LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (GRNVTH00230015) on TOWN HIGHWAY 23, crossing the THIRD BRANCH of the WHITE RIVER, GRANVILLE, VERMONT

U.S. Geological Survey Open-File Report 96-564

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (GRNVTH00230015) on TOWN HIGHWAY 23, crossing the THIRD BRANCH of the WHITE RIVER, GRANVILLE, VERMONT

By MICHAEL A. IVANOFF and SCOTT A. OLSON

U.S. Geological Survey Open-File Report 96-564

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and summary of results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form.	
F. Scour computations	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure GRNVTH00230015 viewed from upstream (October 21, 1994)	
4. Downstream channel viewed from structure GRNVTH00230015 (October 21, 1994)	
5. Upstream channel viewed from structure GRNVTH00230015 (October 21, 1994)	
6. Structure GRNVTH00230015 viewed from downstream (October 21, 1994)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White	
Granville, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	D.
GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White	
Granville, Vermont	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White R	iver,
Granville, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White R	iver,
Granville. Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (GRNVTH00230015) ON TOWN HIGHWAY 23, CROSSING THE THIRD BRANCH OF THE WHITE RIVER, GRANVILLE, VERMONT

By Michael A. Ivanoff and Scott A. Olson

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure GRNVTH00230015 on town highway 23 crossing the Third Branch of the White River, Granville, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic province of central Vermont in the town of Granville. The 23.6-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have woody vegetation coverage except for the downstream banks, which are residential.

In the study area, the Third Branch of the White River has an incised, sinuous channel with a slope of approximately 0.0128 ft/ft, an average channel top width of 42 ft and an average channel depth of 4 ft. The predominant channel bed material is cobble (D_{50} is 108 mm or 0.353 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 21, 1994, indicated that the reach was laterally unstable.

The town highway 23 crossing of the Third Branch of the White River is a 35-ft-long, one-lane bridge consisting of one 31-foot steel beam span (Vermont Agency of Transportation, written communication, August 26, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 10 degrees.

The only scour protection measures in place at the site were type-1 stone fill (less than 12 inches diameter) along the upstream right bank, upstream right wingwall, and right abutment. Retaining walls are in place along the upstream left bank up to the upstream end of the upstream left wingwall and both downstream banks with the left bank wall extending from the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995).

Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0 to 0.4 ft. The worst-case contraction scour occurred at the incipient overtopping discharge. Abutment scour ranged from 9.8 to 13.9 ft. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

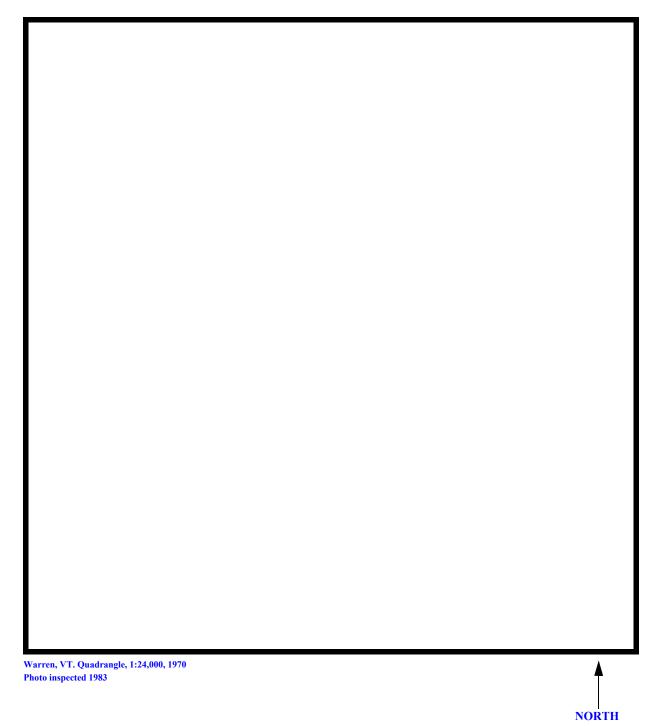
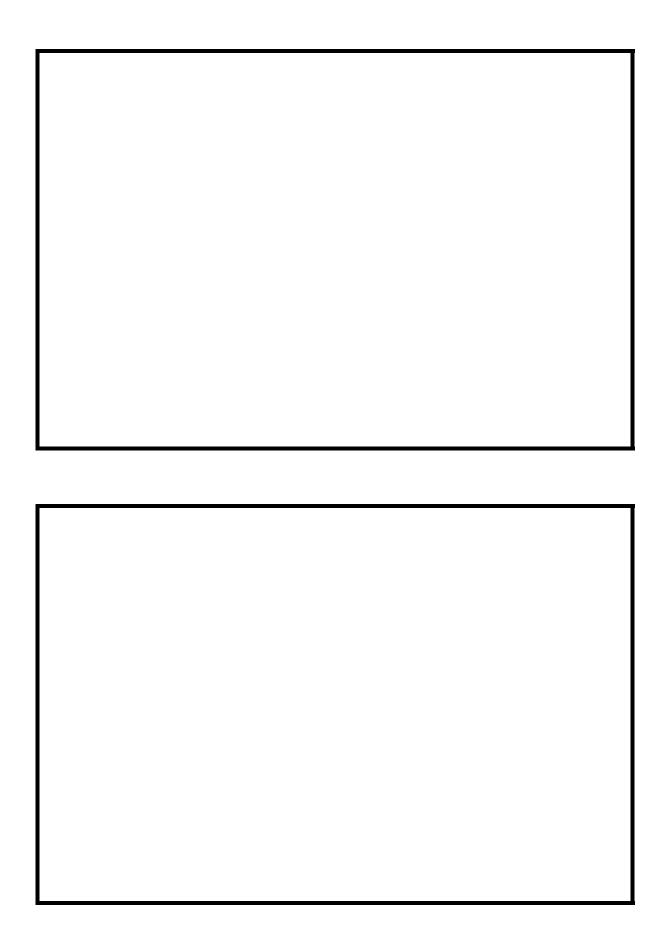



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

	GRNVTH00230015	Stream		anch of the Wh	THE THIVE
nty Addiso	n	Road	TH 23	District —	04
	Descriț	otion of Bridç	ge		
Bridge length	35 ft Bridge wi	12.3		x span length	31
Alignment of br	idge to road (on curve or s Vertical	straight) —	Straight	Sloping	
Abutment type	Yes	Embankn	ent tyne)/21/94	
Stone fill on abu		Date of inc	n <i>act</i> ion		abutment
Dataining walls	are along US left bank up				
	eft bank wall extending fro			willgwall allu o	our DS
banks with the R					
	<u></u> -	Abutments and	wingwans ai	e concrete.	
	A • / •				
				Yes_	_10
Is bridge skewed	d to flood flow according t	to Yes surve	- ey?	Yes	10
_			•	Angle	
_	d to flood flow according to channel bend in the upstrea		•	Angle	
_			•	Angle	
_			•	Angle	
There is a mild of		m reach,,		Angle	
There is a mild of	channel bend in the upstrea	m reach,,	el II site visit	Angle	f ahaanel
There is a mild of	channel bend in the upstread	Level I or Level	el II site visit	Angle Percent of	f ahamael
There is a mild of	lation on bridge at time of Date of inspection 10/21/94 10/21/94	Level I or Level I or Level I of blocked no	el II site visit channal rizontal ly	Angle Percent of	6 ohawael ertically
There is a mild of the second	channel bend in the upstread dation on bridge at time of Date of inspection 10/21/94 10/21/94 Moderate. The The upstream banks are upstread in the upstread	Level I or	el II site visit channal rizontally oris caught on	Percent of blocked v	6 ohawael ertically
There is a mild of the control of th	channel bend in the upstread dation on bridge at time of Date of inspection 10/21/94 10/21/94 Moderate. The The upstream banks are upstread in the upstread	Level I or	el II site visit channal rizontally oris caught on	Percent of blocked v	6 ohawael ertically
There is a mild of the second	channel bend in the upstread dation on bridge at time of Date of inspection 10/21/94 10/21/94 Moderate. The The upstream banks are upstread in the upstread	Percent of blocked not observe is some debased with tree	el II site visit	Percent of blocked votatree on the lechannel.	f alamael O erticatiy O ft bank

Description of the Geomorphic Setting

General topog	raphy	The ch	annel is lo	cated with	hin a mo	oderate relief	fval	ley v	with a nar	rrow f	lood
plain and stee	p valley	walls on	both sides								
Geomorphic	conditio	ons at bria	lge site: do	ownstrean	n (DS),	upstream (U	JS)				
Date of inspe	ection	10/21/9	4								
DS left:	Gradua	ally sloped	l channel	bank to a	narrow	gradually slo	opec	l floo	od plain		
DS right:	Steep o	hannel ba	nk to a na	rrow grad	lually sl	oped flood p	lain				
US left:	Modera	ately slope	ed channel	bank to a	narrow	gradually sl	lope	d flo	od plain		
US right:	Modera	ately slope	ed bank								
			Descript	tion of th	ne Cha	nnel					
		42						_	4	_	
Average top) width		Cobbles	<u> </u>		Average de	epth		Cobbles	ff	
Predominant	t bed ma	terial			1	Bank materio	al	Sin	uous and	wider	at
bends with irr	egular p	oint and l	ateral bars	and semi	i-alluvi	al channel bo	ound	laries	S.		
									10/21/	94	
Vegetative co	" Trees a	and brush	-		-						
DS left:			ple homes	on the bar	nk						
DS right:			•			s on the floo	d pla	ain			
US left:	Trees a	ınd brush	on the ban	k with rail	lroad o	n bank	_				
US right:		_1	No								
Do banks app	pear sta	ble? The b	oanks in t <u>þ</u>	ie immedia	ate vici	nity of the br	ridge	e are	protecte	d by	
date of observ											
							N	lone	10/21	/94	
N "			,								
Describe any	obstruc	ctions in c	nannel an	ia date of	observo	ation.					

Hydrology

Drainage area $\frac{23.6}{}$ mi ²	
Percentage of drainage area in physiographic p	provinces: (approximate)
Physiographic province Green Mountain	Percent of drainage area 100
Is drainage area considered rural or urban? There are a couple houses on the urbanization:	Rural Describe any significant e downstream right overbank area
Is there a USGS gage on the stream of interest:	<u>No</u>
USGS gage description	-
USGS gage number	
Gage drainage area	 mi ² No
Is there a lake/p	
Calculate	d Discharges 5,100
<i>Q100</i> ft ³ /s	Q500 ft ³ /s 00- year discharge is based on values from the
VTAOT database and those computed by use of s	
Johnson and Tasker, 1974; Benson, 1962; FHWA	•
1993). The 500-year discharge is based on an ext	rapolation of the empirical relationship flood
frequency curves and that of the VTAOT database	e values (VTAOT, written communication,
May 4, 1995). VTAOT database values were from	n another site downstream.

Description of the Water-Surface Profile Model (WSPRO) Analysis

RM1 is the center of a
RM1 is the center of a
-
6 ft, arbitrary survey
utment (elev. 496.75ft,

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-29	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	9	1	Road Grade section
APPRO	51	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement, Jr. and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.046, and overbank "n" values ranged from 0.035 to 0.065.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0128 ft/ft which was measured from channel thalweg points surveyed at and downstream of the exit section.

The approach section was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

For the 500-year discharge, WSPRO assumes a critical depth at the exit section. A supercritical model was developed for the discharge. Analyzing both the supercritical and subcritical profiles for the discharge, it can be determined that the water surface profile does pass through critical depth at the exit. Thus, the assumption of critical depth at the exit is a satisfactory solution.

Bridge Hydraulics Summary

Average bridge embankment elevation Average low steel elevation 4,100 100-year discharge 497.5 Water-surface elevation in bridge opening Road overtopping? Discharge over road 236 Area of flow in bridge opening 9.8 Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge 11.6 ft/s 500.6 Water-surface elevation at Approach section with bridge 499.7 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 0.9 t 5,100 ft³/s 500-year discharge 497.5 ft Water-surface elevation in bridge opening Road overtopping? Discharge over road 236 Area of flow in bridge opening Average velocity in bridge opening ft/s 10.8 /8 Maximum WSPRO tube velocity at bridge Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge 0.8 Amount of backwater caused by bridge 2,220 Incipient overtopping discharge Water-surface elevation in bridge opening 495.0 176 Area of flow in bridge opening 12.6 Average velocity in bridge opening ft/s 15.5 Maximum WSPRO tube velocity at bridge Water-surface elevation at Approach section with bridge 496.9 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the Chang pressure-flow scour equation (Richarson and others, 1995, p. 145-146) for the 100-year and 500-year discharges. For these modelled discharges, there was orifice flow at the bridge. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). The results of Laursen's clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) were also computed for the 100-year and 500-year discharges and can be found in appendix F. Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the incipient road-overflow discharge. For contraction scour computations using the Laursen's equation, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. In this case, the incipient road-overflow model resulted in the worst case contraction scour with a scour depth of 0.4 ft. The incipient road-overflow model resulted in the worst case total scour with depths of 10.7 and 13.4, respectively for the left and right abutment. The results of the streambed armoring computations suggest that the depth of contraction scour will not be limited by armoring.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	C	Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	0	0	0.4
Depth to armoring	1.7	1.1	20.6
Left overbank			
Right overbank			
Local scour:			
Abutment scour	9.8	10.4	10.3
Left abutment	13.9_	13.6-	13.0-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Rock Riprap Si	zing	
	100-yr discharg		Incipient overtopping discharge
		(D_{50} in feet)	
Abutments:	1.9	1.6	2.6
Left abutment	1.9	1.6	2.6
Right abutment			
Piers:	⁻		
			

Pier 1

Pier 2

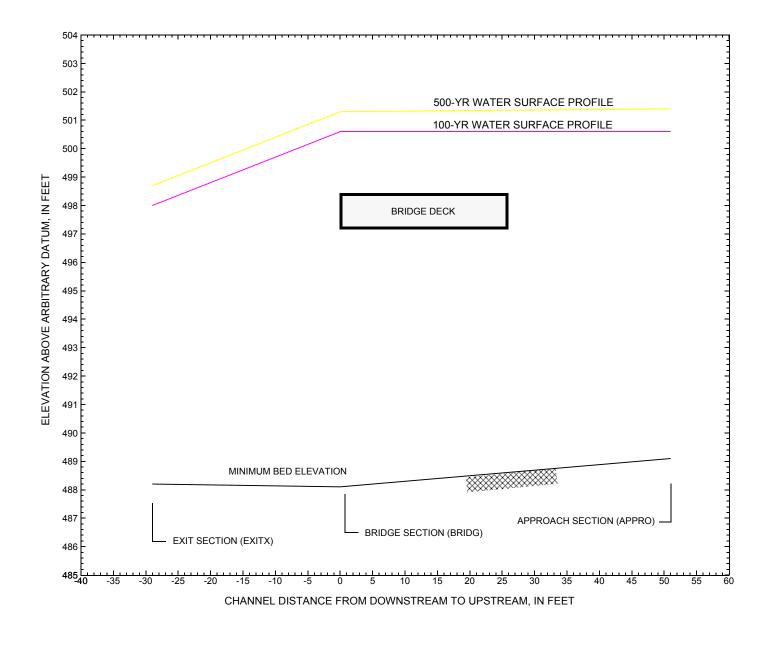


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure GRNVTH00230015 on town highway 23, crossing the Third Branch of the White River, Granville, Vermont.

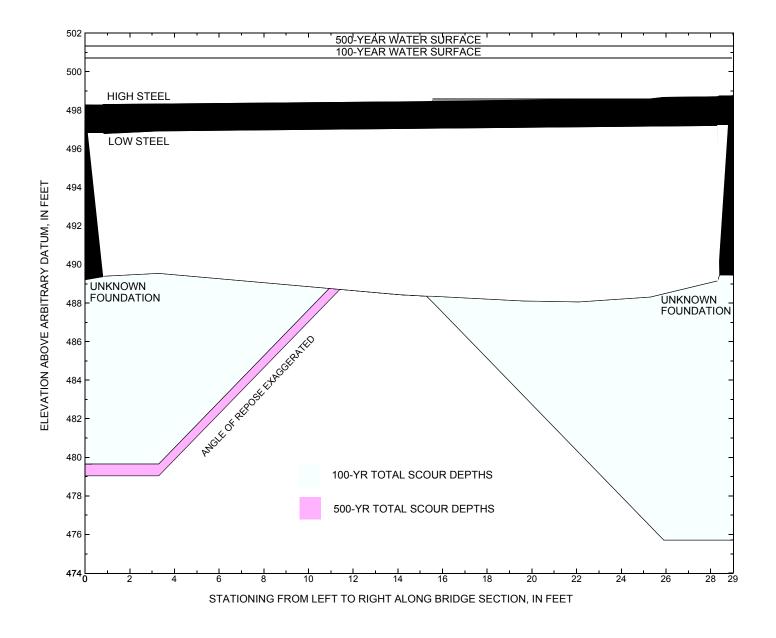


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure GRNVTH00230015 on town highway 23, crossing the Third Branch of the White River, Granville, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White River, Granville, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 4,100	cubic-feet per sec	cond				
Left abutment	0.0		496.8		489.4	0.0	9.8		9.8	479.6	
Right abutment	29.0		497.5		489.5	0.0	13.9		13.9	475.6	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure GRNVTH00230015 on Town Highway 23, crossing the Third Branch of the White River, Granville, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 5,100	cubic-feet per sec	cond				
Left abutment	0.0		496.8		489.4	0.0	10.4		10.4	479.0	
Right abutment	29.0		497.5		489.5	0.0	13.6		13.6	475.9	

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M.A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1970, Warren, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File grnv015.wsp
T1
T2
         Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96
Т3
         Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI
          4100.0 5100.0 2220.0
0
          0.0128 0.0128 0.0128
SK
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
XS
    EXITX -29
                                        -117.6, 498.90
         -137.5, 507.00
                        -130.8, 498.89
                                                         -66.2, 498.89
GR
GR
           -30.2, 497.68
                        -15.0, 495.40
                                          -5.9, 493.13
                                                          -0.7, 492.14
GR
            0.0, 490.81
                         12.1, 489.20
                                          18.4, 488.45
                                                          22.9, 488.17
GR
           24.7, 488.39
                         29.7, 489.29
                                         31.2, 490.14
                                                         31.2, 493.31
           31.6, 495.72
                         34.8, 497.66
GR
                                         52.6, 498.06
                                                        60.4, 499.46
                        99.0, 505.07
GR
           70.1, 502.62
           0.035 0.045
N
                            0.035
SA
                  -30.2
                            34.8
*
XS
    FULLV
          0 * * * 0.007
*
BR
    BRIDG
             0 497.15
                            10.0
                                          3.3, 489.54
           0.0, 496.78
                           0.8, 489.36
                                                          14.1, 488.43
GR
                                                        28.3, 489.15
                        22.1, 488.06
GR
           19.6, 488.11
                                          25.3, 488.31
GR
           28.4, 489.46
                       29.0, 496.89
                                       29.0, 497.52
                                                         0.0, 496.78
*
         BRTYPE BRWDTH
                           WWANGL
                                     WWWID
           1
                26.0 * *
                           64.0 3.9
CD
N
          0.035
*
*
            SRD
                 EMBWID IPAVE
    RDWAY
            9
                  12.0
                           2
XR
         -137.6, 507.00 -128.4, 498.89
GR
                                       -114.8, 498.90
                                                       -63.2, 498.89
          -20.9, 498.68
                          0.0, 498.27
                                         28.7, 498.82
                                                         61.8, 501.12
GR
GR
           90.0, 505.07
                         108.6, 504.28
                                         140.8, 509.04
*
    APPRO 51
AS
                         Ο.
          -143.5, 507.00
                        -125.7, 498.89
                                        -112.3, 498.90
GR
                                                        -64.7, 498.89
GR
          -60.0, 498.26
                           -7.5, 495.61
                                          -6.8, 492.92
                                                         -3.2, 490.84
           3.1, 490.32
                           7.9, 489.25
                                         12.1, 489.11
                                                        12.6, 489.14
           14.8, 490.27
                         16.4, 489.29
                                         24.5, 490.05
                                                         31.4, 490.31
GR
           39.7, 494.22
                          45.8, 498.18
                                          51.7, 498.27
                                                         61.6, 503.24
GR
           69.4, 504.92 80.2, 504.11
GR
                                         88.7, 502.61
                                                         106.7, 510.15
           0.041 0.046 0.065
                                            0.025
N
SA
                 -7.5
                            39.7
                                        61.6
HP 1 BRIDG
           497.52 1 497.52
HP 2 BRIDG 497.52 * * 2317
          500.59 * * 1756
HP 2 RDWAY
HP 1 APPRO 500.62 1 500.62
HP 2 APPRO
          500.62 * * 4100
HP 1 BRIDG
           497.52 1 497.52
HP 2 BRIDG
          497.52 * * 2140
HP 2 RDWAY 501.31 * * 2960
HP 1 APPRO 501.45 1 501.45
HP 2 APPRO
          501.45 * * 5100
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

	U.S. Geolo Hydraulic Town High	analys: vay 23 l	is for s Bridge O	tructur ver the	e GRNVTI	H00230015 anch White	Date		
	SS-SECTION	PROPER'		SEQ = K TOP	3; SEC				
497.	1 52		2217 2217				0	29	0
	OCITY DIST								
		LEW	REW	AREA	K	Q	VEL		
X STA.	0.0)	3.2	4.	9	6.6 11.5	8.1		9.5
A(I) V(I)						11.5			
	9.5								
A(I) V(I)						10.1 11.51			
	15.7								
A(I) V(I)						10.0 11.59		10.2 L1.39	
X STA.	21.3								29.0
A(I) V(I)						12.5 9.26		20.3	
	OCITY DISTE WSEL 500.59 -13	LEW	REW	AREA	K	Q	VEL		9.
	-130.3								0.5.2
A(I) V(I)		16.2	14	.6	14.8	102.4 14.4 6.09	ŀ	14.7	
Y CTA	-85.3								
A(I) V(I)		14.4	14	.6	14.5	14.3	3	14.2	
X STA.	-43.5	5 .	-35.8	-27.	9 -	-18.9	-10.7		
A(I) V(I)						16.7 5.27			
X STA.	-3.3	3							54.2
A(I) V(I)		15.0 5.83				17.8 4.93		23.4	
CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 51. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR									
WS	1	312	2110	1 12	2 122	2	TEM	REW	2826
	2	476 47			7 51 7 18	1 8 2 1.37			8589 442
500.									
VEL	OCITY DIST								ο1.
	WSEL 500.62 -12								
X STA. A(I)	-129.5					-26.3 53.8			
V(I)						3.81			
X STA.	-4.5	35.0	-0.9	2.	2	5.2	7.8	20 0	10.4
A(1) V(I)		5.86	6.	39	6.72	6.91	-	7.13	
	10.4								
A(I) V(I)						29.3 7.00			
X STA. A(I)	23.7					32.5			
V(I)		6.84	6.	76	6.62	5.82	2	2.93	

U.S. Geological Survey WSPRO Input File grnv015.wsp Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96 Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI *** RUN DATE & TIME: 05-22-96 09:46 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW 1 236 236 22176 0 72 22176 0 72 1.00 497 52 Ω VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 497.52 0.0 29.0 235.7 22176. 2140. 9.08
 0.0
 3.2
 4.9
 6.6
 8.1

 20.3
 12.9
 12.3
 11.5
 11.1

 5.27
 8.32
 8.68
 9.26
 9.67
 X STA. A(I) V(I) 9.5 10.8 12.1 13.3 14.5 10.8 10.7 10.4 10.1 10.2 9.91 10.00 10.32 10.63 10.50 X STA A(I) V(I) 15.7 16.8 18.0 19.1 20.2 10.0 10.1 10.0 10.0 10.2 10.72 10.61 10.75 10.70 10.52 X STA. A(T) V(I) 21.3 22.5 23.6 24.9 26.3 X STA. 10.4 10.7 11.3 12.5 20.3 10.33 9.99 9.43 8.55 5.26 A(I) V(I) VELOCITY DISTRIBUTION: ISEQ = 4; SECID = RDWAY; SRD = WSEL LEW REW AREA K Q VEL 501.31 -131.1 63.2 450.7 31278. 2960. 6.57 -131.1 -120.0 -111.4 -103.0 1 -120.0 -111.4 -103.0 -94.3 23.7 20.6 20.2 21.0 20.2 6.24 7.17 7.33 7.05 7.31 A(I) V(I) -86.0 -77.5 -69.1 -60.6 -52.4 20.4 20.3 20.6 20.2 19.9 7.26 7.28 7.20 7.33 7.44 X STA. A(I) V(I) -44.4 -36.5 -28.6 -19.1 X STA. -10.3 20.0 20.3 24.8 24.2 22.9 A(I) V(I) 7.39 7.27 5.96 6.12 6.45 5.3 13.5 22.6 32.9 23.3 24.7 25.3 34.6 A(T) 23 3 V(I) 6.35 6.36 5.99 5.85 4.27 CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW 1 414 33468 124 124 4289 2 516 77630 47 51 3 61 2925 18 20 9669 61 2925 18 20 990 114023 189 196 1.31 -130 58 633 11212 501.45 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = WSEL LEW REW AREA K Q 501.45 -131.3 58.0 990.3 114023. 5100. 5.15 -93.2 -60.7 X STA -131.3 -41.3 -27.0 -16.0 90.3 84.1 70.6 64.3 56.5 2.83 3.03 3.61 3.96 4.52 V(I) -16.0 -5.6 -1.4 2.1 5.3 63.5 43.1 37.6 36.9 34.4 4.02 5.92 6.78 6.92 7.41 A(T) V(I) 8.2 11.0 13.9 17.0 19.9 X STA.
 34.1
 35.0
 37.1
 33.8
 34.8

 7.47
 7.29
 6.87
 7.55
 7.34
 A(I) V(I) 26.0 29.0 32.5 X STA 36.8 22 8 35.7 34.9 37.8 41.9 83.9 7.15 7.30 6.74 6.08 3.04 A(I) V(I)

U.S. Geological Survey WSPRO Input File grnv015.wsp Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96 Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI *** RUN DATE & TIME: 05-22-96 09:46 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = K TOPW WETP ALPH 20435 28 39 WSEL SA# AREA 1 176 2488 176 20435 28 39 1.00 0 29 2488 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = REW AREA K Q VEL 28.9 175.7 20435. 2220. 12.63 LEW WSEL 495.04 0.2 0.2 3.4 5.3 6.8 16.2 10.2 8.9 8.6 6.86 10.88 12.45 12.97 X STA 8.1 13.63 A(I) V(I) 9.7 10.9 12.2 13.3 14.4 7.8 7.7 7.4 7.2 7.3 14.32 14.46 14.92 15.36 15.18 X STA. 15.6 7.4 14.92 A(I) V(I) 15.6 16.6 17.7 18.8 19.8 7.2 7.3 7.2 7.2 7.5 15.42 15.27 15.50 15.44 14.84 X STA. A(T) V(I) 20.9 22.1 23.2 24.5 25.9 7.7 8.0 8.5 9.7 16.2 14.47 13.90 13.12 11.50 6.83 X STA. A(I) V(T) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = K TOPW WETP ALPH 933 34 34 AREA WSEL SA# OCR 150 29 1 320 35089 47 51 4732 5 86 7 200 6 52 3 6 91 1.13 36222 356 -40 497.31 44 3881 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 51. WSEL LEW REW AREA K Q VEL 497.31 -41.2 44.5 356.2 36222. 2220. 6.23
 -41.2
 -4.4
 -1.3
 1.3
 3.6

 43.2
 19.6
 17.4
 16.3
 16.0

 2.57
 5.66
 6.37
 6.81
 6.92
 X STA. A(I) V(T) 9.6 11.3 7.7 X STA. 5.8 14.7 14.2 14.6 16.1 7.53 7.84 7.58 6.90 A(I) 15 0 7.41 V(I) 15.3 17.2 19.1 21.0 23.0 X STA. 14.5 14.8 14.9 7.66 7.50 7.43 15.1 7.35 A(I) 15.3 V(I) 7.24 25.1 27.2 29.4 31.8 34.9 15.4 15.7 16.8 18.6 27.7 7.19 7.05 6.62 5.96 4.01 X STA A(I) V(I)

U.S. Geological Survey WSPRO Input File grnv015.wsp
Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96
Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI
 *** RUN DATE & TIME: 05-22-96 09:46

LEW CRWS XSID:CODE SRDL AREA VHD HF EGL 0 WSET SRD FLEN REW K ALPH HO ERR FR# EXITX:XS ***** -39 4100 498.02 374 1.91 ***** 499.93 497.20 36213 1.02 ***** ****** 0.96 51 ===125 FR# EXCEEDS FNTEST AT SECID "FULLY": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS = 0.80 0.91 498.64 497 40 ===110 WSEL NOT FOUND AT SECID "FULLY": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY = 497.52 507.20 ===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS = 497.52 507.20 FULLV:FV 7 29 -52 416 1.60 0.33 500.25 497.40 0 29 55 41253 1.06 0.00 -0.01 0.91 416 1.60 0.33 500.25 497.40 4100 498.64 9.86 <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 1.69 APPRO:AS 51 -126 667 0.83 0.30 500.54 ****** 4100 499.71 51 51 55 69617 1.42 0.00 0.00 0.67 6.15 <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> ===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION. WS3N, LSEL = 498.64 497 15 <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> Q XSID:CODE SRDL CRWS LEW AREA VHD HF EGL WSEL REW SRD FLEN K ALPH НО ERR FR# VEL 2 29 0 236 1.50 ***** 499.02 0 ***** 29 22176 1.00 **** ****** 236 1.50 ***** 499.02 494.75 BRIDG.BR 2317 497.52 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 6. 0.800 0.000 497.15 ***** ***** XSID: CODE SRD FLEN HF VHD EGL ERR RDWAY:RG 9. 39. 0.08 0.51 501.06 -0.01 1756. 500.59 Q WLEN LEW REW DMAX DAVG VMAX VAVG HAVG CAVG LT: 1501. 146. -130. 16. 2.3 1.8 6.7 5.6 2.3 3.0 RT: 255. 38. 16. 54. 2.0 1.2 5.9 5.4 1.7 3.0 38. 16. XSID:CODE SRDL LEW AREA VHD HF EGL CRWS SRD FLEN REW K ALPH HO ERR FR# VEL 25 -128 835 0.51 0.15 501.13 497.12 4100 500.62 51 29 56 91156 1.37 0.00 -0.01 0.48 FIRST USER DEFINED TABLE. XSID: CODE SRD LEW REW REW Q K 51. 4100. 36213. AREA VEL -29. -40. 374. 10.97 498.02 EXITX:XS 0. -53. 55. 4100. 41253. 416. 9.86 498.64 236. BRIDG:BR RDWAY:RG APPRO.AS SECOND USER DEFINED TABLE. FR# YMIN YMAX HF HO VHD XSID.CODE CRWS EGI. WSEL

U.S. Geological Survey WSPRO Input File grnv015.wsp
Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96
Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI
 *** RUN DATE & TIME: 05-22-96 09:46

LEW CRWS XSID:CODE SRDL AREA VHD HF EGL 0 K ALPH ERR SRD FLEN REW HO FR# EXITX:XS ***** -60 448 2.19 ***** 500.92 498.63 5100 498.73 45041 1.09 **** ***** 56 1.07

===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 0.91 499.85 498.84

===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 498.23 507.20 0.50

===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 498.23 507.20 498.84

===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.

WS3N, LSEL = 499.84 497.15

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 29 0 236 1.28 **** 498.80 494.44 2140 497.52 0 ***** 29 22176 1.00 **** ****** 0.56 9.08

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 6. 0.800 0.000 497.15 ***** ****** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 9. 39. 0.08 0.54 501.91 0.00 2960. 501.31

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 2469.
 147.
 -131.
 16.
 3.0
 2.5
 8.0
 6.6
 3.1
 3.0

 RT:
 490.
 47.
 16.
 63.
 2.7
 1.6
 6.9
 6.3
 2.3
 3.0

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 25 -130 990 0.54 0.15 501.99 498.17 5100 501.4 51 30 58 113969 1.31 0.00 0.00 0.46 5.15

FIRST USER DEFINED TABLE.

REW Q K 56. 5100. 45041. XSID: CODE SRD LEW REW AREA VEL 448. 11.38 498.73 -29. -61. EXITX·XS 0. -131. 61. 5100. 60971. 609. 8.37 499.84 FULLV:FV 0. 0. 29. 2140. 22176. 236. 9.****** 2469. 2960.******** BRIDG:BR 9.08 497.52 RDWAY.RG 2.00 501.31 51. -131. 58. 5100. 113969. 990. 5.15 501.45 APPRO · AS

SECOND USER DEFINED TABLE.

U.S. Geological Survey WSPRO Input File grnv015.wsp
Hydraulic analysis for structure GRNVTH00230015 Date: 19-APR-96
Town Highway 23 Bridge Over the 3rd Branch White River, Granville MAI
 *** RUN DATE & TIME: 05-22-96 09:46

XSID:CODE SRD		LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
EXITX:XS -28	*****	-15 32				497.03 *****	494.68 0.79	2220 9.74	495.55
FULLV:FV 0	29 29 <<< <the< td=""><td>32</td><td>21110</td><td>1.00</td><td>0.00</td><td>-0.02</td><td></td><td>2220 9.16 FLOW></td><td>496.05</td></the<>	32	21110	1.00	0.00	-0.02		2220 9.16 FLOW>	496.05

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.

"APPRO" KRATIO = 1.54

11110 111110 110

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL Q T.EW AREA VHD HE EGI. CRWS WSEL SRD FLEN REW K ALPH HO ERR FR# VEL 0 2220 495.04 BRIDG:BR 29 176 2.48 0.36 497.52 494.58 29 29 20431 1.00 0.13 -0.01

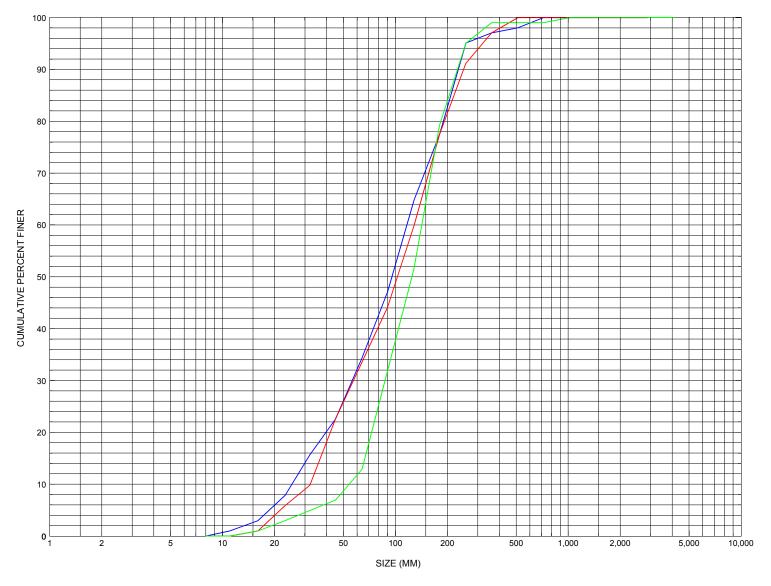
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 1. 1.000 ***** 497.15 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 9. <-<<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 25 -40 356 0.68 0.17 497.99 494.62 2220 497.31 51 26 44 36238 1.13 0.31 0.01 0.57 6.23

M(G) M(K) KQ XLKQ XRKQ OTEL 0.627 0.268 26445. 0. 29. 497.16


FIRST USER DEFINED TABLE.

XSID:CODE SRD LEW REW K Q AREA VEL EXITX:XS -29. -16. 32. 2220. 19616. 228. 9.74 495.55 0. -18. 32. 2220. 21110. 0. 0. 29. 2220. 20431. FIII.I.V·FV 242. 9.16 496.05 12.64 495.04 BRIDG:BR 176. 9.******** 0.****** 2 00****** RDWAY.RG APPRO:AS 51. -41. 44. 2220. 36238. 356. 6.23 497.31

XSID:CODE XLKQ XRKQ KQ APPRO:AS 0. 29. 26445.

SECOND USER DEFINED TABLE.

APPENDIX C: **BED-MATERIAL PARTICAL-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure GRNVTH00230015, in Granville, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Latitude (I - 16; nnnn.n) 44008

Structure Number GRNVTH00230015

General	Location	Descriptive
---------	----------	-------------

Data collected by (First Initial, Full last name) M. IVANOFF	
Date (MM/DD/YY) <u>08</u> / <u>26</u> / <u>94</u>	
Highway District Number (I - 2; nn) 04	County (FIPS county code; I - 3; nnn)001
Town (FIPS place code; I - 4; nnnnn) 29575	Mile marker (I - 11; nnn.nnn) <u>000000</u>
Waterway (I - 6) THIRD BRANCH WHITE R	Road Name (I - 7):
Route Number TH023	Vicinity (1 - 9) AT JCT TH 23 + VT 12A
Topographic Map Warren	Hydrologic Unit Code: 01080105

Select Federal Inventory Codes

Longitude (i - 17; nnnnn.n) _72452

FHWA Structure Number (1 - 8) 10010700150107	<u> </u>
Maintenance responsibility (I - 21; nn)03	Maximum span length (I - 48; nnnn) 0031
Year built (I - 27; YYYY) 1919	Structure length (I - 49; nnnnnn) <u>000035</u>
Average daily traffic, ADT (I - 29; nnnnnn) 000070	Deck Width (I - 52; nn.n) 123
Year of ADT (1 - 30; YY)91	Channel & Protection (I - 61; n) 6
Opening skew to Roadway (I - 34; nn) 12	Waterway adequacy (I - 71; n) 6
Operational status (I - 41; X) B	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (<i>I - 43; nnn</i>) <u>302</u>	Year Reconstructed (I - 106) 1955
Approach span structure type (I - 44; nnn)000	Clear span (nnn.n ft)
Number of spans (I - 45; nnn) 001	Vertical clearance from streambed (nnn.n ft) $\underline{008.5}$
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (nnn.n ft²)

Structural report of 4/21/93 indicates a steel beam and timber deck type bridge with a narrow gravel roadway approach. The bridge has concrete abutment walls and wingwalls. The right abutment has some areas where it has eroded away leaving some deep pockets, one foot deep, at the streambed level. No settlement was reported. The channel makes a moderate turn into bridge with most of the flow along right abutment. The banks are well protected with no embankment erosion. No drift/vegetation build up near bridge.

	Bridg	ge Hydro	ologic Da	ata		
Is there hydrologic data available	e? <u>N</u> if	No, type ctrl	-n h VTA	OT Draina	age area (n	ni²): _ -
Terrain character:						
Stream character & type: _						
-	1					
Streambed material: Stone and						
Discharge Data (cfs): Q _{2.33} _	<u> </u>	Q ₁₀	0		Q ₂₅	
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs):						
Ice conditions (Heavy, Moderate, Li						
The stage increases to maximur						
The stream response is (Flashy, I	Not flashy): ₋	<u>-</u>				
Describe any significant site con	ditions up	stream or	downstrea	m that ma	y influence	e the stream's
stage: - -						
-						
-						
-						
-						
Watershed storage area (in perce	<u>-</u> (1-ma	ainly at the h	eadwaters; 2	?- uniformly (distributed; 3	-immediatly upstream
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:			_
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (ft))	-	-	-	-	-	
Velocity (ft / sec)	_	_	_	_	_	
velocity (# / sec)						
Long term stream bed changes:	-					
	-					
Is the roadway overtopped below	w the Q ₄₀₀	? (Yes. No.	Unknown):	U	Fregueno	CV: -
Relief Elevation (#):						
· · · · · · · · · · · · · · · · · · ·		_	-	100 (,	
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n. tvpe ctrl-n	os
Upstream distance (miles):						ilt:
Highway No. : <u>-</u>	Structu	ıre No. : <u>-</u>	Stru	ucture Typ	e: <u>-</u>	
Clear span (ft): Clear He	eight (#):	<u> </u>	ull Waterw	ay (#²): <u>-</u>		

Downstream distance (miles): Town: Year Built:
Highway No. : Structure No. : Structure Type: Clear span (#): Clear Height (#): Full Waterway (#²):
Comments:
USGS Watershed Data
$\frac{\text{Watershed Hydrographic Data}}{\text{Drainage area } \textit{(DA)}} \frac{23.57}{\text{mi}^2} \text{mi}^2 \qquad \text{Lake and pond area } \frac{0.02}{\text{mi}^2} \text{mi}^2$ Watershed storage $\textit{(ST)}$ $\frac{0.1}{\text{mi}^2}$
Bridge site elevation $\frac{820}{}$ ft Headwater elevation $\frac{2823}{}$ ft Main channel length $\frac{8.44}{}$ mi
10% channel length elevation 850 ft 85% channel length elevation 1700 ft Main channel slope (S) 134.28 ft / mi
Watershed Precipitation Data
Average site precipitation in Average headwater precipitation in
Maximum 2yr-24hr precipitation event (124,2) in
Average seasonal snowfall (Sn) ft

Bridge Plan Data
Are plans available? NIf no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number Minimum channel bed elevation: Low superstructure elevation: USLAB DSLAB USRAB DSRAB
Benchmark location description: NO BENCHMARK INFORMATION
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation:
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? N If no, type ctrl-n bi Number of borings taken: Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION
Comments: NO PLANS.

Cross-sectional Data Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs Source (FEMA, VTAOT, Other)? _-____ Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature Low cord elevation Bed elevation Low cord to bed length Source (FEMA, VTAOT, Other)? ____ Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature

Low cord elevation

Bed elevation Low cord to bed length

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number GRNVTH00230015

Qa/Qc Check by: MAW Date: 02/10/95

Computerized by: MAI Date: 03/15/95

MAI Date: 05/13/95 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) S. OLSON Date (MM/DD/YY) 10 / 21 / 1994

Mile marker 0

Road Name -

2. Highway District Number 04

County ADDISON (001)

Waterway (1 - 6) THIRD BRANCH WHITE RIVER

Route Number TH023

3. Descriptive comments:

Near junction of TH 23 and VT 12A.

B. Bridge Deck Observations

- RBDS 2 4. Surface cover... LBUS_4___ RBUS <u>5</u>___ LBDS 2 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 35 (feet)

Span length 31 (feet) Bridge width 12.3 (feet)

Road approach to bridge:

- 8. LB **0** RB **2** (**0** even, **1** lower, **2** higher)
- 9. LB 2 RB 2 (1- Paved, 2- Not paved)
- 10. Embankment slope (run / rise in feet / foot): US right **0.0:1** 0.0:1 US left

	Protection		10 Erasian	14 Soverity	
	11.Type	12.Cond.	13.Erosion	14.Severity	
LBUS		-	0		
RBUS			0	0	
RBDS	_0	-	0	0	
LBDS	_0	-	0		

Bank protection types: **0**- none; **1**- < 12 inches;

2- < 36 inches; **3-** < 48 inches;

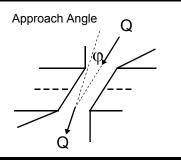
4- < 60 inches; 5- wall / artificial levee

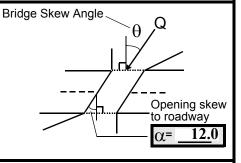
Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed

Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other

Erosion Severity: **0** - none: **1**- slight: **2**- moderate:


3- severe


Channel approach to bridge (BF):

Town GRANVILLE (29575)

Hydrologic Unit Code: 01080105

15. Angle of approach: 5 16. Bridge skew: 10

17. Channel impact zone 1:

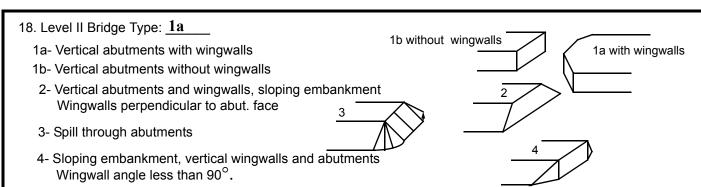
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 2

Range? 9 feet US (US, UB, DS) to 25 feet US

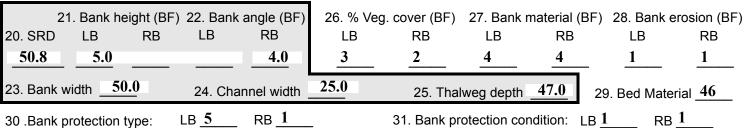
Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 2

Range? 6 feet UB (US, UB, DS) to 30 feet DS


Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. LBUS: shrubs and brush with some trees on the immediate bank then pasture. RBUS is shrubs/brush. At two bridge lengths landward there is railroad tracks and VT 12. LBDS is suburban for a short distance downstream; becomes forest about 70 ft. RBDS: there is a large house surrounded by brush type vegetation.

 7. Values from VTAOT database (VTAOT, written communication, August 26, 1994). Measured bridge
- 7. Values from VTAOT database (VTAOT, written communication, August 26, 1994). Measured bridge length: 35, span: 29, and width: 12 feet.

C. Upstream Channel Assessment

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 29. Bed material is bedrock from about 30 to 105 feet upstream and cobbles.
- 30. LB: some protection from a cinder block wall extending 45 ft. upstream. RB: stone fill extends 40 ft. from the bridge.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 95 35. Mid-bar width: 6
36. Point bar extent: 85 feet US (US, UB) to 120 feet US (US, UB, DS) positioned 0 %LB to 15 %RB
37. Material: <u>4</u>
38. Point or side bar comments (Circle Point) or Side; Note additional bars, material variation, status, etc.):
There are a few boulders on point bar as well. Its a small point bar on the inside of a bend. A much larger
point bar exist on the right bank opposite of the described cut bank.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 200 42. Cut bank extent: 120 feet US (US, UB) to 220 feet US (US, UB, DS)
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
Beyond the two bridge length range.
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 60
47. Scour dimensions: Length 20 Width 8 Depth : 2 Position 5 %LB to 40 %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
It is a scour hole completely bounded by bedrock.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance
Confluence 2: Distance <u>-</u> Enters on <u>-</u> (<i>LB or RB</i>) Type <u>-</u> (<i>1- perennial; 2- ephemeral</i>)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB $\frac{2}{2}$ $(1$ - natural bank; 2 - abutment; 3 - artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
28.5 1.0 2 7 7 -
58. Bank width (BF) - 59. Channel width (Amb) - 60. Thalweg depth (Amb) 90.0 63. Bed Material -
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7- manmade
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
4
The right abutment is cracked and a few pieces of the abutment are missing, exposing a part of a stone abut-
ment wall. Further weathering of the concrete is visible at an impact point near the downstream face on the
right abutment. The concrete of the abutment is cut into 4 to 5 inches horizontally exposing drywall.
There is some slight channel deepening under the bridge (about 0.5 feet determined from survey data), how-
ever length and width of 'scour' is not clearly visible; it is either long term or contraction scour.
63. There are some boulders and native material in the channel.

- 65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? Y ___ (1- Upstream; 2- At bridge; 3- Both)
- 67. Debris Potential 1 (1-Low; 2-Moderate; 3-High)
- 68. Capture Efficiency 2____ (1- Low; 2- Moderate; 3- High)
- 69. Is there evidence of ice build-up? $\underline{2}$ (Y or N)
- Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

1

- 65. Some slight debris caught on a tree on the left bank just upstream of the bridge.
- 67. Upstream is laterally stable, has few cut banks, and consists of cobble and boulder type material.
- 68. Moderate channel gradient and the span length is 60% of the upstream bank width.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	83	2	0	-	-	90.0
RABUT	1	5	90			2	0	29.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; **6**- failed

Materials: **1**- Concrete; **2**- Stone masonry or drywall; **3**- steel or metal; **4**- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

-1

See previous comments in 64.

75. RABUT: There is no footing along the abutment. Apparently the concrete covers part of an old stonewall abutment. Some of the concrete is eroded away especially along the base of the abutment exposing the stone drywall. In one spot there is nearly a foot between the streambed and the concrete; a hole has formed 0.5 ft. deep into the abutment. However, the stone drywall exposed at the base does not appear to be undermined.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						25.0	
USRWW:	<u>Y</u>		1		0	1.5	
DSLWW:					<u>Y</u>	12.5	
DSRWW:	1		<u>0</u>			23.0	

USRWW Wingwall length

Q
Wingwall angle
DSRWW

USLWW

USLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

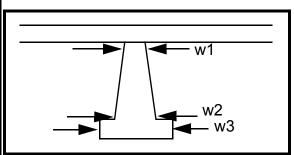
Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	0	N	-	1	1	-	2
Condition	Y	-	-	-	2	1	-	1
Extent	1	-	-	5	1	0	1	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):


5

1 3

Piers:

84. Are there piers? **80.** (*Y or if N type ctrl-n pr*)

85. Pier no.	width (w) feet			elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1				70.0	10.5	55.0	
Pier 2	8.0	5.0	-	60.0	-	-	
Pier 3	-	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	US	82.	nstre	g the
87. Type	Left	RAB	am	right
88. Material	and	UT:	end	abut
89. Shape	Righ	Ther	of	ment
90. Inclined?	t	e is a	the	base
91. Attack ∠ (BF)	wing	woo	right	is
92. Pushed	wall:	den/	abut	dow
93. Length (feet)	-	-	-	-
94. # of piles	see	log	ment	ngra
95. Cross-members	com-	wall	. The	ded
96. Scour Condition	ment	at	stone	to
97. Scour depth	s in	the	fill	slum
98. Exposure depth	79.	dow	alon	ped

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. underr because if it was placed alo the abutment toe. Further	ong the abutment it h	as now slid is quite spa	into the charse. Abutr	nannel and nent damaş	is only pr	otecting th	ie bed at
100.							
Bank height (BF) SRD LB RB	Bank angle (BF) LB RB	% Veg. co LB	ver (BF) RB	Bank mate LB	erial (BF) RB	Bank erd LB	osion (BF) RB
	-	-	-	-	-	-	-
D. J. : W. (DE)	Channal width (Anala)		Eleabora e al a co	(In (Arrala)			
Bank width (BF)	Channel width (Amb)		Thalweg dep		_	Bed Mater	
Bank protection type (Qmax): SRD - Section ref. dist. to US	LB <u>-</u> RB <u>-</u> face % Vegetation		•	on condition:			
Bank Erosion: 0 - not evident; Bank protection types: 0 - abse Bank protection conditions: 1 -	anics; 1- silt / clay, < 1/1 bble, 64 - 256mm; 5- bou 1- light fluvial; 2- modera ent; 1- < 12 inches; 2- < good; 2- slumped; 3- er	6mm; 2- san ulder, > 256n ate fluvial; 3- 36 inches; 3 roded; 4- faile	d, 1/16 - 2m. nm; 6 - bedro heavy fluvia - < 48 inches ed	m; 3 - gravel, ck; 7 - manma I / mass was	2 - 64mm; ade ting		
Comments (eg. bank material va - - -	ariation, minor inflows, p	protection ex	ient, etc.):				
- -							
-							
-							
-							
-							
-							
- -							
-							
101. Is a drop structure 103. Drop: feet 105. Drop structure comments -	104. Structure m	aterial: <u>-</u>		102. Distance		feet - concrete; 4	l- other)
-							
-							
-							
-							

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material: Point or side bar comments (Circle Point or Side) note additional bars, material variation, status, etc.):
- -
NO PIERS
Is a cut-bank present? (Y or if N type ctrl-n cb) Where? (LB or RB) Mid-bank distance: Cut bank extent: feet (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
1 1 4
<u>Is channel scour present? 7</u> (Y or if N type ctrl-n cs) Mid-scour distance: <u>1</u>
Scour dimensions: Length $\underline{0}$ Width $\underline{4}$ Depth: $\underline{5}$ Positioned $\underline{5}$ %LB to $\underline{1}$ %RB Scour comments (eg. additional scour areas, local scouring process, etc.):
Bank protection LB: protection by a masonry wall extending from the end of the DS wingwall to 10 ft. Additional stone fill extends another 20 feet. RB: protected by a log crib wall about five feet tall and extending from the right abutment to 105 ft. downstream; extensive stone fill extends beyond the crib-work another 50 -
Are there major confluences? 75 (Y or if N type ctrl-n mc) How many? feet.
Confluence 1: Distance The Enters on crib (LB or RB) Type - (1- perennial; 2- ephemeral)
Confluence 2: Distance work Enters on wall (LB or RB) Type alon (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name): g the right bank shows signs of undermining but in general is in good shape; undermined a foot in some locations.
F. Geomorphic Channel Assessment
107. Stage of reach evolution

108. Evolution cor descriptors):	mments (Channel evolution not considering bri	idge effects; See HEC-20, Figur	e 1 for geomorphic
N			
- NO DROP STR	RUCTURE		
NO DROI SIN	Weller		

	109. G. P	Plan View Sketch	-	
point bar (pb)	debris	flow Q	stone wall	
cut-bank cb scour hole	rip rap or stone fill	cross-section ++++++ ambient channel ——	other wall	
VII)				

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: GRNVTH00230015 Town: Granville Road Number: TH 23 County: Addison

Stream: Third Branch White River

Initials MAI Date: 04/23/96 Checked: EMB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2	4100 476	5100 516	2220 320
Left overbank area, ft2	312	414	29
Right overbank area, ft2	47	61	7
Top width main channel, ft	47	47	47
Top width L overbank, ft	122	124	34
Top width R overbank, ft	17	18	5
D50 of channel, ft	0.353	0.353	0.353
D50 Of charmer, it	0.333	0.333	0.333
·	0	0	0
D50 right overbank, ft	U	U	U
y1, average depth, MC, ft	10.1	11.0	6.8
y1, average depth, LOB, ft	2.6	3.3	0.9
y1, average depth, ROB, ft	2.8	3.4	1.4
/-, a aspen, me_,			
Total conveyance, approach	91134	114023	36222
Conveyance, main channel	68050	77630	35089
Conveyance, LOB	21101	33468	933
Conveyance, ROB	1983	2925	200
Percent discrepancy, conveyance	0.0000	0.0000	0.0000
Qm, discharge, MC, cfs	3061.5	3472.2	2150.6
Ql, discharge, LOB, cfs	949.3	1497.0	57.2
Qr, discharge, ROB, cfs	89.2	130.8	12.3
Vm, mean velocity MC, ft/s	6.4	6.7	6.7
Vl, mean velocity, LOB, ft/s	3.0	3.6	2.0
Vr, mean velocity, ROB, ft/s	1.9	2.1	1.8
Vc-m, crit. velocity, MC, ft/s	11.7	11.8	10.9
Vc-l, crit. velocity, LOB, ft/s	0.0	0.0	0.0
Vc-r, crit. velocity, ROB, ft/s	0.0	0.0	0.0
Results			
Time head(1) and Glean Makes (0) G		0	
Live-bed(1) or Clear-Water(0) Contr. Main Channel			0
	0	0	0
Left Overbank	1	1	1
Right Overbank	Τ	Τ	1

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units $ys=y2-y_bridge$ (Richardson and others, 1995, p. 32, eq. 20, 20a)

Approach Section	Q100	Q500	Qother
Main channel Area, ft2 Main channel width, ft y1, main channel depth, ft		516 47 10.98	47
Bridge Section			
(Q) total discharge, cfs(Q) discharge thru bridge, cfs	1100	5100 2140	2220 2220
Main channel conveyance Total conveyance Q2, bridge MC discharge,cfs Main channel area, ft2 Main channel width (skewed), ft Cum. width of piers in MC, ft W, adjusted width, ft y_bridge (avg. depth at br.), ft Dm, median (1.25*D50), ft y2, depth in contraction,ft ys, scour depth (y2-ybridge), ft ys, scour depth (y2-y1), ft	29.0 0.0 29 8.13 0.44125 6.68	22176 2140 236 29.0 0.0	176 28.7 0.0 28.7 6.12 0.44125 6.50
ARMORING D90 D95 Critical grain size,Dc, ft Decimal-percent coarser than Dc Depth to armoring,ft	0.934 0.4133	0.772 0.934 0.3526 0.501 1.05	0.772 0.934 0.7700 0.101 20.56

PRESSURE FLOW SCOUR COMPUTATION

Structure Number: GRNVTH00230015 Town: Granville Road Number: TH 23 County: Addison

Stream: Third Branch White River

Initial: EMB Date: 10/10/96 Checked: MAI

Pressure Flow Scour (contraction scour for orifice flow conditions)

(Richardson and others, 1995, p. 145-146)

	Q100	Q500	OtherQ
Q thru bridge main chan, cfs	2317	2140	0
Vc, critical velocity, ft/s	11.7	11.8	0
Vc, critical velocity, m/s	3.565986	3.596464	0
Main channel width (skewed), ft	28.6	28.6	0
Cum. width of piers, ft	0	0	0
W, adjusted width, ft	28.6	28.6	0
qbr, unit discharge, ft^2/s	81.01399	74.82517	ERR
qbr, unit discharge, m^2/s	7.525711	6.950808	N/A
Area of full opening, ft ²	235.7	235.7	0
Hb, depth of full opening, ft	8.241259	8.241259	ERR
Hb, depth of full opening, m	2.511813	2.511813	N/A
Fr, Froude number MC	0.61	0.56	1
Cf, Fr correction factor (<=1.0)	1	1	1.5
Elevation of Low Steel, ft	497.15	497.15	0
Elevation of Bed, ft	488.9087	488.9087	N/A
Elevation of approach WS, ft	500.62	501.45	0
HF, bridge to approach, ft	0.15	0.15	0
Elevation of WS immediately US, ft	500.47	501.3	0
ya, depth immediately US, ft	11.56126	12.39126	N/A
ya, depth immediately US, m	3.592685	3.850609	N/A
Mean elev. of deck, ft	498.54	498.54	0
w, depth of overflow, ft (>=0)	1.93	2.76	0
<pre>Cc, vert contrac correction (<=1.0)</pre>	0.961953	0.961953	ERR
Ys, depth of scour (chang), ft	-1.04312	-1.64934	N/A

Abutment Scour

 $ys = 4*Fr^0.33*y1*K/0.55$

(Richardson and others, 1995, p. 49, eq. 29)

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 \\ (Richardson and others, 1995, p. 48, eq. 28)$

	Left Abı	utment		Right A	butment	
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q
(Qt), total discharge, cfs	4100	5100	2220	4100	5100	2220
a', abut.length blocking flow, ft	129.5	131.3	41.2	27.8	29.4	15.9
Ae, area of blocked flow ft2	146.2	160.7	71.5	121.9	124.1	68.8
Qe, discharge blocked abut.,cfs			277.5			373.4
(If using Qtotal_overbank to obt	ain Ve, le	eave Qe b	lank and	enter Ve	manually)	
Ve, (Qe/Ae), ft/s	3.40	3.87	3.88	4.65	4.75	5.43
ya, depth of f/p flow, ft	1.13	1.22	1.74	4.38	4.22	4.33
Coeff., K1, for abut. type (1.0,	verti.;	0.82, ver	ti. w/ w	ingwall; 0	.55, spil	lthru)
K1	0.82	0.82	0.82	0.82	0.82	0.82
Angle (theta) of embankment (<90) if abut	noints D	S. \90 i:	fahut no	inta IIS)	
theta	100	-	•	-		80
K2				0.98		0.98
NZ	1.01	1.01	1.01	0.50	0.50	0.50
Fr, froude number f/p flow	0.350	0.354	0.519	0.359	0.350	0.460
ys, scour depth, ft	9.76	10.38	10.31	13.91	13.62	12.97
2 ,						
HIRE equation (a'/ya > 25)						

a' (abut length blocked, ft)	129.5	131.3	41.2 1.74	27.8 4.38	29.4 4.22	15.9 4.33
y1 (depth f/p flow, ft)	1.13	1.22				
a'/yl	114.71	107.28	23.74	6.34	6.97	3.67
Skew correction (p. 49, fig. 16)	1.04	1.04	1.04	0.97	0.97	0.97
Froude no. f/p flow	0.35	0.35	0.52	0.36	0.35	0.46
Ys w/ corr. factor K1/0.55:						
vertical	6.06	6.60	ERR	ERR	ERR	ERR
vertical w/ ww's	4.97	5.41	ERR	ERR	ERR	ERR
spill-through	3.33	3.63	ERR	ERR	ERR	ERR

Abutment riprap Sizing

Isbash Relationship $D50=y*K*Fr^2/(Ss-1) \ \ and \ D50=y*K*(Fr^2)^0.14/(Ss-1)$

(Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and			0.89 sectionm		0.56 section)	0.89
y, depth of flow in bridge, ft	8.34	8.34	6.38	8.34	8.34	6.38
Median Stone Diameter for riprap at	: left a	abutment		right ab	utment, f	L
± ±				9		•
Fr<=0.8 (vertical abut.)	1.92	1.62	ERR	1.92	1.62	ERR
± ±			ERR 2.58	1.92 ERR	•	
Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	1.92 ERR	1.62 ERR	2.58	ERR	1.62 ERR	ERR 2.54
Fr<=0.8 (vertical abut.)	1.92	1.62			1.62	ERR