Water-Quality Assessment of Part of the Upper Mississippi River Basin, Minnesota and Wisconsin—Compilation of Related Literature

PART ONE

Contribution from the National Water-Quality Assessment Program
Water-Quality Assessment of Part of the Upper Mississippi River Basin, Minnesota and Wisconsin—Compilation of Related Literature

By J.R. Stark, and G.L. Amos

Contribution from the National Water-Quality Assessment Program

Mounds View, Minnesota
1996
Foreword

The mission of the U.S. Geological Survey (USGS) is to assess the quantity and quality of the earth resources of the Nation and to provide information that will assist resource managers and policy makers at Federal, State, and local levels in making sound decisions. Assessment of water-quality conditions and trends is an important part of this overall mission.

One of the greatest challenges faced by water-resources scientists is acquiring reliable information that will guide the use and protection of the Nation's water resources. That challenge is being addressed by Federal, State, interstate, and local water-resource agencies and by many academic institutions. These organizations are collecting water-quality data for a host of purposes that include: compliance with permits and water-supply standards; development of remediation plans for a specific contamination problem; operational decisions on industrial, wastewater, or water-supply facilities; and research on factors that affect water quality. An additional need for water-quality information is to provide a basis on which regional and national-level policy decisions can be based. Wise decisions must be based on sound information. As a society we need to know whether certain types of water-quality problems are isolated or ubiquitous, whether there are significant differences in conditions among regions, whether the conditions are changing over time, and why these conditions change from place to place and over time. The information can be used to help determine the efficacy of existing water-quality policies and to help analysts determine the need for and likely consequences of new policies.

To address these needs, the Congress appropriated funds in 1986 for the USGS to begin a pilot program in seven project areas to develop and refine the National Water-Quality Assessment (NAWQA) Program. In 1991, the USGS began full implementation of the program. The NAWQA Program builds upon an existing base of water-quality studies of the USGS, as well as those of other Federal, State, and local agencies. The objectives of the NAWQA Program are to:

- Describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers.
- Describe how water quality is changing over time.
- Improve understanding of the primary natural and human factors that affect water-quality conditions.

This information will help support the development and evaluation of management, regulatory, and monitoring decisions by other Federal, State, and local agencies to protect, use, and enhance water resources.

The goals of the NAWQA Program are being achieved through ongoing and proposed investigations of 60 of the Nation's most important river basins and aquifer systems, which are referred to as study units. These study units are distributed throughout the Nation and cover a diversity of hydrogeologic settings. More than two-thirds of the Nation's freshwater use occurs within the 60 study units and more than two-thirds of the people served by public water-supply systems live within their boundaries.

National synthesis of data analysis, based on aggregation of comparable information obtained from the study units, is a major component of the program. This effort focuses on selected water-quality topics using nationally consistent information. Comparative studies will explain differences and similarities in observed water-quality conditions among study areas and will identify changes and trends and their causes. The first topics addressed by the national synthesis are pesticides, nutrients, volatile organic compounds, and aquatic biology. Discussions on these and other water-quality topics will be published in periodic summaries of the quality of the Nation's ground and surface water as the information becomes available.

This report is an element of the comprehensive body of information developed as part of the NAWQA Program. The program depends heavily on the advice, cooperation, and information from many Federal, State, interstate, Tribal, and local agencies and the public. The assistance and suggestions of all are greatly appreciated.

Robert M. Hirsch
Chief Hydrologist
Contents

Abstract... 1
Introduction... 1
Alphabetical listing by author....................................... 4
General hydrology.. 144
Geology and ground water... 153
Surface water and water quality................................. 206
Biology... 248
Miscellaneous... 266

Illustrations

Figure 1. Location of the Upper Mississippi River Basin NAWQA study unit,
 focused study area, hydrography, selected towns, and major cities........... 3
Water-Quality Assessment of Part of the Upper Mississippi River Basin, Minnesota and Wisconsin—Compilation of Related Literature

By James R. Stark, and Ginger L. Amos

Abstract

The U.S. Geological Survey began full-scale implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. The purposes of NAWQA are to describe the status and trends in the quality of the Nation's water resources and aquatic ecosystems, and to determine factors affecting water quality at local, regional, and national scales. The Upper Mississippi River (UMIS) NAWQA study unit, which includes all of the surface drainage to the Mississippi River Basin upstream from Lake Pepin, encompasses 47,000 mi². The study characterizes the geographic and seasonal distribution of water quality and aquatic biota in relation to anthropogenic activities and natural features. The initial phase of the UMIS study, during 1994-99, is focused on an area in Minnesota and Wisconsin that includes the seven-county Twin Cities (Minneapolis and St. Paul) metropolitan area. This report is a compilation of selected sources of information that are being used to aid in understanding water-quality issues and processes that form the basis of the sampling design for the study. This literature review includes sources of information about geology, surface- and ground-water hydrology, water quality, and aquatic biology and ecology.

Introduction

The U.S. Geological Survey (USGS) began full scale implementation of the National Water Quality Assessment (NAWQA) Program in 1991. The purposes of the NAWQA Program are to describe the status and trends in the quality of the Nation's water resources and aquatic ecosystems, and to determine factors affecting water quality. Study-unit investigations are significant components of the program. Study units are made up of hydrologic systems that include parts of most major river basins and aquifer systems in the United States.

The Upper Mississippi River (UMIS) NAWQA study unit includes all of the surface drainage to the Mississippi River Basin upstream from Lake Pepin and encompasses 47,000 mi² (fig. 1). The Upper Mississippi River Basin was selected as a study unit because water quality of the Mississippi River, the largest river in the Nation, is of national concern.

The purposes of the UMIS NAWQA study are to describe the status and trends in quality of water resources and to provide an understanding of factors affecting water-quality and ecosystem status within the study unit. During the initial phase of the study (1994-99), emphasis is focused on a 19,500 mi² area in Minnesota and Wisconsin that includes the seven-county Twin Cities (Minneapolis and St. Paul) metropolitan area. The study area includes the UMIS drainage from Lake Pepin upstream to include all of the St. Croix River Basin and to points on the Minnesota (Jordan, Minnesota) and Mississippi (Royalton, Minnesota) Rivers where long-term water-quality data are available (fig. 1). During the initial phase of the study, the focus is on the most prominent water-quality and ecosystem issues, principally the effects of the Twin Cities metropolitan area on water quality and aquatic ecosystems. The study characterizes the geographic and seasonal variations of water quality, aquatic biota, and aquatic-habitat conditions in relation to anthropogenic activities and natural features. Pesticides, nutrients, volatile-organic chemicals, and biological conditions are of specific interest to NAWQA from a national perspective.

This report is a compilation of selected published information on the geology, surface- and ground-water hydrology, water quality, and aquatic biology and ecology of the UMIS study unit. Water quality in the study unit is affected by natural and anthropogenic factors. Natural factors include climate, physiography, geology, soils, topography, vegetation and aquatic biology. Anthropogenic factors include hydrologic modification, point- and nonpoint-source contaminant discharges, and changes to land use and to land cover.
Water-quality issues of local importance, and important to the program at a national level, have been defined by the study's liaison committee composed of representatives from Federal, state, and local agencies, private industry, and NAWQA Program leadership. These issues have guided the literature review. Important sources of information include the Metropolitan Council Environmental Services, Minnesota Department of Agriculture, Minnesota Department of Health, Minnesota Department of Natural Resources, Minnesota Geological Survey, Minnesota Pollution Control Agency, University of Minnesota, U.S. Geological Survey, Wisconsin Department of Natural Resources, and Wisconsin Geological Survey. The list of publications completed for this effort consists of approximately 2,000 citations. Literature data bases searched include Aquatic Sciences and Fisheries Abstracts, Biosis, Compendex Plus, Dissertation Abstracts, Enviroline, Georef, Pollution Abstracts, and Water Resources Abstracts. The list of citations is available at the UMIS Home Page on the World Wide Web at: "http://wwwmn.cr.usgs.gov/umis/index.html".
Figure 1.—Location of the Upper Mississippi River Basin NAWQA study unit, focused study area, hydrography, selected towns, and major cities.
Alphabetical Listing by Author

Aadland, L.P., 1989, Microhabitat criteria for selected stream fishes and methodological considerations for instream flow studies, Waterville, Minnesota: Minnesota Department of Natural Resources, 75 p.

_____, 1989, Health Assessment for South Andover, Andover, Minnesota: Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, 10 p.[Available from the National Technical Information Service, Springfield, VA 22161, as PB90-107350]

_____, 1989, Health Assessment for Whitaker Corporation National Priorities List (NPL) Site, Minneapolis, Hennepin County, Minnesota: Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, 13 p. [Available from the National Technical Information Service, Springfield, VA 22161, as PB90-100314/AS.]

Akin, P.D., and Jones, J.R., 1952, Geology and ground-water resources of the Cloquet area, Carlton County, Minnesota: Minnesota Department of Conservation, Division of Waters Bulletin 6, 63 p.

Alexander, E.C., Jr., Guo, Lifeng, Regan, C.P., and Landon, M.K., 1992, Geochemistry of ground water in an outwash aquifer under agricultural fields at the Management Systems Evaluation Area (MSEA) near Princeton, Minnesota [abs.]: EOS, Transactions, American Geophysical Union, v. 73, no. 43, p. 158.

Bacon, W.S., 1938, Character of the Franconia Sandstone at Taylors Falls, Minnesota: Master’s thesis, University of Minnesota, Minneapolis, Minnesota.

Bock, D., 1990, Acid Rain Index (published quarterly) and Monthly Monitoring Index: Minnesota Pollution Control Agency, variously paged.

Brown, D., and Skaggs, R., 1974, Remote sensing applications to hydrology in minnesota, in A study of Minnesota forests and lakes using data from earth resources technology satellites: University of Minnesota, Minneapolis, Minnesota, p. 81-196

____, 1984, Effects of an urban wetland on sediment and nutrient loads in runoff: Wetlands, v. 4, p. 147-158.

____, 1984, Relationship between quantity and quality of storm runoff and various watershed characteristics in Minnesota, USA, in International Conference on Urban Storm Drainage, 3rd, Goteborg, Sweden, June 4-8, 1984 [Proceedings], p. 791-799.

____, 1990, Atmospheric deposition of herbicides in the midcontinental United States [abs.]: EOS, Transactions, American Geophysical Union, v. 71, no. 43, p. 1329.

———, 1979, Geomorphic Study of Upper Mississippi River: Journal of the Waterway, Port, Coastal and Ocean Division, American Society of Civil Engineers, v. 105, no. WW3, p. 313-328.

Cvancara, V.A., 1975, Studies on the tolerance of young of the year Mississippi River fish to heated waters: University of Wisconsin, Department of Botany, Eau Claire, Wisconsin, 21 p.

--- 1990, Effects of differing agricultural practices on concentrations of nitrate and atrazine in a sandplain aquifer, western Minnesota [abs.]: EOS, Transactions, American Geophysical Union, v. 71, no. 43, p. 1329.

Deval, R.W., compiler, 1975, Probable yields of wells in the sand and gravel aquifer, Wisconsin: Wisconsin Geological and Natural History Survey map, 1, sheet, scale 1:1,000,000.

Dunsmore, L., Quade, H.W., 1979, Public drainage atlas, Blue Earth County, Minnesota. in Limnological Contribution, Mankato State University, Mankato, Minnesota, no. 6, 69 p.

_____, 1993, Mississippi River phosphorus study—Water quality modeling of the Upper Mississippi River and Lake Pepin, 111 p.

_____, 1993, Mississippi River phosphorus study—Water quality modeling of the Upper Mississippi River and Lake Pepin [Addendum I], 24 p.

_____, 1993, Mississippi River phosphorus study—Developing mass transport for WASP models of the Upper Mississippi River, 68 p.

——, 1966, Upper Mississippi River Basin project study plan for a comprehensive water pollution control program.

——, 1966, Summary and pollution abatement recommendations for the Upper Mississippi River and major tributaries.

——, 1967, A report on the immediate water pollution control needs of the Upper Mississippi River mainstem—Minnesota, Wisconsin, and Iowa.

——, 1974, Summary and pollution abatement recommendations for the Upper Mississippi River and major tributaries, 41 p.

Federal Water Quality Administration, 1969, Water supply and water quality control study, Minnesota River Basin reservoirs, Minnesota-South Dakota-Iowa.

Feiler, E.L., 1979, An electrofishing survey of a portion of Pool 2, Mississippi River, from Lock and Dam 2 (RM 815) to Upper Grey Cloud Island (RM 827) August 8, to September 21, 1979: Minnesota Department of Natural Resources, Division of Fish and Wildlife, 30 p.

Feth, J.H., 1965, Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids: U.S. Geological Survey Hydrologic Investigations Atlas HA-199, 31 p., 2 sheets, scale 1:3,168,000.

Finley, R.W., 1978, The original vegetation cover of Wisconsin: University of Wisconsin, Madison, Wisconsin. 1 map.

Fitts, C.R., 1985, Modeling aquifer inhomogeneities with analytic elements with application in a model of flow at the St. Croix rest area storm runoff pond: University of Minnesota, Minneapolis, Minnesota, 64 p.

Fox, P.M., 1968, The link between three hundred years of travel—The Brule-St. Croix portage: Master's thesis, University of Minnesota, Minneapolis, Minnesota. 188 leaves.

Fraser, D.M., 1972, Great Lakes and Upper Mississippi River states concerned about sewage from boats and ships: Congressional Record, v. 118, no. 41, p. E2703-E2704.

_____, 1989, Hexagenia mayflies—Biological monitors of water quality in the Upper Mississippi River: Journal of the Minnesota Academy of Science, v. 55, no. 1, p. 139-143.

Friedman, M.A., 1988, Volatile organic compounds in groundwater and leachate at Wisconsin landfills: Wisconsin Department of Natural Resources Report PUBL-WR-192. 79 p.

_____, 1980, Origin of the Morton Gneiss, southwestern Minnesota; Part 3, Geochronology. in Morey, G.B., and Hanson, G.N., Selected studies of Archean gneisses and lower Proterozoic rocks, southern Canadian Shield: Special Paper Geological Society of America, v. 182, p. 77-94.

Great River Environmental Action Team, 1980, A study of the Upper Mississippi River, 9 volumes.

——, 1978, A pilot study on effects of hydraulic dredging and disposal on water quality of the Upper Mississippi River (July 1976), 38 p.

——, 1979, Effects of clamshell (mechanical) dredging and disposal on water quality of the Upper Mississippi River, 50 p.

Hanson, G.M., 1968, K-Ar ages for hornblende from granites and gneisses and for basaltic intrusives in Minnesota: Minnesota Geological Survey Report Investigations 8, 20 p.

Hanson, G.N., 1975, REE analyses of the Morton and Montevideo gneisses from the Minnesota River Valley [abs.]: Geological Society of America Abstracts and programs, v. 7, no. 7, p. 1099.

Harris, G.S., 1968, Development of a computer program to route runoff in the Minneapolis-St. Paul interceptor sewers: St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Memorandum no. 121, 18 p.

_____, 1968, Mathematical models of major diversion structures in the Minneapolis-St. Paul interceptor sewer system: St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Memorandum no. 120, 21 p.

_____, 1985, Distribution, habitat and status of the gilt darter (Percina evides) in Minnesota: Journal of the Minnesota Academy of Sciences, v. 51, p. 11-16.

_____, 1990, Comparative growth, reproduction, habitat and food utilization of darters of the St. Croix River Drainage: University of Minnesota, Minneapolis, Minnesota, 39 leaves.

Helgen, J., 1990, Data base of aquatic invertebrates for Minnesota: Minnesota Pollution Control Agency, 103 leaves.

____, 1977, Geology and water-supply potential of the Anoka Sand Plain aquifer, Minnesota Department of Natural Resources Technical Paper 6, 17 p.

____, 1982, Using a biotic index to evaluate water quality in streams: Wisconsin Department of Natural Resources Technical Bulletin no. 132, 22 p.

____, 1992, Holocene stratigraphy of a part of the Minnesota River valley, Savage, Minnesota [abs.], Geological Society of America, North Central Section. 26th annual meeting, Iowa City, Iowa, April 30-May 1, 1992, Abstracts with Programs: Geological Society of America, v. 24, no. 4, p. 21.

___, 1994, Karst is a repository for old sediments [abs.], Geological Society of America, North Central Section, 27th annual meeting, Kalamazoo, Michigan, April 28-29, 1994, Abstracts with Programs: Geological Society of America. v. 26, no. 5, p. 21

Hora, M.E., 1975, PCB investigation of the Mississippi River and its tributaries water, bottom sediment, and point sources: Minnesota Pollution Control Agency. 23 p.

Jackson, M., Van der Voo, R., and Watts, D.R., 1983, Paleomagnetism of the Lower Ordovician Oneota Dolomite, Upper Mississippi River Valley [abs.]: EOS, Transactions, American Geophysical Union, v. 64, no. 18, p. 216.

Johannes, C.A., 1960, Memorandum on Mississippi River in the metropolitan area from junction with Rum River to Minneapolis-St. Paul Sanitary District outfall, October 1960: Minnesota Department of Health, Division of Environment and Sanitation, Section of Water Pollution Control, mimeographed report.

____, 1979, Hydrogeologic map of Minnesota, Quaternary hydrogeology: Minnesota Geological Survey, State Map Series S-3.

Kemmis, T.J., 1980, Some aspects of the dynamics of the Des Moines glacial lobe as inferred from landform/sediment associations [abs.]: EOS, Transactions, American Geophysical Union, v. 61, no. 5, p. 50.

Knopp, T.B., 1979, The Kettle—Minnesota’s first wild river—Its use and user preferences: University of Minnesota Agricultural Experiment Station Forestry Series no. 28, 35 p.

Krosch, H.F., 1969, Winter water temperatures and ice cover on Lake St. Croix in the vicinity of the Allen S. King Power Plant: Minnesota Department of Natural Resources Special Publications 77, 1 leaf.

Kuehn, J.H., 1961, A biological reconnaissance of the Upper St. Croix River: Minnesota Department of Natural Resources Investigative Report no. 239, 21 p.

______, 1992. Source mass balance calculated from changes in physical properties and composition of spilled crude oil in the subsurface near Bemidji, Minnesota: EOS, Transactions, American Geophysical Union. v. 73, no. 14, p. 132-133.

Lathrop, R.C., 1989, Mercury levels in walleyes from Wisconsin lakes of different water and sediment chemistry characteristics: Wisconsin Department of Natural Resources Technical Bulletin no. 163, 40 p.

Lawrenz, R.W., 1985, The response of invertebrates in temporary vernal wetlands to Altosid® SR-10 as used in mosquito abatement programs: Journal of the Minnesota Academy of Science, v. 50, no. 3, p. 31-34.

Lively, R.S., 1990, Radium geochemistry and current research on radium in the Mt. Simon/Hinckley aquifer of southern Minnesota [abs.]: Minnesota Water 1990—Facing the environmental challenges of the 1990’s, St. Paul, Minnesota, p. 71.

An application of the fugacity approach. In Significance and treatment of volatile organic compounds

MacKay, R.J., 1984, Life cycles of Hydropsyche viola, H. slossonae, and Cheumatopsyche pettiti

____, 1966, Reconnaissance of the geology and ground-water resources in the Aurora area, St. Louis

Maclay, R.W., Bidwell, L.E., and Winter, T.C., 1969, Water resources of the Buffalo River watershed, west-
1:250,000.

Maclay, R.W., Winter, T.C., and Bidwell, L.E. 1968, Water resources of the Mustinka and Bois de Sioux
HA-272, 4 sheets, scale 1:250,000.

Maclay, R.W., Winter, T.C., and Pike, G.M, 1965, Water resources of the Middle River watershed,
northwestern Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-201, 3 sheets,
scale 1:250,000

Maderak, M.L., 1963, Quality of waters, Minnesota—A compilation, 1955-62: Minnesota Department of
Conservation, Division of Waters Bulletin 21, 104 p.

____, 1964, Relation of chemical quality of water to recharge to the Jordan Sandstone in the Minneapolis-

____, 1965, Chemical quality of ground water in the Minneapolis-St. Paul area, Minnesota: Minnesota
Department of Conservation, Division of Waters Bulletin 23, 44 p.

95-328, 84 p.

Minnesota Pollution Control Agency, 21 p.

Maguire, R.J., 1991, Kinetics of pesticide volatilization from the surface of water: Journal of Agricultural
and Food Chemistry, v. 39, no. 9, p. 1674-1678.

Maier, W.J., Gast, R.G., Anderson, C.T., and Nelson, W.W., 1976, Carbon contents of surface and
underground waters in south-central Minnesota: Journal of Environmental Quality, v. 5, no. 2, p. 124-
128.
Mandle, R.J. and Konitz, A.L., 1992, Simulation of regional ground-water flow in the Cambrian-Ordovician
aquifer system in the northern Midwest, United States: U.S. Geological Survey Professional Paper
1405-C, 97 p.

Mann, W.B., IV, 1971, Flow characteristics of Minnesota streams: Minnesota Department of Natural

Mann, W.B., IV and McBride, M.S., 1972, The hydrologic balance of Lake Sallie, Becker County,

River: Army Engineer Waterways Experiment Station, Vicksburg, Massachusetts, 52 p. [Available
from the National Technical Information Service, Springfield, Virginia, 22161, Hydraulic Model
Investigation Technical Report HL-87-4]

Marsh, P.C., and Waters, T.F., 1980, Effects of agricultural drainage development on the benthic
invertebrates in undisturbed downstream reaches: Transactions of the American Fisheries Society, v.
109, p. 213-223.

Martin, D.P., Meyer, G., Cartwright, D.F., Lawler, T.L., Pastika, T., Jirsa, M.A., Boerboom, T.J., and
Streitz, A.R., 1989, Regional geochemistry survey of glacial drift drill samples over Archean granite-
greenstone terrane in the Effie area, northern Minnesota: Minnesota Department of Natural Resources,
Division of Minerals, 382 p.

Maschwitz, D.E., 1984, Establishment of an ammonia effluent limitation for the Twin Cities metro plant,
contaminants in the Upper Mississippi River. in Weiner, J.G., Anderson, R.V., and McConville, D.R.,
Contaminants in the Upper Mississippi River—Proceedings of the 15th Annual meeting of the

Minnesota: Quaternary Research, v. 41, no. 1, p. 44-51.

water hydrology and quality, and macroinvertebrate and small mouth bass populations in four stream
basins in southwestern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 93-
4024, p. 56-67.

fresh waters: University of Minnesota Department of Civil and Mineral Engineering, Minneapolis;

Horicon, Wisconsin, 75 p.

Mauck, W.L., and Olson, L.E., 1977, Polychlorinated biphenyls in adult mayflies (Hexagenia bilineata); from the Upper Mississippi River: Bulletin of Environmental Contamination and Toxicology, v. 17, no. 4. p. 387-390.

72

Metropolitan Council of the Twin Cities Area. 1969, Agencies and organizations concerned with the major river corridors in the Twin Cities metropolitan area—Appendix B of the major river corridor study: Metropolitan Council of the Twin Cities Area, 250 p.

1969, Inventory of physical features and abilities within the major river corridors of the Twin Cities metropolitan area—Appendix A to the major river corridor study: Metropolitan Council of the Twin Cities Area, 45 p.

1978, Water pollution from urban runoff: Metropolitan Council of the Twin Cities Area, 76 p.

_____ , 1985, Quaternary geologic map of the Minneapolis-St. Paul urban area, Minnesota: U.S. Geological Survey Miscellaneous Map Series M-54,.

Midwest Planning and Research, Inc., 1966, A survey and recreational analysis of 24 rivers in Minnesota: Midwest Planning and Research, Inc. [Available from the Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota.]

____, 1984, Determination of hydraulic conductivity in three dimensions and its relation to dispersivity in ground-water contamination by crude oil at the Bemidji, Minnesota research site, in Hult, M.F., ed., Ground-water contamination by crude oil at the Bemidji, Minnesota research site, U.S. Geological Survey toxic waste ground-water contamination study: U.S. Geological Survey Water-Resources Investigations Report 84-4188, p. 49-64.

Minnesota Board of Health, and Wisconsin Board of Health, 1935, The pollution of the St. Croix River from the dam at St. Croix Falls to the junction with the Mississippi River: Minnesota Department of Conservation, 19 leaves.

Minnesota Department of Conservation, 1969, Hydrologic atlas of Minnesota: Minnesota Department of Conservation Bulletin 10, (former name of Minnesota Department of Natural Resources) 188 p.

——, 1964, Game and fish values of the Mississippi River between the Rum River at Anoka and the Chippewa River below Lake Pepin, (former name of Minnesota Department of Natural Resources) 17 p.

——, 1933, Report of special investigation of the pollution of the Mississippi River, May and June, 1933: Minnesota Department of Health.

——, 1985, Volatile organic survey of community water supplies, report to the Legislative Commission on Minnesota Resources: Minnesota Department of Health, Minneapolis, Minnesota, 23 p.

——, 1988, Noncommunity public water supply survey for volatile organic chemicals: Minnesota Department of Health, Minneapolis, Minnesota, 21 leaves.

——, 1989, Water supply monitoring near metropolitan solid waste disposal facilities: Minnesota Department of Health, Minneapolis, Minnesota, variously paged.

——, 1993, Minnesota Department of Health Chemical laboratory handbook: Minnesota Department of Health, Public Health Laboratory Division, Chemical Laboratory, Minneapolis, Minnesota, 32 p.

——, 1994, Minnesota Fish Consumption Advisory: Minnesota Department of Health, Minneapolis, Minnesota, 88 p.

Minnesota Department of Natural Resources, 1961, Water resources of the Minneapolis-St. Paul metropolitan area: Minnesota Department of Conservation, Division of Waters Bulletin 11, 52 p.

——, 1969, A study of the proposed Afton State Park: Minnesota Department of Natural Resources, 10 leaves.
____, 1974, Inventory of state water and related land-resources information systems: Minnesota Department of Natural Resources, 226 p.

____, 1979, Management plan for Afton State Park: Minnesota Department of Natural Resources, 152 p.

____, 1979, Management plan for Interstate State Park: Minnesota Department of Natural Resources, 110 p.

____, 1984, Official list of endangered, threatened and special concern plants and animals and checklist of endangered and threatened animal and plant species of Minnesota: Minnesota Department of Natural Resources, 14 p.

____, 1984, Water surface use in the seven-county Metropolitan Area: Minnesota Department of Natural Resources, 116 p.

____, 1991, Criteria and guidelines for assessing geological sensitivity of ground-water resources in Minnesota: Minnesota Department of Natural Resources, 122 p.

Minnesota Department of Transportation, 1977, 1977-78 Official Transportation Map Minnesota, 1 map.

Minnesota Pollution Control Agency, 1968, Memorandum on the waste assimilation capacity of the lower 30 miles of the Minnesota River: Minnesota Pollution Control Agency.

____, 1972, Memorandum on the water quality of the Mississippi River in the vicinity of Minneapolis-St. Paul metropolitan plant discharge, June 5-9, 1972: Minnesota Pollution Control Agency, Mimeographed.

____, 1972, Memorandum on survey of polychlorinated biphenyls in waters of the Twin Cities metropolitan area: Minnesota Pollution Control Agency.

____, 1972, Memorandum on survey of polychlorinated biphenyl's in waters of the Twin Cities metropolitan area.

____, 1986, Ground water in Minnesota—A user’s guide to understanding Minnesota’s ground water resource: Minnesota Pollution Control Agency, 47 p.

____, 1989, Ground-water contamination susceptibility in Minnesota: Minnesota Pollution Control Agency, 1 sheet.

Minnesota Water Pollution Control Commission, no date, Report on investigation of the lower Minnesota River and tributaries from Carver Rapids to the mouth, August 1963 to February 1964: Minnesota Department of Health, 164 p.

Minnesota Water Pollution Control Commission, 1964, Summary report on the pollution status of the Mississippi River and major tributaries from the mouth of the Rum River to the outlet of Lake Pepin: Minnesota Department of Health, 57 p.

_____ 1976, Polychlorinated biphenyls (PCB's) in the Upper Mississippi River Basin. 55 p.

83

Moriarty, J.J., 1988, Minnesota county biological survey—1988 herpetological surveys: Minnesota Department of Natural Resources Biological Report no. 9, 43 leaves.

____, 1987, Paleogeography along western Hollandale embayment (Minnesota) during early and middle Dresbachian (Late Cambrian) [abs.], Geological Society of America, North Central Section, 21st annual meeting with the North Central Section of the Paleontological Society, Great Lakes Section, Society of Economic Paleontologists and Mineralogists and the Association for Women Geoscientists, St. Paul, Minnesota, April 30-May 1, 1987, Abstracts with Programs: Geological Society of America, v. 19, no. 4, p. 235.

Nelson, S.L., Sutley, S.J., and Tripp, R.B., 1992, Chemical and mineralogical analyses and geological characteristics of heavy minerals from glaciofluvial sediments in Minnesota: Minnesota Department of Natural Resources, 100 p.

Nicollet, J.N., 1843, Report intended to illustrate a map of the hydrographical basin of the Upper Mississippi River (List of fossils belonging to the several formations alluded to in the report: arranged according to localities): U.S. 26th Congressional 2nd session, S doc 237, 170 p.

Norrgard, R., and Wallace, K., 1979, Minnesota valley wildlife refuge/recreation area resource catalog: Minnesota Department of Natural Resources, Minnesota River valley project, 393 p.

_____, 1974, Model validation and sensitivity analysis for the Upper Mississippi River Basin: Water Resources Engineers.

Norvitch, R.F., 1960, Ground water in alluvial channel deposits, Nobles County, Minnesota: Minnesota Department of Conservation, Division of Waters Bulletin 14, 23 p.

_____, 1964, Geology and ground-water resources of Nobles County and part of Jackson County, Minnesota: U.S. Geological Survey Water-Supply Paper 1749, 70 p.

North Star Research Institute, 1973, Environmental impact assessment of the northern section of the Upper Mississippi River, Minneapolis: Prepared for the U.S. Army Corps of Engineers, St. Paul District, 14 volumes.

Ohl, L., 1992, Historical trends in the trophic state of Lake Pepin: Department of Biology, University of Wisconsin, Eau Claire, 13 p.

Owen, R., 1952, Memorandum on a survey of the Mississippi River from above the Minneapolis water works intake to below Minneapolis at the Ford Dam, December 17, 1951 to January 17, 1952: Minnesota Department of Health, Division of Water Pollution Control, mimeographed.

_____, 1988, Water system responses to toxic contamination of groundwater supplies. [Available from the National Technical Information Services, Springfield, Va, 22161 as PB88-223524, 26 p.]

Penman, J.T., 1987, Neoboreal climatic influences on the late Prehistoric agricultural groups in the Upper Mississippi River Valley [abs.]: International Union for Quaternary Research, 12th international congress, Ottawa, Ontario, Program and abstracts, p. 240.

Petersen, L.R., 1982, Evaluations of waterfowl production areas in Wisconsin: Wisconsin Department of Natural Resources Technical Bulletin no. 135, 32 p.
Peterson, A.R., 1964, Distribution and relative abundance of fishes in the St. Croix River impoundment at Taylors Falls from 1959-63: Minnesota Department of Natural Resources Special Publication 80, 9 leaves.

Prior, C.H., 1949, Magnitude and frequency of floods in Minnesota: Minnesota Department of Conservation, Division of Waters Bulletin 1, 128 p.

Proctor, B., 1993, Characterization of sediments settleable solids and water quality of stormwater runoff in the Minnesota River watershed: Water Resources Center, Mankato State University, Mankato, Minnesota, variously paged.

Rasmussen, J.B., Rowen, D.J., Lean, D.R.S., Carey, J.H., 1990, Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namavcosti) and other pelagic fish: Canadian Journal of Fisheries and Aquatic Sciences, v. 47, p. 2030-2038.

____, 1976, Natural areas inventory of west-central Wisconsin: Wisconsin Department of Natural Resources, 43 p.

Reedstrom, D.C., 1964, A biological reconnaissance of the Snake River: Minnesota Department of Conservation Division of Game and Fish Investigational Report no. 275, 61 p.

Riverfront Planning Team of Minneapolis Planning and Development, 1972, Mississippi/Minneapolis—A plan and program for riverfront development: Minneapolis Riverfront Planning Team, 130 p.

Sansome, C.J., 1983, Minnesota underfoot—A field guide to the state’s outstanding geologic features: Voyageur Press, Minneapolis, Minnesota.

Schlotthauer, J., 1994, GWMAP field sampling protocol, Revision 2.0: Minnesota Pollution Control Agency, 15 p.

Schneider, A.F., 1987, Studies of the Quaternary history of Minnesota, with emphasis on contributions of H.E. Wright, Jr.[abs.], Geological Society of America, North Central Section, 21st annual meeting with the North Central Section of the Paleontological Society, Great Lakes Section, Society of Economic Paleontologists and Mineralogists and the Association for Women Geoscientists, Abstracts with Programs: Geological Society of America, v. 19, no. 4, p. 242.

_____ 1958, Correlation of ground-water levels and air temperatures in the winter and spring in Minnesota: Minnesota Department of Conservation, Division of Waters Technical Paper 1, 17 p.

____, 1982, Evaluating ground-water data by a flow model of the Twin Cities metropolitan area, Minnesota [abs.]: EOS, Transactions, American Geophysical Union, v. 63, no. 33, p. 612.

______, 1987, A comparison of calculated and laboratory intrinsic permeabilities for glacial outwash materials [abs.], Geological Society of America, North Central Section, 21st annual meeting with the North Central Section of the Paleontological Society, Great Lakes Section, Society of Economic Paleontologists and Mineralogists and the Association for Women Geoscientists, St. Paul, Minnesota, Abstracts with Programs: Geological Society of America, v. 19, no. 4, p. 244.

Shelby, B., 1989, Comparative analysis of crowding in multiple locations: Results from fifteen years of research: Leisure Sciences, v. 11, no. 4, p. 269-91.

______, 1985, The seasonal community structure and drift of microcrustaceans in Valley Creek, Minnesota: Canadian Journal of Zoology, v. 64, p. 1655-64.

Silberman, E., and Stephan, H.R., 1964, Effects of condenser cooling water discharge from projected Allen S. King generating plant on water temperatures in Lake St. Croix, Minneapolis, Minnesota: University of Minnesota St. Anthony Falls Hydraulic Laboratory Report 76, variously paged. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota 55155.]

Skrypek, J.L., 1966, Analysis of physical and biological changes at selected sampling stations in the Mississippi River: Minnesota Department of Conservation, Division of Game and Fish.

____, 1969, Differences in the composition of the fish population in Pool 2 and other areas of the Mississippi River as related to waste from the Twin Cities metropolitan area, 1964: Minnesota Department of Conservation, Division of Game and Fishes, Section of Technical Services, Investigational Report no., 307, 17 p.

Spong, R.C., 1993, Structural and base level controls on the development of adjacent karst groundwater regimes in Fillmore County, Minnesota, in Garklavs, George, Minnesota Academy of Science 61st annual meeting, Duluth, Minnesota, April 30-May 1, 1993: Journal of the Minnesota Academy of Science, v. 57, no. 2, p. 27.

Sprafka, M.J., Evaluation of heavy metal loadings at the Metropolitan Wastewater Treatment Plant: Metropolitan Council of Wastewater Services, 52 p.

Stevens, L.R., 1992, High-resolution microprobe analysis of late-glacial organic varves in Minnesota [abs.]: American Quaternary Association. 12th biennial meeting, Davis, California, August 24-26, 1992, Program and abstracts, p. 58.

Straka, G.C., and Schneider, Robert, 1957, Graphs of ground water levels in Minnesota through 1956: Minnesota Department Conservation, Division of Waters Bulletin 9, 42 p.

Streiff, J.E., 1981, Afton—A Minnesota State park development project reconnaissance survey: University of Minnesota, Minneapolis, Minnesota, 28 leaves. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota.]

_____ 1981, Banning—A Minnesota State park development project reconnaissance survey: University of Minnesota, Minneapolis, Minnesota, 10 leaves. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota.]

_____ 1981, St. Croix—A Minnesota State park forest management project survey (for Parks Division, Minnesota DNR): University of Minnesota, Minneapolis, Minnesota, 16 leaves. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota.]

114

Thomas, R.D., 1989, Epidemiology and toxicology of volatile organic chemical contaminants in water absorbed through the skin: Journal of the American College of Toxicology, v. 8, no. 5, p. 779-795.

Trotta, L.C., 1985, The potential for contamination of ground water based on hydrogeology—A geographic
information system application [abs.]: Annual Midwest Ground Water Conference, 30th, St. Paul,

____, 1987, Ground-water withdrawals in Minnesota [abs.]. in Zaporozec, A., ed., Annual Midwest

____, 1988, Aggregation of Minnesota water-use data and transfer of data to the National water-use data

____, 1988, Inventory of interbasin water transfer in Minnesota, in Symposium on Water Use Data for
Water Resources Management, Bethesda, Maryland, August 1988, Proceedings: American Water
Resources Association, p. 93-105.

____, 1988, Inventory of interbasin water transfers in Minnesota: U.S. Geological Survey Open-File

____, 1988, Sources of water-use data in Minnesota: U.S. Geological Survey Open-File Report 87-544,
2 p.

____, 1990, Automation of data systems—Minnesota’s approach for water-use data. in Wiltshire, D.A.,
ed., Selected papers in applied computer sciences 1990: U.S. Geological Survey Bulletin 1908, p. F1-
F4.

____, 1990, Minnesota water supply and use. in Carr, J.E., Chase, E.B., Paulson, R.W., and Moody, D.W.,
320.

____, 1991, Water use in Minnesota, 1985: State of Minnesota Department of Natural Resources Water
Use Map Series, 1 sheet.

____, 1995, Estimates of self-supplied commercial ground-water use in rural east-central Minnesota:

____, 1996, Water use in Minnesota, 1990: State of Minnesota Department of Natural Resources Water-
Use Map Series, 1 sheet.

Geological and Natural History Survey, 1 sheet, 1:1, 000,000.

_____, 1974, Summary and pollution abatement recommendations for the Upper Mississippi River and major tributaries: Federal Water Pollution Control Administration, St. Paul. 60 p.

_____, 1935, Report on sedimentary characteristics of the Upper Mississippi River.

1979, Water withdrawal and discharge data for the Minnesota River: Minnesota Department of Natural Resources, 42 p.

____, 1988, Secondary maximum contaminant levels (Section 143.3 of Part 143, National Secondary Drinking-Water Regulations), U.S. Code of Federal Regulations, title 40, parts 100 to 149, revised as of July 1, 1988, p. 608.

124

U.S. Federal Water Pollution Control Administration, 1968, Pollution of the interstate and intrastate waters of the Upper Mississippi River and its tributaries (Minnesota and Wisconsin): Proceedings of the Federal Water Pollution Control Administration, February 1 - March 1 and 20, 1967, Mpls, Minnesota, 313 p.

____, 1970, Progress evaluation meeting in the matter of the interstate and intrastate waters of the Upper Mississippi River and its tributaries, states of Wisconsin and Minnesota [Proceedings], 346 p.

125

128

1965, Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids: U.S. Geological Survey Hydrologic Investigations Atlas HA-199, 31 p., 2 sheets.

1990, USGeoData 1:250,000 and 1:100,000 scale land use and land cover maps digital data.

1955, A comprehensive water pollution control program for the lower portion Upper Mississippi River Basin developed by the state water pollution control agencies of Iowa, Minnesota, and Wisconsin: U.S. Public Health Service, Division of Water Supply, Cincinnati, Ohio, 76 p.

University of Minnesota, 1974, Prehistoric archaeological sites in Minnesota State Parks: University of Minnesota Archaeological Laboratory, 100 leaves. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota 55155.].

University of Minnesota, 1979, Analysis of the lower St. Croix River Valley, Hudson, Wisconsin-Stillwater, Minnesota: University of Minnesota, Minneapolis, Minnesota, 213 p.

University of Minnesota, 1980, St. Croix River Valley design experience—Selected highlights: University of Minnesota, Minneapolis, Minnesota, 40 leaves. [Available from Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, Minnesota.]

Upham, W., 1899, The geology of Aitkin County, Cass County, and of the part of Crow Wing County northwest of the Mississippi River, of the region around Red Lake and southward to White Earth: Minnesota Geological Survey Final Report 4, p. 25-81.

Upham, W., 1906, Glacial and modified drift on the Mississippi Valley from Lake Itasca to Lake Pepin: Minnesota Academy of Science, v. 4, p. 299-305.

_____, 1972, Upper Mississippi River comprehensive basin study: Upper Mississippi River Basin Commission, 9 volumes.

_____, 1969, Profiles of regional ground-water flow in glacial deposits in Minnesota based on existing well data, in Annual Engineering Geology and Soils Engineering Symposium, 7th, Moscow, Idaho [Proceedings], p. 84-100.

_____., 1875, An essay concerning important physical features exhibited in the valley of the Minnesota River and upon their signification: U.S. 43rd congress, 2nd Session, H Ex Doc. 6-23, 22 p.

Water Resources Engineers, 1974, Final report for the Upper Mississippi River Basin model project.

Water Resources Research Center, 1992, Mississippi River phosphorus study report—Literature reviews and abstracts of articles, variously paged.

Welsh, J.L., 1976, Petrology of the Archaean gneisses of the northwest corner of the Sacred Heart Pluton; Minnesota River Valley, Minnesota [abs.].. 22nd annual institute on Lake Superior geology, St. Paul, Minnesota, May 3-7, 1976, p. 70.

_____, 1976, Petrology of the northwest margin of the Sacred Heart Pluton and adjacent Archaean gneisses from the Minnesota River Valley; Redwood and Yellow Medicine Counties, Minnesota: Masters thesis, University of Minnesota, Duluth, Minnesota, 100 p.

____, 1972, An approach to the design of statewide or regional ground water information systems: Water Resources Research, v. 8, no. 1, p. 222-230.

Winter, T.C., and Wright, H.E., Jr., 1977, Paleohydrologic phenomena recorded by lake sediments: EOS, Transactions, American Geophysical Union, v. 58, no. 4, p. 188-195.

Wisconsin Department of Natural Resources, 1961, Surface water resources of Polk County: Wisconsin Department of Natural Resources, 145 p.

____, 1961, Surface water resources of St. Croix County: Wisconsin Department of Natural Resources, 51 p.

____, 1966, Surface water resources of Burnett County: Wisconsin Department of Natural Resources, 166 p.

____, 1969, Surface water resources of Sawyer County: Wisconsin Department of Natural Resources, 214 p.

____, 1970, Surface water resources of Bayfield County: Wisconsin Department of Natural Resources, 372 p.

____, 1971, Surface water resources of Pierce County: Wisconsin Department of Natural Resources, 49 p.

____, 1972, St. Croix River pollution investigation survey: Wisconsin Department of Natural Resources.

____, 1972, Surface water resources of Douglas County: Wisconsin Department of Natural Resources, 165 p.

____, 1976, Environmental impact statement for the proposed development, management and continued acquisition of the St. Croix River State Forest, Burnett and Polk Counties, Wisconsin: Wisconsin Department of Natural Resources. 112 p.

____, 1976, Surface water resources of Washburn County: Wisconsin Department of Natural Resources, 273 p.

____, 1989, Endangered and threatened species list: Wisconsin Department of Natural Resources, 28 p.

____, 1986, Hydrogeologic framework and properties of regional aquifers in the Hollandale Embayment, southeastern Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-677, 2 sheets, scales 1:1,000,000 and 1:2,000,000.

Zachmann, B., 1984, A river classification system: Minnesota Department of Natural Resources shoreland update project report no. 5, 84 p.

General Hydrology

