LEVEL II SCOUR ANALYSIS FOR BRIDGE 1 (CANATH00010001) on TOWN HIGHWAY 1, crossing HALLS STREAM, CANAAN, VERMONT

U.S. Geological Survey Open-File Report 96-640

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 1 (CANATH00010001) on TOWN HIGHWAY 1, crossing HALLS STREAM, CANAAN, VERMONT

By Erick M. Boehmler

U.S. Geological Survey Open-File Report 96-640

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

1996

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	28
D. Historical data form	30
E. Level I data form	36
F. Scour computations	46

FIGURES

1. Map showing location of study area on USGS 1:24,000 scale map	3
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	4
3. Structure CANATH00010001 viewed from upstream (October 27, 1994)	5
4. Downstream channel viewed from structure CANATH00010001 (October 27, 1994).	5
5. Upstream channel viewed from structure CANATH00010001 (October 27, 1994).	6
6. Structure CANATH00010001 viewed from downstream (October 27, 1994).	6
7. Water-surface profiles for the 100- and 500-year discharges at structure	
CANATH00010001 on Town Highway 1, crossing Halls Stream,	
Canaan, Vermont	15
8. Scour elevations for the 100- and 500-year discharges at structure	
CANATH00010001 on Town Highway 1, crossing Halls Stream,	
Canaan, Vermont	16
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CANATH00010001 on Town Highway 1, crossing Halls Stream	

CANA I H00010001 on 1 own Highway 1, crossing Halls Stream,	
Canaan, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
CANATH00010001 on Town Highway 1, crossing Halls Stream,	
Canaan, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m^3)
	Velocity and Flow	
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m^3/s)
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^{3}/s)/mi^{2}]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

left wingwall	LWW	bank full	BF
main channel	MC	cubic feet per second	cfs
right abutment	RAB	median diameter of bed material	D ₅₀
face of right abutment	RABUT	downstream	DS
right bank	RB	elevation	elev.
right overbank	ROB	flood plain	f/p
right wingwall	RWW	square feet	ft^2
town highway	TH	feet per foot	ft/ft
under bridge	UB	junction	JCT
upstream	US	left abutment	LAB
United States Geological Survey	USGS	face of left abutment	LABUT
Vermont Agency of Transportation	VTAOT	left bank	LB
water-surface profile model	WSPRO	left overbank	LOB

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 1 (CANATH00010001) ON TOWN HIGHWAY 1, CROSSING HALLS STREAM, CANAAN, VERMONT

By Erick M. Boehmler

INTRODUCTION

This report provides the results of a detailed Level II analysis of scour potential at structure CANATH00010001 on town highway 1 crossing Halls Stream, Canaan, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the White Mountain section of the New England physiographic province of northeastern Vermont in the town of Canaan. The 89.5-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have tree, shrub and brush, and grass vegetation coverage.

In the study area, Halls Stream has a sinuous channel with a slope of approx-imately 0.0012 ft/ft, an average channel top width of 109 ft and an average channel depth of 4 ft. The predominant channel bed materials are sand and gravel (D_{50} is 5.03 mm or 0.0165 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 27, 1994, indicated that the reach was laterally unstable. The lateral instability was evident due to a wide point-bar and cut-banks with undermining of bank material, slumping, fallen bank vegetation evident in the upstream channel.

The town highway 1 crossing of Halls Stream is a 99-ft-long, two-lane bridge consisting of one 33-foot and two 31-foot concrete T-beam spans (Vermont Agency of Transportation, written communication, August 5, 1994). The bridge is supported by vertical, concrete abutments with spill-through embankments in front of each abutment wall. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees.

There are two piers in the channel at this site. Field notes and the channel survey at the bridge indicate that the streambed elevation is higher on the downstream right sides of each pier and lower on the downstream left sides. This asymmetrical streambed condition

suggests a flow attack angle may influence scour on each pier. Furthermore, field observations suggest that the flow attack angle is higher for the right pier (pier 2) than the left pier (pier 1).

The scour protection measures at the site were type-2 stone fill (less than 36 inches diameter) on both upstream banks and both downstream road embankments. Type-3 stone fill (less than 48 inches diameter) was found on the spill-through slopes of each abutment and both downstream banks. The stone fill protection on the spill-through embankment of the right abutment was noted as slumped with some of the fill material evident in the channel immediately downstream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 8.0 to 8.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.9 to 17.3 ft. The worst-case abutment scour occurred at the 500-year discharge. For the two piers, scour ranged from 11.1 to 15.8. The worst-case pier scour occurred for pier2 at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

Monadnock Mountain, VT, Lovering Mountain, NH and Pittsburg, NH Quadrangles, 1989, 1:24,000.

NORTH

Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number _	CANATH00010001	Stream	Halls Strea	am	
County Essex		Road —	TH 1	District —	9

Description of Bridge

	99		23.3			33
Bridge length	ft	Bridge width		ft	Max span length	ft
Alignment of brid	ge to road (o Spill-through	<i>n curve or strai</i>	ight) —	Curve	Sloning	
Abutment type	Yes		Embankn	nent type	10/27/94	
Stone fill on abutm	ent?	be-3 on the spill	Date of inc -through at	naction outment s	slopes and the down	nstream
banks. Type-2 on t	he upstream	banks and down	nstream roa	ad emban	kments. Type-1 on	pier2.
Abutments and pi	ers are concre	ete. There are re	mnant scou	ur holes u	p to two feet deep r	noted around
		both	piers.			
	· · · ·					
Y						
					_10	Y
Is bridge skewed t	o flood flow	according to T	here surve	ey?	Angle	
<u>is a mild channel b</u>	end in the up	ostream reach.	- , ~~, ·		·····, ···· ···· ···· ···· ···· ···· ·	,

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection 10/27/94	Percent of channel bloc ked norizoniall y	Percent of abarrel block ed vertically
Level I	10/27/94	0	0
Level II	<u>Moderate. Th</u>	tere is a lumber yard on the right term laterally unstable channel	ght overbank US and alot
Potential for	r debris		

Halls stream enters the Connecticut River immediately downstream of this site. **Describe any features near or at the bridge that may affect flow (include observation date)** 10/27/94.

Description of the Geomorphic Setting

General topo	graphy	The s	tream is le	ocated in a	a mode	ate relief v	alley set	tting with a fl	at to
slightly irreg	ular flood	l plain a	nd modera	ately slope	ed valle	y walls.			
Geomorphic	c conditio	ns at br	idge site:	downstrea	ım (DS), upstrean	n (US)		
Date of insp	vection	10/27/	94						
DS left:	Steep re	oad emb	ankment t	to the TH	1 road	surface.			
DS right:	Steep c	hannel b	ank to a g	gradually s	sloped of	overbank.			
US laft.	Modera	tely slor	bed chann	el bank to	irregul	ar flood pla	ain.		
	Steep cl	hannel b	ank to a n	arrow ove	rbank.				
US right:									
			Descri	ption of t	he Ch	annel			
		10	9					4	_
Average to	p width		Sand /	a Gravel		Average	e depth	Silt / Clay	f i
Predominan	ıt bed ma	terial				Bank mat	terial	Perennial and	sinuous
with alluvial	channel l	ooundari	es.		-		x .		
								10/27/9	4
Vegetative c	0] (Right]	bank of	Connectic	cut River)	_ Brush v	with a few	trees.		
DS left:	Grass								
DS right:	Trees v	vith shru	bs and br	ush.					
US left:	Grass v	vith a fer	w trees.						
US right:			N						
Do banks at	ppear stal	ble? The	upstream	reach ber	nds left	on approac	h to the	bridge with a	ı cut-
bank devel	oping on	the right	t bank and	l a large sa	and and	gravel poi	nt bar or	n the left bank	c. 10/27/
<u>94.</u>	arvanon.								
							No	one evident o	 n

10/27/94. Describe any obstructions in channel and date of observation.

Hydrology

<i>Physiographic province/section</i> New England / White Mountain	Percen	t of drainage area 100
<i>Is drainage area considered rural or urban?</i> 	Rural yard along the right	<i>Describe any significant</i> bank side.
s there a USGS gage on the stream of interest	<u>Yes</u> ? Halls Stream nea	r F. Herefore Quebec
USGS gage description	01129300 (Disc	continued)
USGS gage number	<u>01129300 (Disc</u>	ontinued)
Gage drainage area	<u>mi²</u>	V
Is there a lake/p Halls Stream enters the Conne	cticut River about :	50 feet downstream of this
Is there a lake/p Halls Stream enters the Conne	cticut River about :	50 feet downstream of this
Is there a lake/p Halls Stream enters the Conne ite. 	d Discharges	
Is there a lake/p Halls Stream enters the Conne ite. 	d Discharges	

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	Subtract 397.4 feet from USGS
survey to obtain VTAOT plans datum.	
Description of reference marks used to determine USGS dat	tum. <u>RM1 is the center point</u>
of a chiseled "X" in a chiseled square on top of the US end o	f the left abutment concrete (elev.
500.36 ft, arbitrary survey datum). RM2 is a brass tablet set i	n the concrete curb on the
downstream side near mid-span of the bridge engraved with	"The Supreme Court of the United
States" (elev. 500.10 ft, arbitrary survey datum).	

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-95	2	Exit section (Templated from APTEM)
FULLV	0	2	Downstream Full-valley section (Templated from APTEM)
BRIDG	0	1	Bridge section
RDWAY	14	1	Road Grade section
APTEM	111	1	Approach section as sur- veyed (Used as a tem- plate)
APPRO	124	2	Modelled Approach sec- tion (Templated from APTEM)

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.040, and overbank "n" values were 0.085.

Halls Stream enters the Connecticut River just downstream of this site. Although the timing of peak discharges on Halls Stream and the Connecticut River above the confluence may be coincident, normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0012 ft/ft, which was estimated from surveyed thalweg points between the approach (APTEM) and bridge (BRIDG) sections.

The APTEM section was moved along the approach channel slope (0.0012 ft/ft) to establish the modelled approach (APPRO), full-valley (FULLV) and EXITX sections. The APPRO section was set at one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

The modelled 500-year discharges resulted in roadway overtopping. The incipient overtopping discharge was 6,550 cfs.

11

Bridge Hydraulics Summary

Average bridge embankment elevation500.5ftAverage low steel elevation496.4ft

100-year discharge	6,320	ft ³ /s				
Water-surface elevation	in bridge	e opening		492.9	ft	
Road overtopping?	N	Discharg	e over i	road		_ ⁰ ,s
Area of flow in bridge o	pening	597	ft ²			
Average velocity in bridg	ge openin	g	10.6	ft/s		
Maximum WSPRO tube	e velocity	at bridge		12.7	ft/s	

Water-surface elevation at Approach section	496.1	
Water-surface elevation at Approach section	493.7	
Amount of backwater caused by bridge	2.4 <i>t</i>	

500-year discharge	7,650	ft ³ /s			
Water-surface elevatio	n in bridge	opening	4	^{496.4} ft	
Road overtopping?	Y	Discharge	over ro	ad	966 ,. /s
Area of flow in bridge	opening	854	ft^2		
Average velocity in brid	dge opening	3	7.8	ft/s	
Maximum WSPRO tul	be velocity a	t bridge		8.3	's

Water-surface elevation at Approach section w	vith bridge	497.7
Water-surface elevation at Approach section w	494.3	
Amount of backwater caused by bridge	3.4	

Incipient overtopping discharge <u>6,550</u> ft ³ /s	
Water-surface elevation in bridge opening 492.9)_ft
Area of flow in bridge opening 604 ft^2	,
Average velocity in bridge opening ft/. Maximum WSPRO tube velocity at bridge 13.0	s ft/s
Water-surface elevation at Approach section with bridge	496

Water-surface elevation at Approach section	496.3	
Water-surface elevation at Approach section	n without bridge	493.8
Amount of backwater caused by bridge	2.5 <i>t</i>	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of Laursen's clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the 100-year and incipient road overtopping discharge. The 500-year discharge resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996 and Richardson and others, 1995, p. 145-146). The results of Laursen's clear-water contraction scour for the 500-year event were also computed and included in appendix F.

Pier scour was computed by use of a modified equation developed at Colorado State University (Richardson and others, 1995, p. 36, equation 21) for all discharges modeled. Variables for the pier scour equation include pier length, pier width, average depth and maximum velocity (for the froude number) immediately upstream of the bridge, and four correction factors for pier shape, flow attack angle, streambed-form, and streambed armoring. Although the ratios of scour depth to pier width for each pier at this site exceeds the maximum ratio of 2.4 indicated for round-nose piers aligned with the flow direction (Richardson and others, 1995, p. 36), field observations of the streambed around the piers suggest that there is a flow attack angle on each pier. Therefore, scour depths computed from the equation were assumed to provide a better estimate of the maximum scour depth potential at each pier. In this report, piers are presented as pier 1 and pier 2 for the left and right piers at this site respectively.

Abutment scour for the right abutment at all modelled discharges was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the left abutment was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Because the influence of scour processes on the spill-through embankment material is uncertain, the scour depth at the vertical concrete abutment walls is unknown. Therefore, the variables for the abutment scour equations applied were computed including the width of the spill-through embankments. The total scour depths were applied for the entire spill-through embankment below the elevation at the toe of each embankment, as shown in figure 8.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	8.0	8.8	8.4
Depth to armoring			
Left overbank		_	_
Right overbank			
Local scour:			
Abutment scour	8.9	10.4	9.3
Left abutment	15.8-	17.3-	16.1-
Right abutment			
Pier scour	12.6	11.1	12.8
Pier 1	15.6	13.8	15.8
Pier 2			
Pier 3			

Rock Riprap Sizing

		0	Incipient vertopping
	100-yr discharge	500-yr discharge	discharge
		(D_{50} in feet)	
Abutmants.	2.6	1.1	2.6
Left abutment	2.6	1.1	2.6
Right abutment	1.7 ⁻	0.9-	1.7
Piers:	1.7	0.9	17
Pier 1			
Pier 2			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure CANATH00010001 on town highway 1, crossing Halls Stream, Canaan, Vermont.

Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure CANATH00010001 on town highway 1, crossing Halls Stream, Canaan, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CANATH00010001 on Town Highway 1, crossing Halls Stream, Canaan, Vermont. [VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT Bridge Seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr. dise	charge is 6,320 cul	bic-feet per second	1				
Left abutment wall	0.0	99.0	496.4		493.7						
Left abutment toe	18.4				484.7	8.0	8.9		16.9	467.8	
Pier 1	30.7			477	484.6	8.0		12.6	20.6	464.0	-13
Pier 2	63.9			477	484.8	8.0		15.6	23.6	461.2	-16
Right abutment toe	79.4				485.3	8.0	15.8		23.8	461.5	
Right abutment wall	95.1	99.1	496.4	481	492.6						

17

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CANATH00010001 on Town Highway 1, crossing Halls Stream, Canaan, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT Bridge Seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr. dis	charge is 7,650 cu	bic-feet per second	d				
Left abutment wall	0.0	99.0	496.4		493.7						
Left abutment toe	18.4				484.7	8.8	10.4		19.2	465.5	
Pier 1	30.7			477	484.6	8.8		11.1	19.9	464.7	-12
Pier 2	63.9			477	484.8	8.8		13.8	22.6	462.2	-15
Right abutment toe	79.4				485.3	8.8	17.3		26.15	459.2	
Right abutment wall	95.1	99.1	496.4	481	492.6						

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Emergency Management Agency, March 1980, Flood Insurance Study, Town of Canaan, Essex County, Vermont: Washington, D.C., 20 p.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1989, Monadnock Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photographs, 1984, Contour interval, 20 feet, Scale 1:24,000.
- U.S. Geological Survey, 1989, Lovering Mountain, New Hampshire 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photographs, 1984, Contour interval, 20 feet Scale 1:24,000.
- U.S. Geological Survey, 1989, Pittsburg, New Hampshire 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photographs, 1984, Contour interval, 20 feet Scale 1:24,000.
- Canada Department of Energy, Mines, and Resources, Surveys and Mapping Branch, 1980, Coaticook, Quebec, Canada 15 by 30 Minute quadrangle map: Aerial photographs, 1978, Contour interval, 25 feet, Scale 1:50,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

T1U.S. Geological Survey WSPRO Input File cana001.wsp Т2 Hydraulic analysis for structure CANATH00010001 Date: 23-APR-96 ΨЗ Town Highway 1 Bridge Crossing Halls Stream, Canaan, VT FMB 7650.0, 6550.0 0.0012, 0.0012 0 6320.0, 0.0012, SK 0.0012, * J3 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 * ΧТ APTEM 111 -491.0, 496.40 -418.0, 491.00 GR -136.4, 490.81 -90.5, 490.06 GR -75.3, 489.41 -26.4, 490.26 -6.3, 491.30 -3.7, 490.44 0.0, 485.81 11.9, 486.16 21.3, 486.83 GR -2.4, 486.76 66.1, 486.96 104.6, 484.90 115.5, 489.72 GR 46.8, 487.39 80.7, 485.87 90.2, 484.52 GR 97.9, 484.38 110.3, 486.23 110.6, 486.98 GR 111.4, 488.59 136.3, 490.31 148.5, 498.02 164.2, 499.75 GR * XS EXITX -95 * * * 0.0012 GT N 0.085 0.035 SA -6.3 * XS FULLV 0 * * * 0.0012 GT 0.085 Ν 0.035 SA -6.3 * * SRD LSEL XSSKEW BRIDG 0 496.40 BR 0.0 0.0, 493.66 7.6, 491.73 GR 0.0, 496.41 12.7, 488.09 18.4, 484.72 32.4, 485.55 24.1, 484.42 34.7, 485.15 27.0, 484.31 GR 13.2, 486.89 28.9, 484.61 40.0, 484.69 GR GR 49.2, 484.24 56.0, 484.10 62.0, 484.78 65.5, 485.60 71.1, 484.87 82.0, 486.94 GR 79.4, 485.30 85.8, 490.63 GR 95.1, 492.56 95.1, 496.39 0.0, 496.41 * * BRTYPE BRWDTH EMBELV EMBSS 28.5 CD 3 3.6 499.5 PW 0 484.61, 3.6 484.78, 7.2 496.40, 6.2 Ν 0.040 * EMBWID IPAVE * SRD XR RDWAY 14 23.3 1 -492.1, 496.40 -419.2, 496.25 GR -330.7, 496.72 -262.4, 497.17 -37.1, 500.09 GR -163.4, 498.45 -97.2, 499.30 0.0, 500.57 GR 0.1, 501.14 32.2, 501.48 65.3, 501.55 98.4, 501.30 98.5, 500.40 137.2, 500.79 204.1, 501.93 GR * 124 * * * 0.0012 APPRO AS GT 0.085 Ν 0.035 SA -6.3 * HP 1 BRIDG 492.86 1 492.86 HP 2 BRIDG 492.86 * * 6320 HP 2 BRIDG 493.15 * * 6320 HP 1 APPRO 496.06 1 496.06 HP 2 APPRO 496.06 * * 6320 HP 1 BRIDG 496.41 1 496.41 HP 2 BRIDG 496.41 * * 6668 HP 2 RDWAY 497.52 * * 966 HP 1 APPRO 497.71 1 497.71 HP 2 APPRO 497.71 * * 7650 HP 1 BRIDG 492.93 1 492.93 HP 2 BRIDG 492.93 * * 6550 HP 2 BRIDG 493.23 * * 6550 HP 1 APPRO 496.32 1 496.32 HP 2 APPRO 496.32 * * 6550 * ΕX ER

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

	CROSS-SI WSEL S	ECTION PROP SA# ARE 1 59	ERTIES: ISEQ A K 7 74505	= 3; SE TOPW WE 92	CID = BRIDG TP ALPH 97	; SRD = LEW REW	0. N QCR 8633
	492.86	59	7 74505	92	97 1.00	3 9!	5 8633
	VELOCITY	Y DISTRIBUT	ION: ISEQ =	3; SECID	= BRIDG;	SRD =	0.
X	WS1 492.8 STA. A(I) V(I)	3L LEW 36 3.2 3.2 50.1 6.2	REW AR 95.1 597 17.6 2 31.6 9 10.00	EA .1 74505 21.4 28.3 11.17	K Q . 6320. 24.8 27.2 11.60	VEL 10.59 28.0 27.0 11.70	31.4)
X	STA.	31.4	35.1	38.4	41.6	44.6	47.6
	A(I)	27.	5 26.3	25.8	25.5	25.2	2
	V(I)	11.4	4 12.03	12.24	12.37	12.54	4
X	STA.	47.6	50.5	53.4	56.3	59.3	62.6
	A(I)	25.	1 25.3	24.9	25.8	26.9	9
	V(I)	12.5	7 12.47	12.68	12.23	11.70	5
X	STA.	62.6	66.3	70.2	73.9	78.2	95.1
	A(I)	28.	1 29.6	29.3	33.3	53.8	3
	V(I)	11.2	4 10.67	10.78	9.49	5.88	3
	VELOCITY WSI 493.1	Y DISTRIBUT EL LEW 15 2.0	ION: ISEQ = REW AR 95.1 623	3; SECID EA .9 79373	= BRIDG; K Q . 6320.	SRD = VEL 10.13	0.
Х	STA.	2.0	17.4	21.4	24.8	28.1	31.5
	A(I)	53.	3 34.1	29.5	28.4	28.8	3
	V(I)	5.9	3 9.27	10.71	11.13	10.99	9
Х	STA.	31.5	35.2	38.6	41.8	44.8	47.8
	A(I)	28.	8 27.4	26.9	26.2	26.0	5
	V(I)	10.9	7 11.53	11.76	12.08	11.88	3
Х	STA.	47.8	50.8	53.7	56.6	59.6	62.9
	A(I)	26.1	2 26.4	25.9	26.8	27.9	9
	V(I)	12.0	7 11.97	12.19	11.79	11.34	1
х	STA.	62.9	66.8	70.5	74.3	78.7	95.1
	A(I)	29.	9 29.6	31.4	34.7	55.2	L
	V(I)	10.5	5 10.67	10.06	9.11	5.73	3
	CROSS-SI WSEL S	ECTION PROP SA# ARE 1 238	ERTIES: ISEQ A K 2 121466	= 5; SE TOPW WE 480 4	CID = APPRO TP ALPH 80	; SRD = LEW REW	124. V QCR 30116
	496.06	2 131	3 229127 5 350593	632 6	38 2.31	-485 14!	5 33370
	VELOCITY WSI 496.(Y DISTRIBUT EL LEW D6 -486.2	ION: ISEQ = REW AR 145.4 3695	5; SECID EA .3 350593	= APPRO; K Q . 6320.	SRD = 3 VEL 1.71	124.
Х	STA.	-486.2	-368.0 -	298.7	-232.6	-167.9	-105.6
	A(I)	424.	9 353.8	340.0	336.3	333.3	3
	V(I)	0.7	4 0.89	0.93	0.94	0.9	5
х	STA.	-105.6	-57.1	-3.5	7.0	16.4	26.5
	A(I)	302.	3 305.9	103.3	92.9	93.3	L
	V(I)	1.0	5 1.03	3.06	3.40	3.39	Ə
х	STA.	26.5	37.2	48.3	59.3	69.8	79.2
	A(I)	96.3	2 96.7	97.0	95.2	92.0)
	V(I)	3.2	3 3.27	3.26	3.32	3.43	3
х	STA.	79.2	87.9	95.4	103.5	116.1	145.4
	A(I)	91.	4 86.7	93.5	113.5	147.!	5
	V(I)	3.4	5 3.64	3.38	2.78	2.14	1

	CROSS WSEL	S-SECTION SA# 1	PROPERTI AREA 932	ES: ISEQ K 96294	= 3; TOPW 0	SECID = WETP AL 202	BRIDG; S PH LEW	RD = REW	0. QCR 0
	496.41		932	96294	0	202 1.	00 0	95	0
	VELOC	UTY DISTE WSEI 496.42	RIBUTION: LEW L 0.0	ISEQ = N REW 95.1	3; SEC AREA 932.5	ID = BRI K 96294.	DG; SRD Q 6668.	= VEL 7.15	0.
Х	STA. A(I) V(I)	0.0) 1 76.1 4.38	.4.3 51.9 6.42	19.0 45 7.	22.9 .5 32	26 43.6 7.64	.5 41.9 7.96	30.0
Х	STA. A(I) V(I)	30.0) 3 43.7 7.63	4.0 42.4 7.87	37.7 41 8.	41.2 .4 06	44 40.2 8.30	.6 40.7 8.19	48.0
Х	STA. A(I) V(I)	48.0) 5 40.1 8.31	51.3 40.4 8.26	54.6 40 8.	57.9 .8 17	61 41.0 8.13	.4 42.4 7.86	65.1
Х	STA. A(I) V(I)	65.2	L 6 43.5 7.66	59.1 44.7 7.47	73.0 46 7.	77.1 .3 20	81 51.0 6.53	.9 74.9 4.45	95.1
x	VELOC 49 STA.	UTY DIST WSEL 97.52 -49 -492.3	RIBUTION: LEW 92.1 -23	ISEQ = REW AR 5.3 222	4; SEC EA .7 35 475.2	ID = RDW. K 41. -467.1	AY; SRD Q V 966. 4. -459	= 2 EL 34	14. -451.7
	A(I) V(I)		10.0 4.85	9.3 5.21	9	.4 13	9.3 5.22	9.0 5.34	
Х	STA. A(I) V(I)	-451.7	7 -44 9.2 5.24	4.1 - 9.1 5.28	436.6 9 5.	-429.1 .3 17	-421 9.3 5.17	.7 9.4 5.16	-414.2
X	STA. A(I) V(I)	-414.2	2 -40 9.7 4.95	06.3 - 10.0 4.83	397.8 10 4.	-388.5 .5 62	-378 10.9 4.44	.5 11.5 4.22	-367.3
X	STA. A(I) V(I)	-367.3	3 -35 12.1 4.00	54.7 - 12.8 3.76	340.3 14 3.	-322.8 .0 44	-298 16.0 3.02	.9 21.9 2.20	-235.3
	CROSS WSEI	S-SECTION SA# 1	PROPERTI AREA 3181	ES: ISEQ K 195043	= 5; TOPW 485	SECID = . WETP AL 486	APPRO; S PH LEW	RD = REW	124. QCR 46242
	497.71	2	1566 4747	303205 498248	154 639	161 648 2.	20 -490	148	28301 49438
	VELOC 49	CITY DISTR WSEL 97.71 -49	RIBUTION: LEW 91.0 14	ISEQ = REW AR 8.0 4746	5; SEC EA .6 4982	ID = APP K 48. 7	RO; SRD Q V 650. 1.	= 12 EL 61	24.
Х	STA. A(I) V(I)	-491.0) -38 510.3 0.75	404.5 0.95	325.3 401 0.	-266.1 .2 95	-206 410.2 0.93	.0 385.8 0.99	-149.7
Х	STA. A(I) V(I)	-149.7	7 -9 395.8 0.97	94.3 354.0 1.08	-50.0 360 1.	-1.4 .0 06	8 120.4 3.18	.9 116.6 3.28	19.1
X	STA. A(I) V(I)	19.3	L 3 120.6 3.17	0.3 121.5 3.15	41.8 123 3.	53.7 .3 10	65 122.0 3.13	.2 120.9 3.16	76.2
X	STA. A(I) V(I)	76.2	2 8 115.0 3.33	5.8 115.4 3.32	94.6 122 3.	103.9 .0 14	117 142.4 2.69	.8 184.7 2.07	148.0

	CR(W	OSS-SE(SEL SA	CTION A# 1	PROPER AREA 604	TIES:	ISEQ K 667	= 3 TOPW 92	; SEC WEI 9	'ID = 'P Al 8	BRIDG LPH	; SRD LEW	= REW	0. QCR 8760
	492	.93		604	75	667	92	9	8 1	.00	3	95	8760
	VE:	LOCITY WSEI	DIST	RIBUTIC LEW 2.9	N: IS REW 95.1	EQ = AR: 603	3; EA	SECID K 75667	= BR:	IDG; Q	SRD = VEL 10.85	I	0.
Х	STA. A(I) V(I)		2.9	51.3 6.39	17.6	31.9 0.26	21.4	28.6 11.47	24.8	27.5 11.91	28.0	27.9 11.76	31.5
Х	STA. A(I) V(I)		31.5	5 27.8 11.79	35.1 1	26.4 2.39	38.5	26.0 12.61	41.0	5 25.7 12.75	44.7	25.3 12.93	47.6
Х	STA. A(I) V(I)		47.0	5 25.5 12.85	50.6 1	25.7 2.75	53.5	25.3 12.97	56.4	1 26.2 12.52	59.4	27.2 12.04	62.7
Х	STA. A(I) V(I)		62.	7 28.5 11.51	66.5 1	29.3 1.19	70.3	30.5 10.73	74.3	1 33.7 9.71	78.4	53.4 6.13	95.1
	VE:	LOCITY WSEI 493.23	DISTI 1 3	RIBUTIC LEW 1.7	N: IS REW 95.1	EQ = ARI 631	3; EA .4	SECID K 80741.	= BR:	IDG; Q 6550.	SRD = VEL 10.37	I.	0.
Х	STA. A(I) V(I)		1.7	7 54.5 6.01	17.4	34.5 9.49	21.4	29.9 10.97	24.9	9 28.7 11.40	28.1	29.1 11.26	31.6
Х	STA. A(I) V(I)		31.0	5 29.2 11.22	35.3 1	27.7 1.80	38.6	27.2 12.04	41.8	3 26.5 12.37	44.9	26.9 12.16	47.9
Х	STA. A(I) V(I)		47.9	26.2 12.50	50.8 1	26.4 2.40	53.7	26.9 12.19	56.	7 27.1 12.09	59.7	28.2 11.63	63.0
Х	STA. A(I) V(I)		63.0) 30.3 10.81	66.9 1	30.1 0.90	70.6	31.8 10.30	74.9	5 34.0 9.63	78.7	56.2 5.82	95.1
	CR(W	OSS-SEC SEL SA	CTION A# 1 2	PROPER AREA 2507 1353 3860	2TIES: 131 240 371	ISEQ K 651 233 884	= 5 TOPW 483 152 635	; SEC WET 48 15 64	ID = P A1 4 9 2 2	APPRO LPH	; SRD LEW -489	= REW 146	124. QCR 32403 22892 35594
	VE:	LOCITY WSEI	DIST	RIBUTIC LEW	N: IS REW	EQ = AR	5; EA	SECID K	= API	PRO;	SRD = VEL	12	24.
Х	STA. A(I) V(I)	496.32	2 -48 -489.7	39.7 7 - 451.0 0.73	145.8 369.0 3	3860 -: 55.0 0.92	.0 3 302.7	71884. - 346.3 0.95	238.7	5550. 7 348.3 0.94	1.70 -174.7	- 347.9 0.94	-112.2
Х	STA. A(I) V(I)	-	-112.2	2 309.4 1.06	-63.8	18.7 1.03	-12.2	138.1 2.37	5.7	7 97.0 3.38	15.2	97.4 3.36	25.4
Х	STA. A(I) V(I)		25.4	1 98.3 3.33	36.0 1	01.9 3.21	47.3	100.2 3.27	58.4	1 100.3 3.27	69.1	95.1 3.44	78.7
X	STA. A(I) V(I)		78.7	7 94.1 3.48	87.4	93.1 3.52	95.4	97.1 3.37	103.0	5 118.9 2.75	116.6	151.8 2.16	145.8

+++ BEGINNIN	G PROFILI	E CALCULA	TIONS -		3				
VOID.CODE	CDDI	T ਦਾ M		מעע	모모	FCT	CDWC	0	WCET
SRD.CODE	FLEN	REW	K A	ALPH	HO	EGH	FR#	VEL	WOED
EXITX:XS *	****	-453	2230 (0.30	****	493.71	491.22	6320	493.41
-94 *	****	142 18	32375 2	2.38	****	******	0.40	2.83	
ETTT T V. EV	0 5	1 5 3	2220 (1 20	0 1 1	102 02	******	6220	102 E1
0	95 -	142 18	2230 (2.38	0.00	493.83	0.40	2.82	493.34
<<<	< <the abo<="" td=""><td>OVE RESUL</td><td>JTS REFI</td><td>LECT</td><td>"NORMA</td><td>L" (UNCO</td><td>ONSTRICTE</td><td>D) FLOW></td><td>>>>></td></the>	OVE RESUL	JTS REFI	LECT	"NORMA	L" (UNCO	ONSTRICTE	D) FLOW>	>>>>
	104	450	0044		0 1 5	400.00	ale ale ale ale ale ale ale	6200	100 80
APPRO:AS	124 -	-453 140 10	2244 (J.29 D.20	0.15	493.99	0 2 Q	6320 2 02	493.70
124	IZ4 < <the ab(<="" td=""><td>VE RESUI</td><td>TS REFI</td><td>LECT</td><td>"NORMA</td><td>U.UI U.UINCO</td><td>NSTRICTE</td><td>Z.0Z D) FLOW></td><td>>>>></td></the>	VE RESUI	TS REFI	LECT	"NORMA	U.UI U.UINCO	NSTRICTE	Z.0Z D) FLOW>	>>>>
					norun			5, 12011,	
	<<< <resu< td=""><td>JLTS REFI</td><td>ECTING</td><td>THE</td><td>CONSTR</td><td>RICTED FI</td><td>LOW FOLLO</td><td>W>>>>></td><td></td></resu<>	JLTS REFI	ECTING	THE	CONSTR	RICTED FI	LOW FOLLO	W>>>>>	
XSID.CODE	SRDL	LEW	AREA	VHD	нг	EGL	CRWS	0	WSEL
SRD	FLEN	REW	K A	ALPH	HO	ERR	FR#	VEL	NOLL
BRIDG:BR	95	3	597 2	2.84	0.28	495.70	491.87	6320	492.86
0	95	95 7	4433 1	1.63	1.71	0.00	0.94	10.59	
קע האגע	CD FLOW	С	D/A	T.SE	יד. די	.FN XI.Z	AR XEVE		
3.	0. 1.	0.784 C).094 4	496.4	0 ****	** ****	** ******		
							_		_
XSID:COD RDWAY:RG	E SRD 14.	FLEN <	HF << <emi< td=""><td>VHD BANKM</td><td>EG IENT IS</td><td>L EF NOT OVE</td><td>RR (CRTOPPED>:</td><td>Q WSE >>>></td><td>iLi</td></emi<>	VHD BANKM	EG IENT IS	L EF NOT OVE	RR (CRTOPPED>:	Q WSE >>>>	iLi
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K A	ALPH	HO	ERR	FR#	VEL	
APPRO:AS	96 -	-485	3697 (0.10	0.18	496.17	491.48	6320	496.06
124	116	145 35	086/ 2	2.31	0.29	0.01	0.19	1./1	
M(G)	M(K)	KO	XLKO	XRF	to c	TEL			
0.841	0.548	L58048.	-5.	87	~ . 49	6.03			
		<<<< <end< td=""><td>OF BRI</td><td>IDGE</td><td>COMPUI</td><td>ATIONS>:</td><td>>>>></td><td></td><td></td></end<>	OF BRI	IDGE	COMPUI	ATIONS>:	>>>>		
FIRST USER	DEFINED	TABLE.							
XSID:CODE	SRD	LEW	REW		Q	K	AREA	VEL	WSEL
EXITX:XS	-95.	-454.	142.	632	20. 18	2375.	2230.	2.83	493.41
FULLV:FV	0.	-454.	142.	632	20. 18	3116.	2238.	2.82	493.54
BRIDG:BR	0.	3.	95.	632	20. 7	4433.	597.	10.59	492.86
RDWAY:RG	14.,	*******	****		0.****	******	******	1.00**	* * * * * *
APPRO:AS	124.	-486.	145.	632	20. 35	60867.	3697.	1.71	496.06
YGIDICOD	E XIKO	VPKO	ĸ	٦ ۲					
APPRO:AS	-5.	87.	158048	2					
	5.	57.							
SECOND USER	DEFINED	TABLE.							
XSID:COD	E CRWS	5 FR#	YMI	IN	YMAX	HF	HO VHD	EG	L WSEL
EXITX:XS	491.22	2 0.40	484.1	13 4	99.50*	******	**** 0.3	0 493.7	1 493.41
FULLV:FV	******	• 0.40	484.2	25 4	99.62	0.11 (0.00 0.3	0 493.8	3 493.54
BRIDG:BR	491.8	/ 0.94	484.1	10 4	96.41	0.28 1	L.71 2.84	4 495.7	0 492.86
KDWAY:RG	/01 /0	x x x x x x x x x x x x x x x x x x x	496.2	25 5 10 4	01.93* 00 77	0 10 /	0 0 0 1	ллжжжжжж П 10с 1	7 106 00
ALLKO: NO	マジエ・40	. 0.15	, 101.4	±0 4		0.10 (י⊥•∪ עב•י	0 700.L	, 10.00

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
EXITX:XS	* * * * * *	-461	2598	0.32	* * * * *	494.34	491.64	7650	494.02
-94	* * * * * *	143	220696	2.37	* * * * *	*****	0.39	2.94	
FULLV:FV	95	-461	2606	0.32	0.11	494.47	******	7650	494.15
0	95	143	221523	2.37	0.00	0.01	0.38	2.94	
<<	<<< <the< td=""><td>ABOVE RES</td><td>SULTS RE</td><td>FLECT</td><td>"NORM#</td><td>AL" (UNCO</td><td>DNSTRICTED)</td><td>FLOW></td><td></td></the<>	ABOVE RES	SULTS RE	FLECT	"NORM#	AL" (UNCO	DNSTRICTED)	FLOW>	
APPRO:AS	124	-462	2613	0.32	0.15	494.63	******	7650	494.31
124	124	143	222271	2.37	0.00	0.01	0.38	2.93	
<<	<< <the< td=""><td>ABOVE RES</td><td>SULTS RE</td><td>FLECT</td><td>"NORM2</td><td>AL" (UNCO</td><td>DNSTRICTED)</td><td>FLOW></td><td></td></the<>	ABOVE RES	SULTS RE	FLECT	"NORM2	AL" (UNCO	DNSTRICTED)	FLOW>	
===215 FLC	OW CLASS WS1,WSS	1 SOLUTI D,WS3,RGN	ION INDI MIN =	CATES 497.62	POSSIE 2	BLE ROAD 0.00	OVERFLOW. 493.25	496	.25
===260 AT ===220 FLC ===245 AT	TEMPTING DW CLASS WS3,WSI TEMPTING <<<< <r< td=""><td>FLOW CLA 1 (4) SC U,WS1,LSE FLOW CLA</td><td>ASS 4 SC DLUTION EL = 4 ASS 2 (5 EFLECTIN</td><td>INDICA 93.53) SOLU</td><td>N. ATES PC 49 JTION. CONSTR</td><td>OSSIBLE 1 96.94 RICTED FI</td><td>PRESSURE FI 497.11 LOW FOLLOW></td><td>OW. 496.</td><td>40</td></r<>	FLOW CLA 1 (4) SC U,WS1,LSE FLOW CLA	ASS 4 SC DLUTION EL = 4 ASS 2 (5 EFLECTIN	INDICA 93.53) SOLU	N. ATES PC 49 JTION. CONSTR	OSSIBLE 1 96.94 RICTED FI	PRESSURE FI 497.11 LOW FOLLOW>	OW. 496.	40
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRIDG:BR	95	0	854	0.95	****	497.36	492.14	6668	496.41
0	*****	95	96294	1.00	****	******	0.46	7.81	
TYPE I 3.	PPCD FLC 0.5	C C	P/A 0.085	LSI 496.4	EL BI 40 ****	LEN XLA	AB XRAB ** *****		
XSID:CO	DDE S	RD FLEN	N HF	VHD	EC	GL EI	RR Q	WSE	L
RDWAY:RO	G 1	4. 101.	. 0.02	0.09	497.7	78 0.0	00 966.	497.5	2
LT: 9 RT:	Q W 966. 2 0.***	ILEN LE 57492 *** ****	EW RE 2235 ** *****	W DM2	AX DAV .3 0. ** ****	/G VMAX .9 5.0 ** ****	VAVG HAV 4.3 1. ****	'G CAV 1 3. * ****	G 1 *
===140 AT \$	SECID "A	APPRO": P	END OF C	ROSS S	SECTION	I EXTEND	ED VERTICAL	LY.	00 0
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
APPRO:AS	96	-490	4750	0.09	0.13	497.80	491.91	7650	497.71
124	118	148	498702	2.20	0.27	0.00	0.15	1.61	
		<<< <e< td=""><td>END OF E</td><td>RIDGE</td><td>COMPUT</td><td>TATIONS>:</td><td>>>>></td><td></td><td></td></e<>	END OF E	RIDGE	COMPUT	TATIONS>:	>>>>		

F	'IRST USER	DEFINED	TABLE.						
	XSID:CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
	EXITX:XS	-95.	-462.	143.	7650.	220696.	2598.	2.94	494.02
	FULLV:FV	Ο.	-462.	143.	7650.	221523.	2606.	2.94	494.15
	BRIDG:BR	Ο.	0.	95.	6668.	96294.	854.	7.81	496.41
	RDWAY:RG	14.3	* * * * * * *	966.	966.*	******	0.	1.00	497.52
	APPRO:AS	124.	-491.	148.	7650.	498702.	4750.	1.61	497.71

SECOND (JSER	DEFINED	TABLE.							
XSID:C	CODE	CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
EXITX:	XS	491.64	0.39	484.13	499.50*	*****	****	0.32	494.34	494.02
FULLV:	FV	******	0.38	484.25	499.62	0.11	0.00	0.32	494.47	494.15
BRIDG:	BR	492.14	0.46	484.10	496.41*	*****	****	0.95	497.36	496.41
RDWAY:	RG	******	*******	496.25	501.93	0.02*	****	0.09	497.78	497.52
APPRO:	AS	491.91	0.15	484.40	499.77	0.13	0.27	0.09	497.80	497.71

XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
EXITX:XS -94	* * * * * * * * * * * *	-454 142	2296 189020	0.30 2.38	* * * * * * * * * *	493.82 ******	491.29 0.40	6550 2.85	493.52
FULLV:FV 0 <<	95 95 << <the< td=""><td>-455 142 ABOVE RES</td><td>2304 189777 SULTS RE</td><td>0.30 2.38 FLECT</td><td>0.11 0.00 "NORM#</td><td>493.95 0.01 AL" (UNC</td><td>****** 0.39 ONSTRICTEI</td><td>6550 2.84 C) FLOW:</td><td>493.65</td></the<>	-455 142 ABOVE RES	2304 189777 SULTS RE	0.30 2.38 FLECT	0.11 0.00 "NORM#	493.95 0.01 AL" (UNC	****** 0.39 ONSTRICTEI	6550 2.84 C) FLOW:	493.65
APPRO:AS 124 <<	124 124 << <the< td=""><td>-455 142 ABOVE RES</td><td>2310 190459 SULTS RE</td><td>0.30 2.38 FLECT</td><td>0.15 0.00 "NORM#</td><td>494.10 0.01 AL" (UNC</td><td>****** 0.39 DNSTRICTEI</td><td>6550 2.84 C) FLOW:</td><td>493.81</td></the<>	-455 142 ABOVE RES	2310 190459 SULTS RE	0.30 2.38 FLECT	0.15 0.00 "NORM#	494.10 0.01 AL" (UNC	****** 0.39 DNSTRICTEI	6550 2.84 C) FLOW:	493.81
===215 FLC	W CLASS WS1,WSS	1 SOLUTI D,WS3,RGN	ION INDI MIN =	CATES 496.32	POSSIE 2	BLE ROAD 0.00	OVERFLOW 492.93	496	5.25
===260 ATI	EMPTING	FLOW CLA	ASS 4 SO	LUTION	1.				
	<<< <r< td=""><td>ESULTS RI</td><td>EFLECTIN</td><td>G THE</td><td>CONSTR</td><td>RICTED FI</td><td>LOW FOLLOW</td><td>₩>>>>></td><td></td></r<>	ESULTS RI	EFLECTIN	G THE	CONSTR	RICTED FI	LOW FOLLOW	₩>>>>>	
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
BRIDG:BR 0	95 95	3 95	604 75681	3.02 1.65	0.28 1.84	495.95 0.00	492.06 0.96	6550 10.85	492.93
TYPE F 3.	PCD FLO 0. 4	W C . 0.779	P/A 0.094	LSE 496.4	EL BI 40 ****	EN XL:	AB XRAB ** *****		
XSID:CC	DE S	RD FLEN	N HF	VHD	EC	GL EI	RR (Q WSE	3L
RDWAY:RG	; 1	4.	<<< <e< td=""><td>MBANKN</td><td>IENT IS</td><td>S NOT OV</td><td>ERTOPPED>:</td><td>>>>></td><td></td></e<>	MBANKN	IENT IS	S NOT OV	ERTOPPED>:	>>>>	
SRD:CODE	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	FR#	Q VEL	WSEL
APPRO:AS 124	96 117	-489 146	3862 372076	0.10 2.30	0.18 0.30	496.43 0.01	491.55 0.18	6550 1.70	496.32
M(G) 0.841	M(K) 0.558	КÇ 163783	Q XLKQ 6.	XRF 86	Q (5.***	DTEL ****			
		<<< <i< td=""><td>END OF B</td><td>RIDGE</td><td>COMPUT</td><td>TATIONS></td><td>>>>></td><td></td><td></td></i<>	END OF B	RIDGE	COMPUT	TATIONS>	>>>>		
FIRST USF	R DEFIN	ED TABLE							
XSID:COD	DE SR	D LEW	REW		0	K	AREA	VEL	WSEL
EXITX:XS	-9	5455	. 142.	655	50. 18	39020.	2296.	2.85	493.52
FULLV:FV	7	0456	. 142.	655	50. 18	39777.	2304.	2.84	493.65
BRIDG:BR	2	0. 3	. 95.	655	50. 7	75681.	604.	10.85	492.93
RDWAY:RG	; 1	4.*****	******		Ο.	0.	0.	1.00**	*****
APPRO:AS	12	4490	. 146.	655	50. 37	72076.	3862.	1.70	496.32
XSID:CC	DE XL	KQ XRKÇ	2	KQ					
		6 86	16378	3					

SECOND USER DEFINED TABLE.

CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
491.29	0.40	484.13	499.50*	* * * * * *	****	0.30	493.82	493.52
******	0.39	484.25	499.62	0.11	0.00	0.30	493.95	493.65
492.06	0.96	484.10	496.41	0.28	1.84	3.02	495.95	492.93
*******	*****	496.25	501.93	0.03*	****	0.10	496.38*	* * * * * * *
491.55	0.18	484.40	499.77	0.18	0.30	0.10	496.43	496.32
	CRWS 491.29 ****** 492.06 ******** 491.55	CRWS FR# 491.29 0.40 ******* 0.39 492.06 0.96 ****************** 491.55 0.18	CRWS FR# YMIN 491.29 0.40 484.13 ****** 0.39 484.25 492.06 0.96 484.10 ****************** 496.25 491.55 0.18 484.40	CRWS FR# YMIN YMAX 491.29 0.40 484.13 499.50* ******* 0.39 484.25 499.62 492.06 0.96 484.10 496.41 ******** 496.25 501.93 491.55 0.18 484.40 499.77	CRWS FR# YMIN YMAX HF 491.29 0.40 484.13 499.50****** ******* 0.39 484.25 499.62 0.11 492.06 0.96 484.10 496.41 0.28 ******************** 496.25 501.93 0.03* 491.55 0.18 484.40 499.77 0.18	CRWSFR#YMINYMAXHFHO491.290.40484.13499.50***********************************	CRWS FR# YMIN YMAX HF HO VHD 491.29 0.40 484.13 499.50*********** 0.30 ******* 0.39 484.25 499.62 0.11 0.00 0.30 492.06 0.96 484.10 496.41 0.28 1.84 3.02 **************** 496.25 501.93 0.03***** 0.10 491.55 0.18 484.40 499.77 0.18 0.30 0.10	CRWS FR# YMIN YMAX HF HO VHD EGL 491.29 0.40 484.13 499.50***********************************

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for channel sample taken at the approach cross-section of structure CANATH00010001, in Canaan, Vermont.

APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form

Structure Number CANATH0010001

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) 08 / 05 / 94

Highway District Number (I - 2; nn) 09

Town (FIPS place code; I - 4; nnnnn) <u>11800</u>

Waterway (1 - 6) HALLS STREAM

Route Number TH001

Topographic Map <u>Monadnock.Mtn</u>

Latitude (I - 16; nnnn.n) 45006

County (FIPS county code; I - 3; nnn) ____009

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): _-____

Vicinity (1 - 9) 0.15 MI TO JCT W VT25

Hydrologic Unit Code: 01080101

Longitude (i - 17; nnnnn.n) 71304

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) ____10050600010506

Maintenance responsibility (I - 21; nn) 03	Maximum span length (I - 48; nnnn) 0033
Year built (1 - 27; YYYY) 1931	Structure length (I - 49; nnnnnn) 000099
Average daily traffic, ADT (I - 29; nnnnnn) 000240	Deck Width (I - 52; nn.n) 233
Year of ADT (1 - 30; YY) <u>91</u>	Channel & Protection (I - 61; n) 5
Opening skew to Roadway (I - 34; nn)0	Waterway adequacy (I - 71; n) 6
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn) <u>104</u>	Year Reconstructed (1 - 106) 1961
Approach span structure type (I - 44; nnn) 000	Clear span (nnn.n ft)
Number of spans (I - 45; nnn)	Vertical clearance from streambed (nnn.n ft) 012.0
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (nnn.n ft ²)

Structural inspection report of 6/23/93 indicates a 3-span concrete T-beam bridge. The report notes heavy concrete spalling with reinforcement rods exposed at the right abutment and right wingwall. The footings are not exposed and no settlement is apparent. Heavy channel scour is indicated particularly at the upstream ends of the piers. Minor embankment erosion was noted. The channel alignment is straight into the bridge crossing. Riprap coverage is good. No point bars are noted. Debris pile-up is noted particularly around the piers.

Bridge Hydrolo	ogic Data	
Is there hydrologic data available? $\underline{\mathbf{N}}$ if No, type ctrl-n h	h VTAOT Draina	ge area <i>(mi²)</i> :
Terrain character:		
Stream character & type: _		
Streambed material: Coarse gravel with boulders and s	stones	
Discharge Data (cfs): $Q_{2,33}$ - Q_{10}	-	Q ₂₅ -
$Q_{50} = Q_{100}$	-	Q ₅₀₀ -
Record flood date (MM / DD / YY): - / - / - Wa	/ater surface elevat	ion (ft): -
Estimated Discharge (cfs): Velocity at Q	(ft/s):	
Ice conditions (Heavy, Moderate, Light) : Light Deb	oris (Heavy, Moderate,	, Light): Moderate
The stage increases to maximum highwater elevation ((Rapidly, Not rapidly):	-
The stream response is (<i>Flashy, Not flashy</i>):		
Describe any significant site conditions upstream or down stage: Bridge is just upstream from the Hall stream configuration may increase backwater at and upstream of this h	wnstream that may afluence with the Co bridge site.	y influence the stream's onnecticut River which
may mercase backwater at and upstream of this b	bridge site.	
The watershed storage area in percent):%		l'a taile da at l o increa all'a tha ann a tao ann
oi the site)	awaters; 2- uniformiy d	istributed; 3-immediatly upstream
Water Surface Elevation Estimates for Existing Structur	<u>re:</u>	
Peak discharge frequency Q _{2.33} Q ₁₀	Q ₂₅ Q ₅₀	Q ₁₀₀
Water surface elevation $(\#)$		-
Velocity (ft / sec)		-
Long term stream bed changes		
Is the roadway overtopped below the Q ₁₀₀ ? (Yes, No, Un	nknown): <u>U</u>	Frequency:
Relief Elevation (#): Discharge over road	ndway at Q ₁₀₀ (#³/ s	ec):
Are there other structures nearby? (Yes, No, Unknown):	U If No or Unknowi	n, type ctrl-n os
Upstream distance (<i>miles</i>): Town:		Year Built:
Highway No. : Structure No. :	Structure Type	e:
Clear span (#): Clear Height (#): Full	Waterway (#2): -	

Downstream distance (<i>miles</i>): -	Town:	Year Built:
Clear span (#): - Clear Height (#):	- Full Waterway (tt^2) :	
Comments:		
-		
US	GS Watershed Data	
Watershed Hydrographic Data		
Drainage area (DA) <u>89.52</u> mi ²	Lake and pond area	mi ²
Watershed storage (ST) 0.5 %		
Bridge site elevation 1070 ft	Headwater elevation 2000)ft
Main channel length <u>23.10</u> mi		1600
10% channel length elevation	ft 85% channel length e	elevation 1000 ft
Main channel slope (S) ft /	mi	
Watershed Precipitation Data		
Average site precipitation i	n Average headwater precipita	ation in
Maximum 2yr-24hr precipitation event (/	24,2)in	
Average seasonal snowfall (Sn)	ft	

Bridge Plan Data

Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 06 / 1931 Project Number SA 11 - 1931 Minimum channel bed elevation: 85.0 Low superstructure elevation: USLAB 100.45 DSLAB 98.95 USRAB 100.55 DSRAB 99.05
Benchmark location description: BM#1, spike in 10 inch maple, stationing 6+57, 14 feet right, elevation 100.00. The maple tree is 130 feet from left abutment on right bank of the Connecticut River upstream of bridge and confluence, 4 feet from right side of roadway going north.
Reference Point (<i>MSL, Arbitrary, Other</i>): Arbitrary Datum (<i>NAD27, NAD83, Other</i>): Arbitrary
Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness 2.0 Footing bottom elevation: 84.0*
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length:
If 3: Footing bottom elevation:
Is boring information available? <u>N</u> If no, type ctrl-n bi Number of borings taken:
Foundation Material Type: 1 (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: Material at foundations was determined at time of excavation for abutments and piers. The material is noted as sand and gravel with a little clay.

Comments: *Footing bottom elevation is available for the right abutment only at 84.11 feet. Two piers of the bridge were set with a bottom elevation of 80.0 and a spread footing thickness of 2.0 feet. The low chord elevations at both piers is about 99.

Cross-sectional Data

Is cross-sectional data available? <u>N</u> If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? _____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
							i			i	
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Comments: N	O CRO	SS SECT	ION INF	ORMAT	ION						
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	
Bed elevation	-	-	_								-
Low cord to				-	-	-	-	-	-	-	-
bed length	-				-	-	-	-	-	-	- -
bed length	-	-	-	-	-	-	-	-	-	-	- - -
Station	-	-	-	-	-	-	-	-	-	-	- - -
Station Feature	-	-	-	-	- - -		- - -	-	-	- - -	- - - -
Station Feature Low cord elevation	-	-	-	- - -	- - - -	- - - -	- - -	- - -	- - -	- - -	- - - -
Station Feature Low cord elevation Bed elevation	- - - -	- - -	-	- - - -							

APPENDIX E: LEVEL I DATA FORM

Bridge Field Data Collection and Processi	ing FormQa/Qc Check by:MAW Date:Date:1/20/95Computerized by:EMB EMBDate:1/20/95CANATH00010001Reviewd by:EMB Date:Date:4/22/96					
A. General Location Descriptive						
1. Data collected by <i>(First Initial, Full last name)</i>	E. BOEHMLER Date (MM/DD/YY) 10 27 1994					
2. Highway District Number County ESSEX (009)	Mile marker <u>-</u> Town CANAAN (11800)					
Waterway (1 - 6) HALLS STREAM	Road Name					
Route Number <u>TH01</u> 3 Descriptive comments	Hydrologic Unit Code: 01080101					
The structure is a concrete T-beam type brid with VT253, at the conten of Possbar Falls y	dge located about 0.15 miles from the intersection of TH01					
with v 1255, at the center of beecher rans v	mage.					
B. Bridg	ge Deck Observations					
4. Surface cover LBUS <u>6</u> RBUS <u>2</u>	LBDS <u>5</u> RBDS <u>2</u> Overall <u>2</u>					
(2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row cr 5. Ambient water surface US 1 UB 1	ops; 4 - Pasture; 5 - Shrub- and brushland; 6 - Forest; 7 - Wetland) DS 1 (1 - pool: 2 - riffle)					
6. Bridge structure type 2 (1- single span; 2- n	multiple span; 3 - single arch; 4 - multiple arch; 5 - cylindrical culvert;					
7. Bridge length 99.0 (feet) Span length 33.0 (feet) Bridge width 23.3 (feet)						
7. Bridge length <i>(feet)</i>	Span length <u>33.0</u> (feet) Bridge width <u>23.3</u> (feet)					
7. Bridge length <u>99.0</u> (feet) Road approach to bridge:	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF):					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10					
7. Bridge length 99.0 (feet) Road approach to bridge: 8. LB 0 RB 1 (0 even, 1- lower, 2- higher) 9. LB 1 RB 1 (1- Paved, 2- Not paved)	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Q					
7. Bridge length <u>99.0</u> (feet) Road approach to bridge: 8. LB <u>0</u> RB <u>1</u> (0 even, 1- lower, 2- higher) 9. LB <u>1</u> RB <u>1</u> (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot):	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle 0 0					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle 0 0					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle Q Opening skew to roadway Q Can add to roadway					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle Q Opening skew to roadway 17. Channel impact zone 1: Exist? Y (Y or N)					
7. Bridge length	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle Q 0 Image: Second Angle 0					
7. Bridge length 99.0 (feet) Road approach to bridge: 8. LB 0 RB 1 (0 even, 1- lower, 2- higher) 9. LB 1 RB 1 (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left 2.3:1 US right 5.0:1 Protection 13.Erosion 14.Severity 11.Type 12.Cond. 13.Erosion 14.Severity RBUS 0 2 1 2 1 2 1 2 1 2 1 2 1	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle Q 0 17. Channel impact zone 1: Exist? Y (Y or N) Where? <u>RB</u> (LB, RB) Severity 1 Range? 75 feet US (US, UB, DS) to 33 feet US Channel impact zone 2: Exist? Y ot ot ot in					
7. Bridge length 99.0 (feet) Road approach to bridge: 8. LB 0 RB 1 (0 even, 1- lower, 2- higher) 9. LB 1 RB 1 (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left 2.3:1 US right 5.0:1 Protection 13.Erosion 14.Severity 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 0 - 0 0 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 2 1 2 1 Bank protection types: 0- none; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches;	Span length 33.0 (feet)Bridge width 23.3 (feet)Channel approach to bridge (BF):15. Angle of approach: 3016. Bridge skew: 10Approach Angle QBridge Skew Angle 0 Q 0 0 0 Q 0 0 0 Q 0 0 0 Q 0					
7. Bridge length 99.0 (feet) Road approach to bridge: 8. LB 0 RB 1 (0 even, 1- lower, 2- higher) 9. LB 1 RB 1 (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left 2.3:1 US right 5.0:1 VS left 2.3:1 US right 5.0:1 Protection 13.Erosion 14.Severity 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 0 - 0 0 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 2 1 2 1 Bank protection types: 0- none; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped;	Span length 33.0 (feet)Bridge width 23.3 (feet)Channel approach to bridge (BF):15. Angle of approach: 3016. Bridge skew: 10Approach Angle QBridge Skew Angle PApproach Angle Q \mathcal{O} Approach I Angle Q \mathcal{O} Approach I Angle Q \mathcal{O} Approach I Angle Q \mathcal{O} Approach I Angle Q \mathcal{O} If the two probability of the two probability of the two probability of t					
7. Bridge length 99.0 (feet) Road approach to bridge: 8. LB 0 RB 1 (0 even, 1- lower, 2- higher) 9. LB 1 RB 1 (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left 2.3:1 US right 5.0:1 Protection 13.Erosion 14.Severity LBUS 0 - 0 0 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 0 - 0 1 RBUS 2 1 2 1 LBDS 2 1 2 1 Bank protection types: 0- none; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Erosion: 0 - none; 1- chapter 4 ether	Span length 33.0 (feet) Bridge width 23.3 (feet) Channel approach to bridge (BF): 15. Angle of approach: 30 16. Bridge skew: 10 Approach Angle Bridge Skew Angle Q 0 16. Bridge Skew Angle 0 0 0 17. Channel impact zone 1: Exist? Y (Y or N) Where? RB (LB, RB) Severity 1 Range? 75 feet US (US, UB, DS) to 33 feet US Channel impact zone 2: Exist? Y (Y or N) Where? RB (LB, RB) Severity 2 Range? 75 feet US (US, UB, DS) to 33 feet US Channel impact zone 2: Exist? Y (Y or N) Where? RB (LB, RB) Severity 2 Range? 30 feet DS (US, UB, DS) to 100 feet DS Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe					

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

Surface cover on the right bank upstream is suburban predominantly with a grass lawn, a house, a lumber yard, and a small plot of trees. The coverage on the upstream left bank is all trees, thickly intergrown. Surface cover on the left bank downstream is the roadway approach to the left abutment and downstream of it is the Connecticut River waterway. The downstream right bank surface cover is suburban with a house and lawn. Measured bridge dimensions are the same as those indicated on the historical form. Erosion indicated on the downstream left bank road approach is due to bank cutting by the Connecticut River where the bank here is the road approach embankment. In addition, there is some minor roadwash erosion apparent behind the left abutment on the downstream left road embankment. Impact zone 2 indicated actually is the impact of the Connecticut River on the right bank 20 feet downstream of the Halls Stream confluence. This downstream right bank area is slightly affected by roadwash. The downstream left bank road approach protection is spotty and intergrown with tall grass and other brush. This is most apparent from the downstream face of the bridge to about 30 feet along the left road embankment.

					-		<u>.</u>					
	C. Upstream Channel Assessment											
	21	Bank	cheic	nht (BF)	22 Bank	(angle (BE)	26 % Ve	a cover (BE)	27 Bank	material (BF		erosion (BF)
20. SRI))	LB	(noig	RB	LB	RB	LB	RB	LB	RB	LB	RB
91.5		5.	5			3.5	2	2	1	1	1	2
23. Bar	k wi	dth	35.()	24. Cha	annel width	35.0	25. Tha	lweg depth	<u>122.0</u>	29. Bed Mate	erial 23
30 .Bar	30 .Bank protection type: LB 2 RB 2 31. Bank protection condition: LB 1 RB 1											
SRD - Bed a	Sec nd b	tion r ank N	ef. di. Iateri	st. to US al: 0- or 4 - co	S face rganics; 1 obble, 64	% Vegetat - silt / clay, < - 256mm; 5 -	tion (Veg) c 1/16mm; 2 boulder, > 2	over: 1 - 0 to 2: - sand, 1/16 - 2 256mm; 6 - beo	5%; 2 - 26 to 2mm; 3 - gra drock; 7 - ma	o 50%; 3 - 51 avel, 2 - 64n anmade	1 to 75%; 4- 7 nm;	6 to 100%
Bank	Eros	ion: 0)- not	evident	t; 1- light f	luvial; 2- mo	derate fluvia	al; 3 - heavy flu	vial / mass	wasting		
Bank	orote	ection	type	s: 0- ab	sent; 1- <	12 inches; 2	<mark>-</mark> < 36 inche	es; 3 - < 48 incl	hes; 4- < 60) inches; 5 -	wall / artificial	levee
Bank	orote	ection	cond	litions: 1	1- good; 2	- slumped; 3	- eroded; 4 -	- failed				
32. Cor	nme	nts (b	ank r	naterial	variation,	minor inflow	s, protectio	n extent, etc.)				
Bank and bed material is sand mainly with silt & clay and fine to medium size gravel. Two minor inflows												
(storm	(storm-drainage pipes) are present entering on the right bank about 130 feet upstream and on the right bank											

(storm-drainage pipes) are present entering on the right bank about 130 feet upstream and on the right bank nearly 200 feet downstream. The protection on the banks is restricted to the area of 30 feet upstream to the abutments on both banks. In addition, the right bank is protected from about 190 to greater than 300 feet upstream with no protection present between 30 and 190 feet upstream. the left bank has no additional protection beyond 30 feet upstream. Generally, where protection is found upstream, it is in good condition.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 88 35. Mid-bar width: 35
36. Point bar extent: <u>300</u> feet <u>US</u> (US, UB) to <u>39</u> feet <u>US</u> (US, UB, DS) positioned <u>10</u> %LB to <u>60</u> %RB
37. Material: <u>3</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
The point bar is an island type feature here. With slightly higher water levels flow would proceed also along
the left bank side of the point bar. It has some grass growing only at the very highest area of the bar and makes up about 15% of the point has area. The remaining area is upvegetated loose gravel that probably
makes up about 15 % of the point par area. The remaining area is unvegetated, loose gravel that probably moves around frequently
39. <u>Is a cut-bank present?</u> <u>Y</u> (Y or if N type ctrl-n cb) 40. Where? <u>RB</u> (LB or RB)
41. Mid-bank distance: $\underline{120}$ 42. Cut bank extent: $\underline{190}$ feet \underline{US} (US, UB) to $\underline{50}$ feet \underline{US} (US, UB, DS)
43. Bank damage: <u>2</u> (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.): Revend 190 feet unstream a cut bank is protected by type 2 stope fill. The cut bank is only slightly apparent
with some undercutting and slin failures of bank material. During higher flows when flow runs along the left
bank side of the bar, a cut bank is developing and is mainly visible from 150 to about 30 feet upstream of the
left abutment where the stone fill protection ends.
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Width Depth : Position %LB to %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NU CHANNEL SCUUR
49 Are there major confluences? (Y or if N type ctrl-n mc) 50 How many? -
51 Confluence 1: Distance - 52 Enters on - (I B or RB) 53 Type - (1- perennial: 2- ephemeral)
Confluence 2: Distance = Enters on = (I.B.or RB) Type = (1. perennial; 2. enhemeral)
54 Confluence comments (eq. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56 Height (BE) 57 Angle (BE) 61 Material (BE) 62 Erosion (BE)
LB RB LB RB LB RB LB RB
113.0 2.5 2 7 7 -
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0- organics: 1- silt / clay. < 1/16mm: 2- sand. 1/16 - 2mm: 3- gravel. 2 - 64mm: 4- cobble. 64 - 256mm:
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
There is some large stone fill in the channel under the bridge, roughly class 1 or 2, embedded in the sand and
gravel bed material. The bed material under the bridge is the same predominantly as that found on the
streambed upstream.

65. Debris and Ice Is there debris accumulation?	_ (Y or N) 66. Where? <u>N</u> (1- Upstream; 2- At bridge; 3- Both)
67. Debris Potential <u>-</u> (1- Low; 2- Moderate; 3- High)	68. Capture Efficiency2 (1- <i>Low;</i> 2- <i>Moderate;</i> 3- <i>High</i>)
69. Is there evidence of ice build-up? 3 (Y or N) 70. Debris and Ice Comments:	Ice Blockage Potential $\underline{\mathbf{N}}_{}$ (1- Low; 2- Moderate; 3- High)
The low stream gradient and existence of piers in the	channel and a point bar upstream make this bridge a
likely site for debris and ice to accumulate. There is a	lot of vegetation on the banks and a laterally unstable
channel in addition to a lumber yard on the right over	-bank upstream, which makes the potential for debris
moderate.	

Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	35	2	1	0	0	90.0
RABUT	1	10	40	l		2	1	95.0

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0

0

1

The abutments are the spill-through type with class 3 protection on each abutment slope. Fill between the riprap has eroded to the extent that it has washed down off each slope exposing the top of the concrete piles of each the abutments. The riprap has slumped and some stones have eroded away from the slopes. Only the tops of piles are exposed, the remainder is well protected by the spill-through slopes and protection on them. The scour process occurring at each abutment is only slight at the worst. The attack angle above gives a general angle of the channel toward the abutment face but does not reflect the angle of flow attack on the abutment in this case as flow from the overbank area is funneled by the bridge opening such that flow largely runs

80. <u>Wingw</u>	<u>alls</u> :				81.		USF	RWW M	/ingwall	USLWW
E	xist? Material	Scour? Condition	Scour ? depth?	Exposure depth?	Angle?	Length?		le	ngth	6
USLWW: a	ou	nd		the	<u> </u>				k	
USRWW: fl	0W	thro		ugh	2.5				0	
DSLWW: al	out	ment		slope	29.0				Ğ₹	
							Win	gwall	ý –	
Wingwall ma	terials: 1 - Col 4 - wo	ncrete; 2- St od	one mason	ry or drywali	; 3 - steel	or metal;	ar DSF	ngle		
82. <u>Bank /</u>	Bridge Pr	otection:			_					_
Location	USLWW	USRWW	LABUT	RABUT	LB	RB		DSLWW	DSRWW	
Туре	Ν	-	-	-	0	Ν		-	-	
Condition	-	-	0	Ν	-	-		-	-	
Extent	0	Ν	-	-	-	0		0	0	
Bank / Bridge protection types: 0 - absent; 1 - < 12 inches; 2 - < 36 inches; 3 - < 48 inches; 4 - < 60 inches; 5 - wall / artificial levee										
Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed										
Protection e	Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other									

83. Wingwal	I and pro	otection	commer	its (eg. unde	rmined pene	tration, unusu	al scour processes, etc.):
-							
3							
2							
1							
3							
1							
-							
-							
Diore.							
$\frac{1}{94}$ Are ther	o niore?	_	(V or if N	tuno otri n n	rl		
85			(туре ст-пр	I)		1
Pier no.	widt	h (w) f	eet	elev	vation (e) fe	eet	·]
	w1	w2	w3	e@w1	e@w2	e@w3	₩
Pier 1	-	-	-	-	-	-	
Pier 2	-	3.0	3.6	-	496.5	485.0	
Pier 3	0.0	3.2	3.6	0.0	496.5	485.0	
Pier 4	0.0	-	-	0.0	-	-	
Level 1 Pi	er Descr	:	1	2	3	4]
			-	boul-	have	een	IEPITBIBMCI MCM MCR RB RTB REP
86. Localio	л (BF)		_	ders	slum	the	1 Solid pier 2 solumn 2 bont
87. Type				ucrs	sium		1- Solid pier, 2- column, 3- bent
88. Materia	al		0	form	ped	boul-	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape			-	the	sligh	ders	1- Round; 2- Square; 3- Pointed
90. Inclined	1?		-	abut	tly	has	Y- yes; N- no
91 Attack	/ (BE)		0	ment	and/	erod	
92 Pusher	<u>~ (Br)</u>		-	flow	or	ed	LB or RB
93 Length	(feet)		-	-	-	-	
94. # of pile	25		-	thro	fill	such	
95. Cross-i	members	s	Larg	ugh	mate	that	0 - none; 1 - laterals; 2 - diagonals; 3 - both
96 Scour (Condition	- 1	e	type	rial	the	 0- not evident; 1- evident (comment); 2- footing exposed; 3- piling exposed;
97. Scour (depth	•	gran	slope	once	bot-	4 - undermined tooting; 5 - settled; 6 - failed
98. Exposu	ire depth	n	ite	sand	betw	tom	

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): of the concrete abutment walls are exposed. The riprap on the right abutment appears to have at least slumped down off from the right abutment wall as the top of the riprap boulders sits lower on the wall than on the left abutment wall. Some boulders have rolled off the slope and into the channel under span 3 and are not protecting effectively the concrete right abutment wall. The fill behind the right abutment wall has begun to erode from the abutment slope.

100. E. Downstre	eam Cha	innel Asse	essment			
Bank height (BF) Bank angle (BF) SRD LB RB LB RB	% Veg. LB Y	. cover (BF) RB MC	Bank mate LB L	erial (BF) RB 1	Bank er LB 2	osion (BF) RB 1
Bank width (BF) - Channel width (Amb)) 25.0	Thalweg der	oth (Amb) 26	.1	Bed Mater	rial N
Bank protection type (Qmax): LB <u>5</u> RB		Bank protect	ion condition:	LB	1 RB	0
SRD - Section ref. dist. to US face % Vegetati Bed and bank Material: 0- organics; 1- silt / clay, < 1 4- cobble, 64 - 256mm; 5- k Bank Erosion: 0- not evident; 1- light fluvial; 2- mod Bank protection types: 0- absent; 1- < 12 inches; 2- Bank protection conditions: 1- good; 2- slumped; 3-	ion (Veg) cov 1/16mm; 2 - s boulder, > 25 lerate fluvial, < 36 inches eroded; 4 - f	ver: 1 - 0 to 25% sand, 1/16 - 2m 56mm; 6 - bedro ; 3 - heavy fluvia s; 3 - < 48 inche failed	6; 2- 26 to 50 m; 3- gravel, ock; 7- manma al / mass was s; 4- < 60 incl	%; 3 - 51 to 2 - 64mm ade ting hes; 5 - wa	o 75%; 4 - 76 ; III / artificial I	to 100% evee
1	s, protection	extent, etc.):				
2.0 0.0 MCR 1 2 1 N 10 LB 1 0 1 2.0 0.0						
101. Is a drop structure present? - (Y 103. Drop: feet 104. Structure 105. Drop structure comments (eg. downstream score) - -	<i>r or N, if N ty</i> material: <u>-</u> ur depth):	pe ctrl-n ds) (1 - steel sh	102. Distance leet pile; 2 - wo	e: <u>-</u> ood pile; 3	feet B- concrete; 4	4 - other)
		42				

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: <u>-</u> feet <u>-</u> (<i>US, UB, DS</i>) to <u>-</u> feet <u>-</u> (<i>US, UB, DS</i>) positioned <u>-</u> %LB to <u>-</u> %RB Material: -
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
_
-
-
-
Is a cut-bank present? - (Y or if N type ctrl-n cb) Where? - (LB or RB) Mid-bank distance: The
Cut bank extent: <u>re is</u> feet <u>hea</u> (US, UB, DS) to <u>vy</u> feet <u>con</u> (US, UB, DS)
Bank damage: <u>cre</u> (1- eroded and/or creep; 2- slip failure; 3- block failure)
te spalling from the base of each pier to about 3 to 4 feet up each pier wall with "re-bar" exposed. Wood used
to make the concrete forms are visible on the streambed surface at the base of each pier. Type-1 stone fill is
placed around entire circumference of pier 2. None is evident on pier 1. A local scour hole has developed
around each pier. Around pier 1, the hole is evident as the bed drops from 1 foot deep at 5 feet upstream of the
<u>Is channel scour present? pie</u> (<i>Y or if N type ctrl-n cs</i>) Mid-scour distance: <u>r to 3</u>
Scour dimensions: Length <u>feet</u> Width <u>deep</u> Depth: <u>at</u> Positioned <u>the</u> %LB to <u>nos</u> %RB
Scour comments (eg. additional scour areas, local scouring process, etc.):
e of the pier. The deepest part of the channel runs along the left bank side of pier 2. The riprap at the nose of pier 2 has graded away or slumped, settling deeper into the material in the hole. The hole is 4 feet deep at the
nose compared to 2 feet deep elsewhere upstream and around the hole. The footings of both piers at their
noses are detectable by rangepole covered by a one to two inch sediment layer.
Are there major confluences? (Y or if N type ctrl-n mc) How many? 1
Confluence 1: Distance <u>1</u> Enters on <u>1</u> (<i>LB or RB</i>) Type <u>7</u> (<i>1- perennial; 2- ephemeral</i>)
Confluence 2: Distance 0 Enters on 0 (LB or RB) Type - (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
3
3
F. Geomorphic Channel Assessment
107. Stage of reach evolution 1 1- Constructed

- 1- Constructed
 2- Stable
 3- Aggraded
 4- Degraded
 5- Laterally unstable
 6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

1

The banks of halls stream end about 20 feet downstream of the bridge as the stream flows into the Connecticut river there. The banks are protected to the confluence on the left bank and beyond the point of the confluence on the right bank. The downstream right bank protection has covered completely the bank material making an assessment of it impossible. The streambed drops quickly to a depth greater than wadable downstream, which made an adequate assessment of the material impossible. A best bed material estimate might be the same as that indicated upstream. There is a small storm drainage pipe entering on the right bank at the confluence. Velocities are swift through the bridge but then slow at the confluence. The Connecticut River then proceeds over a riffle about 250 feet downstream of the bridge. The bank and channel width shown above were taken from that computed for the under bridge section. A downstream cross section was not surveyed. Therefore, the bank heights and angles and the thalweg depth indicated here are estimates and were not computed.

109. G. Plan View Sketch					
point bar pb cut-bank cb scour hole	debris XXX rip rap or Stone fill	flow► cross-section ++++++++ ambient channel	stone wall		

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: CA	NATH00010001		Town:	Canaan
Road Number: TH	1		County:	Essex
Stream: Ha	ll's Stream		-	
Initials EMB Da	te: 10/4/96	Checked:		
Analysis of contract	ion scour, live	-bed or c	lear wate	r?
Guibinel Weleniber of				
Va 11 21 tril 0 1667 th	Bed Material (converted	to Engli	sn units,
(Pichardson and other	50 0.33 WILH 38	=2.65		
(RICHARDSON and Othe	rs, 1995, p. 20	, eq. 16)		
Approach Section				
Characteristic		100 vr	500 vr	other O
enaracteribere		100 /1	500 yr	other y
Total discharge, c	fs	6320	7650	6550
Main Channel Area,	ft2	1313	1566	1353
Left overbank area	. ft2	2382	3181	2507
Right overbank are	, a, ft2	0	0	0
Top width main char	nnel, ft	151.7	154.3	152.1
Top width L overba	nk, ft	479.8	484.7	483.4
Top width R overba	nk, ft	0	0	0
D50 of channel, ft	,	0.0165	0.0165	0.0165
D50 left overbank,	ft	0	0	0
D50 right overbank	, ft	0	0	0
5				
y1, average depth, M	C, ft	8.7	10.1	8.9
y1, average depth, L	OB, ft	5.0	6.6	5.2
y1, average depth, R	OB, ft	ERR	ERR	ERR
1 2 1				
Total conveyance,	approach	350593	498248	371884
Conveyance, main c	hannel	229127	303205	240233
Conveyance, LOB		121466	195043	131651
Conveyance, ROB		0	0	0
Percent discrepanc	y, conveyance	0.0000	0.0000	0.0000
Qm, discharge, MC,	cfs	4130.4	4655.3	4231.2
Ql, discharge, LOB	, cfs	2189.6	2994.7	2318.8
Qr, discharge, ROB	, cfs	0.0	0.0	0.0
Vm, mean velocity MC	, ft/s	3.1	3.0	3.1
Vl, mean velocity, L	OB, ft/s	0.9	0.9	0.9
Vr, mean velocity, R	OB, ft/s	ERR	ERR	ERR
Vc-m, crit. velocity	, MC, ft/s	4.1	4.2	4.1
Vc-l, crit. velocity	, LOB, ft/s	0.0	0.0	0.0
Vc-r, crit. velocity	, ROB, ft/s	N/A	N/A	N/A
Results				
Live-bed(1) or Clear	-Water(0) Contr	action Sc	our?	
Main Channel		0	0	0
ARMORING				
D90		0 0769	0 0769	0 0769
D95		0 0899	0 0899	0 0899
Critical grain size 1	Da ft	0 2348	0 1167	0 2456
Decimal-percept coard	ser than Do	N/A	N/A	N/A
Depth to armoring ft	SCI CHAILDC	N/A	N/7	N/A
Depen to armorring, It		TA / TJ		11/ II

Clear Water Contraction Scour in MAIN CHANNEL

$y^2 = (Q^2^2 / (131 * Dm^{(2/3)} * W^2^2))^{(3/3)}$	7) Con	verted to	English Units
ys=y2-y_bridge			
(Richardson and others, 1995, p. 32)	, eq. 20,	20a)	
Approach Section	Q100	Q500	Qother
Main channel Area, ft2	1313	1566	1353
Main channel width, ft	151.7	154.3	152.1
y1, main channel depth, ft	8.66	10.15	8.90
Bridge Section			
(Q) total discharge, cfs	6320	7650	6550
(Q) discharge thru bridge, cfs	6320	6668	6550
Main channel conveyance	74505	96294	75667
Total conveyance	74505	96294	75667
Q2, bridge MC discharge,cfs	6320	6668	6550
Main channel area, ft2	597	854	604
Main channel width (skewed), ft	91.9	95.1	92.2
Cum. width of piers in MC, ft	6.7	6.7	6.7
W, adjusted width, ft	85.2	88.4	85.5
y_bridge (avg. depth at br.), ft	7.01	9.66	7.07
Dm, median (1.25*D50), ft	0.020625	0.020625	0.020625
y2, depth in contraction,ft	15.04	15.26	15.46
ys, scour depth (y2-ybridge), ft	8.03	5.60	8.39
Pressure Flow Scour (contraction scou	ir for or:	ifice flow	w conditions)
Hb+Ys=Cq*qbr/Vc Cq=1/Cf*Cc		Cf=1.5*F1	c^0.43 (<=1)
Chang Equation Cc=SQRT[0.10)(Hb/(ya-1	w)-0.56)]+	+0.79 (<=1)
(Richarson and others, 1995, p. 145-	-146)		
	Q100	Q500	OtherQ
Q, total, cfs	6320	7650	6550
Q, thru bridge, cfs	6320	6668	6550
Total Conveyance, bridge	74505	96294	75667
Main channel(MC) conveyance, bridge	74505	96294	75667
Q, thru bridge MC, cfs	6320	6668	6550
Vc, critical velocity, ft/s	4.09	4.20	4.11
Vc, critical velocity, m/s	1.25	1.28	1.25
Main channel width (skewed), ft	91.9	95.1	92.2
Cum. width of piers in MC, ft	6.7	6.7	6.7
W, adjusted width, ft	85.2	88.4	85.5
qbr, unit discharge, ft^2/s	74.2	75.4	76.6
qbr, unit discharge, m^2/s	6.9	7.0	7.1
Area of full opening, ft ²	597.1	854.0	604.4
Hb, depth of full opening, ft	7.01	9.66	7.07
Hb, depth of full opening, m	2.14	2.94	2.15
Fr, Froude number, bridge MC	0.94	0.46	0.96
Cf, Fr correction factor (<=1.0)	1.00	1.00	1.00
Elevation of Low Steel, ft	0	496.4	0
Elevation of Bed, ft	-7.01	486.74	-7.07
Elevation of Approach, ft	0	497.71	0
Friction loss, approach, ft	0	0.13	0
Elevation of WS immediately US, ft	0.00	497.58	0.00
ya, depth immediately US, ft	7.01	10.84	7.07
ya, depth immediately US, m	2.14	3.30	2.15
Mean elevation of deck, ft	0	501.37	0
w, depth of overflow, ft (>=0)	0.00	0.00	0.00
Cc, vert contrac correction (<=1.0)	1.00	0.97	1.00
Ys, depth of scour, ft	N/A	8.82	N/A
Comparison of Chang and Laursen resul	lts (for u	unsubmerge	ed orifice flow)
y2, from Laursen's equation, ft	0	15.25888	0
Full valley WSEL, ft	0	494.15	0
Full valley depth, ft	7.008216	7.410633	7.069006
Ys, depth of scour (y2-yfullv), ft	0	7.848244	0

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28) Left Abutment Right Abutment Characteristic 100 yr Q 500 yr Q Other Q 100 yr Q 500 yr Q Other Q 6320 7650 6550 6320 7650 (Qt), total discharge, cfs 6550 a', abut.length blocking flow, ft 497 500.2 500.3 58.1 60.7 58.5 2537.36 3122.93 2664.73 447.5 s 2655.74 -- 2788.92 1285.7 Ae, area of blocked flow ft2 544.83 461.98 2788.92 1285.79 1464.8 1313.76 Qe, discharge blocked abut.,cfs (If using Qtotal overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually) Ve, (Qe/Ae), ft/s 1.05 1.03 1.05 2.87 2.69 2.84 ya, depth of f/p flow, ft 5.11 6.24 5.33 7.70 8.98 7.90 --Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthrough) 0.55 0.55 0.55 0.55 0.55 K1 0.55 --Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US) theta 90 90 90 90 90 90 К2 1.00 1.00 1.00 1.00 1.00 1.00 Fr, froude number f/p flow 0.082 0.070 0.080 0.182 0.158 0.178 ys, scour depth, ft 15.01 16.38 15.37 15.82 17.25 16.05 HIRE equation (a'/ya > 25) $ys = 4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49, eq. 29) a' (abut length blocked, ft) 500.3 60.7 497 500.2 58.1 58.5 y1 (depth f/p flow, ft) 5.11 6.24 5.33 7.70 8.98 7.90 80.12 93.93 7.54 a'/y1 97.35 6.76 7.41 Skew correction (p. 49, fig. 16) 1.00 1.00 1.00 1.00 1.00 1.00 Froude no. f/p flow 0.08 0.07 0.08 0.18 0.16 0.18 Ys w/ corr. factor K1/0.55: ERR vertical 16.24 18.88 16.83 ERR ERR vertical w/ ww's 13.32 15.48 13.80 ERR ERR ERR spill-through 8.93 10.38 9.25 ERR ERR ERR Abutment riprap Sizing Isbash Relationship D50=y*K*Fr²/(Ss-1) and D50=y*K*(Fr²)^{0.14}/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82) Characteristic Q100 Q500 Qother Fr. Froude Number 0.94 0.46 0.96 0.94 0.46 0.96 (Fr from the characteristic V and y in contracted section--mc, bridge section) y, depth of flow in bridge, ft 7.01 9.66 7.07 7.01 9.66 7.07 Median Stone Diameter for riprap at: left abutment right abutment, ft 1.10 Fr<=0.8 (spillthrough abut.) ERR ERR ERR 1.10 ERR Fr>0.8 (spillthrough abut.) 2.55 2.58 2.55 ERR ERR 2.58

```
Pier Scour (both live-bed and clear water scour)
ys/y1=2.0*K1*K2*K3*K4*(a/y1)^0.65*Fr1^0.43
 (Richardson and others, 1995, p. 36, eq. 21)
K1, corr. factor for pier nose shape
  Sharp nose, 0.9; round nose, cylinder, or cylinder grp., 1.0; square nose, 1.1
K2, corr. factor attack angle (see Table 3, p 37)
         K2=[cos(attackangle)+L/a*sin(attackangle)]^0.65
K3, corr. factor for bed condition
   Clear-water, plane bed, antidune, 1.1; med. dunes, 1.1-1.2 (see Tab.4,p37)
K4, corr. factor for armoring (the following equations are in Si units)
   K4 = [1-0.89*(1-Vr)^2]^0.5
     Vr = (V1 - Vi) / (Vc90 - Vi)
     V1=0.645*((D50/a)^0.053)*Vc50
     Vc=6.19*(y^1/6)*(Dc^1/3)
Note for round nose piers:
   ys<=2.4 times the pier width (a) for Fr<=0.8
   ys<=3.0 times the pier width (a) for Fr>0.8
Pier 1
                                  Q100
                                        Q500
                                                  Qother
Pier stationing, ft
                                 30.7
                                        30.7
                                                  30.7
Area of WSPRO flow tube, ft2
                                          40.2
                                                   26.2
                                 25.9
                                 2.9
                                         3.4
Skewed width of flow tube, ft
                                                   2.9
y1, pier approach depth, ft
                                 8.93
                                          11.82
                                                   9.03
y1 in meters
                                                   2.754
                                  2.722
                                          3.604
V1, pier approach velocity, ft/s 12.19
                                          8.33
                                                   12.5
a, pier width, ft
                                          3.35
                                  3.35
                                                   3.35
                                 26
                                         26
L, pier length, ft
                                                  26
Fr1, Froude number at pier
                                 0.719 0.427
                                                 0.733
Pier attack angle, degrees
                                5
                                         5
                                                  5
K1, shape factor
                                 1
                                          1
                                                  1
                                 1.40
K2, attack factor
                                          1.40
                                                 1.40
                                 1.1
K3, bed condition factor
                                          1.1
                                                   1.1
                                  0.0665 0.0665 0.0665
  D50, ft
                                                           0.0165
  D50, m
                                  0.020268 0.020268 0.020268
  D90, ft
                                  0.134 0.134 0.134
                                                          0.0769
  D90, m
                                  0.040841 0.040841 0.040841
  Vc50, critical velocity(D50), m/s 1.994 2.090 1.998
  Vc90, critical velocity(D90), m/s 2.519 2.639
                                                 2.524
  Vi, incipient velocity, m/s
                                 1.045 1.095 1.047
  Vr, velocity ratio
                                 1.812 0.935 1.871
                                  0.00 0.00 0.00
K4, armor factor
ys, scour depth (K4 applicable) ft 0.00
                                          0.00
                                                   0.00
ys, scour depth (K4 not applied)ft 12.59
                                          11.10
                                                   12.75
```

Pier 2	Q100	Q500	Qother	
Pier stationing, ft	63.9	63.9	63.9	
Area of WSPRO flow tube, ft2	25.9	40.2	26.2	
Skewed width of flow tube, ft	2.9	3.4	2.9	
yl, pier approach depth, ft	8.93	11.82	9.03	
y1 in meters	2.722	3.604	2.754	
V1, pier approach velocity, ft/s	12.19	8.33	12.5	
a, pier width, ft	3.35	3.35	3.35	
L, pier length, ft	26	26	26	
Fr1, Froude number at pier	0.719	0.427	0.733	
Pier attack angle, degrees	10	10	10	
K1, shape factor	1	1	1	
K2, attack factor	1.73	1.73	1.73	
K3, bed condition factor	1.1	1.1	1.1	
D50, ft	0.0665	0.0665	0.0665	
D50, m	0.020268	0.020268	0.020268	
D90, ft	0.134	0.134	0.134	
D90, m	0.040841	0.040841	0.040841	
Vc50,critical velocity(D50),m/s	1.994	2.090	1.998	
Vc90,critical velocity(D90),m/s	2.519	2.639	2.524	
Vi, incipient velocity, m/s	1.045	1.095	1.047	
Vr, velocity ratio	1.812	0.935	1.871	
K4, armor factor	0.00	0.00	0.00	
ys, scour depth, (K4 applicable) ft	.00	0.00	0.00	
ys, scour depth, (K4 not applied)ft	: 15.63	13.78	15.82	
D50=0.692(K*V)^2/(Ss-1)*2*g				
(Richardson and others, 1995, p.115	5, eq. 83)			
Pier-shape coefficient (K)	, round n	lose, 1.5;	square n	ose, 1.7
Characteristic avg. channe	el velocit	y, V, (Q/	'A):	
(Mult. by 0.9 for bankward	d piers in	ı a straig	nt, unifo	rm reach,
up to 1.7 for a pier in ma	ain curren	it of flow	around a	bend)
Pier 1		Q100	Q500	Qother
K, pier shape coeff.		1.5	1.5	1.5
V, char. aver. velocity, ft/s		10.6	7.81	10.8
D50, median stone diameter, ft		1.65	0.89	1.71
Pier 2				
K, pier shape coeff.		1.5	1.5	1.5
v, cnar. aver. velocity, ft/s		10.6	7.81	10.8
DEC modium stand diameters fi		1 65	0.00	1 1 1
שאט, median stone diameter, it		1.65	0.89	1.71