LEVEL II SCOUR ANALYSIS FOR BRIDGE 45B (BRIDTH0004045B) on TOWN HIGHWAY 4, crossing an unnamed DAILEY HOLLOW BRANCH TRIBUTARY, BRIDGEWATER, VERMONT

U.S. Geological Survey Open-File Report <u>96-568</u>

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 45B (BRIDTH0004045B) on TOWN HIGHWAY 4, crossing an unnamed DAILEY HOLLOW BRANCH TRIBUTARY, BRIDGEWATER, VERMONT

By ERICK M. BOEHMLER

U.S. Geological Survey Open-File Report <u>96-568</u>

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	25
D. Historical data form	27
E. Level I data form	33
F. Scour computations	43

FIGURES

1. Map showing location of study area on USGS 1:24,000 scale map	3
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	4
3. Structure BRIDTH0004045B viewed from upstream (November 15, 1994)	5
4. Downstream channel viewed from structure BRIDTH0004045B (November 15, 1994).	5
5. Upstream channel viewed from structure BRIDTH0004045B (November 15, 1994).	6
6. Structure BRIDTH0004045B viewed from downstream (November 15, 1994).	6
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary,	
Bridgewater, Vermont.	15
8. Scour elevations for the 100- and 500-year discharges at structure	
BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary,	
Bridgewater, Vermont.	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary,	
Bridgewater, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary,	
Bridgewater, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Ву	To obtain
Length	
25.4	millimeter (mm)
0.3048	meter (m)
1.609	kilometer (km)
Slope	
0.1894	meter per kilometer (m/km)
Area	
2.590	square kilometer (km ²)
Volume	
0.02832	cubic meter (m^3)
Velocity and Flow	
0.3048	meter per second (m/s)
0.02832	cubic meter per second (m ³ /s
0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²]
	Length 25.4 0.3048 1.609 Slope 0.1894 Area 2.590 Volume 0.02832 Velocity and Flow 0.3048 0.02832

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D ₅₀	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 45B (BRIDTH0004045B) ON TOWN HIGHWAY 4, CROSSING AN UNNAMED DAILEY HOLLOW BRANCH TRIBUTARY, BRIDGEWATER, VERMONT

By Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH0004045B on town highway 4 crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

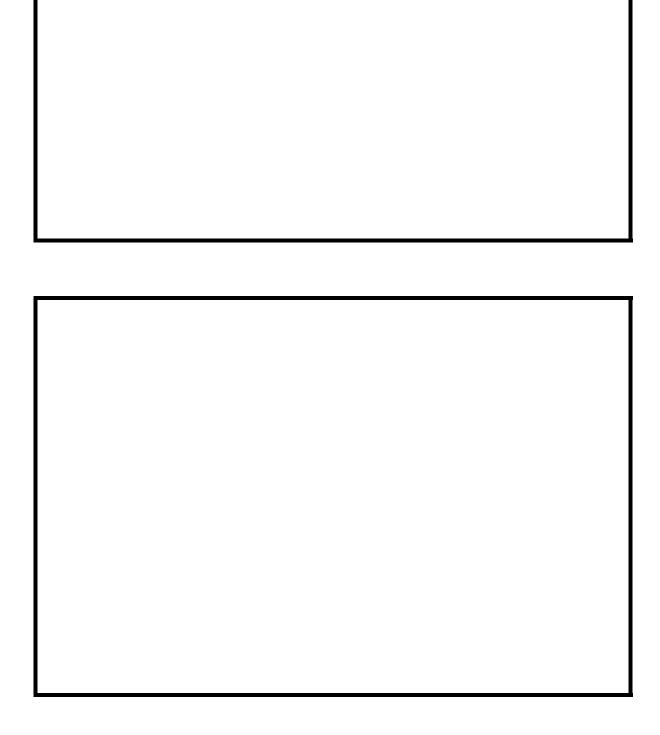
The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 2.47-mi² drainage area is in a predominantly rural and forested basin. Surface cover in the vicinity of the study site is variable. A gravel road is adjacent to the left bank with the immediate upstream left bank covered by grass and the immediate downstream left bank covered by shrubs and brush. The upstream right bank is densely forested; the downstream right overbank is covered by grass with trees and brush on the immediate channel bank.

In the study area, this unnamed Dailey Hollow Branch Tributary has an incised channel with a slope of approximately 0.04 ft/ft, an average channel top width of 29 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel with a median grain size (D_{50}) of 47.0 mm (0.154 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 15, 1994, indicated that the reach was stable.

The town highway 4 crossing of the unnamed Dailey Hollow Branch Tributary is a 62-ftlong, corrugated steel multi-plate arch structure. It is supported by concrete footings leaving natural stream bed exposed (Vermont Agency of Transportation, written communication, January, 1996). The road embankments are protected by stone fill, however, the size is unknown due to sand and grass covering the fill except for the upstream left embankment which has type-2 stone fill (less than 36 inches diameter). The downstream left bank is protected by type-3 stone fill (less than 48 inches diameter) extending 25 feet downstream of the culvert. The channel approach to the culvert has a mild s-curve bend with the opening skewed ten degrees to flow. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 1.1 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.7 to 11.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

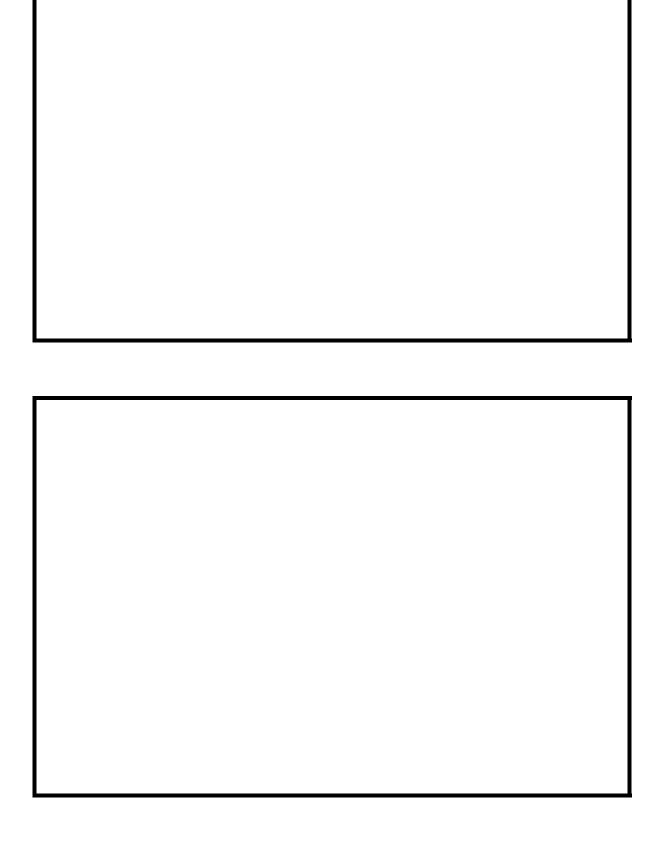

Delectable Mountain, VT. Quadrangle, 1:24,000, 1966 Photoinspected 1983

Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number —	BRIDTH0004045B	- Stream	Dailey Hollow Branch Trib		outary
County <u>Windsor</u>		Road —	TH 4	District —	04

Description of Bridge

62			19		
Bridge length	ft	Bridge width	ft	Max span lengtl	h ft
Alignment of bridge to Nor		n curve or straight)	straig	sloping	
Abutment type	no	En	ıbankment type	11/15/94	
Stone fill on abutment?		Data stream left road app	roach has type-	2 stone fill. The u	pstream right
and both downstream r		ankments are prote	cted with stone	fill covered by sa	nd and gravel
and grass. Type-3 stone	fill prot	tects the downstream	n left bank for	25 feet.	
		There ar	e no abutments	. This is a corruga	ited steel
multi-plate arch suppor	ted on c	oncrete footers. At	out 0.5 feet of	the footers are exp	oosed on each
side of the culvert.					
				Y	10
Is bridge skewed to flo	od flow	according to <u>Y</u>	survey?	Angle	
<u>Culvert is located on a</u>	mild s-o	<u>curve type</u> bend in t	hẹ chạnnelTh	<u>e upstream right b</u>	pank at the
culvert entrance is impa	cted by	flood flows.			

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection	Percent of channel bloc ked norizoniall y	Percent of about the second se
Level I	11/15/94		
Level II	Moderate		

Potential for debris

Describe any features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topo	graphy	The culvert is	s at the headwate	rs of Dailey Hollow	Branch in a steep,
upland, incis	sed channe	1.			
Geomorphi	c condition	ns at bridge site	: downstream (L	DS), upstream (US)	
Date of insp	pection	11/15/94			
DS left:	Steep ba	ank to gravel roa	adway to steep v	alley wall	
DS right:	Steep ba	ank to gently rol	lling over-bank t	o valley wall	
US left:	Steep ba	nk to gravel roa	adway to steep va	alley wall	
US right:	Steep ba	ink to moderate	ly sloped over-ba	ink to steep valley w	all
		Desci	ription of the C	Channel	
		29			
Average to	op width	Grav	ff vel	Average depth	Gravel
Predominar	nt bed mat	erial		Bank material	The stream is
perennial and	d flashy, ir	a narrow, incis	sed, sinuous chan	nel with non-alluvia	l boundaries.
					11/15/94
Vegetative c	o Shrubs	and brush with	gravel road adjac	ent to channel.	
DS left:				diate bank; grass on	overbank.
DS right:	Grass a	nd brush with g	ravel road adjace	nt to channel.	
US left:	Grass a	nd dense forest			
US right:		Y			
on the ups date of obs	tream righ ervation.		•	<u>it very localized ban</u> rs active, its localize	k erosion is indicated d nature does not
			l and date of obs		1/15/94None.

Hydrology

6 J	e provinces: (app	roximate)
<i>Physiographic province/section</i> New England / Green Mountain	Pere	<i>cent of drainage area</i>
Is drainage area considered rural or urban? None. Area is mostly forested,	Rural	Describe any significant
urbanization:	No	
Is there a USGS gage on the stream of interes USGS gage description	<i>it?</i>	
	•	
USGS gage number		
Gage drainage area	mi ²	
0 0 0	1111	No
		<u>No</u>
Is there a lake/p		<u>No</u>
		<u>No</u>
		<u>No</u>
	~	<u>No</u>
		<u>No</u>
	// // // // // // // // // // // /	<u>No</u>
Is there a lake/p	ed Discharges	· · · · ·
Is there a lake/p	ed Discharges	<u>1200</u>
Is there a lake/p Calculate 975 Calculate $Q100$ ft^3/s	ed Discharges <i>Q500</i>	<u>1200</u>
Is there a lake/p Calculate 975 Calculate $Q100$ ft^3/s	ed Discharges <i>Q500</i> 00 was obtained f	$\frac{1200}{ft^3/s}$ from VTAOT files (written
Is there a lake/p Calculate 975 Calculate $Q100$ ft^3/s 010	ed Discharges Q500 00 was obtained f area relationship	$\frac{1200}{ft^{3}/s}$ from VTAOT files (written by with Bridgewater bridge 30)
Is there a lake/p Calculate <u>975</u> Calculate Q100 ft^3/s <u>Q10</u> communication, 5/4/95). Q500 was based on an	ed Discharges <i>Q500</i> 00 was obtained f area relationship inage area of 7.5	$\frac{1200}{ft^{3}/s}$ from VTAOT files (written with Bridgewater bridge 30. square miles. The Q500 at

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	Add 1261.85 to USGS survey to
obtain VTAOT plans' datum at structure BRIDTH00040042.	
Description of reference marks used to determine USGS dat	um. <u>RM1 is a chiseled 'X'</u>
on the top, bankward edge of a 2 meter size boulder near the	roadway elevation on the US right
bank road approach side of structure (elev. 201.05 feet, arbitr	ary datum). RM2 is the center of
engraved triangle in VTAOT brass survey mark on top, dowr	nstream end of right abutment on
structure BRIDTH00040042 (elev. 192.49 feet, arbitrary datu	m).

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-25	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Culvert section
APPRO	80	2	Modelled Approach sec- tion (Templated from APTEM)
APTEM	97	1	Approach section as sur- veyed (Used as a tem- plate)

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.065 and overbank "n" values ranged from 0.032 to 0.090.

Critical depth at the exit section (EXITX) was assumed as the starting water surface. The slope of the channel, determined from surveyed thalweg points downstream of the exit, was 0.055 ft/ft. For each of the modelled discharges, assuming a energy-grade-line slope of 0.055 ft/ft resulted in a supercritical solution at the exit. However, between the exit section and the culvert the channel slope decreased to 0.021 ft/ft, allowing a subcritical solution at the full valley section if the exit section was at critical depth. This demonstrated that the exit section was located at a transition in channel

slope--upstream of the exit section being a subcritical slope and downstream of the exit being a supercritical slope. Thus, critical depth was allowed in the exit section and the subcritical results at the full valley section were used as the tailwater elevations for the culvert analysis.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.055 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation200.4ftAverage low steel elevation196.3ft

100-year discharge975 ft ³ /s							
Water-surface elevation in bridge opening 190.8 ft							
Road overtopping? <u>N</u> Discharge over road <u></u> ,, s							
Area of flow in bridge opening 93.0 ft^2							
Average velocity in bridge opening 10.5 ft/s							
Maximum WSPRO tube velocity at bridge ft/s							
Water-surface elevation at Approach section with bridge 195.0							
Water-surface elevation at Approach section without bridge							
Amount of backwater caused by bridge t							
500-year discharge 1200 ft^3/s							
Water-surface elevation in bridge openingft							
Road overtopping? <u>N</u> Discharge over road							
Area of flow in bridge opening 102.4 ft ²							
Average velocity in bridge opening 11.7 ft/s							
Maximum WSPRO tube velocity at bridge /s							
Water-surface elevation at Approach section with bridge <u>196.4</u>							
Water-surface elevation at Approach section without bridge							
Amount of backwater caused by bridge							
Luciniant quantanning discharge							
Incipient overtopping discharge <u></u> ft ³ /s Water-surface elevation in bridge opening ft							
Area of flow in bridge opening $$ ft^2							
Average velocity in bridge opening jt ft/s ft/s							
Maximum WSPRO tube velocity at bridgeft/s							
Water-surface elevation at Approach section with bridge							
Water-surface elevation at Approach section without bridge							
Amount of backwater caused by bridge jt							
· · · · <u> </u>							

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1993, p. 35, equation 18). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour. The large computed depths to armoring suggest that streambed armoring will not limit the amount of contraction scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1993, p. 49, equation 24). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge (Scour depths in feet)	Incipient overtopping discharge
Main channel	,	1 3 /	
Live-bed scour			
Clear-water scour	1.1	1.8	
Depth to armoring	19.9	N/A ⁻	
			*
Left overbank			
Right overbank			
Local scour:			
Abutment scour	10.3	11.7	
Left abutment	7.7–	9.7-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Riprap Sizing

			Incipient vertopping
	100-yr discharge	500-yr discharge	discharge
		(D_{50} in feet)	
	1.9	2.2	
Abutments:	1.9	2.2	
Left abutment			<u> </u>
Right abutment			
Piers:			
Pier 1			
Pier 2			

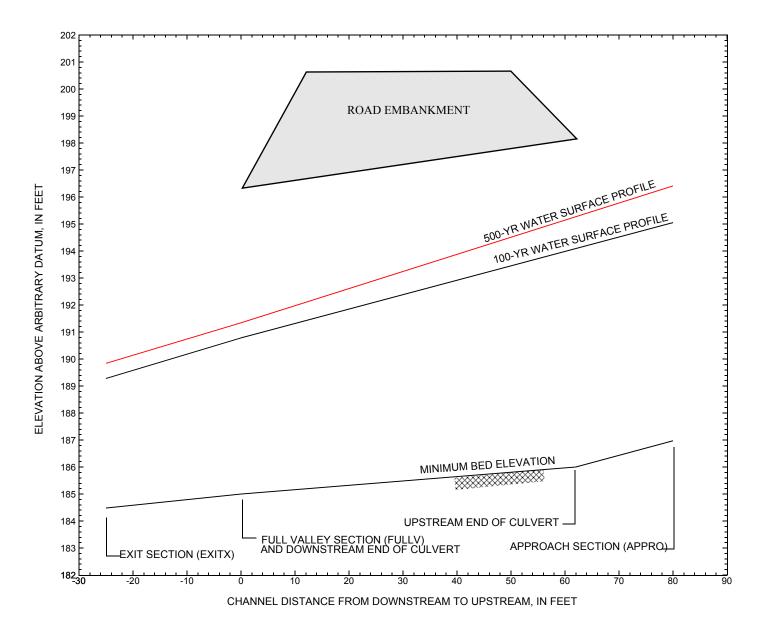


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BRIDTH0004045B on town highway 4, crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont.

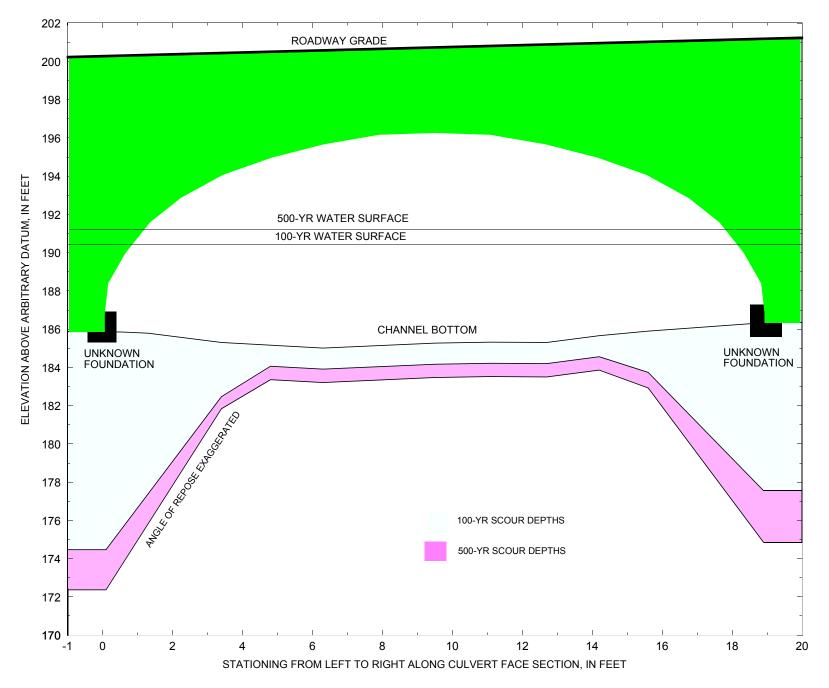


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BRIDTH0004045B on town highway 4, crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-уг	t. discharge is 975	cubic-feet per seco	ond				
Left abutment	0.0				185.9	1.1	10.3		11.4	174.5	
Right abutment	19.0				186.4	1.1	7.7		8.8	177.6	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BRIDTH0004045B on Town Highway 4, crossing an unnamed Dailey Hollow Branch Tributary, Bridgewater, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,200	cubic-feet per sec	cond				
Left abutment	0.0				185.9	1.8	11.7		13.5	172.4	
Right abutment	19.0				186.4	1.8	9.7		11.5	174.9	

^{1.} Measured along the face of the most constricting side of the bridge.

². Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Richardson, J.R., Chang, F., 1991, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 195 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1966, Delectable, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp Τ1 CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca Т2 Т3 HYDRAULIC ANALYSIS OF EXIT of BRID45B SAO * 975 975 1200 1200 0 SK 0.055 0.021 0.055 0.021 * J3 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 * XS EXITX -25 0.0, 189.12 ¹94.48 15.9, 185.04 ¹96.30 -26.6, 195.43 -8.1, 196.01 GR GR 7.9, 184.62 10.8, 184.71 14.2, 184.48 GR 20.3, 185.16 26.1, 188.08 31.2, 194.19 53.9, 196.30 73.6, 198.92 GR 0.035 0.065 0.035 Ν -8.1 31.2 SA * XS FULLV 0 * * * 0.021 * ΕX 0 1 0 1 ER U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp Τ1 Т2 CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca HYDRAULIC ANALYSIS OF BRID45B CULVERT SAO Т3 * Q 975 1200 WS 190.78 191.34 * CV BRIDG 0 9.5 62 185.2 186.0 1 321 131 228 CG CC * * * 0.040 * ΕX ER T1 U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp Т2 CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca HYDRAULIC ANALYSIS OF BRID45B Т3 SAO * Q 975 1200 195.05 196.41 WS * J3 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 * XT APTEM 97 GR -55.7, 201.06 -20.7, 199.38 -9.1, 193.64 0.0, 188.62 6.0, 188.3710.6, 187.9114.9, 188.3922.8, 193.4135.4, 194.6751.0, 203.94 GR 14.9, 188.39 17.9, 188.39 GR * XS APPRO 80 GT -0.94 0.032 0.055 0.090 Ν SA -20.7 22.8 *

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca HYDRAULIC ANALYSIS OF EXIT of BRID45B SAO

===015 WSI IN WRONG FLA	LOW REGIME AT SECID "EX WSI,CRWS = 189		CRWS.			
XSID:CODE SRDL LE SRD FLEN RE		EGL CRWS ERR FR#	Q WSEL VEL			
). 93. 1.71 ***** 7. 4529. 1.00 *****					
===135 CONVEYANCE RATI	O OUTSIDE OF RECOMMEND "FULLV" KRAT					
FULLV:XS 251 0. 25. 28		191.80 ******* 0.01 0.70				
	ABLE. LEW REW Q 0. 27. 975. -1. 28. 975.		10.49 189.28			
SECOND USER DEFINED TABLE. XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EGL WSEL EXITX:XS 189.28 1.00 184.48 198.92************ 1.71 190.99 189.28 FULLV:XS ******** 0.70 185.00 199.44 0.80 0.00 1.02 191.80 190.78						
CREATED ON 07-D	SURVEY WSPRO INPUT FI DEC-95 FOR BRIDGE BRIDT VSIS OF EXIT of BRID45B	H00040045 USING FI	LE brid45b.dca			
===015 WSI IN WRONG FL	LOW REGIME AT SECID "EX WSI,CRWS = 189		CRWS.			
XSID:CODE SRDL LE SRD FLEN RE		EGL CRWS ERR FR#	Q WSEL VEL			
	L. 109. 1.90 ***** 3. 5668. 1.00 *****		1200. 189.84 11.05			
FULLV:XS 252 0. 25. 28	2. 137. 1.19 0.80 3. 7919. 1.00 0.00		1200. 191.34 8.74			
	LEW REW Q -1. 28. 1200.		VEL WSEL 11.05 189.84 8.74 191.34			
SECOND USER DEFINED TABLE. XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EXITX:XS 189.84 1.00 184.48 189.24 0.73 185.00 199.44 0.00 1.19 191.34						

NORMAL END OF WSPRO EXECUTION.

WSPRO OUTPUT FILE (continued)

0

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca HYDRAULIC ANALYSIS OF EXIT of BRID45B SAO

DATA SUMMARY FOR	SECID "	BRIDG" A	T SRD =	0.	ERR-CODE =
CULVERT PARAMETERS:	ISHAPE	IEQNO	CKE	CVALPH	CN
	3.	4.	0.90	1.16	0.040
	NBBL	CVLENG	USINV	DSINV	XCTR
	1.	62.0	186.00	185.20	9.5
	RISE	SPAN	BOTRAD	TOPRAD	CORRAD
	131.00	228.00	365.23	114.14	18.00

+++ BEGINNING PROFILE CALCULATIONS -- 2

CULVERT SUMMARY:

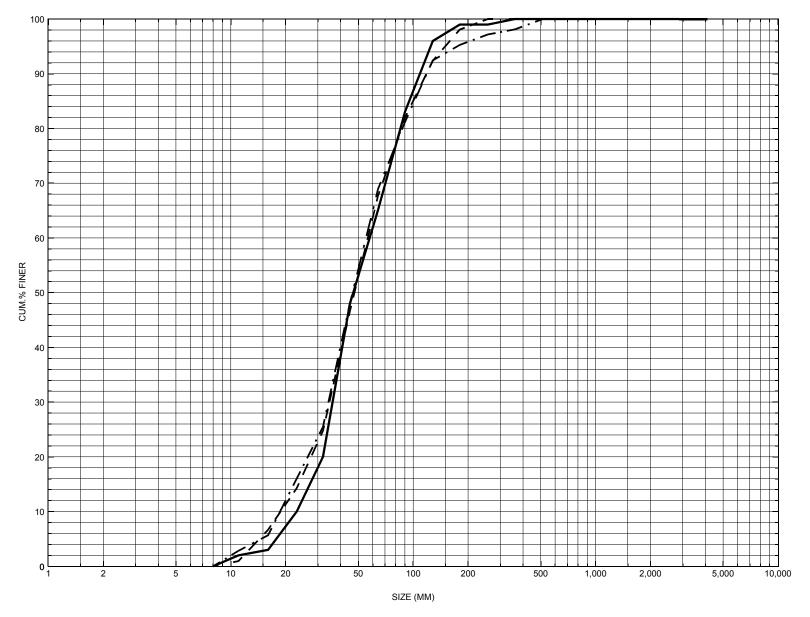
ISHAPE	RISE	SPAN	BOTRAD	TOPRAD	CORNER
3	131.00	228.00	365.23	114.14	18.00
IEQNO	CKE	CN	CVALPH	CVLENG	CVSLPE
4	0.90	0.040	1.16	62.00	0.0129
TWDEP	QBBL	HWIC	HWOC	OTFULL	
5.58	975.00	8.94	9.85	-3.37	
DSUBC 5.08	ASUBC 84.37	DSUBN 5.95	ASUBN 99.18		
VELOT	AOUT	VELIN	AIN	HWE	
10.48	93.00	10.07	96.84	195.05	

CULVERT SUMMARY:

ISHAPE 3	RISE 131.00	SPAN 228.00	BOTRAD	TOPRAD	CORNER 18.00
IEQNO	CKE	CN	CVALPH	CVLENG	CVSLPE
4	0.90	0.040	1.16	62.00	0.0129
TWDEP	QBBL	HWIC	HWOC	OTFULL	
6.14	1200.00	10.13	11.21	-2.86	
DSUBC	ASUBC	DSUBN	ASUBN		
5.74	95.76	7.01	116.30		
VELOT	AOUT	VELIN	AIN	HWE	
11.72	102.41	10.81	111.03	196.41	

NORMAL END OF WSPRO EXECUTION.

U.S. GEOLOGICAL SURVEY WSPRO INPUT FILE brid45b.wsp CREATED ON 07-DEC-95 FOR BRIDGE BRIDTH00040045 USING FILE brid45b.dca HYDRAULIC ANALYSIS OF EXIT of BRID45B SAO


	WSI	SS-SECTION EL SA# 2 3 05	AREA 212. 26.	1731 61	К 7 5. 6.	FOPW 37. 15.	WETP 41. 15.	ALPI	H LI	EW	REW	QCR 2900. 196.
		OCITY DIST WSEL 195.05 -1	LEW	REW	ARI	ΞA	K		Q	VEL		0.
I	A(I)	-13.8	21.7		14.7		12.4		11.0		10.4	
I	A(I)	2.7	9.8		9.8		9.4		9.4		8.9	
I	A(I)	8.9	9.0		8.8		8.9		9.1		9.1	
I	A(I)	14.0	9.5		9.8		10.7		13.9		32.2	

WSPRO OUTPUT FILE (continued)

WS	EL SA#	PROPERTIES: AREA 264. 237 48. 15 312. 252	K TOPW	WETP	ALPH	LEW	REW	80. QCR 3879. 453.
196.	41	312. 252	41. 57.	62.	1.17 -	-17.	40.	3848.
VEL	OCITY DISTR	IBUTION: I	SEQ = 2;	SECID =	APPRO;	SRD =	80	
	WSEL	LEW REW	AREA	K	Q	VEL		
	196.41 -1	6.6 39.9	311.8	25241.	1200.	3.85		
X STA	-16 6	-6 0	-2.0	9	-0.8	0 9		2 4
A(I)	10.0	28.3	19.2	15.9	14.7	7	13.3	
V(I)		-6.0 28.3 2.12	3.12	3.78	4.08	3	4.52	
X STA.	2.4	3.8 12.5 4.78	5.2	12.0	6.5	7.8	11 6	9.1
X(I) V(T)		4 78	4 78	4 99	5 09))	5 17	
X STA.	9.1	10.3 11.2 5.34	11.5	5	12.7	14.0		15.2
A(I)		11.2	11.3	11.3	11.5	5	11.5	
V(I)		5.34	5.31	5.32	5.22	2	5.24	
Y STA	15 2	16 6	18 0	`	19 9	24 5		30 0
A(T)	10.2	16.6 12.1 4.97	12.4	15.3	22.1	24.5	41.2	55.5
V(I)		4.97	4.82	3.91	2.71	L	1.46	
XSID:C	ODE SRDL	DATE & TIM LEW REW	area vhd	HF	EGL	CRWS FR#	Q VEL	WSEL
APPRO:X	S ***** 80. *****	-14. 38. 17	238. 0.30 931. 1.14	*****	195.35 1	L91.49 0.36	975. 4.09	195.05
FIRST	USER DEFIN	ED TABLE.						
XSI	D:CODE S	RD LEW 014.	REW	Q 75 17	K	AREA	VEL	WSEL
APPR	0:15 0	014.	50. 91	/S. 1/	951.	230.	4.09	195.05
XSI		ED TABLE. RWS FR# .49 0.36						
	CREATED ON HYDRAULIC	GICAL SURVE 07-DEC-95 ANALYSIS OF DATE & TIM	FOR BRIDGE BRID45B	BRIDTHO SAO	0040045 t		ILE bri	d45b.dca
XSID:C	CODE SRDL SRD FLEN	LEW REW	AREA VHD K ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
APPRO:X	S ***** 80. *****	-17. 40. 25	312. 0.27 241. 1.17	**** ***** *	196.68 1	L92.03 0.31	1200. 3.85	196.41
FIRST XSI APPR	USER DEFIN D:CODE S O:XS 8	ED TABLE. RD LEW 017.	REW 40. 120	Q)0. 25	K 241.	AREA 312.	VEL 3.85	WSEL 196.41
XSI		ED TABLE. RWS FR# .03 0.31						

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure BRIDTH0004045B, in Bridgewater, Vermont.

APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form

Structure Number BRIDTH0004045B

General Location Descriptive

Data collected by (First Initial, Full last name) <u>E</u>. BOEHMLER

Date (MM/DD/YY) 08 / 25 / 94

Highway District Number (I - 2; nn) 04

Town (FIPS place code; I - 4; nnnnn) 08275

Waterway (1 - 6) Dailey Hollow Branch Tributary

Route Number TH004

Topographic Map Delectable.Mtn

Latitude (I - 16; nnnn.n) 43378

County (FIPS county code; I - 3; nnn) ____027

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): _-____

Vicinity (1 - 9) 0.1 MI JCT TH 4 + TH 30

Hydrologic Unit Code: 01080106

Longitude (i - 17; nnnnn.n) 72431

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10140500451405

Maintenance responsibility (I - 21; nn) 03	Maximum span length (I - 48; nnnn) 0024
Year built (I - 27; YYYY) <u>1939</u>	Structure length (I - 49; nnnnnn) 000028
Average daily traffic, ADT (I - 29; nnnnnn) 000020	_ Deck Width (I - 52; nn.n) _14.6
Year of ADT (1 - 30; YY) 91	Channel & Protection (I - 61; n) 5
Opening skew to Roadway (I - 34; nn)	Waterway adequacy (I - 71; n) 7
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn) 302	Year Reconstructed (I - 106) 1969
Approach span structure type (I - 44; nnn)000	Clear span (<i>nnn.n ft</i>)024.0
Number of spans (<i>I - 45; nnn</i>) <u>001</u>	Vertical clearance from streambed (<i>nnn.n</i> ft) 009.0
Number of approach spans (<i>I - 46; nnnn</i>) 0000 Comments:	Waterway of full opening (<i>nnn.n</i> ft ²) <u>-</u> a steel beam and timberdeck type bridge with a very
Su uctur al inspection report of 10/10/95 mulcates	a steel beam and timberdeck type bridge with a very

narrow gravel roadway surface on approach. Channel scour is noted heaviest near the bottom of the downstream end of the right abutment. <u>Since the inspection of 10/18/93 the bridge was replaced with a cul-</u><u>vert. Information on this culvert is not available. The information on this form pertains to the structure that</u><u>was removed.</u>

Dridue Useduele vie Dete									
Bridge Hydrologic Data									
Is there hydrologic data available? <u>Y</u> <i>if No, type ctrl-n h</i> VTAOT Drainage area (<i>mi</i> ²): <u>2.5</u> Terrain character: <u>Rural, forested, mountainous</u>									
Stream character & type: _		inious							
Streambed material: Stone and boulder with some gravel									
					Q ₂₅ 67	/5			
Discharge Data (cfs): Q _{2.33} _ Q ₅₀ _	825	Q ₁₀	975 <u>975</u>		Q ₅₀₀ -				
Record flood date (MM / DD / YY):									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, Lig									
The stage increases to maximum									
The stream response is (Flashy, N	lot flashy): _	-							
Describe any significant site con stage: _	ditions ups	stream or o	Jownstrea	m that m	ay influenc	e the stream's			
	() . 0/								
Watershed storage area (in perce	, <u> </u>	·				0			
The watershed storage area is: (1-mainly at the headwaters; 2- uniformly distributed; 3-immediatly upstream oi the site)									
Water Surface Elevation Estimat	es for Exis	sting Struc	<u>ture:</u>						
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	7			
Water surface elevation (ft))	-	4.0	5.0	5.7	6.3				
Velocity (<i>ft / sec</i>)	-	-	-	-	-				
Long term stream bed changes:	-								
In the readings evertopped below the Q 2 (Ver Manual): U									
Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown): U Frequency:									
Relief Elevation (#): Discharge over roadway at Q ₁₀₀ (# ³ / sec):									

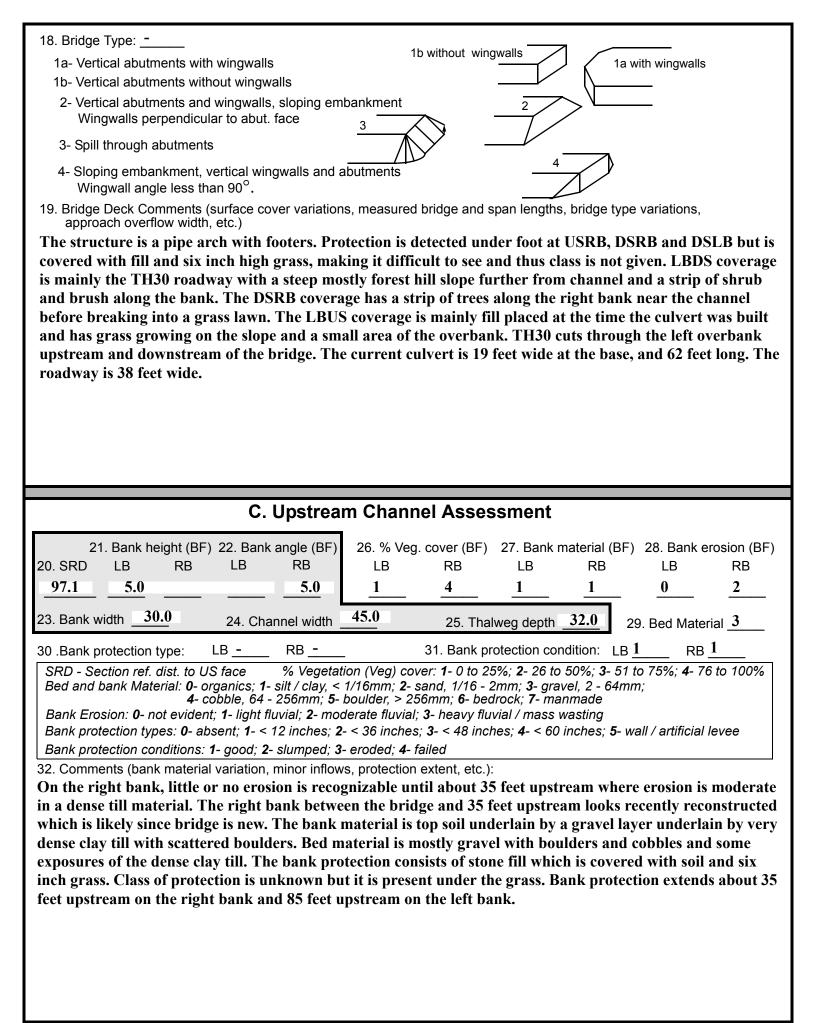
Are there other structures nearby?	? (Yes, No, Unknow	vn): <u> </u>	n, type ctrl-n os
Upstream distance (<i>miles</i>):	Town:	SHERBURNE	Year Built:
Highway No. : <u>TH26</u>	_ Structure No.	: <u>11</u> Structure Type	e: LOG STRINGER
Clear span (ft): Clear Heig	1. (<i>ft</i>): <u>3.5</u>	Full Waterway (#2):	

Downstream distance (<i>miles</i>):	Town:	own: BRIDGEWATER		Year Built:	
Downstream distance (<i>miles</i>): <u>-</u> Highway No. : <u>TH33</u> Structure	e No. :	30	Structure Type:	STEEL BEAM	
Clear span (ft): <u>25</u> Clear Height (ft): <u>9.2</u>	2	Full V	Vaterway (<i>ft</i> ²): <u>-</u>		
Comments:					
	5 Wat	ershe	ed Data		
Watershed Hydrographic Data					
Drainage area (DA) 2.47 mi ² Watershed storage (ST) 0 %	La	ke and	l pond area _0	mi ²	
4.4.40				_	
Bridge site elevation <u>1460</u> ft Main channel length <u>2.71</u> mi	пе	auwai		IL	
10% channel length elevation <u>1495</u>	ft	85	% channel length e	elevation 2240 ft	
Main channel slope (S) 396.07 ft / mi		00			
Watershed Precipitation Data					
				-11	
Average site precipitation in		_		ation in	
Maximum 2yr-24hr precipitation event (124,			în		
Average seasonal snowfall (Sn)	ft				

Bridge Plan Data						
Are plans available? N If no, type ctrl-n pl Date issued for construction (MM / YYYY): - / - Project Number - Minimum channel bed elevation: - -						
Low superstructure elevation: USLAB <u>-</u> DSLAB <u>-</u> USRAB <u>-</u> DSRAB <u>-</u> DSRAB <u>-</u> Benchmark location description: NO BENCHMARK INFORMATION						
Reference Point (<i>MSL, Arbitrary, Other</i>): Datum (<i>NAD27, NAD83, Other</i>):						
Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)						
If 1: Footing Thickness Footing bottom elevation:						
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:						
Is boring information available? <u>N</u> <i>If no, type ctrl-n bi</i> Number of borings taken:						
Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown)						
Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION						
Comments: NO PLANS						

Cross-sectional Data

Is cross-sectional data available? <u>N</u> If no, type ctrl-n xs


Source (FEMA, VTAOT, Other)? _____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
		i	i	i	1	i	i	1	i	i	i
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Source (FEMA				_ TORMAT	TION						
Source (<i>FEMA</i> Comments: N				_ FORMAT	TION						
				FORMAT	TION -	-	-	-	-	-	-
Comments: N	NO CROS	SS SECT	ION INF			-	-	-	-	-	-
Comments: N Station	NO CROS	SS SECT	ION INF	-	-						
Comments: N Station Feature Low cord	NO CROS - -	SS SECT - -	ION INF - -	-	-	-	-	-	-	-	-
Comments: N Station Feature Low cord elevation Bed	NO CROS - - - -	SS SECT - - -	ION INF - - -	-		-	-	-	-	-	-
Comments: N Station Feature Low cord elevation Bed elevation	NO CROS - - - -	SS SECT - - -	ION INF - - - -	- - -	- - -	-	-	-	- -	-	- - -
Comments: N Station Feature Low cord elevation Bed elevation	NO CROS - - - -	SS SECT - - -	ION INF - - - -	- - -	- - -	-	-	-	- -	-	- - -
Comments: N Station Feature Low cord elevation Bed elevation Low cord to bed length	NO CROS - - - - -	SS SECT	ION INF - - - -	- - -	- - -				-	-	-
Comments: N Station Feature Low cord elevation Bed elevation Low cord to bed length Station	NO CROS - - - - -	SS SECT	ION INF - - - - -	- - -	- - - -			- - - -	- - -	- - -	-
Comments: N Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature Low cord	NO CROS	SS SECT	ION INF	- - - -							

APPENDIX E: LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processi Structure Number _I	(Qa/Qc Check by: \underline{SAO} Date: $\underline{1/27/95}$ Computerized by: \underline{EMB} Date: $\underline{2/3/95}$ Reviewd by: \underline{SAO} Date: $\underline{1/18/96}$						
		<u></u> Suce <u></u>						
A. General Location Descriptive 1. Data collected by (<i>First Initial, Full last name</i>) <u>E</u> . <u>BOEHMLER</u> Date (<i>MM/DD/YY</i>) <u>11 / 15 / 1994</u> 2. Highway District Number <u>04</u> Mile marker 000000								
County Windsor Waterway (I - 6) Dailey Hollow Branch Trik Route Number TH04	Town Bridgewate	er gewater Hill Road						
3. Descriptive comments: Bridge is located about 50 feet from the intersection of TH04 with TH30. Structure is a new corrugated metal culvert. Culvert is a rigid arch structure with stream bed still exposed.								
B. Bride	ge Deck Observations							
4. Surface cover LBUS 4 RBUS 6 LBDS 5 RBDS 4 Overall 4 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland) 5. Ambient water surfaceUS 2 UB 2 DS 2 (1- pool; 2- riffle)								
6. Bridge structure type <u>5 (</u> 1- single span; 2- r 6- box culvert; or 7-								
7. Bridge length <u>(feet)</u>	Channel appro							
•••	15. Angle of approach: 10 16. Bridge skew: 10							
9. LB <u>2</u> RB <u>2</u> (1- Paved, 2- Not paved)	Approach Angle Q	Bridge Skew Angle						
10. Embankment slope (<i>run / rise in feet / foot</i>): US left - :1 US right - :1								
Protection 13.Erosion 14.Severity LBUS 2 1 0 0		Opening skew to roadway						
RBUS - 1 2 1	17. Channel impact zone 1:	Exist? Y (Y or N)						
RBDS - 1 2 1	Where? <u>RB</u> (LB, RB)	Severity <u>1</u>						
LBDS <u>- 1 2 1</u>	Range? <u>40 </u> feet <u>US (</u> US	S, UB, DS) to <u>20</u> feet <u>UB</u>						
Bank protection types: 0- none; $1 - < 12$ inches;	Channel impact zone 2:	Exist? Y (Y or N)						
2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped;	Where? <u>LB</u> (LB, RB)	Severity $\frac{1}{25}$ DS						
<i>Bank protection conditions: 1- good, 2- stamped,</i> <i>3-</i> eroded; <i>4-</i> failed <i>Erosion: 0 - none; 1- channel erosion; 2-</i>	Range? <u>0</u> feet <u>DS</u> (US							
Erosion. 0 - none; 1- channel erosion, 2- road wash; 3- both; 4- other Erosion Severity: 0 - none; 1- slight; 2- moderate; 3- severe	Impact Severity: 0- none to very	/ slight; 1 - Slight; 2 - Moderate; 3 - Severe						

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 27 35. Mid-bar width: 9
36. Point bar extent: 20 feet UB (US, UB) to 45 feet US (US, UB, DS) positioned 9 %LB to 50 %RB
37. Material: <u>3</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
Material is gravel with some boulders and cobbles. Where the bar extends under the bridge the material
becomes a medium gravel predominantly.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 40 42. Cut bank extent: 77 feet US (US, UB) to 28 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
The cut bank has developed in the dense clay till due to a mild impact zone at the downstream half of the cut.
The upstream half may be due to some anabranching. The cut bank may have extended further downstream through the entire impact. But between the culvert and the cut the channel bank has been reconstructed, rip-
rapped, and seeded.
45. Is channel scour present? <u>N</u> (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Depth : Position - %LB to - %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.): NO CHANNEL SCOUR
NO CHANNEL SCOUR
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?
51. Confluence 1: Distance 52. Enters on(LB or RB) 53. Type(1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on(LB or RB) Type(1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF)57 Angle (BF)61. Material (BF)62. Erosion (BF)LBRBLBRBLBRB
9.0 0.5 2 7 7 -
58. Bank width (BF) - 59. Channel width (Amb) - 60. Thalweg depth (Amb) 90.0 63. Bed Material -
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 3
Bed material is gravel primarily with some boulders and the underlying clay. Along the channel's right side a
side bar has developed about five feet wide. It is not clear why the side bar has developed in the channel but it
appears too "neatly formed" to be fluvially deposited. The side bar is being impacted and its upstream end is
opposite a point bar.

65. <u>Debris a</u>	and Ice	s there debris	accumulation					- At bridge; 3 - Both
67. Debris Pot			-				1 - Low; 2 - Mod	
69. Is there ev 70. Debris and			_ (Y or N)	Ice B	lockage Po	tential <u>N</u> (1 - Low; 2 - Mod	erate; 3- High)
Capture effic	eiency may	be more mo	derate becau	ise the culv	ert projec	ets upstream	from the roa	d embank-
ment under a	v v				1 3	I		
	74 444		/ 72 Too	74 Coour	75.0	76 -		
Abutment	S 71. Attac ∠(BF		∠ 73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	-	2	2	0	0.5	90.0
RABUT	3	10	-	I 	 	2	2	-
Pushed: LB or		1 avidant (a	Toe Lo	cation (Loc.)	: 0 - even, 1	- set back, 2-	protrudes	aadi
5-	· settled; 6- fa	ailed `		• •		minea rooung,	4 - piling expo	sea,
Materials: 1- C						dobria ato)		
79. Abutment c 0	omments (eg	i. undernined	penetration, t	inusual scou	r processes	s, debris, etc.)		
0.5								
3								
								pipe arch rests
the exposure	0	-		ne scour co	nation no	oted indicate	es the footings	s are exposed,
the exposure	seems more	e likely by u	lesign.					
80. <u>Wingwa</u>	<u>lls</u> :			81.		USRWW	W//indw/all	USLWW
Exis	st? Material?	Scour Condition?		osure Angle	e? Length	!?	length	k
USLWW:		Condition	deptitie de	pur?	.0			
						- 11 -		
USRWW: N					<u> </u>	- I I	Q	
DSLWW: _			<u> </u>	62	.0	-		
DSRWW: _		_	_	62	.5		<u></u>	
						Wingwall		\sim
Wingwall mate	erials: 1 - Con 4 - woo		ne masonry or	drywall; 3 - si	teel or meta	al; DSRWW		DSLWW
82. <u>Bank / E</u>	Bridge Pro	otection:						
Location			ABUT RA	BUT L	B F	RB DSL	WW DSRW	N
Туре		-	N -	-	-	1	1	
Condition	Ν	-	-	-	-	4	4	
Extent	-			-	2	2	-	
Bank / Bridge	protection ty	pes: 0- absen	t; 1 - < 12 inch	es; 2 - < 36 in	nches; 3- <	48 inches; 4 - •	< 60 inches;	
Bank / Bridge	protection co		/ artificial leve ood: 2 - slumpe		l: 4 - failed			
Protection ext		-						
	-	U)	,					

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

- -

Piers:

85.]
Pier no.	no. width (w) feet			elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	── ► / \ ◄ ─ w1
Pier 1	0.0	0.0	0.0	0.0	0.0	0.0	
Pier 2	0.0	1	-	0.0	-	-	
Pier 3	-	1	-	-	-	-	w2 w3
Pier 4	-	1	-	-	-	-	
Level 1 Pi	er Descr		1	2	3	4]
86. Locatio			e left	upst	base	this	LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFF
87. Type	()		and	ream	with	par-	1- Solid pier, 2- column, 3- bent
88. Materia	al		right	and	no	ticu-	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape			abut	dow	pro-	lar	1 - Round; 2 - Square; 3 - Pointed
90. Inclined	d?		ment	nstre	tec-	case,	Y- yes; N- no
91. Attack	∠ (BF)		pro-	am	tion	the	
92. Pushec	ł		tec-	ends	thro	term	LB or RB
93. Length	(feet)		-	-	-	-	
94. # of pile	es		tion	of	ugh	abut	
95. Cross-r	95. Cross-members		exte	the	the	ment	0- none; 1- laterals; 2- diagonals; 3- both 0- not evident; 1- evident (comment);
96. Scour Condition		ı	nt is	cul-	mid-	refer	 <i>a</i>- not evident, <i>i</i>- evident (comment), <i>b</i>- footing exposed; <i>i</i>- piling exposed; <i>a</i>- undermined footing; <i>i</i>- settled; <i>i</i>- failed
97. Scour o	depth		at	vert	dle.	s to	
98. Exposu	ire depth	1	the	at its	For	the	

84. Are there piers? <u>Th</u> (*Y* or if N type ctrl-n pr)

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): left and right sides of the culvert where the culvert steel meet the concrete footing to where the concrete footing intersects the streambed.

Ν

1									
100. E. Downstream Channel Assessment									
Bank height (BF) Bank angle (BF) SRD LB RB LB RB	% Veg. cover (BF) LB RB 	Bank material (BF) LB RB 	Bank erosion (BF) LB RB 						
Bank width (BF) Channel width (Amb) <u>- </u>	pth (Amb) <u>-</u>	Bed Material <u>-</u>						
Bank protection type (Qmax): LB RB	B Bank protec	tion condition: LB -	RB <u>-</u>						
Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- mod Bank protection types: 0- absent; 1- < 12 inches; 2- Bank protection conditions: 1- good; 2- slumped; 3-	boulder, > 256mm; 6- bedro derate fluvial; 3- heavy fluvi - < 36 inches; 3- < 48 inche - eroded; 4- failed	nm; 3- gravel, 2 - 64mm; ock; 7- manmade al / mass wasting							
Comments (eg. bank material variation, minor inflow	vs, protection extent, etc.):								
-									
-									
-									
-									
-									
-									
-									
-									
-									
-									
-									
101. <u>Is a drop structure present?</u> - () 103. Drop:feet 104. Structure 105. Drop structure comments (eg. downstream sco - - - - -	e material: <u>-</u> (1 - steel sh		feet - concrete; 4 - other)						

106. Point/Side bar present? -	_ (Y or N. if N type ctrl-n pb)Mid-b	ar distance: Mid-bar width:					
Point bar extent: feet (US, UB) Material: Point or side bar comments (Circle Point or s							
-							
Is a cut-bank present? N (Y or Cut bank extent: <u>RS</u> feet (US, UB, I Bank damage: (1- eroded and/or cre Cut bank comments (eg. additional cut bank	DS) to feet (US, UB, L ep; 2 - slip failure; 3 - block failure)						
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 1 Scour dimensions: Length 1 Width 3 Depth: 3 Positioned 1 %LB to 1 %RB Scour comments (eg. additional scour areas, local scouring process, etc.): 3							
0 1							
Are there major confluences? -	(Y or if N type ctrl-n mc)	How many? <u>The</u>					
Confluence 1: Distance left	Enters on <u>ban</u> (LB or RB)	Type <u>k</u> (1 - perennial; 2 - ephemeral)					
Confluence 2: Distance pro-	Enters on tec- (LB or RB)	Type <u>tion</u> (1- perennial; 2- ephemeral)					
Confluence comments (eg. confluence name	e):						
8		the culvert. Some of the road fill material rs eroded slightly. The fill appears to have					

F. Geomorphic Channel Assessment

107. Stage of reach evolution bee

- 1- Constructed 2- Stable

- 3- Aggraded
 4- Degraded
 5- Laterally unstable
 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):

n placed recently with no vegetation growth on it and hence some previous erosion may have occurred. The right bank material has the same clay till exposed in some places as found upstream. The downstream channel is incised well and may be constricted by road embankment along the left bank. There is some debris accumulation in the channel downstream. Flow from a storm drainage pipe enters intermittently on the left bank at the downstream end of the culvert.

	109. G. F	Plan View Sketch		N
ooint bar (pb) out-bank Cb cour hole	debris XXX rip rap or 88005 stone fill	flow _Q cross-section +++++++ ambient channel	stone wall	

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR ANALYSIS

Structure Number: BRIDTH00040045b Road Number: TH0004 Stream: Dailey Hollow Branch		Town: County:	Bridgewater Windsor
Initials SAO Date: 12/11/95		Checked:	EMB
Analysis of contraction scour, live-	-bed or c	lear wate	r?
Neills Equation Vc=11.52*y1^0.1667*D50^0.33 with Ss (Richardson and others, 1993, p. 31)			
Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	975	1200	0
Main Channel Area, ft2	212	264	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	26	48	0
Top width main channel, ft	36.6	39.4	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	14.8	17.1	0
D50 of channel, ft	0.154	0.154	0.154
D50 left overbank, ft	0	0	0
D50 right overbank, ft	0	0	0
y1, average depth, MC, ft	5.8	6.7	ERR
y1, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	1.8	2.8	ERR
Total conveyance, approach	17931	25241	0
Conveyance, main channel	17315	23721	0
Conveyance, LOB	0	0	0
Conveyance, ROB	616	1520	0
Percent discrepancy, conveyance	0	0	ERR
Qm, discharge, MC, cfs	941.5049	1127.737	ERR
Ql, discharge, LOB, cfs	0	0	ERR
Qr, discharge, ROB, cfs	33.49506	72.26338	ERR
Vm, mean velocity MC, ft/s	4.4	4.3	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	1.3	1.5	ERR
Vc-m, crit. velocity, MC, ft/s	8.3	8.5	N/A
Vc-l, crit. velocity, LOB, ft/s	N/A	N/A	N/A
Vc-r, crit. velocity, ROB, ft/s	0.0	0.0	N/A
Results			
Live-bed(1) or Clear-Water(0) Contra	action Sc	our?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A

 $y_2 = (Q_2^2 / (120 * Dm^{(2/3)} * W_2^2))^{(3/7)}$ ys=y2-y_bridge or ys=y2-y1 (Richardson and others, 1993, p. 35, eq. 18, 19) Approach Section Q100 Q500 Qother Main channel Area, ft2 212 264 0 Main channel width, ft 36.6 39.4 0 y1, main channel depth, ft 5.79235 6.700508 ERR Bridge Section 975 (Q) total discharge, cfs 1200 0 (Q) discharge thru bridge, cfs 975 1200 0 Main channel conveyance - -- -0 Total conveyance - -- -0 Q2, bridge MC discharge,cfs 975 1200 ERR Main channel area, ft2 93 102 0 Main channel width (skewed), ft 19.0 19.0 0.0 Cum. width of piers in MC, ft 0.0 0.0 0.0 W, adjusted width, ft 19 19 0 y_bridge (avg. depth at br.), ft 4.894737 5.389474 ERR Dm, median (1.25*D50), ft 0.1925 0.1925 0.1925 y2, depth in contraction, ft 6.015893 7.187773 ERR ys, scour depth (y2-ybridge), ft 1.12 1.80 N/A ys, scour depth (y2-y1), ft 0.22 0.49 N/A ARMORING D90 0.377 0.377 D95 0.477 0.477 Critical grain size,Dc, ft 0.5199 ERR 0.4320 Decimal-percent coarser than Dc 0.061 N/A Depth to armoring, ft 19.92 N/A ERR

Clear Water Contraction Scour in MAIN CHANNEL

Abutment Scour

Froehlich's Abutment Scour
Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1
(Richardson and others, 1993, p. 49, eq. 24)

	Left Abutment			Right Abutment				
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q 5	500 yr Q C	ther Q		
(Qt), total discharge, cfs	975	1200	0	975	1200	0		
a', abut.length blocking flow, ft	13.8	16.6	0	18.6	20.9	0		
Ae, area of blocked flow ft2	49.5	70.3	0	43.8	70.6	0		
Qe, discharge blocked abut.,cfs	149.5	208.2	0	49.4 89.4	148.4	0		
(If using Qtotal overbank to obt			-			0		
Ve, (Qe/Ae), ft/s		2 2.961593			5 2.101983	B ERR		
ya, depth of f/p flow, ft	3.59	4.23	ERR	2.35	3.38	ERR		
Coeff., K1, for abut. type (1.0,	verti.; (∶i. w/ wi	ngwall; 0	.55, spill	thru)		
Kl	1	1	0	1	1	0		
Jurgle (thete) of embendment (.00	if shut	mainta D						
Angle (theta) of embankment (<90		90		abut. po. 90	90	0		
theta	90		0			0		
K2	1	1	0	1	1	0		
Fr, froude number f/p flow	0.28	0.25	ERR	0.23	0.20	ERR		
ys, scour depth, ft	10.29	11.73	N/A	7.72	9.70	N/A		
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and others, 1993, p. 50, eq. 25)								
	, <u> </u> ,							
a'(abut length blocked, ft)	13.8	16.6	0	18.6	20.9	0		
y1 (depth fp flow, ft)	3.59	4.23	ERR	2.35	3.38	ERR		
a'/yl	3.85	3.92	ERR	7.90	6.19	ERR		
Froude no. f/p flow Ys w/ corr. factor K1/0.55:	0.28	0.25	N/A	0.23	0.20	N/A		
vertical	ERR	ERR	ERR	ERR	ERR	ERR		
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR		
spill-through	ERR	ERR	ERR	ERR	ERR	ERR		

Abutment riprap Sizing

Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1993, p118-119, eq. 93,94)

Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.83 1 y in 4.9		sectionm	0.83 nc, bridge 4.9	0.89 sectio 5.4	n)
Median Stone Diameter for riprap at Fr<=0.8 (vertical abut.)	ERR	ERR	0.00	right ak ERR	ERR	0
Fr>0.8 (vertical abut.)	1.94	2.19	ERR	1.94	2.19	ERR