LEVEL II SCOUR ANALYSIS FOR BRIDGE 166 (BARTUS00050166) on U. S. ROUTE 5, crossing BARTON RIVER, BARTON, VERMONT

U.S. Geological Survey Open-File Report 96-746

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 166 (BARTUS00050166) on U. S. ROUTE 5, crossing BARTON RIVER, BARTON, VERMONT

By JOSEPH D. AYOTTE and ROBERT E. HAMMOND

U.S. Geological Survey Open-File Report 96-746

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure BARTUS00050166 viewed from upstream (October 19, 1994)	
4. Downstream channel viewed from structure BARTUS00050166 (October 19, 199	
5. Upstream channel viewed from structure BARTUS00050166 (October 19, 1994)	
6. Structure BARTUS00050166 viewed from downstream (October 19, 1994)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BARTUS00050166 on U. S. Route 5, crossing Barton River,	
Barton, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
BARTUS00050166 on U. S. Route 5, crossing Barton River,	
Barton, Vermont.	
TABLES	
1. Remaining footing/pile depth at piers for the 100-year discharge at structure	
BARTUS00050166 on U. S. Route 5, crossing Barton River,	
Barton, Vermont.	
2. Remaining footing/pile depth at piers for the 500-year discharge at structure BARTUS00050166 on U. S. Route 5, crossing Barton River,	
Barton, Vermont	
DALIOH. VEHIOH	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 166 (BARTUS00050166) ON U.S. ROUTE 5, CROSSING BARTON RIVER, BARTON, VERMONT

By Joseph D. Ayotte and Robert E. Hammond

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BARTUS00050166 on U. S. Route 5 crossing the Barton River, Barton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the New England Upland section of the New England physiographic province of north-central Vermont in the town of Barton. The 65.2-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the banks have a combination of dense woody vegetation coverage, brush, and field grasses.

In the study area, the Barton River has an incised, sinuous-to-meandering channel with a slope of approximately 0.0065 ft/ft, an average channel top width of 58 ft and an average channel depth of 4 ft. The predominant channel bed material is gravel (D_{50} is 75.6 mm or 0.25 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 19, 1994, indicated that the reach was stable.

The U. S. Route 5 crossing of the Barton River is a 126-ft-long, two-lane bridge consisting of one 60-foot steel beam span with two steel-beam approach spans (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by two concrete piers. The left bank has a concrete retaining wall that is attached to the US face of the left pier; consequently this pier functions as an abutment for the analysis because no flow occurs to the left of the pier. For the purposes of computing scour, this pier was considered an abutment. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is 25 degrees.

A scour hole 0.5 ft deeper than the mean thalweg depth was observed along the right pier during the Level I assessment. Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the entire base length of both piers. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 1.1 to 2.4 ft. Abutment-type scour was computed for the left pier; scour ranged from 9.1 to 11.3 ft. Abutment scour at the right abutment ranged from 6.1 to 11.3 ft. Pier scour, computed for the right pier, ranged from 31.3 to 33.3 ft. The severity of the pier scour was directly related to the attack angle of 25 degrees. The worst-case scour in all computations occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

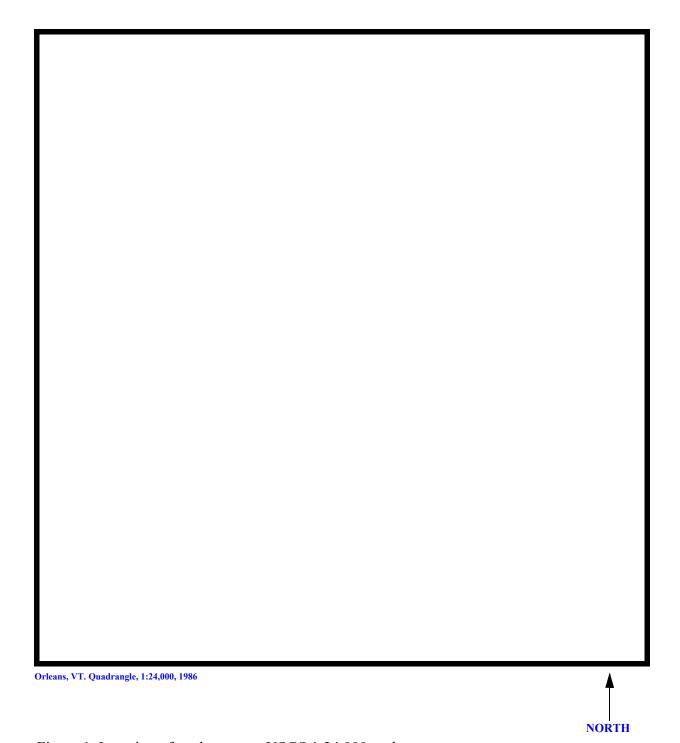
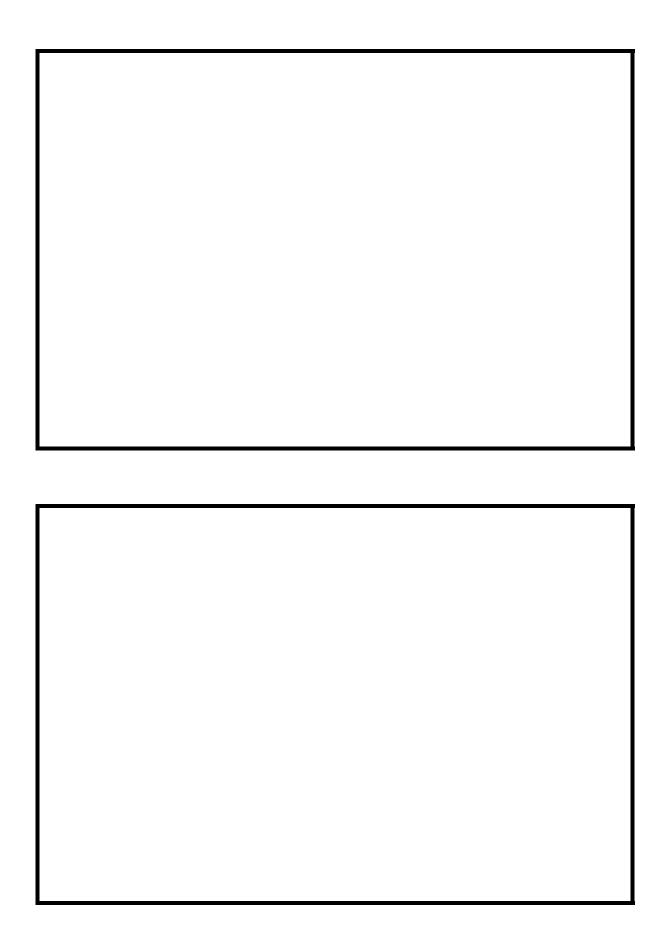



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

cture Number -	BARTUS000	050166	Stream	Barto	on River	
nty Orleans			Road —	US 5	District	9
		Descriptio	n of Bridç	je		
Bridge length	126 ft	Bridge width	35	- <i>ft</i> Mild c	<i>Max span leng</i> arve	th 60
Alignment of bri Abutment type	idge to road (on Spill-through Y		ight) Embankn		Sloping 10/19/94	
Stone fill on abut functions as an a	Type	e-1, along the		th piers; l	nydraulically, p	ier 1 (left)
deep scour hole a		-			Y	40
		according to 1	\ surve	ey?	Angle	40
Is bridge skewed	l to flood flow a	<u> </u>				
Is bridge skewed	l to flood flow o	<u> </u>	<u>-, ~ ~ , .</u>			, ~,
Is bridge skewed	ation on bridge	at time of Lev				,
		at time of Lev	vel I or Lev Percent of O blocked no	hannal	Perce	nt of ahavel ed vertically
	ation on bridge	at time of Levelone	Percent of	hannal	Perce	nt of alamiel ed verticatly
Debris accumula Level I Level II	ation on bridge Date of incr 10/19/9 10/19/9	e at time of Levelone 1944	Percent of 0 blo cked no 	rizontaily	Perce	ed věrticatty
Debris accumula Level I Level II	ation on bridge Date of inco 10/19/9 10/19/9 Lov f 10/19/94.	e at time of Levelone 1944	Percent of 0 blo cked no 	rizontaily	Perce block	ed věrticatty
Debris accumula Level II None as o	ation on bridge Date of inco 10/19/9 10/19/9 Lov f 10/19/94.	e at time of Levelone 1944	Percent of 0 blo cked no 	rizontaily	Perce block	ed věrticatty

Description of the Geomorphic Setting

eneral topog		The channel is located at a iction. The valley is general	•	valley just DS of a
		-		
•		ns at bridge site: downstread 10/19/94	m (DS), upstream (US)	
Pate of insp		ate floodplain to steep valley	wall	
S left:				
S right:		ate floodplain to steep valley		
S left:		te floodplain to steep valley		
S right:	Modera	ate floodplain to steep valley	wall	
		Description of tl	ne Channel	
		58		4
Average to	p width	Gravel	Average depth	Gravel/cobbles
redominan	t bed ma	terial	Bank material	Sinuous-to-
eandering b	out stable	with semi-alluvial channel b	oundaries.	
				10/19/94
egetative co	Forest			
S left:	Trees a	nd brush		
S right:	Brush a	and field grass		
S left:	Brush a	and field grass		
S right:		<u>Y</u>		
o banks ap	pear stal	ble? - <u>1, non, uc</u> s	riwe weamen and type v	, manony ma
ate of obse	ervation.			
			<u>Th</u>	e assessment of
		conditions up to bank-full le		
pier 1). Th	iererore p	pier one is treated as an abutn	ient for the purposes of th	<u> 18 Stuay10/19/94.</u>

Hydrology

Drainage area $\frac{65.2}{mi^2}$		
Percentage of drainage area in physiographic p	provinces: (approximate)	
Physiographic province/section New England / New England Upland	Percent of drainage area 100	
Is drainage area considered rural or urban? None urbanization:	Rural Describe any significant	t
Is there a USGS gage on the stream of interest:	<u>No</u> ?	
USGS gage description		
USGS gage number	<u></u>	
Gage drainage area	mi ² No	
Is there a lake/p		
5,820 Calculated	d Discharges $8,000$	
$Q100$ ft^3/s The 1	<i>Q500 ft</i> ³ /s 100-year and 500-year discharge is based on	
several empirical relationships (Benson, 1962; FF		
1957a & b; Talbot, 1887). Flood frequency curve		
discharge. The discharge used is the median (Ben methods.	son, 1962) of the values obtained by these	
momous.		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT p	plans)	USGS survey
Datum tie between USGS survey and VTAOT plans	Add 698	.0 to USGS survey to
obtain VTAOT plans datum.		
Description of reference marks used to determine USGS data	um.	BM N55 is a brass tablet
on the end post of the bridge rail of the US end of the right ab	utment (elev. 812.05 ft, VTAOT
datum).		

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-142	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
APPRO	105	2	Modelled Approach section (Templated from APTEM)
АРТЕМ	160	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analysis reported herein reflects conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.052, and overbank "n" values ranged from 0.048 to 0.085.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0065 ft/ft which was estimated from points surveyed at the EXITX and BRIDG cross sections.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0066 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevat Average low steel elevation	tion 104.7 ft
100-year discharge Water-surface elev Road overtopping? Area of flow in brid Average velocity in	ation in bridge opening 99.7 ft N Discharge over road
Water-surface elev Water-surface elev	ation at Approach section with bridge ation at Approach section without bridge atter caused by bridge 2.0 t
Road overtopping? Area of flow in brid Average velocity in	ation in bridge opening 100.9 ft N Discharge over road
Water-surface elev	ation at Approach section with bridge ation at Approach section without bridge atter caused by bridge 2.9 105.0 102.1
Area of flow in brid Average velocity in	ation in bridge opening ft dge opening ft
Water-surface elev	ation at Approach section with bridge ation at Approach section without bridge ter caused by bridge - t

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the 100-year and 500-year discharges. Streambed armoring depths computed suggest that the depth of contraction scour will not be limited by armoring.

The left pier of this bridge (see Figure 3) hydraulically functions as an abutment for all modelled discharges. Therefore, scour at the left pier was computed by use of the Froehlich abutment scour equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the right abutment was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation. The right abutment is a spill-through-type abutment. Because the effect of scour processes on the spill-through embankment material are uncertain, the abutment scour depths were applied for the entire spill-through embankment below the elevation at the toe of the embankment and extended to the vertical concrete abutment wall as shown in figure 8.

Scour at the right pier was computed by use of the Colorado State University (CSU) pier scour equation (Richardson and others, 1995, p. 36, equation 21). The variables used by the CSU equation include pier dimensions, flow approach depth and velocity, Froude number, and multiplicative factors for pier shape, attack angle, bed conditions, and armoring. In this case, the attack angle factor has a pronounced effect on the depth of scour computed (see appendix F). The armoring factor, K4 was applied because the D50 of the channel bed material was greater than 0.2 ft.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	((Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	1.1	2.4	 -
Depth to armoring	20.9	49.2	 -
Left overbank			
Right overbank			
Local scour:			
Abutment scour	9.1	11.3	
Left abutment	6.1-	11.3-	
Right abutment			
Pier scour	see lef	t abutment, above	
Pier 1	31.3	33.3	
Pier 2			
Pier 3			
	Riprap Sizir	ng	
			Incipient overtopping
	100-yr dischar	ge 500-yr discharge	discharge
	2.0	(D_{50} in feet)	
Abutments:	2.8	3.3 3.3	
Left abutment	2.8		
Right abutment	saa laft s	abutment, above	
Piers:	2.1	2.8	
Pier 1			
Pier 2			

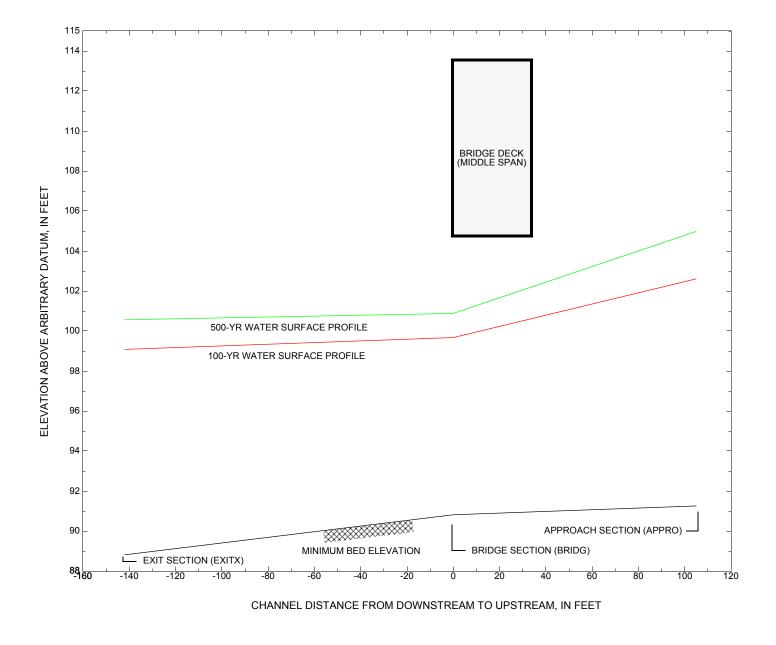


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BARTUS00050166 on U. S. Route 5, crossing Barton River, Barton, Vermont.

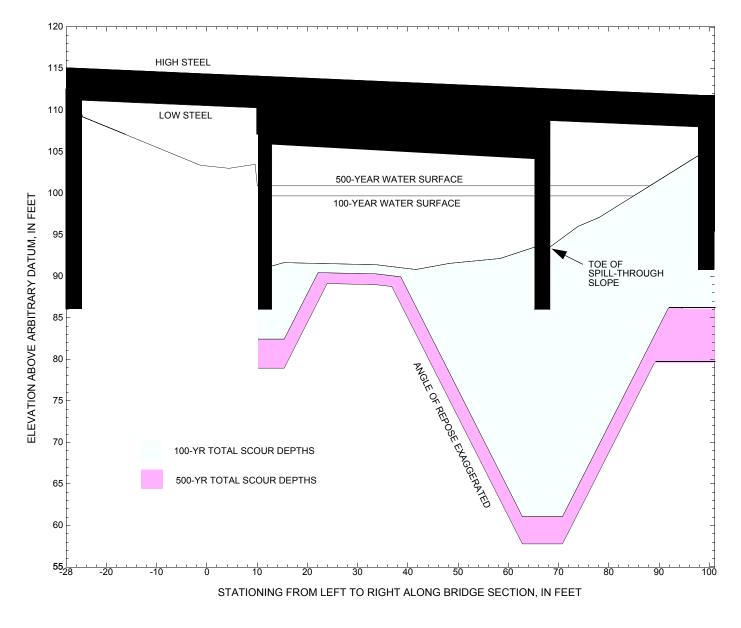


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BARTUS00050166 on U. S. Route 5, crossing Barton River, Barton, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BARTUS00050166 on U. S. Route 5, crossing Barton River, Barton, Vermont. [VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 5,820 cubic-feet per second										
Left Abutment	-25.0	809.6	111.6	86							
Pier 1 ³	11.4		105.6	86	92.6	1.1	9.1		10.2	82.4	-4
Pier 2	66.8		103.7	86	93.5	1.1		31.3	32.4	61.1	-25
Toe, Right Abutment	68.1				93.4	1.1	6.1		7.2	86.2	
Right Abutment	98.0	805.5	107.9	91							-5

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.
 Abutment scour computation reported

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BARTUS00050166 on U. S. Route 5, crossing Barton River, Barton, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr. di	scharge is 8,000 cu	ıbic-feet per secon	ıd				
Left Abutment	-25.0	809.6	111.6	86							
Pier 1 ³	11.4		105.6	86	92.6	2.4	11.3		13.7	78.9	-7
Pier 2	66.8		103.7	86	93.5	2.4		33.9	36.3	57.2	-29
Toe, Right Abutment	68.1				93.4	2.4	11.3		13.7	79.7	
Right Abutment	98.0	805.5	107.9	91							-11

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.
 Abutment scour computation reported

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1986, Orleans, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File bart166.wsp
T1
T2
         Hydraulic analysis for structure BARTUS00050166 Date: 05-APR-96
Т3
         Hydraulic analysis of bridge 166, Barton.
                                                       JDA
Q
          5820.0
                  8000.0
          0.0065 0.0065
SK
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
XS
    EXITX -142
                         0.
                          -27.6, 105.95
GR
           -47.7, 106.72
                                           0.0, 96.97
                                                            9.2, 95.77
                                                           34.6, 89.01
GR
           11.6, 91.29
                           15.2, 89.88
                                            29.1, 89.18
GR
                                            73.3, 95.26
                                                           80.7, 96.43
           56.6, 88.81
                           64.5, 91.61
                         171.7, 100.02
GR
           136.4, 98.36
*
N
           0.085
                   0.052
                               0.081
SA
                   9.2
                              73.3
*
*
XS
    FULLV
             0 * * * * 0.0065
*
*
             SRD
                   LSEL
                           XSSKEW
BR
    BRIDG
             0
                 109.73
                             25.0
           -25.0, 111.59
                         -24.8, 109.20
GR
                                           -1.3, 103.36
                                                            4.4, 102.98
            9.6, 103.47
                                                           15.3, 91.64
GR
                           11.9, 92.64
                                            12.3, 91.12
GR
            33.7, 91.38
                           41.6, 90.81
                                            48.3, 91.55
                                                           58.4, 92.13
GR
            65.4, 93.53
                           68.1, 93.43
                                            73.9, 95.99
                                                           78.1, 97.08
            97.8, 104.51
                           98.0, 107.86
                                          70.4, 108.86
                                                           69.5, 103.89
GR
            5.1, 106.08
                           3.6, 110.86 -25.0, 111.59
GR
         BRTYPE BRWDTH
CD
           1
                36.9
Ν
           0.050
           93.4, 3.0 103.8,3 103.8,0
PW
*
*
XT
    APTEM
           160
           -31.6, 120.33
                                            16.1, 97.28
GR
                           9.0, 99.83
                                                           24.9, 93.59
                                            48.8, 92.45
GR
            29.8, 93.29
                           37.1, 92.68
                                                           53.0, 91.61
GR
            62.3, 92.74
                           63.7, 93.17
                                           65.8, 93.43
                                                           68.5, 96.69
GR
            70.9, 97.33
                           110.4, 98.45
                                          117.3, 101.09
                                                          154.8, 102.22
           169.7, 101.69 197.8, 101.27 209.9, 101.37
                                                          238.1, 101.68
GR
GR
           263.2, 105.47
                           270.7, 106.71
                                         279.8, 112.69
*
   APPRO 105 * * * 0.0066
AS
GT
Ν
           0.045
                 0.048
SA
                  70.9
HP 1 BRIDG
           99.67 1 99.67
HP 2 BRIDG 99.67 * * 5820
HP 2 BRIDG 100.29 * * 5820
HP 1 APPRO 102.61 1 102.61
```

WSPRO INPUT FILE (continued)

```
HP 2 APPRO 102.61 * * 5820 *
```

```
HP 1 BRIDG 100.88 1 100.88
HP 2 BRIDG 100.88 * * 8000
HP 2 BRIDG 101.61 * * 8000
HP 1 APPRO 104.98 1 104.98
HP 2 APPRO 104.98 * * 8000
*
EX
EX
ER
```

APPENDIX B:

WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS U.S. Geological Survey WSPRO Input File bart166.wsp Hydraulic analysis for structure BARTUS00050166 Date: 05-APR-96 Hydraulic analysis of bridge 166, Barton. JDA *** RUN DATE & TIME: 04-23-96 08:56 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 99.67 10.4 85.0 455.4 44723. 5820. 12.78 10.4 16.3 19.5 22.4 25.2 37.3 23.5 21.7 20.3 19.9 7.81 12.39 13.42 14.34 14.59 X STA A(I) V(I) 27.9 30.5 9 30.5 33.1 35.6 38.1 19.8 19.2 19.2 19.0 18.8 14.69 15.16 15.17 15.33 15.50 X STA. A(T) V(I) 40.5 42.9 45.3 47.9 50.8 X STA. 19.0 19.1 19.8 20.5 20.6 15.31 15.22 14.73 14.18 14.13 A(I) V(I) 53.6 56.7 60.0 64.1 69.0 X STA 85 0 21.3 22.8 25.0 27.5 41.2 13.69 12.77 11.62 10.60 7.05 A(I) V(I) VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL LEW REW AREA K Q VEL 100.29 10.3 86.6 497.8 50879. 5820. 11.69 10.3 16.4 19.6 22.6 25.4 41.4 25.7 23.7 22.1 21.8 7.03 11.34 12.29 13.14 13.37 X STA. A(I) V(T) 28.1 30.8 33.4 36.0 38.5 X STA. 21.6 20.9 20.9 20.4 20.8 13.46 13.90 13.90 14.27 14.00 A(I) V(I) 40.9 43.3 45.8 48.5 51.3 20.3 21.0 21.4 22.3 22.4 14.35 13.85 13.60 13.03 12.97 X STA. 40.9 43.3 A(T) V(I)
 54.3
 57.3
 60.7
 64.9
 69.8

 23.2
 24.7
 27.2
 30.2
 45.8

 12.55
 11.76
 10.72
 9.65
 6.35
 X STA A(I) V(T) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = AREA K TOPW WETP ALPH LEW REW WSEL SA# 1 565. 73974. 68. 72. 2 396. 21057. 176. 176. 176. 3370. 102.61 961. 95031. 244. 248. 1.43 3. 247. 9061. VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 105. WSEL LEW REW AREA K Q VEL 102.61 2.8 246.7 961.1 95031. 5820. 6.06 2.8 19.9 25.1 29.2 32.8 65.6 43.3 39.2 35.7 33.7 4.43 6.72 7.42 8.15 8.64 X STA. 36.2 A(I) V(I) 36.2 39.4 42.5 45.6 48.6 33.1 32.2 32.0 31.7 30.6 8.78 9.04 9.08 9.18 9.52 X STA. A(T) V(I)
 51.4
 54.2
 56.9
 59.8
 62.9

 30.8
 30.2
 30.7
 32.4
 35.2

 9.46
 9.62
 9.47
 8.97
 8.26
 X STA.

A(I) V(I)

WSPRO OUTPUT FILE (continued)

A(I) V(I)	55.2 5.27	65.4 4.45	70.8 4.11	98.6 2.95	
100.88 VELOCITY	1 539. 539. DISTRIBUTIO	57069. 57069. N: ISEQ =	71. 81. 71. 81. 3; SECID	1.00 10. = BRIDG; SRD	= 0.
WSE 100.8	L LEW 8 10.2	REW AF 88.2 539	REA K 9.1 57069.	Q V 8000. 14.	/EL .84
X STA. A(I) V(I)				22.8 25 24.5 16.34	22.8 17.53
X STA. A(I) V(I)				36.3 38 22.3 17.93	22.0 18.17
X STA. A(I) V(I)				49.1 51 23.6 16.94	1.9 54.9 24.4 16.37
A(I) V(I)	25.3 15.82	26.8 14.95	29.4 13.60	33.5 11.92	
				= BRIDG; SRD Q	
	10.0	16.4	19.9		5.9 28.7
X STA. A(I) V(I)	28.7	31.4	34.0		9.2 41.7
X STA. A(I) V(I)	41.7	44.2	46.9		2.6 55.6
X STA. A(I) V(I)				66.6 72 36.4 10.99	2.0 90.1 54.6 7.33
CROSS-SE WSEL S	CTION PROPER	TIES: ISEÇ	Q = 5; SEC	ID = APPRO; S	SRD = 105. REW QCR
	1 732.	108649.	73. 77.		13178. 9823. 262. 19245.
104.98 VELOCITY				1.26 -2. = APPRO; SRD	
WSE 104.9	L LEW 8 -1.9	REW AF 262.4 1563	REA K 3.3 177088.	Q \\ 8000. 5.	/EL .12
X STA. A(I) V(I)				30.5 35 57.5 6.96	5.2 39.5 54.0 7.40
X STA. A(I) V(I)				51.5 55 49.1 8.14	5.1 59.0 50.9 7.86
X STA. A(I) V(I)				78.1 88 81.9 4.88	85.5 4.68
X STA. A(I)	100.4	11/ 2	145 2	182 9 211	1.5 262.4

WSPRO OUTPUT FILE (continued)

+++ BEGINNIN XSID:CODE	SRDL	E CALCU LEW REW		VHD	HF		CRWS FR#		WSEL
DRD	I DDIV	ICEN	10	7111111	110	ши	11011	V	
EXITX:XS -142.							96.52 0.76		99.08
FULLV:FV	142. 142.		732. 72331.				******		100.01
<<	<< <the a<="" td=""><td></td><td></td><td></td><td></td><td></td><td>NSTRICTE</td><td></td><td>>>>></td></the>						NSTRICTE		>>>>
===125 FR#	F EVCEEDS	DMTDOT	AT CECT	חמ" ח	DO".	יים דאופ כ	ONTINITED		
125 FK#							100.59		14
===110 WSE							'AY. 119.97	0.50	
===115 WSE							CRWS.	100.14	
APPRO:AS	105.	7.	562.	1.88	0.86	102.48	100.14	5820.	100.60
	105.						0.86		
<<	<< <the a<="" td=""><td>BOVE RE</td><td>SULTS RE</td><td>FLECT</td><td>"NORMA</td><td>AL" (UNCC</td><td>NSTRICTEI</td><td>) FLOW></td><td>>>>></td></the>	BOVE RE	SULTS RE	FLECT	"NORMA	AL" (UNCC	NSTRICTEI) FLOW>	>>>>
	<<< <re< td=""><td>SULTS R</td><td>EFLECTIN</td><td>G THE</td><td>CONSTR</td><td>RICTED FL</td><td>OW FOLLOW</td><td>V>>>></td><td></td></re<>	SULTS R	EFLECTIN	G THE	CONSTR	RICTED FL	OW FOLLOW	V>>>>	
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
BRIDG:BR	142.	10.	456.	2.54	1.49	102.21	99.20	5820.	99.67
0.	142.						0.87		33.07
		~	- /-						
	PPCD FLOW 0. 1.						AB XRAB		
XSID:CODE SRD		LEW REW		VHD ALPH					WSEL
APPRO:AS 105.	68. 75.	3. 247.					100.14		102.61
	M(K) 0.098		Q XLKQ . 19.)TEL)2.36			
		<<<<<	END OF B	RIDGE	COMPUT	CATIONS>>	·>>>		
1 FIRST US	SER DEFIN				00112 0 2				
XSID:CC	DDE SRI	D LE	W REW		Q	K	AREA	VEL	WSEL
	-142		. 152.				730.	7.97	99.08
FULLV:FV BRIDG:BF						72331. 14748.	732. 456.		
APPRO:AS 105. 3. 247. 5820. 95120. 962. 6.05 102.61 XSID:CODE XLKQ XRKQ KQ SECOND USER DEFINED TABLE.									
XSID.CC	DE CRI	WS.	FR# V	MIN	YMAY	чн	HO WHD	EC	L WSEL
	3 96.								3 99.08
FULLV:FV	*****	** 0	.76 89	.73 1	07.64	0.92 0	.00 1.34	101.3	6 100.01
BRIDG:BF									1 99.67
APPRO:AS APPRO:AS					19.97	0.60 0	1.62 0.81	103.4	3 102.61
111 2 110 1110		,,,,	00017	•					
XSID:CODE SRD							CRWS FR#		WSEL
EXITX:XS							98.55 0.76		100.56
-142.		1/2.	JJ104.	1.54			U./6	0.09	
===140 AT	SECID "F	ULLV":					DED VERTIC		0.94
	1.40		0.00	1		100.00	and an area of the	0000	101 = 0
FULLV:FV							0.76		101.50

WSPRO OUTPUT FILE (continued)

<><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS = 0.80 1.10

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 101.00

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS = 101.00 119.97 100.73

829. 2.10 0.84 104.17 100.73 8000. 102.06 105.

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID.CODE SEDI AREA VHD T.F.W HF EGI. CRWS 0 WSEL SRD FLEN K ALPH HO REW ERR FR#

10. BRIDG:BR 142. 539. 3.42 1.60 104.31 100.83 8000. 100.88 0. 142. 88. 57104. 1.00 0.57 0.00 0.95 14.83

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. 0. 1. 1.000 0.042 109.73 ***** *****

XSID: CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL НО ERR SRD FLEN REW K ALPH FR# VET.

-2. 1564. 0.51 0.47 105.49 100.73 8000. 104.98 262. 177194. 1.26 0.72 0.01 0.42 5.12 APPRO · AS 68. 74. 105.

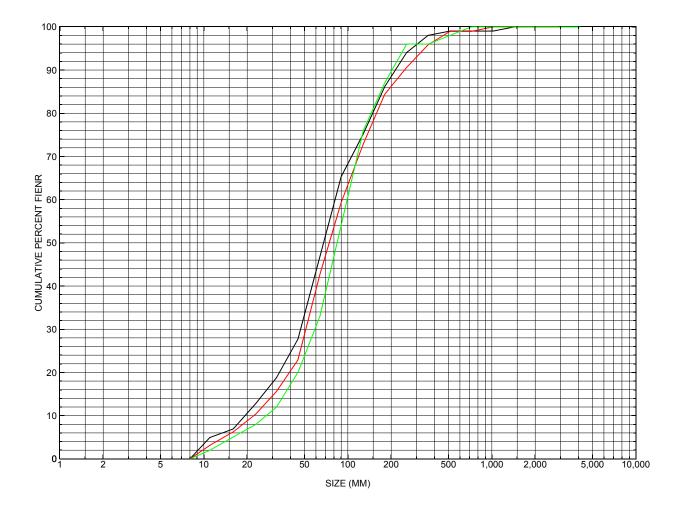
KQ XLKQ XRKQ M(G) M(K) OTEL

0.666 0.261 130785. 18. 96. 104.84

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID:CODE SRD REW Q K AREA 8000. 99164. 8000. 99505. 989. EXITX:XS -142. -11. 172. 8.09 100.56 0. 0. -11. 172. 8000. 99505. 0. 10. 88. 8000. 57104. FULLV:FV 992. 8.07 101.50 539. 14.83 100.88 BRIDG:BR APPRO:AS 105. -2. 262. 8000. 177194. 1564. 5.12 104.98


XSID: CODE XLKQ XRKQ KQ 18. 96. 130785.

SECOND USER DEFINED TABLE.

XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EXITX:XS 98.55 0.76 88.81 106.72********* 1.56 102.13 100.56 FULLV:FV ****** 0.76 89.73 107.64 0.92 0.00 1.56 103.06 101.50 BRIDG:BR 100.83 0.95 90.81 111.59 1.60 0.57 3.42 104.31 100.88 APPRO:AS 100.73 0.42 91.25 119.97 0.47 0.72 0.51 105.49 104.98 END OF FILE ON PRIMARY INPUT UNIT 55

¹ NORMAL END OF WSPRO EXECUTION.

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure BARTUS00050166, in Barton, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BARTUS00050166

General Location	n Descriptive
Data collected by (First Initial, Full last name) M. WEBER	<u> </u>
Date (MM/DD/YY)08_ / _04_ / _94_	
Highway District Number (I - 2; nn)	County (FIPS county code; I - 3; nnn)019
Town (FIPS place code; I - 4; nnnnn) 03550	Mile marker (I - 11; nnn.nnn) <u>007110</u>
Waterway (1 - 6) Barton river	Road Name (I - 7):
Route Number <u>US 005</u>	Vicinity (1 - 9) 1.4 MI N JCT. VT.16
Topographic Map Orleans	Hydrologic Unit Code: 01110000
Latitude (I - 16; nnnn.n) 44458	Longitude (i - 17; nnnnn.n)

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 20011301661002	<u> </u>
Maintenance responsibility (I - 21; nn)01	Maximum span length (I - 48; nnnn) 0060
Year built (I - 27; YYYY) 1928	Structure length (I - 49; nnnnnn) 000126
Average daily traffic, ADT (I - 29; nnnnnn) 002200	Deck Width (I - 52; nn.n) 350
Year of ADT (1 - 30; YY)92	Channel & Protection (I - 61; n) 7
Opening skew to Roadway (I - 34; nn)25	Waterway adequacy (I - 71; n) 7
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (1 - 43; nnn) <u>303</u>	Year Reconstructed (I - 106) 1964
Approach span structure type (I - 44; nnn) 302	Clear span (nnn.n ft)
Number of spans (I - 45; nnn) 001	Vertical clearance from streambed (nnn.n ft) 012.5
Number of approach spans (<i>I - 46; nnnn</i>) <u>0002</u> Comments:	Waterway of full opening (nnn.n ft²)

Structural inspection report of 10/14/93 indicated a recent rehabilitation. The deck asphalt is cracked on top of both abutments with some leakage and rust of girders. There is deep spalling on the retainer wall upstream left bank. The waterway is straight through the skewed structure. The banks are well protected with riprap. The right abutment has minor cracks with some patches from previous spalling. The footings are not in view.

	Brid	ge Hydro	ologic Da	ata					
Is there hydrologic data available? N if No, type ctrl-n h VTAOT Drainage area (mi²):									
Terrain character:									
Stream character & type: _									
Streambed material: Stones an	d oravel an	d houlders	ı						
					Oo				
	Discharge Data (cfs): Q _{2.33} - Q ₁₀ - Q ₂₅ - Q ₅₀ - Q ₅₀₀ -								
Record flood date (MM / DD / YY): - / - / - Water surface elevation (ft): -									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, L						oderate			
The stage increases to maximu	m highwat	er elevatio	n (<i>Rapidly, I</i>	Not rapidly):					
The stream response is (Flashy,	Not flashy):	-							
Describe any significant site co	nditions up	stream or	downstrea	m that ma	y influence	the stream's			
stage: -									
Watershed storage area (in perc	ent): - %								
The watershed storage area is:		ainly at the h	eadwaters; 2	2- uniformly	distributed; 3	3-immediatly upstream			
•	oi th	e site)							
Water Surface Elevation Estima	ates for Exi	stina Struc	ture:						
	1	1	1	T _	T -	1			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀				
Water surface elevation (ft))	-	-	-	-	-				
Velocity (ft / sec)	-	-	-	-	-				
]			
Long term stream bed changes	: -								
Is the roadway overtopped below the Q ₁₀₀ ? (Yes, No, Unknown):U Frequency:									
Relief Elevation (#): Discharge over roadway at Q ₁₀₀ (# ³ /sec):									
Are there other structures nearby? (Yes, No, Unknown): If No or Unknown, type ctrl-n os									
Upstream distance (<i>miles</i>): Town: Year Built:									
Highway No. :									
Clear span (#): Clear H	eight (ft): _	<u> </u>	ull Waterw	ay (ft²): <u>-</u>					

Downstream distance (<i>miles</i>): <u>-</u> Highway No. : <u>-</u>					
Clear span (#): Clear Heigh					
Comments:	· /	•	,		
Odminicino.					
	_				
	USGS Wate	ershed Data			
Watershed Hydrographic Data					
Drainage area (DA) 65.18 mi ²	Lal	ke and pond area	2.95	mi ²	
Watershed storage (ST) 4.5	%				
Bridge site elevation 876		adwater elevatior	2656	ft	
Main channel length 14.76				1723	
10% channel length elevation _		85% channel	length ele	vation 1632	ft
Main channel slope (S)71.55	ft / mi				
Watershed Precipitation Data					
Average site precipitation	in Ave	erage headwater	precipitati	ion in	
Maximum 2yr-24hr precipitation e	vent (124,2)	in			
Average seasonal snowfall (Sn)	ft				

Bridge Plan Data
Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 08 / 1963 Project Number ST 41 - L Minimum channel bed elevation: 792.0
Low superstructure elevation: USLAB <u>809.55</u> DSLAB <u>810.40</u> USRAB <u>805.51</u> DSRAB <u>806.83</u> Benchmark location description: Vermont posted benchmark on the end post of the bridge rail at the upstream right abutment end, elevation 812.05.
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary
Foundation Type: 1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness* Footing bottom elevation: *
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length:
If 3: Footing bottom elevation: Is boring information available? N If no, type ctrl-n bi Number of borings taken: Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around piles:
Comments: * Each abutment has two concrete columns set in the earth. On the right abutment the bottom of footing elevation varies from 787.25 (4 feet thick) downstream to 789.14 (2 feet thick) at the upstream column. The footing bottom elevations for the left abutment columns are both at 784.0 with a 2.5 feet thickness. The low superstructure elevations for the piers: pier 1 (left) upstream 803.61 and downstream 804.53; pier 2 (right) upstream 801.79 and downstream 802.81. The footing bottom elevation for both piers is 784.0 with a 4 feet thickness. Bridge deck low superstructure is lower at the piers to accommodate the large span beams.

Cross-sectional Data Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs Source (FEMA, VTAOT, Other)? -Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station Feature Low cord elevation Bed elevation Low cord to bed length Source (FEMA, VTAOT, Other)? ____ Comments: NO CROSS SECTION INFORMATION Station Feature Low cord elevation Bed elevation Low cord to bed length Station

Feature

Low cord elevation

Bed elevation Low cord to bed length

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number BARTUS00050166

Qa/Qc Check by: MAI Date: 1/26/95

Computerized by: MAI Date: 3/14/95

JDA Date: 5/9/96 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) R. HAMMOND Date (MM/DD/YY) 10 / 19 / 19 94

Mile marker 007110

Road Name -

Town BARTON (03550)

Hydrologic Unit Code: 01110000

2. Highway District Number 09

County ORLEANS (019)

Waterway (1 - 6) BARTON RIVER

Route Number US005

- 3. Descriptive comments:
- 1.4 miles north of junction with VT 16

B. Bridge Deck Observations

- 4. Surface cover... LBUS 4 RBDS 6 LBDS 6/4 RBUS 4/5 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 2 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 126 (feet)

Span length 60 (feet) Bridge width 35 (feet)

Road approach to bridge:

8. LB 2 RB 1 (0 even, 1- lower, 2- higher)

9. LB_1__ RB 1___ (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): 1.6:1 US right 2.4:1 US left

	Pr	otection	12 Erasian	14 Coverity	
	11.Type	12.Cond.	13.Erosion	14.Seventy	
LBUS		-	0	0	
RBUS		-	0	0	
RBDS		-	0	0	
LBDS	_0	-	0		

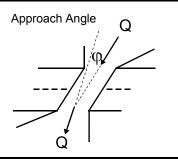
Bank protection types: **0**- none; **1**- < 12 inches;

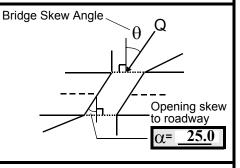
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 40 15. Angle of approach: 0

17. Channel impact zone 1:

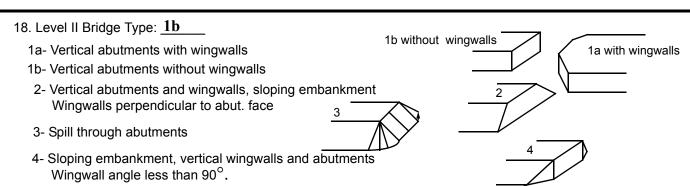
Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 90 feet US (US, UB, DS) to 55 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 0 feet US (US, UB, DS) to 0 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 5. Riffle is predominant in downstream section with some pooling.
- 7. Measured bridge length: 125, span: 60, and width: 35 feet.
- 17. Impact zone 2: the right bank pier is angled to flow and impacted.
- 18. Type 1b however Left bank upstream road embankment protection will act as wingwall thus type 1a Left 1b Right bank.

See notes and diagram on the field form.

C. Upstream Channel Assessment

	21. Bank he	eight (BF) 22. Bank	angle (BF)	26. % Ve	g. cover (BF)	27. Bank r	naterial (BF)	28. Bank e	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
156.8	3.5			3.5	3	1	134	134	1	1
23. Bank	width 25	5.0	24. Cha	annel width	50.0	25. Thal	weg depth	52.5	9. Bed Mate	rial <u>435</u>
			0	0						

30 .Bank protection type: LB <u>0</u> RB <u>0</u> 31. Bank protection condition: LB <u>-</u> RB <u>-</u> R

Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 28. Both banks are vertically cut from ambient to bank full height.

33. Point/Side bar present? N (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 35. Mid-bar width:
36. Point bar extent: feet (US, UB) to feet (US, UB, DS) positioned %LB to %RB
37. Material: <u>-</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): NO POINT BARS
as le a suit hank nyosant? W
39. <u>Is a cut-bank present? Y</u> (Y or if N type ctrl-n cb) 40. Where? <u>LB</u> (LB or RB)
41. Mid-bank distance: 135 42. Cut bank extent: 230 feet US (US, UB) to 100 feet US (US, UB, DS) 43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
43. Both banks are cut about same distance from start to end; left bank is more severely cut.
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance:
47. Scour dimensions: Length - Width - Depth : - Position - %LB to - %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NO CHANNEL SCOUR Some scour downstream of large boulders in channel about 135 and 115 ft. upstream, however should be con-
sidered as local to the boulders and not indicative of general channel conditions.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name): NO MAJOR CONFLUENCES
THE IMPORTAGE RELIGIONS AND ADDRESS OF THE PROPERTY OF THE PRO
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB * (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
34.0 <u>1.5</u> <u>1</u> <u>7</u> <u>4</u> <u>0</u>
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7 - manmade Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.):
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7 - manmade Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.): 435
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7 - manmade Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.):
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.): 435 55. * Pier acts as an abutment. No flow behind pier due to concrete road embankment protection wall (acts
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.): 435 55. * Pier acts as an abutment. No flow behind pier due to concrete road embankment protection wall (acts

65. Debris and Ice	Is there debris accumulation?	(<i>Y or N</i>) 66. Where? N	_ (1 - Upstream; 2 - At bridge; 3 - Both
67. Debris Potential -	(1- Low; 2- Moderate; 3- High)	68 Capture Efficiency 1	(1- Low: 2- Moderate: 3- High)

69. Is there evidence of ice build-up? 1 (Y or N)

Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

67. No debris accumulation near the bridge, upstream is laterally stable, has few cut banks, and consists of cobble material.

68. High channel gradient and span length is more than approximately 80% of the upstream bank width.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	0	1	0	-	-	90.0
RABUT	1	0	0	1		1	0	123.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: **0**- not evident; **1**- evident (comment); **2**- footing exposed; **3**-undermined footing; **4**- piling exposed; **5**- settled; **6**- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

Type 1 stone fill is present along piers and extends upward toward the abutments.

an Winawalls.

00. <u>vvii i</u>	vvano	•				81.	
	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?		Length?
USLWW:						46.5	
USRWW:	N		-		-	1.5	
DSLWW:			-		N	40.5	
DSRWW:			-			33.0	

USRWW USLWW Wingwall length Wingwall angle **DSRWW** DSLWW

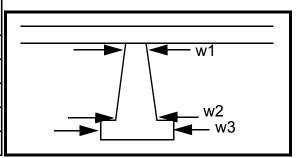
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	-	N	-	-	-	-	-
Condition	N	-	-	-	-	-	-	-
Extent	-	-	-	-	-	-	-	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>79.</u> (*Y or if N type ctrl-n pr*)

85.						
Pier no.	width (w) feet			elevation (e) feet		
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1	-	-	-	-	-	-
Pier 2	-	4.5	5.0	-	103.5	92.6
Pier 3	0.0	3.0	3.0	0.0	105.5	93.5
Pier 4	0.0	-	-	0.0	-	-

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	USL	pier.	exce	d. It
87. Type	WW	Esse	pt at	is
88. Material	not	ntiall	stage	not a
89. Shape	attac	y the	sjust	wing
90. Inclined?	hed	wall	belo	wall;
91. Attack ∠ (BF)	to	bloc	w	but
92. Pushed	the	ks	the	'hyd
93. Length (feet)	-	-	-	-
94. # of piles	abut	flow	cen-	rau-
95. Cross-members	ment	from	ter	licall
96. Scour Condition	but	the	span	y'
97. Scour depth	to	abut	low	this
98. Exposure depth	the	ment	chor	acts

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):								
as a wingwall. The wall should also be called bank protection. Also, there is type 1 protection along the base length of both piers on the channel sides and in between columns on the left pier.								
length of	both piers on th	e channel sides and	in between	columns on	the left pier.			
Y								
100.		E. Downstre	am Char	nel Asse	essment			
100.	Pank haight (PE)) Pank angle (PE)	% Veg. c	over (BF)	Bank materia	al (RE)	Bank eros	eion (RE)
SRD	Bank height (BF)) Bank angle (BF) LB RB	% veg. c	RB	Bank materia	RB	LB	RB
-	-	-	LB	2	2	2	N	0
Bank widt	h (BF) -	Channel width (Amb)	34.9	Thalweg der	oth (Amb) 34.9		Bed Materia	1 0
	ection type (Qmax)				tion condition:	LB 0		
SRD - Sed	tion ref. dist. to US	Face % Vegetation	on (Veg) cove	r: 1 - 0 to 25%	%; 2 - 26 to 50%;		75%; 4 - 76 to	0 100%
Bed and b	ank Material: 0 - or 4- co	ganics; 1 - silt / clay, < 1 bbble, 64 - 256mm; 5 - b	/16mm; 2 - sa oulder, > 256	nd, 1/16 - 2m mm; 6 - bedro	nm; 3 - gravel, 2 ock; 7 - manmad	- 64mm; e		
	ion: 0 - not evident,	; 1 - light fluvial; 2 - mode	erate fluvial; 3	B- heavy fluvia	al / mass wastin	g		
	• •	sent; 1 - < 12 inches; 2 - - good; 2 - slumped; 3 -			s; 4 - < 60 inche	s; 5 - wall	l / artificial lev	⁄ee
		variation, minor inflows						
-								
RB								
1 2								
2								
N								
25								
RB								
_								
1								
0.5								
-								
101. <u>Is a</u>	drop structure	e present?(Y	or N, if N type	e ctrl-n ds)	102. Distance:	f	feet	
103. Drop:	feet	104. Structure	material:	_ (1 - steel sh	neet pile; 2 - woo	d pile; 3 -	concrete; 4-	other)
105. Drop s	tructure comments	s (eg. downstream scou	ır depth):					

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:					
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB					
Material:					
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):					
Is a cut-bank present? 94. (Y or if N type ctrl-n cb) Where? Pier (LB or RB) Mid-bank distance: 1: *					
Cut bank extent: Two_feet con_(US, UB, DS) to crete_feet_col_(US, UB, DS)					
Bank damage: um_ (1- eroded and/or creep; 2- slip failure; 3- block failure)					
Cut bank comments (eg. additional cut banks, protection condition, etc.):					
ns form the pier with a cross member along the top most part of the pier; see photo 15.					
See notes and diagram on field form for further dimensions of the piers.					
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance:					
Scour dimensions: Length Width Depth: Positioned 4 %LB to 4 %RB					
Scour comments (eg. additional scour areas, local scouring process, etc.):					
234					
234					
2 1					
Are there major confluences? 43 (Y or if N type ctrl-n mc) How many? 5					
Confluence 1: Distance $\underline{0}$ Enters on $\underline{0}$ (LB or RB) Type $\underline{-}$ (1- perennial; 2- ephemeral)					
Confluence 2: Distance Enters on Ban (LB or RB) Type k (1- perennial; 2- ephemeral)					
Confluence comments (eg. confluence name):					
protection is present but appears to be natural. Ranges from classes 4 to 5 along both banks.					
Bed material near the bridge is riffle cobble to boulder; near the bend is pooled silt/ clay to sand; at the bend					
F. Geomorphic Channel Assessment					
107. Stage of reach evolution is 1- Constructed					
2 - Stable 3 - Aggraded					
4 - Degraded 5 - Laterally unstable					
6- Vertically and laterally unstable					

iffle with cobble	ents <i>(Channel evolution</i> material.		

	142 N		
point bar (pb)	debris	flow Q	stone wall
cut-bank cb	rip rap or	cross-section +++++	other wall
scour hole	stone fill	ambient channel ——	

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BARTUS00050166 Town: Barton Road Number: US 5 County: Orleans

Stream: Barton River

Initials JDA Date: 4/22/96 Checked: SAO

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	5820	8000	0
Main Channel Area, ft2	565	732	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	396	831	0
Top width main channel, ft	68	73	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	176	191	0
D50 of channel, ft	0.248	0.248	0.248
D50 left overbank, ft	0	0	0
D50 right overbank, ft	0	0	0
y1, average depth, MC, ft	8.3	10.0	ERR
y1, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	2.3	4.4	ERR
Total conveyance, approach	95031	177088	0
Conveyance, main channel	73974	108649	0
Conveyance, LOB	0	0	0
Conveyance, ROB	21057	68439	0
Percent discrepancy, conveyeance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	4530.4	4908.2	ERR
Ql, discharge, LOB, cfs	0.0	0.0	ERR
Qr, discharge, ROB, cfs	1289.6	3091.8	ERR
Vm, mean velocity MC, ft/s	8.0	6.7	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	3.3		
Vc-m, crit. velocity, MC, ft/s		10.3	,
Vc-l, crit. velocity, LOB, ft/s	N/A	N/A	N/A
Vc-r, crit. velocity, ROB, ft/s	0.0	0.0	N/A

Results

Live-bed(1) or Clear-Water(0) Contraction Scour?

Main Channel 0 0 N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units ys=y2-y_bridge (Richardson and others, 1995, p. 32, eq. 20, 20a)

Approach Section	Q100	Q500	Qother
Main channel Area, ft2 Main channel width, ft y1, main channel depth, ft	565 68 8.31	732 73 10.03	0 0 ERR
Bridge Section			
<pre>(Q) total discharge, cfs (Q) discharge thru bridge, cfs Main channel conveyance Total conveyance Q2, bridge MC discharge,cfs Main channel area, ft2 Main channel width (skewed), ft</pre>	5820 5820 44723 44723 5820 455 67.6	8000 8000 57069 57069 8000 539	0 ERR 0 0.0
Cum. width of piers in MC, ft W, adjusted width, ft y_bridge (avg. depth at br.), ft Dm, median (1.25*D50), ft y2, depth in contraction, ft	3.0 64.6 7.05 0.31 8.19	7.96 0.31	0.0 0 ERR 0.31 ERR
ys, scour depth (y2-ybridge), ft	1.14	2.37	N/A
ARMORING D90 D95 Critical grain size,Dc, ft Decimal-percent coarser than Dc Depth to armoring,ft	0.713 0.9829 0.7307 0.095 20.88	0.713 0.9829 0.9362 0.054 49.20	ERR
zopon oo armoring/ro	_0.00	-2.20	

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

Characteristic	Left Abu 100 yr Q		Other Q	Right Ab L00 yr Q 5		ther Q		
<pre>(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal overbank to obt)</pre>	5820 7.6 29.16 129.33	8000 12.1 59.98 231.58	0 0 0 0	5820 168.7 357 1109	8000 181.5 752.8 2694	0 0 0		
Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft	4.44 3.84	3.86 4.96	ERR ERR	3.11	3.58 4.15	ERR ERR		
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert 0.82	i. w/ wir 0	ngwall; 0. 0.55	55, spill 0.55	thru) 0		
Angle (theta) of embankment (<90 theta	if abut. 65 0.96	points DS 65 0.96	0; >90 if 0 0.00	abut. poi 115 1.03	nts US) 115 1.03	0		
Fr, froude number f/p flow	0.399	0.306	ERR	0.376	0.310	ERR		
ys, scour depth, ft	9.08	11.26	N/A	11.99	17.43	N/A		
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49, eq. 29)								
<pre>a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1</pre>	7.6 3.84 1.98	12.1 4.96 2.44	0 ERR ERR	168.7 2.12 79.72	181.5 4.15 43.76	0 ERR ERR		
Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical	0.40 ERR	0.31 ERR	N/A ERR	0.38	0.31	N/A ERR		
vertical w/ ww's spill-through	ERR ERR	ERR ERR	ERR ERR	9.14	16.80 11.27	ERR ERR		

Abutment riprap Sizing

Isbash Relationship $D50=y*K*Fr^2/(Ss-1)$ and $D50=y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.87 y in cor 7.05	0.95 ntracted s 7.96	sectionm	0.87 c, bridge 7.05	0.95 section 7.96)
Median Stone Diameter for riprap at	: left ak	outment		right ab	utment,	ft
Fr<=0.8 (vertical abut.)	ERR	ERR	0.00	ERR	ERR	0
Fr>0.8 (vertical abut.)	2.84	3.28	ERR	2.84	3.28	ERR
Fr<=0.8 (spillthrough abut.)	ERR	ERR	0.00	ERR	ERR	0
Fr>0.8 (spillthrough abut.)	2.51	2.90	ERR	2.51	2.90	ERR

Pier Scour(both live-bed and clear water scour)

 $ys/y1=2.0*K1*K2*K3*K4*(a/y1)^0.65*Fr1^0.43$ (Richardson and others, 1995, p. 36, eq. 21)

K1, corr. factor for pier nose shape
Sharp nose, 0.9; round nose, cylinder, or cylinder grp., 1.0; square nose, 1.1

K3, corr. factor for bed condition
 Clear-water, plane bed, antidune, 1.1; med. dunes, 1.1-1.2 (see Tab.4,p37)

K4, corr. factor for armoring (the following equations are in Si units) $\begin{array}{l} K4 = [1 - 0.89 * (1 - Vr)^2]^0.5 \\ Vr = (V1 - Vi) / (Vc90 - Vi) \\ V1 = 0.645 * ((D50/a)^0.053) * Vc50 \\ Vc = 6.19 * (y^1/6) * (Dc^1/3) \end{array}$

Note for round nose piers:

ys<=2.4 times the pier width (a) for Fr<=0.8 ys<=3.0 times the pier width (a) for Fr>0.8

Pier 1	Q100	Q500	Qother
Pier stationing, ft	65.4	65.4	0
Area of WSPRO flow tube, ft2	20.3	24.1	0
Skewed width of flow tube, ft	2.2	2.3	0
yl, pier approach depth, ft	9.23	10.48	ERR
y1 in meters	2.812	3.194	N/A
V1, pier approach velocity, ft/s	14.4	16.63	0
a, pier width, ft	3	3	0

```
L, pier length, ft
                                    35
                                             35
Fr1, Froude number at pier
                                    0.835
                                             0.905
                                                      ERR
Pier attack angle, degrees
                                    25
                                             25
                                                      0
K1, shape factor
                                    1.1
                                             1.1
                                                      0
K2, attack factor
                                    3.147866 3.147866 ERR
K3, bed condition factor
                                    1.1
                                             1.1
                                                      0
  D50, ft
                                    0.2482
                                             0.2482
                                                      0
 D50, m
                                    0.075648 0.075648 0
 D90, ft
                                    0.713
                                             0.713
                                                      0
  D90, m
                                    0.217312 0.217312 0
 Vc50,critical velocity(D50),m/s
                                    3.110
                                            3.177
                                                      N/A
 Vc90, critical velocity(D90), m/s
                                    4.421
                                             4.516
                                                      N/A
 Vi, incipient velocity, m/s
                                    1.758
                                             1.796
                                                      ERR
 Vr, velocity ratio
                                    0.988
                                             1.203
                                                      ERR
                                    1.00
                                             0.98
                                                      N/A
K4, armor factor
ys, scour depth (K4 applicable), ft 31.34
                                                      ERR
                                             33.29
```

Pier rip-rap sizing D50=0.692(K*V)^2/(Ss-1)*2*g (Richardson and others, 1995, p.115, eq. 83)

Pier-shape coefficient (K), round nose, 1.5; square nose, 1.7 Characteristic avg. channel velocity, V, (Q/A): (Mult. by 0.9 for bankward piers in a straight, uniform reach, up to 1.7 for a pier in main current of flow around a bend)

Pier 1 K, pier shape coeff.	Q100 1.7	Q500 1.7	Qother	
V, char. aver. velocity, ft/s	10.5	12.2	0	
D50, median stone diameter, ft	2.07	2.80	0.00	