07 !!!!! 493.07 >>>>
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<<	NOT SATIS EXCEEDS FM FNTEST, F NOT FOUNI WSI ICAL WATEH 46 < <the abov<br="">ICAL WATEH</the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL R-SURFAC 20 VE RESUL R-SURFAC	TS REFLE SECID * WSLIM1,W SECID * CRWS = TD *APPF IM2,DELT TD *APPF IM2,CRWS E ELEVAT N_O_T D,CRWS = 67 0. 2095 1. TS REFLE E ELEVAT	ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RO": RO": USH S = 489 CION A B_A_L_A = 493.0 84 ***** CCT "NORN TION A CTON A	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D 07 51 * 493.91 * *******	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 CRWS. 512.53 U_M_E AT SECID 2.53 4 493.07 1.00 ONSTRICTED	<pre>) FLOW> 490. 493. 0.50 493.07 * * * * 93.07 490 7.34 7.34 FLOW> </pre>	81 07 !!!!! 493.07 >>>>
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<-	NOT SATIS EXCEEDS FI FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY I WSI 46 	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI	TS REFLE SECID W WSLIM1,W SECID V SECID V SCRWS = TID WAPPF IM2,DELT TID WAPPF IM2,DELT CID WAPPF IM2,CRWS = E ELEVAT D,CRWS = 67 0. 2095 1. TS REFLE E ELEVAT DG"	ECT "NORN "APPRO": NSLIM2 = "APPRO": 0.80 RO": REI CAY = 4 RO": USH S = 489 CION A _ B _A _L 2 = 493.0 84 ***** CO ****** CO ***** CO *	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34 // FLOW> 5 48</pre>	81 07 !!!!! 493.07 >>>>
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<< ===285 CRIT:	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH 46 < <the abov<br="">ICAL WATEH SEC</the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL	TS REFLE SECID * WSLIM1, W SECID * SECID * SECID * CRWS = TD *APPF IM2, DELT D *APPF IM2, DELT TD *APPF IM2, CRWS = C E ELEVAT D, CRWS = 67 0. 2095 1. TS REFLE E ELEVAT DG" ECTING T	ECT "NORN `APPRO": VAPPRO": 0.80 CO": RO": RO": CAY = CO": USLIM2 = CO": RO": RO": USI CO": USI CO": USI S = 482 CION A B A L A 00 ***** ECT "NORN CION A Q, CRWS = CHE CONST	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ****** MAL" (UNC S_S_S_ 493.91 * 493.91 * 493.91 * 75 MAL" (UNC S_S_S_ 490 TRICTED F	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW	<pre>) FLOW> 490. 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34) FLOW> 4 2 >>>>></pre>	31 07 !!!! 493.07 >>>> !!!
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<< ===285 CRIT:	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH 46 < <the abov<br="">ICAL WATEH SEC</the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL	TS REFLE SECID * WSLIM1, W SECID * SECID * SECID * CRWS = TD *APPF IM2, DELT D *APPF IM2, DELT TD *APPF IM2, CRWS = C E ELEVAT D, CRWS = 67 0. 2095 1. TS REFLE E ELEVAT DG" ECTING T	ECT "NORN `APPRO": VAPPRO": 0.80 CO": RO": RO": CAY = CO": USLIM2 = CO": RO": RO": USI CO": USI CO": USI S = 482 CION A B A L A 00 ***** ECT "NORN CION A Q, CRWS = CHE CONST	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ****** MAL" (UNC S_S_S_ 493.91 * 493.91 * 493.91 * 75 MAL" (UNC S_S_S_ 490 TRICTED F	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW	<pre>) FLOW> 490. 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34) FLOW> 4 2 >>>>></pre>	31 07 !!!! 493.07 >>>> !!!
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<< ===285 CRIT:	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH 46 < <the abov<br="">ICAL WATEH SEC</the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC EQUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL	TS REFLE SECID * WSLIM1, W SECID * SECID * SECID * CRWS = TD *APPF IM2, DELT D *APPF IM2, DELT TD *APPF IM2, CRWS = C E ELEVAT D, CRWS = 67 0. 2095 1. TS REFLE E ELEVAT DG" ECTING T	ECT "NORN `APPRO": VAPPRO": 0.80 CO": RO": RO": CAY = CO": USLIM2 = CO": RO": RO": USI CO": USI CO": USI S = 482 CION A B A L A 00 ***** ECT "NORN CION A Q, CRWS = CHE CONST	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ****** MAL" (UNC S_S_S_ 493.91 * 493.91 * 493.91 * 75 MAL" (UNC S_S_S_ 490 TRICTED F	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW	<pre>) FLOW> 490. 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34) FLOW> 4 2 >>>>></pre>	31 07 !!!! 493.07 >>>> !!!
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<- ===285 CRIT: XSID:CODE SRD	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46 - 46 < <the abov<br="">ICAL WATEH SEC <<<<resui< td=""><td>VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC CID *BRI LTS REFL LEW REW</td><td>TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V P TO APPF MA2, DELT TM2, DELT TM2, DELT TM2, DELT TM2, DELT TM2, CRWS = 67 0. 2095 1. TS REFLE TS REFLE TS REFLE TS REFLE TS REFLE TAREA V K AL</td><td>ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RAY = RO": USH CAY = RO": USH S = 483 CION A B_A_L_2 = 493.0 84 ***** CION A Q, CRWS = CHE CONST 'HE HH LPH HO</td><td>MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D 07 51 * 493.91 * ****** MAL" (UNC _ S _ S _ 490 TRICTED F F EGL D ERR</td><td>ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR#</td><td><pre>) FLOW> 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34 .) FLOW> L !! 48 </pre></td><td>81 07 11111 493.07 >>>> 111 WSEL</td></resui<></the>	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC CID *BRI LTS REFL LEW REW	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V P TO APPF MA2, DELT TM2, DELT TM2, DELT TM2, DELT TM2, DELT TM2, CRWS = 67 0. 2095 1. TS REFLE TS REFLE TS REFLE TS REFLE TS REFLE TAREA V K AL	ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RAY = RO": USH CAY = RO": USH S = 483 CION A B_A_L_2 = 493.0 84 ***** CION A Q, CRWS = CHE CONST 'HE HH LPH HO	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 _ S _ S _ A_N_C_E_D 07 51 * 493.91 * ****** MAL" (UNC _ S _ S _ 490 TRICTED F F EGL D ERR	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR#	<pre>) FLOW> 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34 .) FLOW> L !! 48 </pre>	81 07 11111 493.07 >>>> 111 WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: 	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY I 46 46 46 46 46 46 46 46 46 46 46 46 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC GUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL LEW REW 0	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V P TD NAPPF IM2,DELT CID NAPPF IM2,DELT CID NAPPF IM2,CRWS = CID NAPFF IM3,CRWS = CID NAFFF IM3,CRWS = CID NAFFF	ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RET CAY = APPRO": USI CAPPRO": 0.80 RO": REAT B_A_L_A B_A_L_A SCT "NORN CION A Q, CRWS = CTON A Q, CRWS = CHE CONST 'HE CONST 'HD HI LPH HC 46 *****	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U_M_E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U_M_E 490. LOW FOLLOW CRWS FR# 490.48	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34) FLOW> 48 </pre>	81 07 11111 493.07 >>>> 111 WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: 	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY I 46 46 46 46 46 46 46 46 46 46 46 46 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC CUD *BRI LTS REFL LEW REW 0	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V P TD NAPPF IM2,DELT CID NAPPF IM2,DELT CID NAPPF IM2,CRWS = CID NAPFF IM3,CRWS = CID NAFFF IM3,CRWS = CID NAFFF	ECT "NORN 'APPRO": NSLIM2 = 'APPRO": 0.80 RO": RET CAY = APPRO": USI CAPPRO": 0.80 RO": REAT B_A_L_A B_A_L_A SCT "NORN CION A Q, CRWS = CTON A Q, CRWS = CHE CONST 'HE CONST 'HD HI LPH HC 46 *****	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR#	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34) FLOW> 48 </pre>	81 07 11111 493.07 >>>> 111 WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<- ===285 CRIT: XSID:CODE SRD RIDG:BR 0	NOT SATIS EXCEEDS FN FNTEST, H NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46 	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC CEQUATION BEG,WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL LEW REW 0 19	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V SECID V SECID SECID SECID SECID SECID SECID SECID SECID SECID SECID SECID SECID SECI	ECT "NORN "APPRO": NSLIM2 = "APPRO": 0.80 RO": REI CAY = 4 RO": USI S = 485 CION A B A L 4 = 493.0 84 **** 00 ***** CION A Q, CRWS = CHD HI PH HO 46 *****	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 0.7 51 * 493.91 * 493.91 * 493.91 * 493.91 F EGL D ERR * 491.94	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 = CRWS. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR# 490.48 1.00	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34) FLOW> 48 </pre>	81 07 !!!! 493.07 >>>> !!! WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 << ===285 CRIT: XSID:CODE SRD RIDG:BR 0 TYPE PPO	NOT SATIS EXCEEDS FN FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY I 46 46 46 46 46 46 46 46 46 46 46 46 46	VE RESUL SFIED AT YTOL, NTEST AT FR#, WSEL D AT SEC LIM1, WSL D AT SEC LIM1, WSL C AT SEC LIM1, WSL R-SURFAC EQUATION BEG, WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL LEW REW 0 19 C	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V SECID V SECID V SECID SECID SECID SECID SECID SECID SECID SECID SE	ECT "NORN YAPPRO": VSLIM2 = YAPPRO": 0.80 RO": REI CAP CAPPRO": 0.80 RO": REI CAY = A A CAY = A A CAY = A CAY = A A CAY = A CAY =	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR# 490.48 1.00 AB XRAB	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34) FLOW> 48 </pre>	81 07 !!!! 493.07 >>>> !!! WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<- ===285 CRIT: XSID:CODE SRD RIDG:BR 0 TYPE PPO	NOT SATIS EXCEEDS FN FNTEST, H NOT FOUNI WSI ICAL WATEH ENERGY H WSI 46 	VE RESUL SFIED AT YTOL, NTEST AT FR#, WSEL D AT SEC LIM1, WSL D AT SEC LIM1, WSL C AT SEC LIM1, WSL R-SURFAC EQUATION BEG, WSEN -19 20 VE RESUL R-SURFAC CID "BRI LTS REFL LEW REW 0 19 C	TS REFLE SECID W WSLIM1,W SECID V SECID V SECID V SECID V SECID V SECID V SECID SECID SECID SECID SECID SECID SECID SECID SECI	ECT "NORN YAPPRO": VSLIM2 = YAPPRO": 0.80 RO": REI CAY = RO": USI S = A82 CION A Q, CRWS = CTON A Q, CRWS = CHE CONST YHD HH JPH HO JPH HO LSEL H	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR# 490.48 1.00 AB XRAB	<pre>) FLOW> 490. 493. 0.50 493.07 *_APPRO 93.07 490 7.34) FLOW> 48 </pre>	81 07 !!!! 493.07 >>>> !!! WSEL
===120 YTOL ===125 FR# 1 ===110 WSEL ===115 WSEL ===130 CRIT: PPRO:AS 46 <<<	NOT SATIS EXCEEDS FM FNTEST, I NOT FOUNI WSI ICAL WATEH ENERGY H 46 46 46 46 46 46 46 46 46 46 46 46 46	VE RESUL SFIED AT YTOL, NTEST AT FR#,WSEL D AT SEC LIM1,WSL D AT SEC LIM1,WSL C AT SEC LIM1,WSL R-SURFAC CUM1,WSL R-SURFAC CID "BRI LTS REFL LEW REW 0 19 C 1.000 **	TS REFLE SECID W WSLIM1,W SECID W SECID W SECID W SECID W SECID W SECID N PA SECID N P/A ***** 49	ECT "NORN `APPRO": VAPPRO": 0.80 CO": RO": CAY = CO": USLIM2 = `APPRO": 0.80 RO": REA CO": USLIM2 = CO": RAY = CO": USLIM2 = CO": USL B_A_L_Z = 493.0 84 ***** 00 ***** CTON A_ Q, CRWS = CHE CONST THE CONST PH 46 ***** 0.0 ***** LSEL H O3.96 ***	MAL" (UNC TRIALS 0.02 TRIALS 1.17 DUCED DEL 489.81 ED WSMIN 9.81 S_S_S_ A_N_C_E_D 07 51 * 493.91 * ***********************************	ONSTRICTED CONTINUED. 489.81 CONTINUED. 492.86 TAY. 512.53 U _ M _ E AT SECID 2.53 4 493.07 1.00 ONSTRICTED U _ M _ E . 490. LOW FOLLOW CRWS FR# 490.48 1.00 AB XRAB	<pre>) FLOW> 490. 490. 493. 0.50 493.07 *APPRO 93.07 490 7.34) FLOW> 490 7.34 VEL 490 9.69</pre>	81 07 !!!! 493.07 ?>>> !!! WSEL 490.48

	SRDL FLEN		AREA V K Al		HF HO		CR	WS R#	Q VEL	WSEL
APPRO:AS 46		-19 20	77 0 2621 1			493.95 -0.02		•		493.32
	M(K) 0.000	KQ 3020.	XLKQ 0.	~						
FIRST USER				_						
XSID:COD		LEW		Q		К	ARE			WSEL
EXITX:XS		-12.		490.		2299.	65		7.48	
FULLV:FV		-12.		490.		2316.			7.45	490.31
BRIDG:BR		0.				2321.		•		490.48
RDWAY:RG		*******								*****
APPRO:AS	46.	-20.	20.	490.		2621.	77		6.37	493.32
XSID:COD	e Xlkq	XRKQ	KQ							
APPRO:AS	0.	19.	3020.							
SECOND USER	DEFINED	TABLE.								
XSTD:COD	E CRWS	S FR#	± YMT1	N YI	MAX	HF	HO	VHD	E	TL WSEL
EXITX:XS	489.3	5 0.94	486.90	6 509	.45*	******	****	0.87	490.3	31 489.44
FULLV: FV	490.22	2 0.94	487.8	2 510	.31	0.86	0.00	0.86	491.	17 490.31
BRIDG: BR	490.48	B 1.00	487.2	0 494	.45*	******	****	1.46	491.9	94 490.48
RDWAY:RG			493.4							
APPRO:AS										95 493.32
ER				_ 010			2.00			

1 NORMAL END OF WSPRO EXECUTION.

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure MNTGTH00020004, in Montgomery, Vermont.

28

APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form

Structure Number MTNGTH00020004

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) 08 / 03 / 94

Highway District Number (I - 2; nn) _____

Town (FIPS place code; I - 4; nnnnn) 45850

Waterway (1 - 6) WADE BROOK

Route Number TH002

Topographic Map Hazens.Notch

Latitude (I - 16; nnnn.n) 44509

County (FIPS county code; I - 3; nnn) ____011

Mile marker (I - 11; nnn.nnn) 003960

Road Name (I - 7): ____

Vicinity (1 - 9) <u>3.0 MI E JCT. VT.118</u>

Hydrologic Unit Code: 02010007

Longitude (i - 17; nnnnn.n) 72328

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 20030800040610

Maintenance responsibility (I - 21; nn) 03	Maximum span length (I - 48; nnnn) 0020
Year built (I - 27; YYYY) <u>1928</u>	Structure length (I - 49; nnnnnn) 000023
Average daily traffic, ADT (I - 29; nnnnnn) 000200	_ Deck Width (I - 52; nn.n) _260
Year of ADT (1 - 30; YY) 91	Channel & Protection (I - 61; n) 6
Opening skew to Roadway (I - 34; nn) 30	Waterway adequacy (I - 71; n) 5
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn) <u>101</u>	Year Reconstructed (I - 106) 0000
Approach span structure type (I - 44; nnn)000	Clear span (<i>nnn.n f</i> t)
Number of spans (I - 45; nnn)	Vertical clearance from streambed (<i>nnn.n</i> ft) 006.0
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (<i>nnn.n</i> ft ²)

Structural inspection report of 9/26/92 indicates a full depth crack has developed in the left abutment from top to bottom near the center and has been undermined. However, the same inspection indicates channel scour is minor. Embankment erosion was noted on the right embankment upstream and both downstream. The channel makes a moderate bend into and through bridge. The report indicates no riprap protection present. debris had collected on the banks.

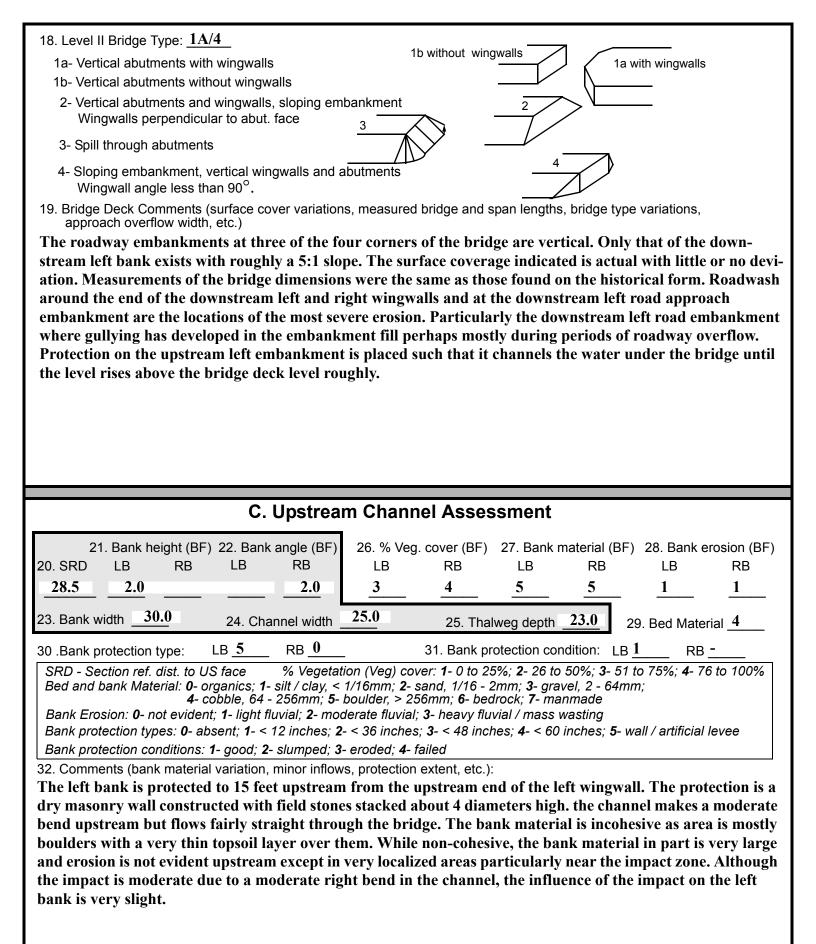
	-		ologic Da			
Is there hydrologic data available						
Terrain character: -	· · · · · · · · · · ·					
Stream character & type: _						
Streambed material: Boulder						
Discharge Data (cfs): Q _{2.33} -						
					Q ₅₀₀	
Record flood date (MM / DD / YY): _						—
Estimated Discharge (cfs):						ate
Ice conditions (Heavy, Moderate, Ligh The stage increases to maximum						
The stream response is (Flashy, No	•			vot rapidry).		
Describe any significant site cond	.,			m that ma	y influence the	stream's
stage: _						
Watershed storage area (in person	4) 0/					
Watershed storage area (<i>in percent</i> The watershed storage area is: -	,	inly at the h	neadwaters: 2	- uniformly	distributed: 3-imm	ediatly unstream
		e site)		- annonnny		
	<i>с</i> – .					
Water Surface Elevation Estimate	es for Exis	sting Strue	<u>cture:</u>		·	
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (#)	-	-				
			-	-	-	
	-	-	-	-	-	
Velocity (ft / sec)	-	-	-	-	-	
	-	-	-	-	-	
Velocity (ft / sec)	-	-	-	-	-	
Velocity (<i>ft / sec</i>) Long term stream bed changes:		2 (Ves No	- -	- -	- -	
Velocity (<i>ft / sec</i>) Long term stream bed changes: Is the roadway overtopped below	the Q ₁₀₀					<u>.</u>
Velocity (<i>ft / sec</i>) Long term stream bed changes:	the Q ₁₀₀					
Velocity (<i>ft / sec</i>) Long term stream bed changes: Is the roadway overtopped below Relief Elevation (<i>ft</i>):	the Q ₁₀₀ Discha	irge over	roadway at	Q ₁₀₀ (ft ³ /	sec):	<u>.</u>
Velocity (#/sec) Long term stream bed changes: Is the roadway overtopped below Relief Elevation (#): Are there other structures nearby'	the Q ₁₀₀ Discha ? (<i>Yes, No</i>	nrge over	roadway at): <u> U </u>	Q ₁₀₀ (ft ³ /	sec): vn, type ctrl-n os	
Velocity (<i>ft / sec</i>) Long term stream bed changes: Is the roadway overtopped below Relief Elevation (<i>ft</i>):	the Q ₁₀₀ Discha ? (<i>Yes, No</i>	nge over 9, <i>Unknown</i> Town:	roadway at): <u>U </u>	Q ₁₀₀ (ft ³ /	sec): <u>-</u> ///, <i>type ctrl-n os</i> _ Year Built: <mark>-</mark>	

Downstream distance (<i>miles</i>): Town:	
Highway No. : -Structure No. : -Structure Type: _Clear span (ft): -Clear Height (ft): -Full Waterway (ft^2): -	
Comments:	
-	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 1.68 mi ² Lake and pond area 0 Watershed storage (ST) 0 %	mi ²
Bridge site elevation1326ftHeadwater elevation3196Main channel length 1.93 mi	<u>'</u> ft
10% channel length elevation 1427 ft 85% channel length e	levation 2657 ft
Main channel slope (S) <u>852.16</u> ft / mi	
Watershed Precipitation Data	
	- tion in
Average site precipitation in Average headwater precipitation	ation In
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	

Bridge Plan Data
Are plans available? N If no, type ctrl-n pl Date issued for construction (MM / YYYY): - / - Project Number - Minimum channel bed elevation: -
Low superstructure elevation: USLAB <u>-</u> DSLAB <u>-</u> USRAB <u>-</u> DSRAB <u>-</u> Benchmark location description:
Reference Point (<i>MSL, Arbitrary, Other</i>): Datum (<i>NAD27, NAD83, Other</i>):
Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness Footing bottom elevation:
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? <u>N</u> If no, type ctrl-n bi Number of borings taken:
Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION
Comments: NO PLANS.

Cross-sectional Data

Is cross-sectional data available? <u>N</u> If no, type ctrl-n xs


Source (FEMA, VTAOT, Other)? _____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Comments: N	NO CROS	SS SECT	ION INF	ORMAT	ION	1	1			1	
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E: LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processin Structure Number	Computerized by: <u>EMB</u> Date: <u>2/7/95</u>					
 Data collected by (<i>First Initial, Full last name</i>) <u>E</u> Highway District Number <u>09</u> County <u>FRANKLIN (011)</u> Waterway (<i>I</i> - 6) <u>WADE BROOK</u> Route Number <u>TH02</u> Descriptive comments: Structure is a concrete slab type bridge with 	Al Location Descriptive <u>BOEHMLER</u> Date (<i>MM/DD/YY</i>) <u>11</u> / <u>08</u> / <u>1994</u> Mile marker <u>3.960</u> Town <u>MONTGOMERY (45850)</u> Road Name <u>-</u> Hydrologic Unit Code: <u>02010007</u> tall concrete guard walls on each side located about 3.0 miles 18 and about 1.3 miles west of the Hazen Notch on TH02.					
B. Bridge Deck Observations 4. Surface cover LBUS 6 RBUS 6 LBDS 6 RBDS 6 Overall 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland) Overall 6 5. Ambient water surfaceUS 2 UB 2 DS 2 (1- pool; 2- riffle) 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other) 7. Bridge length 23.0 (feet) Span length 20.0 (feet) Bridge width 26.0 (feet)						
Road approach to bridge:	Channel approach to bridge (BF): 15. Angle of approach: 20 16. Bridge skew: 30					
9. LB_1RB_2(1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left0.0:1US right0.0:1 Protection 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 11 0	Approach Angle Q					
RBUS 1 1 2 1 RBDS 1 1 2 2 LBDS 1 1 2 2	17. Channel impact zone 1: Exist? <u>Y</u> (Y or N) Where? <u>LB</u> (LB, RB) Severity <u>2</u> Range? <u>90</u> feet <u>US</u> (US, UB, DS) to <u>65</u> feet <u>US</u>					
Bank protection types: 0- none; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Erosion: 0 - none; 1- channel erosion; 2-	Channel impact zone 2: Exist? Y (Y or N) Where? RB (LB, RB) Severity 2 Range? 10 feet DS (US, UB, DS) to 55 feet DS Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe					
road wash; 3 - both; 4 - other Erosion Severity: 0 - none; 1 - slight; 2 - moderate; 3 - severe	impact deventy. U- none to very siight, 1- Siight, 2- Wouerate, 3- Severe					

33.Point/Side bar pr	<u>esent?</u> N	(Y or N. if N	type ctrl-n µ	<i>b)</i> 34. Mid-b	ar distance: _	_ 35. Mid-bar wi	dth: _
 36. Point bar extent: 37. Material: 38. Point or side bar comm 	feet <u>-</u> (L	<i>JS, UB)</i> to <u>-</u>	feet <u>-</u>	_ (US, UB,	DS) positioned -	%LB to	
NO POINT BARS						,	
39. Is a cut-bank pre	esent? N	_ (Y or if N type	e ctrl-n cb)		40. Where? -	(LB or RB)	
41. Mid-bank distance: -		42. Cut bank e	extent: <u>-</u>	_ feet -	<i>(US, UB)</i> to <u>-</u>	_ feet (US, l	JB, DS)
43. Bank damage: <u>-</u> (44. Cut bank comments (eg NO CUT BANKS		•	•		re)		
45. Is channel scour	•						
48. Scour comments (eg. a NO CHANNEL SCOU	additional scou					/// 2	
 49. <u>Are there major</u> (19) 51. Confluence 1: Distance Confluence 2: Distance 54. Confluence comments NO MAJOR CONFLUE 	e e (eg. confluenc	52. Enters o Enters o	on <u></u> (L	B or RB)	53. Type - ((1 - perennial; 2 - (
		Undor Bri	dao Cha	annol As	sessment		
55. Channel restraint (BF)			•		; 3 - artificial levee)		
	ngle (BF)	61. Materia		62. Erosic			
LB RB LB	RB	LB	RB	LB	RB		
15.01	.0	2	7	7	-		
58. Bank width (BF) <u>-</u>	59. Channe	el width (Amb) _	- 60.	Thalweg de	epth (Amb) <u>90.0</u>	63. Bed Mater	ial <u>-</u>
Bed and bank Material: 0-		silt / clay, < 1/16 56mm; 6- bedro			nm; 3- gravel, 2 - 6	4mm; 4 - cobble, (54 - 256mm;
Bank Erosion: 0- not evide					al / mass wasting		
64. Comments (bank mate	rial variation,	minor inflows, p	protection ex	ktent, etc.):			
The channel gradient i remains enough that the material is the same as	he water sur	face continue	s riffled th	nrough the	e entire reach. Fo	or the most par	t, the bed
the larger stones, more	-				more compact v		5 DECITECH

 65. Debris and Ice Is there debris accumulation? (Y or N) 66. Where? Y (1- Upstream; 2- At bridge; 3- Both) 67. Debris Potential 1 (1- Low; 2- Moderate; 3- High) 69. Is there evidence of ice build-up? 1 (Y or N) 68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High) Ice Blockage Potential N (1- Low; 2- Moderate; 3- High) 									
Tree stems, bran one mass at any align debris par	one partic	ular locatio	n. The steep	o channel g	gradient a	nd high	velocity f	lows prol	
Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Expo dep		Material	78. Length
LABUT		0	90	0	2	0	1	1.5	90.0
RABUT	1	0	90			0	3	3	18.0
Pushed: LB or RB Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood 79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.): 0 2.0 1 A two inch wide crack appears at the road center line under the bridge roughly completely through the right abutment footing. The footing has settled from undermining most likely as the footer and right abutment wall are separated slightly by a 0.5 inch crack which runs its length. A large vertical crack has developed in the									
left abutment for by channel eros from the upstre 80. Wingwalls	right abutment wall and is displaced from the footing's crack between two and three feet downstream. The left abutment footing is undermined mainly from concrete deterioration and subsequent erosion rather than by channel erosion. The most significant deterioration and erosion of the concrete left abutment footing is from the upstream end to approximately the roadway center line under the bridge. Both footings appear at 80. <u>Wingwalls</u> : Exist? Material? Scour Scour Exposure 81. Angle? Length?								
USLWW: most	·	Condition? d	epth? dept feet	10	0			k	
USRWW: thick		and	set-	1.)				
DSLWW: tling		of	the	29.	0			Q	
DSRWW: right		abut	men	t29.	0				<u> </u>
Wingwall material	s: 1 - Concr 4 - wood	ete; 2- Stone	masonry or d	rywall; 3 - st	eel or meta	l; an	igwall igle RWW		
82. <u>Bank / Bri</u>		ection:							
Location US	SLWW US	RWW LA	BUT RAE	BUT LE	3 R	RB	DSLWW	DSRWW	'
Туре g	give e	ar- no	ini	in un	d g		babl	ut	
Condition s		nce ur	8	err		vas	У	0.5	
	ipp o		m Tl			ro	abo	feet	
Bank / Bridge protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches;									

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.): at most prior to the settlement. The concrete deterioration at the base of both abutments makes it difficult to decipher exposure depths.

- Y

- Y

- Piers:

85.				type cin-n p	·/		1
Pier no.	widt	h (w)	feet	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	— → / \< w1
Pier 1		7.5	5 7.5	65.0	30.0	35.0	
Pier 2	8.5	9.0) -	85.0	-	-	
Pier 3	-	-	-	-	-	-	w2
Pier 4	-	-	-	-	-	-	
Level 1 Pi	er Descr	:	1	2	3	4	
86. Locatio	on (BF)		Y	2	-	dete-	LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP
87. Type			1	1	-	rio-	1 - Solid pier, 2 - column, 3 - bent
88. Materia	al		2	1	-	ratio	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape			0	2	-	n	1- Round; 2- Square; 3- Pointed
90. Inclined	d?		1.5	2	0	and	Y- yes; N- no
91. Attack	∠ (BF)		Y	1	-	sub-	
92. Pushec	b		1	2	-	sequ	LB or RB
93. Length	(feet)		-	-	-	-	
94. # of pile	es		3	0	0	ent	-
95. Cross-ı	members	S	0	-	-	ero-	0- none; 1- laterals; 2- diagonals; 3- both
96. Scour (Conditior	า	2.0	-	-	sion	 0- not evident; 1- evident (comment); 2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed
97. Scour o	depth		5	-	Con-	has	
98. Exposu	ure depth	ı	1	-	crete	occu	

84. Are there piers? ____ (*Y* or if *N* type ctrl-n pr)

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): rred at the downstream end of the upstream left wingwall at the corner where the wingwall meets the abutment wall. Protection is in place where the footing's concrete has eroded. Rangepole penetration under the upstream left wingwall and left abutment from footer erosion is between 0.5 and 1 foot. The deterioration has affected mostly the footing as opposed to the abutment wall. The abutment wall concrete appears in good condition. The downstream right wingwall footing is about 1.5 feet thick. The concrete footing of the downstream left wingwall and the downstream end of the left abutment has deteriorated and eroded away completely except for some fragments of concrete that remain on the streambed adjacent to the walls presumably from the wingwall / abutment footings.

E. Downstream	Channel Asse	essment	
100.			
S () S ()	% Veg. cover (BF)	Bank material (BF)	Bank erosion (BF)
SRD LB RB LB RB	LB RB	LB RB	LB RB
· · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>
Bank width (BF) Channel width (Amb)	Thalweg dep	oth (Amb) <u>-</u>	Bed Material
Bank protection type (Qmax): LB RB	Bank protect	ion condition: LB	RB <u></u>
SRD - Section ref. dist. to US face % Vegetation (V Bed and bank Material: 0- organics; 1- silt / clay, < 1/16m 4- cobble, 64 - 256mm; 5- bould Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 Bank protection conditions: 1- good; 2- slumped; 3- erod Comments (eg. bank material variation, minor inflows, protection conditions: 1- good; 2- slumped; 3- erod Comments (eg. bank material variation, minor inflows, protection - -	//eg) cover: 1 - 0 to 25% nm; 2 - sand, 1/16 - 2m ler, > 256mm; 6 - bedro e fluvial; 3 - heavy fluvia b inches; 3 - < 48 inches led; 4 - failed tection extent, etc.): I, if N type ctrl-n ds) erial: <u>- (1- steel sh</u>	6; 2 - 26 to 50%; 3 - 51 to 1m; 3 - gravel, 2 - 64mm pock; 7 - manmade al / mass wasting s; 4 - < 60 inches; 5 - wa	o 75%; 4 - 76 to 100%); all / artificial levee
105. Drop structure comments (eg. downstream scour de	pth):		
-			
-			
-			
-			
	41		

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned%LB to%RB Material: Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
<u>Is a cut-bank present?</u> - (Y or if N type ctrl-n cb) Where? - (LB or RB) Mid-bank distance: <u>NO</u> Cut bank extent: <u>PIE</u> feet <u>RS</u> (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: Scour dimensions: Length 4 Width 4 Depth: 3 Positioned 3 %LB to 1 %RB Scour comments (eg. additional scour areas, local scouring process, etc.): 2 4 0 0
Are there major confluences? - (Y or if N type ctrl-n mc) How many? -
Confluence 1: Distance <u>The</u> Enters on <u>righ</u> (<i>LB or RB</i>) Type <u>t</u> (1- perennial; 2- ephemeral)
Confluence 2: Distance bank Enters on mat (LB or RB) Type erial (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
is a composite type with equal thicknesses of soil on top and alluvial, somewhat bouldery gravelly sand on the bottom. The soil appears more cohesive and less erodible as roots and the soil layer are clearly overhanging

F. Geomorphic Channel Assessment

107. Stage of reach evolution the

- 1- Constructed 2- Stable

- 3- Aggraded
 4- Degraded
 5- Laterally unstable
 6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

underlying material. When the overhanging soil layer does fail and the material slumps into the channel, the block is washed away perhaps quickly by rather swift currents, particularly along the right bank near the impact zone.

	109. G. F	Plan View Sketch	-	I
oint bar (pb) ut-bank (Cb) cour hole	debris XXX rip rap or stone fill	flow► cross-section +++++++ ambient channel	stone wall	

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: Road Number: Stream:	MNTGTH00020004 TH 2 Wade Brook		Town: County:	Montgomery Franklin
Initials EMB	Date: 4/30/96	Checked:	SAO	5/6/96
Analysis of contr	action scour, live	e-bed or c	lear wate	er?
Vc=11.21*y1^0.166	of Bed Material (7*D50^0.33 with Ss thers, 1995, p. 28	8=2.65	l to Engli	sh units)
Approach Section Characteristic		100 yr	500 yr	other Q
Total discharge	, cfs	460	490	0
Main Channel Ar		68.3	76.8	0
Left overbank a	rea, ft2	0	0	0
Right overbank	area, ft2	0	0	0
Top width main	channel, ft	40.2	40.7	0
Top width L ove		0	0	0
Top width R ove		0	0	0
D50 of channel,		0.255	0.255	0
D50 left overba		0	0	0
D50 right overb	oank, ft	0	0	0
y1, average depth	, MC, ft	1.7	1.9	ERR
y1, average depth	, LOB, ft	ERR	ERR	ERR
y1, average depth	, ROB, ft	ERR	ERR	ERR
Total conveyanc	e, approach	2172	2615	0
Conveyance, mai	n channel	2172	2615	0
Conveyance, LOE	5	0	0	0
Conveyance, ROE		0	0	0
Percent discrep	ancy, conveyance	0.0000	0.0000	ERR
Qm, discharge,		460.0	490.0	ERR
Ql, discharge,		0.0	0.0	ERR
Qr, discharge,	ROB, cfs	0.0	0.0	ERR
Vm, mean velocity	MC, ft/s	6.7	6.4	ERR
Vl, mean velocity	, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity	, ROB, ft/s	ERR	ERR	ERR
Vc-m, crit. veloc	ity, MC, ft/s	7.8	7.9	N/A
Vc-l, crit. veloc	ity, LOB, ft/s	N/A	N/A	N/A
Vc-r, crit. veloc	ity, ROB, ft/s	N/A	N/A	N/A
Results				
Time hed (1) or (1)	and Watan (0) Contra	action Co	0.112	

Live-bed(1) or Clear-Water(0) Contraction Scour? Main Channel 0 0 N/A

Clear Water Contraction Scour in MAIN CHANNEL

y2 = (Q2 ² /(131*Dm ^(2/3) *W2 ²)) ^{(3/} ys=y2-y_bridge			English Units
(Richardson and others, 1995, p. 32	2, eq. 20,	20a)	
Approach Section	Q100	Q500	Qother
Main channel Area, ft2	68.3	76.8	0
Main channel width, ft	40.2	40.7	0
yl, main channel depth, ft	1.70	1.89	ERR
Bridge Section			
(Q) total discharge, cfs	460	490	0
(Q) discharge thru bridge, cfs	460	490	
Main channel conveyance	2189	2321	
Total conveyance	2189	2321	
Q2, bridge MC discharge,cfs	460	490	ERR
Main channel area, ft2	49	51	0
Main channel width (skewed), ft	17.4		0.0
Cum. width of piers in MC, ft	0.0		0.0
W, adjusted width, ft	17.4	17.4	0
y_bridge (avg. depth at br.), ft			ERR
Dm, median (1.25*D50), ft	0.31875		
y2, depth in contraction,ft	2.84	3.00	ERR
ys, scour depth (y2-ybridge), ft	0.05	0.10	N/A
ys, scour depth (y2-y1), ft	1.14	1.11	N/A
ARMORING			
D90	0.8606	0.8606	
D95	1.5382		
Critical grain size,Dc, ft		0.6866	ERR
Decimal-percent coarser than Dc	0.142		DICIC
Depth to armoring, ft	12.09		ERR
, armorrag,		12.20	

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28) Left Abutment Right Abutment Characteristic 100 yr Q 500 yr Q Other Q 100 yr Q 500 yr Q Other Q (Qt), total discharge, cfs 460 490 460 490 0 0 a', abut.length blocking flow, ft 20 20.2 0 2.8 3.1 0 Ae, area of blocked flow ft2 11.29 15.5 0 3.4 4 0 11. 29.9 Qe, discharge blocked abut., cfs 46.6 0 16.5 18.5 0 (If using Qtotal overbank to obtain Ve, leave Qe blank and enter Ve manually) Ve, (Qe/Ae), ft/s 3.01 ERR 4.85 4.63 2.65 ERR ya, depth of f/p flow, ft 0.56 0.77 ERR 1.21 1.29 ERR --Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru) 0.82 0.82 0 0.82 0.82 K1 0 --Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US) theta 115 115 0 65 0 65 К2 1.03 1.03 0.00 0.96 0.96 0.00 Fr, froude number f/p flow 0.605 ERR 0.776 0.718 ERR 0.621 ys, scour depth, ft 4.33 5.20 N/A 3.87 4.03 N/A HIRE equation (a'/ya > 25) $ys = 4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49, eq. 29) a'(abut length blocked, ft) 20 2.8 2.8 20.2 3.1 0 y1 (depth f/p flow, ft) 0.56 1.21 1.21 0.77 1.29 ERR a'/y1 35.43 2.31 2.31 26.33 2.40 ERR Skew correction (pg. 49, fig. 16) 1.06 1.06 1.06 0.92 0.92 0.92 Froude no. f/p flow 0.62 0.60 N/A 0.78 0.72 N/A Ys w/ corr. factor K1/0.55: vertical w/ ww's 3.04 ERR ERR 3.86 ERR ERR Abutment riprap Sizing Isbash Relationship D50=y*K*Fr²/(Ss-1) and D50=y*K*(Fr²)^{0.14}/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82) Characteristic Q100 Q500 Qother Fr, Froude Number 1 1 1 1 (Fr from the characteristic V and y in contracted section--mc, bridge section) y, depth of flow in bridge, ft 2.79 2.9 2.79 2.9 Median Stone Diameter for riprap at: left abutment right abutment, ft Fr<=0.8 (vertical abut.)</pre> ERR ERR 0.00 ERR ERR 0 Fr>0.8 (vertical abut.) 1.17 1.21 ERR 1.17 1.21 ERR