LEVEL II SCOUR ANALYSIS FOR BRIDGE 6 (BRISVT01160006) on STATE ROUTE 116, crossing LITTLE NOTCH BROOK, BRISTOL, VERMONT

U.S. Geological Survey Open-File Report 97-4

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 6 (BRISVT01160006) on STATE ROUTE 116, crossing LITTLE NOTCH BROOK, BRISTOL, VERMONT

By Erick M. Boehmler and Ronda L. Burns

U.S. Geological Survey Open-File Report 97-4

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
-	
D. Historical data form	
E. Level I data form	
F. Scour computations	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure BRISVT01160006 viewed from upstream (June 13, 1996)	
4. Downstream channel viewed from structure BRISVT01160006 (June 13, 1996)	
5. Upstream channel viewed from structure BRISVT01160006 (June 13, 1996)	
6. Structure BRISVT01160006 viewed from downstream (June 13, 1996).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BRISVT01160006 on State Route 116, crossing Little Notch Brook,	
Bristol, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
BRISVT01160006 on State Route 116, crossing Little Notch Brook,	
Bristol, Vermont.	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BRISVT01160006 on State Route 116, crossing Little Notch Brook,	
Bristol, Vermont.	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BRISVT01160006 on State Route 116, crossing Little Notch Brook, Bristol, Vermont	
DUNUL VEHIOR	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
cubic foot (ft ³)	0.02832	cubic meter (m ³)
. ,	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 6 (BRISVT01160006) ON STATE ROUTE 116, CROSSING LITTLE NOTCH BROOK, BRISTOL, VERMONT

By Erick M. Boehmler and Ronda L. Burns

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BRISVT01160006 on State Route 116 crossing the Little Notch Brook, Bristol, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the Green Mountain section of the New England physiographic province of West-central Vermont in the town of Bristol. The 8.59-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is dense forest except for the downstream left side, which is row crops.

In the study area, Little Notch Brook has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 32 ft and an average channel depth of 4 ft. The predominant channel bed material is sand and gravel with a median grain size (D_{50}) of 17.4 mm (0.0570 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 13, 1996, indicated that the reach was laterally unstable. The sinuous configuration of the channel with fine bed and bank material, a sharp channel bend upstream, and point bars and cut-banks upstream and downstream of this site are among the primary characteristics, which suggest lateral instability.

In addition, there is evidence of streambed degradation at this site. A large eddy was noted at the location where Little Notch Brook enters the New Haven River about 100 feet downstream. There was a large scour hole noted at the location of the eddy, which is likely to remove streambed material at least as quickly as supplied from upstream on Little Notch Brook. Hence, channel degradation may be significant during a flood event.

The state route 116 crossing of Little Notch Brook is a 24-ft-long, two-lane bridge consisting of one 21-foot concrete span (Vermont Agency of Transportation, written communication, December 14, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 25 degrees.

There was one foot of scour evident along the downstream half of the left abutment footing and some separation of the left abutment wall from the deck above due to settling. The left abutment footing was undermined up to a foot at the downstream end. The scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the upstream left bank and type-2 stone fill (less than 36 inches diameter) on the right banks and right wingwalls upstream and downstream of the structure. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 3.2 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.0 to 10.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

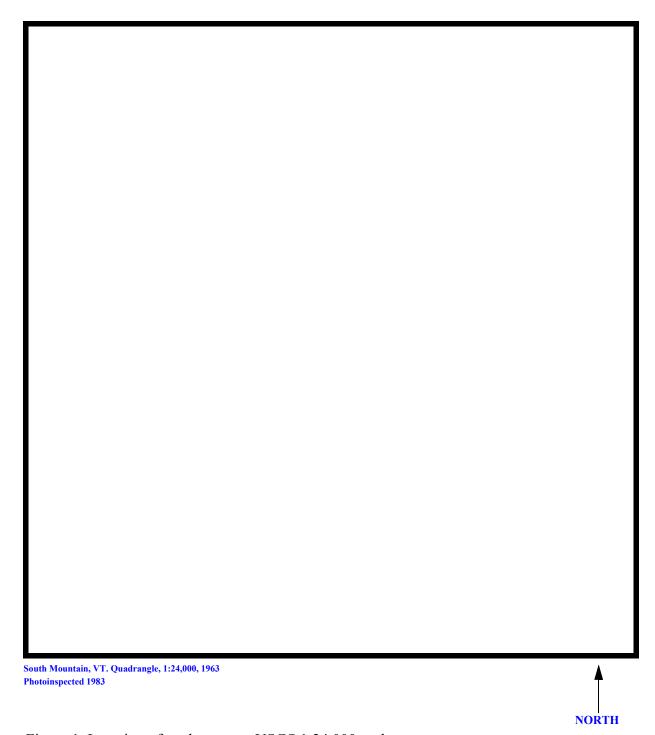
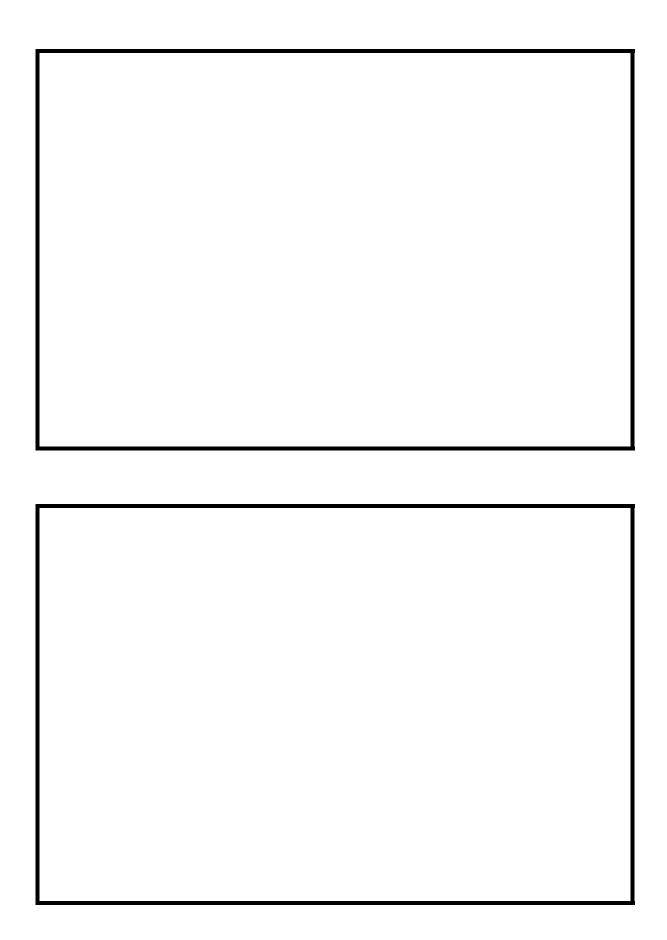



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

icture Number -	BRISVT01160006	Stream	Little N	lotch Brook	
unty Addisor	1	_ Road	VT 116	— District –	5
	Descriț	otion of Bride	ge		
Bridge length	ft Bridge wi	28.6 dth		ax span length	
Alignment of bri	idge to road (on curve or s Vertical	straight) —	Straight	Sloping	
Abutment type	No	 Embankn	nent type	6/13/96	
Stone fill on abut	mont?	Date of inc	n <i>ect</i> ion –	anks upstream a	nd
downstream of the	ne bridge. Type-1 on the le		•	anks upstream at	iid .
downstream of the	ie bridge. Type-1 on the le	nt bank upstrea	4111.		
		.			
		Abutments and	l wingwalls	are concrete. The	ere is a one
	A				
foot deep scour l	nole along the downstream	half of the lef	t abutment f	ooting. The footi	ings of both
abutments are ex		half of the lef	t abutment f	ooting. The footi	ings of both
		half of the lef	t abutment f	ooting. The footi	ings of both
abutments are ex					
abutments are ex	posed.	o Y _ surve	ey?	Y Angle	_15
abutments are ex Is bridge skewed There is a sharp of	posed. I to flood flow according to channel bend in the upstree	o Y surve	ey?	Y Angle	_15
abutments are ex Is bridge skewed There is a sharp of	posed. I to flood flow according t	o Y surve	ey?	Y Angle	_15
abutments are ex Is bridge skewed There is a sharp of developed where	posed. I to flood flow according to channel bend in the upstreather the greatest impact of flow	o Y surve am reach. The v occurs.	ey? scour along	Y Angle the left abutmen	_15
abutments are ex Is bridge skewed There is a sharp of developed where	posed. I to flood flow according to channel bend in the upstree	o Y surve am reach. The v occurs.	ey? scour along	Y Angle the left abutmen	_15
abutments are ex Is bridge skewed There is a sharp of developed where	posed. I to flood flow according to channel bend in the upstreather the greatest impact of flow	am reach, The voccurs. Level I or Lev	ey? scour along el II site vis	Y Angle the left abutmen	t has
abutments are ex Is bridge skewed There is a sharp of developed where Debris accumulation	to flood flow according to channel bend in the upstreathe greatest impact of flow ation on bridge at time of	o Y surve am reach, The v occurs.	ey? scour along el II site vis	Y Angle the left abutmen	t has
abutments are ex Is bridge skewed There is a sharp of developed where Debris accumulate Level I	the greatest impact of flow attion on bridge at time of Date of inspection 6/13/96	am reach, The w occurs. Level I or Lev Percent of blocked no	ey? scour along el II site vis	Y Angle the left abutmen it: Percent of blocked v	t has
abutments are ex Is bridge skewed There is a sharp of developed where Debris accumulation	the greatest impact of flow attion on bridge at time of Date of inspection 6/13/96	am reach, The w occurs. Level I or Lev Percent of blocked no	ey? scour along el II site vis	Y Angle the left abutmen	t has
abutments are ex Is bridge skewed There is a sharp of developed where Debris accumulate Level II	to flood flow according to channel bend in the upstreathe greatest impact of flow ation on bridge at time of Date of inspection 6/13/96 High. There is	am reach, The w occurs. Level I or Lev Percent of blocked no	ey? scour along el II site vis	Y Angle the left abutmen it: Percent of blocked v	t has
abutments are ex Is bridge skewed There is a sharp of developed where Debris accumulate Level II upstream. Potential for	to flood flow according to channel bend in the upstreathe greatest impact of flow ation on bridge at time of Date of inspection 6/13/96 High. There is	am reach. The voccurs. Level I or Level I o	ey? scour along sel II site vis	Y Angle the left abutmen it: Percent of blocked verage on unstable	t has

Description of the Geomorphic Setting

General topog	graphy	The cha	annel at this s	ite crosse	s the flood plain o	of the New Haven F	River
valley, which	has mo	derate relie	f and modera	tely slopi	ng valley walls.		
Geomorphic	conditie	ons at bridį	ge site: down	stream (L	OS), upstream (US	S)	
Date of inspe	ection	6/13/96					
DS left:	Steep o	channel bar	nk to a wide,	irregular (overbank.		
DS right:	Steep	channel bar	nk to a wide i	rregular o	verbank.		
US left:	Moder	ately slopin	ng channel ba	nk.			
US right:	Moder	ately slopir	ng channel ba	nk to a na	rrow, very irregul	lar overbank.	
		ı	Description	of the C	hannel		
		32				4	
Average top			Gravel / Sar	nd	Average dep –	Silt&Clay /	Sand
Predominan	t bed ma	ıterial			Bank material	Sinuous and late	erally
unstable with	alluvial	channel bo	oundaries.				
						6/13/96	
Vegetative co	Trees	with row co	cops on the ov	erbank.			
DS left:			ıbs, and brush				
DS right:	Trees	and shrubs.					
US left:	Trees,	shrubs, and	d brush.				
US right:		N	0				
Do banks ap	pear sta	<i>ble</i> ? On 6/	13/96, there y	vere cut-b	anks, point bars, a	and localized scour	
evident in the	he chanı rvatton.	nel upstrear	n and downst	tream of t	his site. Particular	rly downstream the	banks
are noted as	overste	epend with	block failure	slumping	g of bank material	l at the cut-bank. So	ome
minor chanr	nel braid	ing also is	evident down	stream.			
						The assessment o	f
						large point bar on about 50% of the ch	
width	mediate	iy upsucan	i or me orige	opening	, without occupies a	about 50/0 of the Ch	aiiiiCi

Hydrology

Drainage area $\frac{8.59}{}$ mi ²	
Percentage of drainage area in physi	iographic provinces: (approximate)
Physiographic province/section New England / Green Mountain	
Is drainage area considered rural or	urban? Rural Describe any significant
urbanization:	
Is there a USGS gage on the stream of	No of interest?
USGS gage de	escription
USGS gage n	umber
Gage drainag	ge area mi² No
Is there a lake/p	
1,690	Calculated Discharges 2,350
$Q100 ft^3/s$	The 100- and 500-year discharges are based on
discharge frequency curves computed l	by use of several empirical equations (Benson, 1962;
	inpublished draft, 1972; Johnson and Tasker, 1974; Potter
1957a&b and Talbot, 1887) and a drain	nage area relationship [(8.59/8.3)exp 0.67] with VTAOT
database values for the 100- and 500- y	year discharges (1400 and 1650 cfs respectively) at bridge
number 21 in Bristol on Little Notch B	brook. The 100- and 500-year discharges selected for the
hydraulic analyses herein were those re	esulting from the drainage area relationship due to their
central tendency with the empirical esti	imates.

Description of the Water-Surface Profile Model (WSPRO) Analysis

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-24	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	15	1	Road Grade section
APPRO	48	2	Modelled Approach section (Templated from (APTEM)
APTEM	53	1	Approach section as surveyed (Used as a template)

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Field observations on 6/13/96 indicate that flow will cross the drainage divide into a swamp on the upstream right overbank area when the stage exceeds the top of the right bank upstream of this site. Since the quantity of flow loss is uncertain and the maximum scour potential is desired, a vertical wall was drawn near the divide on the right overbank of each section for modeling the hydraulics at this site. Therefore, all of the discharge for each modeled event was assumed to remain within the watershed and contribute to scour.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.050, and overbank "n" values ranged from 0.040 to 0.10.

Although Little Notch Brook enters the New Haven River about 300 feet downstream of this site, the differences in watershed area and characteristics suggest that the peak discharges on each reach are not contemporaneous. Therefore, no backwater effects were assumed and normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0046 ft/ft, which was estimated by use of surveyed water surface points between the BRIDG and EXITX sections.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.00445 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 500.8 Average low steel elevation 1,690 100-year discharge 501.0 Water-surface elevation in bridge opening Road overtopping? Discharge over road Area of flow in bridge opening 8.2 Average velocity in bridge opening ft/s 10.4 ft/s Maximum WSPRO tube velocity at bridge 502.4 Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 2,350 ft³/s 500-year discharge 501.0 ft Water-surface elevation in bridge opening Road overtopping? Discharge over road Area of flow in bridge opening Average velocity in bridge opening Maximum WSPRO tube velocity at bridge 502.9 Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge 2.5 Amount of backwater caused by bridge 1,050 Incipient overtopping discharge Water-surface elevation in bridge opening 498.3 Area of flow in bridge opening Average velocity in bridge opening ft/s 15.2 Maximum WSPRO tube velocity at bridge 500.9 Water-surface elevation at Approach section with bridge 499.0 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of Laursen's clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the incipient road overtopping discharge. The 100- and 500-year discharges resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Therefore, contraction scour for the 100- and 500-year discharges was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). Results of Laursen's equation for the 100- and 500- year discharge models also are provided in Appendix F. Streambed armoring depths computed suggest that armoring will not impede contraction scour.

Abutment scour for the left abutment at all modelled discharges was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the right abutment for the modeled discharges was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	3.2	4.3	3.6
Depth to armoring	24.1	43.7	N/A ⁻
Left overbank		<u></u>	
Right overbank			
Local scour:			
Abutment scour	9.0	10.0	9.1
Left abutment	8.4_	8.9-	6.0-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizin	g	
	100-yr dischar;		Incipient overtopping discharge
	100 y. mozerung	(D ₅₀ in feet)	serge
Abutments:	1.4	1.8	2.1
Left abutment	1.4	1.8	2.1
•			
Right abutment		⁻	
Piers:			
Pier 1			
Pier 2			

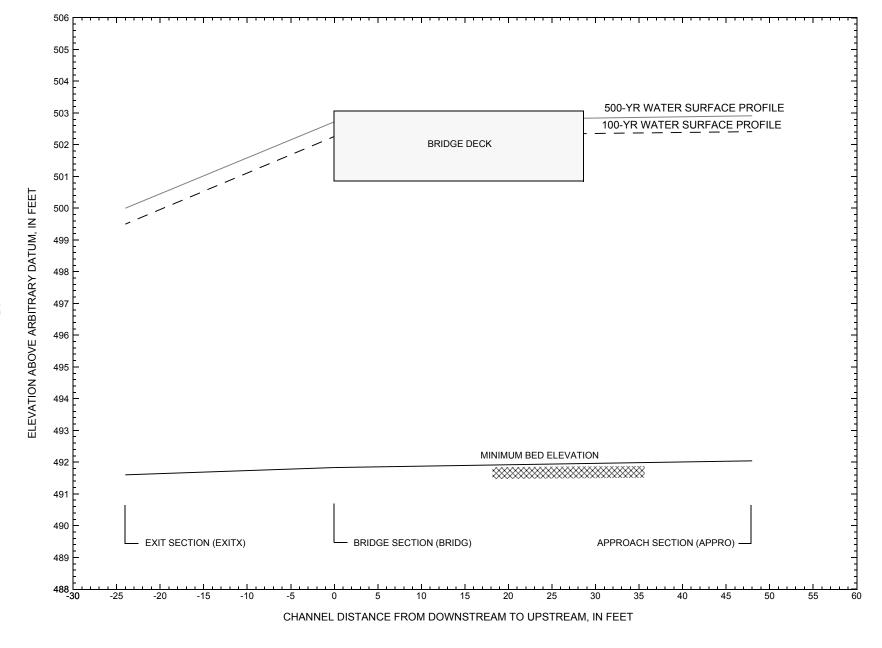


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BRISVT01160006 on state route 116, crossing Little Notch Brook, Bristol, Vermont.

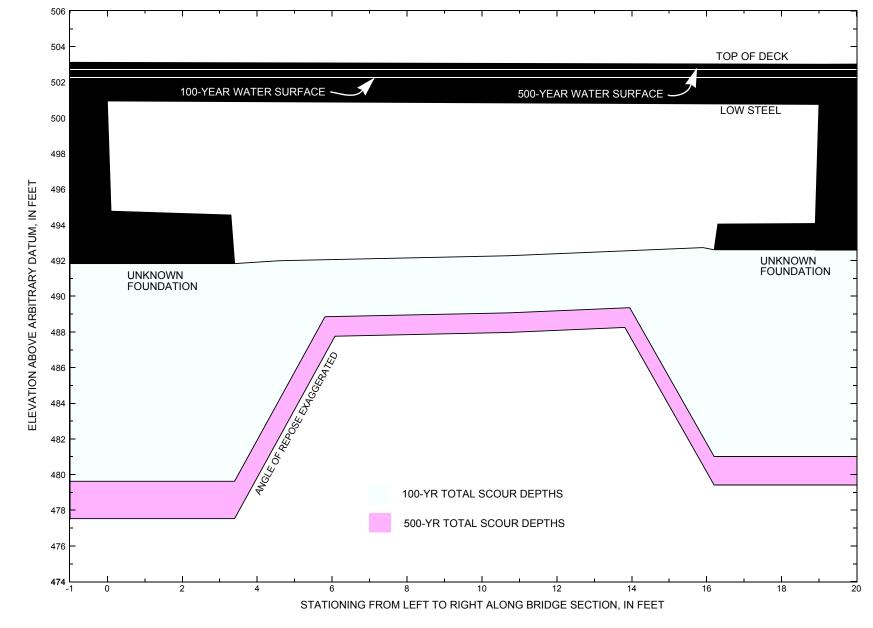


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BRISVT01160006 on state route 116, crossing Little Notch Brook, Bristol, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BRISVT01160006 on State Route 116, crossing Little Notch Brook, Bristol, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 1,690	cubic-feet per sec	cond				
Left abutment	0.0	102.0	501.0		491.8	3.2	9.0		12.2	479.6	
Right abutment	19.0	101.8	500.8		492.6	3.2	8.4		11.6	481.0	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BRISVT01160006 on State Route 116, crossing Little Notch Brook, Bristol, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 2,350	cubic-feet per sec	cond				
Left abutment	0.0	102.0	501.0		491.8	4.3	10.0		14.3	477.5	
Right abutment	19.0	101.8	500.8		492.6	4.3	8.9		13.2	479.4	

^{1.} Measured along the face of the most constricting side of the bridge.

² Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Federal Emergency Management Agency, 1986, Flood Insurance Study, Town of Bristol, Addison County, Vermont: Washington, D.C., August, 1986.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1963, South Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps; Aerial photography, 1961; Photoinspected 1983; Contour interval, 20 feet; Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File bris006.wsp
Т2
          Hydraulic analysis for structure BRISVT01160006 Date: 02-AUG-96
Т3
          State Route 116 Crossing Little Notch Brook, Bristol, VT
                                                                              EMB
           * * 0.005
J1
J3
           6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
*
Q
            1690.0,
                      2350.0,
                                1050.0
            0.0046,
                      0.0046,
SK
                                0.0046
            499.48,
WS
                      500.00,
                                498.72
*
XS
     EXITX
             -24
                           -555.6, 505.71
                                             -553.9, 503.05
           -557.8, 507.28
                                                              -540.2, 502.14
GR
GR
             -4.4, 498.72
                             0.0, 493.82
                                               2.0, 491.61
                                                                6.1, 492.17
             9.3, 492.89
                              19.2, 493.23
                                               20.6, 493.86
                                                                23.6, 494.46
GR
GR
             28.7, 497.59
                             249.5, 498.00
                                              249.5, 504.00
*
                                     128.1, 501.69
*
            Replaced: 33.4, 501.04
                                                       249.5, 500.91 with
*
                     249.5, 498.00 to more closely represent right overbank
*
                     along the toe of the road embankment on the downstream
*
                     side. Most road overflow occurs here.
            Notice: A vertical wall was drawn at station 249.5 on the EXITX
                    section, at station 263.2 on the RDWAY section, and at
*
                    station 126.6 on the APPRO section, in order
                    to prevent excessive roadway overflow and keep flow left
                    of a localized drainage divide. Right of this station
                    on the approach, flow would enter a swamp, which is
*
                    another drainage according to field observations
*
                    for which the modeled discharges do not include.
*
N
            0.040
                         0.050
                                       0.10
SA
                    -4.4
                                28.7
*
               0 * * * 0.0046
XS
     FULLV
*
*
              SRD
                              XSSKEW
                     LSEL
                    500.85
BR
     BRIDG
              Ω
                               25.0
              0.0, 500.95
GR
                               0.1, 494.77
                                                3.3, 494.56
                                                                 3.4, 491.83
                                               15.9, 492.73
                              10.7, 492.27
                                                                16.2, 492.61
GR
              4.6, 491.99
             16.3, 494.05
                              18.9, 494.08
                                               19.0, 500.76
GR
                                                                 0.0, 500.95
*
          BRTYPE BRWDTH
                               WWANGL
                                         WWWID
                    40.4 * *
CD
             1
                                 60
                                         5.0
            0.035
Ν
*
*
              SRD
                    EMBWID
                              IPAVE
     RDWAY
XR
              15
                       28.6
                               1
           -556.4, 508.93
                                             -252.5, 503.07
GR
                            -415.0, 504.99
                                                             -95.5, 503.14
              0.0, 503.11
GR
                             16.3, 503.01
                                             141.8, 501.69
                                                               263.2, 500.91
            263.2, 504.00
GR
            374.1, 500.38
                           374.6, 504.00
*
XT
     APTEM
               53
           -540.3, 508.93
                            -399.1, 504.99
                                             -236.6, 503.07
                                                               -79.5, 503.14
GR
GR
            -17.3, 501.95
                             -9.3, 498.23
                                              -5.8, 496.74
                                                                -1.1, 494.96
                                                                16.0, 492.64
GR
             0.0, 493.92
                              2.9, 493.43
                                                9.9, 493.34
GR
             18.5, 492.06
                              22.1, 493.91
                                               24.7, 496.17
                                                                29.3, 498.52
             68.3, 499.48
                              96.7, 499.84
                                              126.5, 499.22
                                                               200.0, 499.22
GR
            200.0, 504.00
GR
*
          Notice: The right overbank was extended from station 126.5 to 200.0
*
                   to be more comparable to the length of the roadway right
                   overbank and the location of the divide between the brook
                   and the swamp.
```

20

```
APPRO 48 * * * 0.00445
AS
GT
          0.060 0.050
                                 0.090
N
                            24.7
                -9.3
SA
HP 1 BRIDG 500.95 1 500.95
HP 2 BRIDG 500.95 * * 1116
HP 2 RDWAY 502.26 * * 569
HP 1 APPRO 502.41 1 502.41
HP 2 APPRO 502.41 * * 1690
HP 1 BRIDG 500.95 1 500.95
HP 2 BRIDG 500.95 * * 1227
HP 2 RDWAY 502.72 * * 1126
HP 1 APPRO 502.91 * 502.91
HP 2 APPRO 502.91 * * 2350
HP 1 BRIDG 498.28 1 498.28
HP 2 BRIDG 498.28 * * 1050
HP 1 APPRO 500.86 1 500.86
HP 2 APPRO 500.86 * * 1050
EX
ER
```

APPENDIX B:

WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

	CR	OSS-SE	CTION	PROPE	RTIES:	ISE	Q = 3	; SEC	CID =	BRIDG	; SRD	=.	0.
	W		3A# 1	AREA							LEW		
	500	. 95	-	135 135	11	1035	0	9	51 1.	00	0	19	0
	VE	LOCITY	Z DIST	RIBUTIO	ON: IS	SEQ =	3;	SECID	= BRI	DG;	SRD =		0.
				LEW							VEL 8.24		
x	STA.										5.3		6.1
	A(I) V(I)			11.9		9.8		6.8		6.3		5.8	
	STA.										8.9		
	A(I) V(I)			5.6		5.7		5.5		5.4		5.4	
	STA.												
	A(I)			5.4		5.4		5.4		5.6		5.7	
	V(I)												
	STA. A(I)			5.9		6.4		6.7		8.5		12.3	
	V(I)			9.48		8.76		8.33		6.57		4.55	
											SRD =		15.
		WSE 502.2	EL 26 :	LEW 87.6	REW 263.2	AI 132	REA 2.0	1618.		Q 569.	VEL 4.31		
Х	STA.		87.								178.4		187.3
	A(I) V(I)			14.2		9.6 2.96		8.9 3.20		7.9 3.59		7.4 3.83	
Х	STA.		187.								215.0		220.7
	A(I) V(I)												
	STA.		220.								239.9		
	A(I) V(I)												
	STA.		244								259.1		
	A(I) V(I)		211.		210.1							5.4 5.23	
		166-6E	CTION								; SRD		
				AREA							, SKD		
	***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 2	25 282		499 2814	33	3	34 36	-11	DEN	KEW	122 4604
	F.0.0	4.7	3	559	19					2.5	-42	000	5658
	502		, Diam	865							-42 SRD =		
	VE										VEL		±8.
											1.95		
Х	STA.		-42.	5	-4.4		-0.5		2.2		4.6		7.0
	V(I)			1.68		3.10		3.60		3.85		4.03	
	STA.		7.								15.8		
	A(I) V(I)			20.8 4.06									
	STA.		17.								48.9		
	A(I) V(I)												
	STA.		73.								175.1		
	A(I) V(I)			81.7 1.03									

	CR	OSS-S	SECTIO	N PROPE	RTIES:	ISE	Q = 3	; SEC	ID = 1	BRIDG	; SRD	=	0.
	W	SEL	SA#	AREA	11					PH	LEW	REW	QCR 0
	500	. 95	-	135						00	0	19	
	VE	LOCI	ry dis	TRIBUTI	ON: IS	SEQ =	3;	SECID	= BRI	DG;	SRD =		0.
			SEL .95	LEW 0.0	REW 19.0			K 11035.		Q 227.			
	STA.			.0									
	A(I) V(I)			11.9 5.14		9.8 6.24		6.8 8.96		6.3 9.78		5.8	
	STA. A(I)		6	.1 5.6		5.7		5.5		5.4		5.4	
	V(I)			10.87	1	10.80		11.21		11.39		11.44	
	STA. A(I)		9	.5 5.4		5.4		5.4		5.6		5.7	
	V(I)			11.30	1	11.35		11.30		11.02		10.72	
Х	STA. A(I)			.1 5.9		6.4		6.7		8.5		12.3	
	V(I)			10.42									
	VE			TRIBUTI									15.
				43.9									
	STA. A(I)		43	.9 24.9	112.7								
	V(I)			2.26		3.44		3.85		4.23		4.54	
	STA. A(I)		169			11.3		10.8		10.3		10.0	
	V(I)		210		216.6							5.64	
	STA. A(I) V(I)		210	.1 9.7 5.83		9.3		9.0		8.8		8.5	
	STA.		239	.0									
	A(I) V(I)			8.4		8.3		7.9		7.9		9.3	
	CR	OSS-S	SECTIO	N PROPE	RTIES:	ISE	Q = 5	; SEC	ID = I	APPRO	; SRD	=	48.
	W	SEL	SA#	AREA		K L024		WET		PH	LEW	REW	QCR 245
			2	299 646	36	5179	34		6				5027 7041
	502	.91		993		2324				32	-68	200	
	VE	LOCI	ry dis	TRIBUTI	ON: IS	SEQ =	5;	SECID	= APP	RO;			18.
		WS 502	SEL .91	LEW -68.6	REW 200.0	AI 993	REA 3.0	K 62324.	2:	Q 350.	VEL 2.37		
X	STA. A(I)		-68	.6 71.3		30.5		27.0		24.8		24.2	
	V(I)			1.65		3.86		4.35		4.75		4.86	
X	STA. A(I)		7	.2 23.3		23.5		23.0		23.2		22.7	
_	V(I)												
Х	A(I)		18	24.6		32.5		70.4		77.5		82.8	
x	V(I)		Ω./ι	4.77									
-	A(I) V(I)			86.3		81.5		79.4		77.8		86.7	

CROS	S-SECTIO	N PROPER	TIES: ISEQ	= 3;	SECID) = BRIDG	; SRD	=	0.
WSE	L SA#	AREA 91		TOPW	WETP	ALPH	LEW	REW	QCR 1194
498.2		91				1.00	0	19	
15012		71	03.71		23	1.00	Ü		
VELO	CITY DIS	TRIBUTIO	N: ISEQ =	3; SE	CID =	BRIDG;	SRD =		0.
	WSEL	LEW	REW AR	EA	K	Q	VEL		
4	98.28	0.0	19.0 91	.2 8	374.	1050.	11.51		
X STA.	C		2.6	4.2		5.0	5.7		
A(I)		8.2 6.40	7.4	11		4.2		3.9 13.60	
V(I)		6.40	7.10	11	3 /	12.4/		13.60	
X STA.	e	5.4	7.1	7.7		8.4	9.0		9.6
A(I)		3.7			3.5	3.5		3.5	
V(I)		14.08	14.33	14	.88	15.13		15.20	
X STA.	9	0.6	10.3						12.9
A(I)		3.5	3.5		3.5	3.7		3.7	
V(I)		14.98	15.05	15	.01	14.36		14.21	
y oma	1.0		13.7	14 5	-	F 4	16.7		10.0
A SIA.	12	3.9	4.1			6.2		8.5	
V(I)			12.75					6.17	
V (±)		13.17	12.75			0.52		0.17	
CROS	S-SECTIO	N PROPER	TIES: ISEQ	= 5;	SECIE	= APPRO	; SRD	=	48.
WSE	L SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	8	212	6	6				49
	2	229	23238	34	36				3375
	3	287	23238 6539 29989	175	178				2082
500.8	6	524	29989	215	220	2.47	-14	200	2952
VELO	CITY DIS	TRIBUTIO	N: ISEQ =	5; SE	CID =	APPRO;	SRD =		48.
	WSEL	LEW	REW AR	DΛ	K	Q	VEL		
			200.0 523						
-		10.0	200.0 323			1000.	2.01		
X STA.	-15	5.0	-4.1	-0.8		1.5	3.5		5.4
A(I)		27.2	17.8 2.95	1	6.2	14.5		14.3	
V(I)		1.93	2.95	3	.25	3.61		3.67	
X STA.	5		7.2		_ 1	.0.8	12.5		
A(I)		13.5				13.1		13.0	
V(I)		3.87	3.91	3	.84	4.01		4.03	
X STA.	1 4	2	15.7	17 3	1	8.8	20 4		22.5
A(I)		12.9			.2.8	13.8		15.2	
V(I)			4.07						
X STA.	22	2.5	29.9	59.9	12	0 7	160.8		200.0
- (-)									
A(I) V(I)			59.4						

EGL LEW CRWS XSID:CODE SRDL AREA VHD HF 0 WSEL REW K ALPH НО ERR SRD FLEN FR# EXITX:XS ***** -122 604 0.36 ***** 499.84 498.81 1690 499.48 250 24896 2.98 **** ***** 0.67 2.80

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.

FNTEST, FR#, WSEL, CRWS = 0.80 1.30 499.52 498.41

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 499.11 508.91 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 499.11 508.91 498.41

APPRO:AS 48 -11 242 1.19 0.33 500.71 498.41 1690 499.52 48 48 200 16594 1.58 0.42 0.00 1.31 6.98 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.

WS1,WSSD,WS3,RGMIN = 503.85 0.00 499.68 500.91

===260 ATTEMPTING FLOW CLASS 4 SOLUTION.

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW.

WS3,WSIU,WS1,LSEL = 499.64 502.08 502.13 500.85

===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 24 0 135 1.06 ***** 502.01 498.06 1116 500.95 0 ***** 19 11035 1.00 ***** ******* 0.54 8.24

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 5. 0.450 0.000 500.85 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 15. 19. 0.02 0.14 502.53 0.00 569. 502.26

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 0.
 361.
 -351.
 10.
 1.2
 1.0
 5.9
 6.6
 1.6
 3.1

 RT:
 569.
 175.
 88.
 263.
 1.3
 0.8
 4.8
 4.3
 1.0
 3.1

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 8 -41 865 0.14 0.04 502.55 498.41 1690 502.41 48 12 200 53020 2.36 0.53 0.00 0.28 1.95

M(G) M(K) KQ XLKQ XRKQ OTEL

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER	DEFINED	TABLE.		
XSID: CODE	SRD	LEW	REW	
EXITX:XS	-24.	-123.	250.	1
			0 = 0	_

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-24.	-123.	250.	1690.	24896.	604.	2.80	499.48
FULLV:FV	0.	-126.	250.	1690.	25174.	610.	2.77	499.61
BRIDG:BR	0.	0.	19.	1116.	11035.	135.	8.24	500.95
RDWAY:RG	15.*	*****	0.	569.	0.**	*****	1.00	502.26
APPRO:AS	48.	-42.	200.	1690.	53020.	865.	1.95	502.41

SECOND USER DEFINED TABLE.

XS	ID:CODE	CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
EXI	TX:XS	498.81	0.67	491.61	507.28*	****	****	0.36	499.84	499.48
FUL	LV:FV	*****	0.66	491.72	507.39	0.11	0.00	0.35	499.96	499.61
BRI	DG:BR	498.06	0.54	491.83	500.95*	****	****	1.06	502.01	500.95
RDW	AY:RG	*****	*****	500.91	508.93	0.02*	****	0.14	502.53	502.26
APP	RO:AS	498.41	0.28	492.04	508.91	0.04	0.53	0.14	502.55	502.41

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

EXITX:XS ***** -205 821 0.35 **** 500.36 499.40 2350 500.00 -23 ***** 250 34618 2.76 **** ****** 0.62 2.86

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 1.70 499.70 500.36

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 499.62 508.91 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1,WSLIM2,CRWS = 499.62 508.91 500.36

===130 CRITICAL WATER-SURFACE ELEVATION A S S S U M E D !!!!!

ENERGY EQUATION NOT BALANCED AT SECID "APPRO"

WSBEG, WSEND, CRWS = 500.36 508.91 500.36

===215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.

WS1,WSSD,WS3,RGMIN = 506.81 0.00 500.80 500.91

===260 ATTEMPTING FLOW CLASS 4 SOLUTION.

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW.

WS3,WSIU,WS1,LSEL = 500.32 502.63 502.70 500.85

===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 24 0 135 1.28 **** 502.23 498.37 1227 500.95 0 ***** 19 11035 1.00 **** ****** 0.60 9.06

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 5. 0.470 0.000 500.85 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 15. 19. 0.03 0.20 503.09 0.00 1126. 502.72

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 0.
 5.
 -253.
 10.
 0.0
 0.0
 3.0
 125.8
 0.4
 3.0

 RT:
 1126.
 220.
 44.
 263.
 1.8
 1.0
 5.6
 5.0
 1.4
 3.2

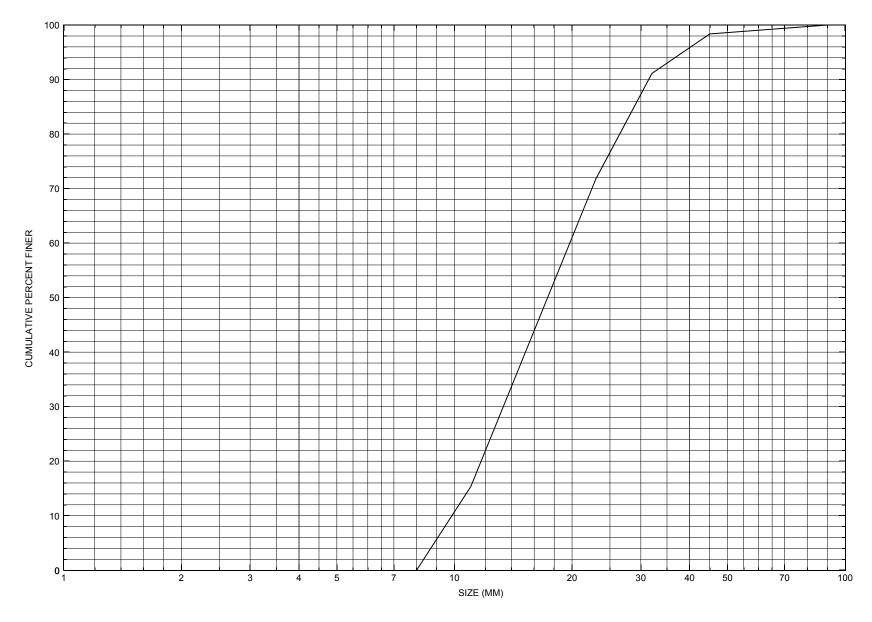
XSID:CODE SRD		LEW REW		VHD ALPH				Q VEL	WSEL
APPRO:AS		-68 200					500.36		502.91
	M(K)	~							
						'ATIONS>>	>>>>		
FIRST USEF	R DEFINED	TABLE.							
XSID: COL						K	AREA	VEL	WSEL
EXITX:XS	-24.	-206.	250.	235	30. 3	4618.	821.		
FULLV:FV	0.					4824.		2.85	500.12
BRIDG:BR						1035.		9.06	
RDWAY:RG		*****				0.***		1.00 !	
APPRO:AS	48.	-69.	200.	235	50. 6	2357.	993.	2.37	502.91
XSID:COL APPRO:AS	_	-							
SECOND USER	R DEFINED	TABLE.							
XSID: COL					YMAX		HO VHD		
EXITX:XS	499.4	0 0.	62 491	.61 5	07.28*	*****	**** 0.35	500.3	500.00
FULLV: FV	*****	* 0.	62 491	.72 5	07.39	0.11 0	0.00 0.35	500.4	7 500.12
BRIDG:BR	498.3	7 0.	60 491	.83 5	00.95*	*****	**** 1.28	502.23	3 500.95
RDWAY:RG	*****	*****	** 500	.91 5	08.93	0.03***	**** 0.20	503.09	9 502.72
APPRO:AS	500.3	6 0.	33 492	.04 5	08.91	0.06	0.49 0.20	503.1	1 502.91
XSID: CODE								Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
EXITX:XS *	*****	-3	262	0 27	****	100 07	496.83	1050	498.71
	****						0.72	2.90	430.71
23		250	13100	2.00			0.72	2.50	
FULLV:FV	24	-4	366	0 36	0 11	499 19	*****	1050	498.83
0	24		15624		0.00		0.71	2.87	150.05
							NSTRICTED)		>>>>
		OVE RED	ODIO RD	LDDCI	WOIGH	m (once	JANUTRICIED,	I LOW.	
APPRO:AS	48	-10	177	0 62	0.25	499 57	*****	1050	498 95
48	48	48	13471		0.13		0.64	5.95	150.55
							NSTRICTED)		
		OVE RED	ODIO RD	LDDCI	WOIGH	m (once	JANUTRICIED,	I LOW.	
	<<< <res< td=""><td>ULTS RE</td><td>FLECTIN</td><td>G THE</td><td>CONSTR</td><td>ICTED FI</td><td>LOW FOLLOW:</td><td>>>>></td><td></td></res<>	ULTS RE	FLECTIN	G THE	CONSTR	ICTED FI	LOW FOLLOW:	>>>>	
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	0	WSEL
SRD							FR#	-	
BRIDG:BR	24	0	91	2.06	0.20	500.34	497.84	1050	498.28
0	24	19					0.88	11.50	
TYPE PE	PCD FLOW	C	P/A	LSE	EL BL	EN XLA	AB XRAB		
							* *****		
XSID: COL	DE SRD	FLEN	HF	VHD	EG	L EF	RR Q	WSE	
RDWAY:RG	15.		<<< <e< td=""><td>MBANKM</td><td>MENT IS</td><td>NOT OVE</td><td>ERTOPPED>>:</td><td>>>></td><td></td></e<>	MBANKM	MENT IS	NOT OVE	ERTOPPED>>:	>>>	
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
		REW					FR#		
				-	-				
APPRO:AS	8	-14	523	0.15	0.04	501.01	497.10	1050	500.86
			29932	2.47	0.63	0.02	0.36		
10	_			/		0.02	0.50		
M (C)									
11 (3)	M(K)	K∪	XI.K∪	XDX	ro o	TEI.			
	M(K)								
	M(K) 0.424								

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-24.	-4.	250.	1050.	15480.	362.	2.90	498.71
FULLV:FV	0.	-5.	250.	1050.	15624.	366.	2.87	498.83
BRIDG:BR	0.	0.	19.	1050.	8380.	91.	11.50	498.28
RDWAY:RG	15.**	*****	*****	0.*	*****	*****	1.00*	*****
APPRO:AS	48.	-15.	200.	1050.	29932.	523.	2.01	500.86

XSID:CODE XLKQ XRKQ KQ APPRO:AS 2. 21. 17132.


SECOND USER DEFINED TABLE.

XSID: COD	E CRWS	FR#	YMIN	YMAX	HF	НО	VHD	EGL	WSEL
EXITX:XS	496.83	0.72	491.61	507.28*	*****	****	0.37	499.07	498.71
FULLV:FV	*****	0.71	491.72	507.39	0.11	0.00	0.36	499.19	498.83
BRIDG:BR	497.84	0.88	491.83	500.95	0.20	1.06	2.06	500.34	498.28
RDWAY:RG	******	*****	500.91	508.93*	*****	*****	*****	*****	*****
APPRO:AS	497.10	0.36	492.04	508.91	0.04	0.63	0.15	501.01	500.86
ER									

¹ NORMAL END OF WSPRO EXECUTION.

29

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for one pebble count transect at the approach cross-section for structure BRISVT01160006, in Bristol, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BRISVT01160006

General Location	Descriptive
Data collected by (First Initial, Full last name) \underline{L} . Medalie	
Date (MM/DD/YY) 12 / 14 / 95	
Highway District Number (I - 2; nn)	County (FIPS county code; I - 3; nnn)001
Town (FIPS place code; I - 4; nnnnn) <u>09025</u>	Mile marker (I - 11; nnn.nnn) <u>002830</u>
Waterway (1 - 6) Little Notch Brook	Road Name (I - 7):
Route Number <u>VT 116</u>	Vicinity (1 - 9) 2.7 MI S JCT. VT.17 W
Topographic Map South.Mountain	Hydrologic Unit Code: 2010002
Latitude (I - 16; nnnn.n) 44057	Longitude (i - 17; nnnnn.n) 73055

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 20002100060103 Maximum span length (I - 48; nnnn) 0021 Maintenance responsibility (I - 21; nn) 01 Year built (1 - 27; YYYY) 1931 Structure length (I - 49; nnnnnn) 000024 Average daily traffic, ADT (I - 29; nnnnn) 002080 Deck Width (I - 52; nn.n) 286 Channel & Protection (I - 61; n) 5 Year of ADT (1 - 30; YY) 92 Opening skew to Roadway (I - 34; nn) 30 Waterway adequacy (1 - 71; n) 4 Operational status (I - 41; X) A Underwater Inspection Frequency (1 - 92B; XYY) N Year Reconstructed (1 - 106) 1970 Structure type (*I - 43; nnn*) **101** Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) 20 Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) -Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) Comments:

According to the structural inspection report dated 9/13/93, structure is a concrete slab bridge. The downstream half of the left abutment is undermined up to 1.5 feet vertically with horizontal penetration up to 5 feet underneath the footing. This undermining extends underneath the footing for the downstream left wingwall. It appears that the left abutment has settled up to 4 inches on the left end. The stem of the left abutment has some minor cracking and heavy scaling along the bottom of the wall. The exposed portion of this footing and of the footing at the left wingwall has heavy scaling and some spalled areas on the top. The left wingwall has areas of staining and scaling particularly at the bottom. (Continued, page 35)

	Brid	ge Hydr	ologic Da	ata			
Is there hydrologic data availab	le? <u>N</u> if	No, type ctr	l-n h VTA	OT Draina	age area (n	ni²): <u>-</u>	
Terrain character:							
Stream character & type: _							
01 1 1 1 1 1							
Streambed material:					<u> </u>		
Discharge Data (cfs): Q _{2.33}							
Record flood date (MM / DD / YY): / Water surface elevation (#): Estimated Discharge (cfs): Velocity at Q (ft/s):							
Ice conditions (Heavy, Moderate, L							
The stage increases to maximu							
The stream response is (Flashy,	Not flashy):						
Describe any significant site con	nditions up	stream or	downstrea	m that ma	y influence	e the stream's	
stage: -							
Watershed storage area (in perc	ent): - %						
The watershed storage area is:			neadwaters; 2	2- uniformly	distributed; 3	3-immediatly upstream	
	oi th	e site)					
Water Surface Elevation Estima	ates for Exi	istina Stru	rture:				
		1		1	1	1	
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀		
Water surface elevation (ft))	-	-	-	-	-		
Velocity (ft / sec)	-	-	-	-	-		
]	
Long term stream bed changes	: -						
Is the roadway overtopped belo	w the Q ₁₀₀	? (Yes, No	, Unknown):	U	Frequen	cy:	
Relief Elevation (#):	Discha	arge over	roadway at	Q ₁₀₀ (ft ³ /	sec):		
Are there other structures nearly	y? (Yes, N	o, Unknown)): <u>U</u> <i>If No</i>	o or Unknov	vn. type ctrl-n	1 OS	
Upstream distance (miles):						ilt:	
Highway No. :	Struct	ure No. : <u>-</u>	Str	ucture Typ	oe: <u>-</u>		
Clear span (ft): Clear H	eight (#): _	<u>-</u> F	ull Waterw	ay (ft²): <u>-</u>			

Downstream distance (miles): Town:	Year Built:
Highway No. : - Structure No. : - Structure Type:	
Clear span (#): Clear Height (#): Full Waterway (#²):	
Comments: There is a spalled area at the top near the fascia line. The concrete facing on the	right half of the abutment
is undermined at its left end. The stem of the right abutment has areas of gener	9
and areas of diagonal cracking at the top near the fascia lines. The footing is ex	
ing both in the top and in the face. There is some scour along this footing, but in upstream wingwall has areas of cracking and general scaling. The exposed footing the score is some scour along this footing, but in upstream wingwall has areas of cracking and general scaling.	
some spalling. The downstream wingwall is similar. The channel takes a moder	rate turn into and a slight
turn out of the structure. The majority of the flow is toward the undermined a	rea at the left abutment.
LISCS Waterahad Date	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 8.59 mi ² Lake and pond area 0.025	mi ²
Watershed storage (ST) %	
Bridge site elevation ft Headwater elevation 1840	ft
Main channel length 5.2 mi	
10% channel length elevation 370 ft 85% channel length e	levation 1660 ft
	ilevationit
Main channel slope (S) 330.77 ft / mi	
Watershed Precipitation Data	
Average site precipitation in Average headwater precipitation	ation in
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	
· · · · · · · · · · · · · · · · · · ·	

Bridge Plan Data
Are plans available? YIf no, type ctrl-n pl Date issued for construction (MM / YYYY): /
Project Number Minimum channel bed elevation: 93.5
Low superstructure elevation: USLAB DSLAB USRAB DSRAB Benchmark location description: BM #1, 16" elm, elev. 100', 20' up the right bank of the new channel, and 50 ' downstream of the road.
Reference Point (MSL, Arbitrary, Other): _Arbitrary
Comments: Few elevations are provided on the plans. A rough cross-section plot of the bridge section is provided on the plans and shows a left low steel elevation of ~102.0 feet and right low steel elevation of ~101.8. It is not clear where the section was taken within the bridge.

Is cross-sectional data available? Y	Cross-sectional Data If no, type ctrl-n xs	
Source (FEMA, VTAOT, Other)? VTAOT		
Comments: Channel x-sections available	<u> </u>	
Commond A Sections available		
Station		
Feature		
Low cord elevation		
Bed elevation		
Low cord to bed length		
Station		
Feature		
Low cord elevation		
Bed elevation		
Low cord to bed length		
Source (FEMA, VTAOT, Other)?	_	
Comments:		
Station		
Feature		
Low cord elevation		
Bed elevation		
Low cord to bed length		
Station		
Feature		
Low cord elevation		
Bed elevation		
Low cord to bed length		

APPENDIX E:

LEVEL I DATA FORM

Structure Number BRISVT01160006

Qa/Qc Check by: EW Date: 12/3/96

Computerized by: EW Date: 12/3/96

EMB Date: 12/4/96 Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name)	R. BURNS	Date (MM/DD/YY) 06 / 13 / 1996
---	----------	--------------------------------

2. Highway District Number 05 Mile marker 002830 County ADDISON (001)

Town BRISTOL (09025)

Waterway (1 - 6) Little Notch Brook

Road Name -

Route Number VT 116

Hydrologic Unit Code: 02010002

3. Descriptive comments:

Located about 2.7 miles south from the junction of VT 116 with VT 17.

B. Bridge Deck Observations

4. Surface cover	LBUS_6	RBUS <u>6</u>	LBDS 3	RBDS <u>6</u>	Overall 6
(2b us ds lb rb: 1-	Urban: 2- Suburb	an: 3- Row crops: 4	- Pasture: 5- Shrub	- and brushland: 6- Fo	rest: 7- Wetland)

- 5. Ambient water surface... US 1 UB 1 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length <u>24</u> (feet)

Span length 21 (feet) Bridge width 28.6 (feet)

Road approach to bridge:

8. LB $\mathbf{0}$ RB $\mathbf{0}$ ($\mathbf{0}$ even, $\mathbf{1}$ - lower, $\mathbf{2}$ - higher)

9. LB_1__ RB 1___ (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	40 ====	11 Coverity		
	11.Type	12.Cond.	13.Erosion	14.Seventy		
LBUS	_0	-	0			
RBUS		-	0			
RBDS	_0	-	2	1		
LBDS	_0	-	3	1		

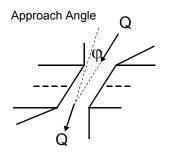
Bank protection types: **0**- none; **1**- < 12 inches;

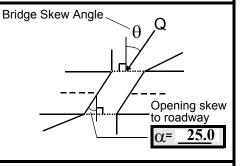
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 20 16. Bridge skew: 15

17. Channel impact zone 1:

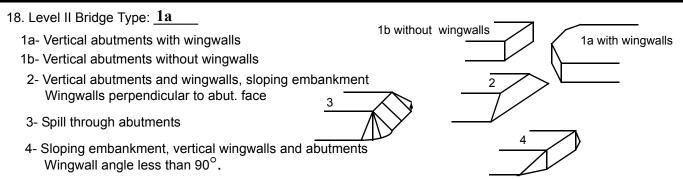
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 2

Range? 61 feet US (US, UB, DS) to 46 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 21 feet **DS** (US, UB, DS) to 38 feet **DS**

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4: The downstream left bank surface cover is a plowed field with trees and shrubs along the immediate bank. The other three banks are shrubs and brush with some trees and some wetlands beyond two bridge lengths.
- 7: Measured bridge length = 25 feet; bridge span = 21 feet; and bridge width = 28.7 feet.

C. Upstream Channel Assessment

	21. Bank h	eight (BF)	22. Banl	k angle (BF)	26. % Ve	g. cover (BF)	27. Bank	material (BF)	28. Bank	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
21.0	3.0			<u>2.5</u>	3	3	21	21	1	1
23. Bank	width 25	<u>5.0</u>	24. Ch	annel width	40.0	25. Thal	weg depth	30.5	9. Bed Mate	erial <u>32</u>
20 Donl	, protoction	4	ı D 1	DD 2		31 Pank pr	otaction ca	andition: LD 2) DD	. 2

30 .Bank protection type: LB <u>1</u> RB <u>2</u> 31. Bank protection condition: LB <u>2</u> RB <u>2</u>

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade Bank Erosion: **0**- not evident; **1**- light fluvial; **2**- moderate fluvial; **3**- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

The right bank protection extends from the upstream right wingwall to 48 feet upstream.

The left bank protection extends from the upstream left wingwall to 18 feet upstream.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 49 35. Mid-bar width: 12
36. Point bar extent: 92 feet US (US, UB) to 29 feet US (US, UB, DS) positioned 0 %LB to 50 %RB
37. Material: <u>23</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
Point bar is sand with gravel on top.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB) 41. Mid-bank distance: 54 42. Cut bank extent: 61 feet US (US, UB) to 48 feet US (US, UB, DS) 43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure) 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
The cut-bank begins where the protection ends. At the top of the cut-bank is a path that leads to a pull out off
of VT 116.
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 46
47. Scour dimensions: Length 30 Width 4 Depth : 0.25 Position 80 %LB to 90 %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.): Scour is along the right bank protection and at the bend in the stream.
second to mong the right sum protection and at the serial metre serial.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance 52. Enters on _ (LB or RB) 53. Type _ (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on _ (LB or RB) Type _ (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB
22.0 2.0 2 7 7 -
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) _90.0 63. Bed Material
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
32
At the upstream left corner of the left abutment, the bed material is mostly fines.

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? Y ___ (1- Upstream; 2- At bridge; 3- Both)

67. Debris Potential 1 (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

Debris potential is high because of all the shrubs and small trees on the banks and the debris collection both upstream and downstream.

Capture efficiency and ice blockage potential are moderate because of the angle of flow through the bridge and its low clearance.

Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		15	90	2	3	1	4	90.0
RABUT	1	-	90	 	l 1	2	2	17.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1

The left abutment footing on the upstream half has an additional section of footing for which the bottom is a foot lower than the rest and is not undermined. Its top is 4 feet above the stream bed. There are a few large rocks in front of the footing. The downstream half of the left abutment is undermined 1 foot and the footing is 3 feet thick. There is about 2 horizontal feet of penetration underneath the footing into very loose material.

The right abutment is not exposed at the upstream end, but it is exposed 1 foot at the downstream end.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	81. Angle?	Length?
USLWW:					·	17.0	
USRWW:	<u>Y</u>		1		2	2.0	
DSLWW:	0		2.5		<u>Y</u>	31.0	
DSRWW:	1		0			31.0	

USRWW **USLWW** Wingwall length Wingwall angle **DSRWW** DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

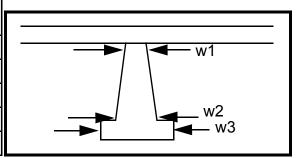
82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	3	Y	0	-	1	-	-
Condition	Y	0	1	1	-	2	-	-
Extent	1	3	2	0	2	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other


83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

1 3

Piers:

84. Are there piers? Th (Y or if N type ctrl-n pr)

					,	
85.						
Pier no.	width (w) feet			elevation (e) feet		
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1				30.0	12.0	90.0
Pier 2			9.0	13.0	85.0	25.0
Pier 3	9.5	-	-	-	-	-
Pier 4	-	-	-	-	-	-

1	2	3	4
e	WW	WW	e it
wing	is the	is	joins
wall	same	unde	the
pro-	as	rmin	LAB
tec-	the	ed	UT.
tion	bank	0.2	
for	pro-	feet	The
-	-	-	-
the	tec-	at	USL
USR	tion.	the	WW
ww		cor-	pro-
and	The	ner	tec-
DSR	DSL	wher	tion
	e wing wall protection for the USR WW and	e WW wing is the wall same pro- as tec- the tion bank for pro the tec- USR tion. WW and The	e WW WW wing is the is wall same unde pro- as rmin tec- the ed tion bank 0.2 for pro- feet

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. unde is the same for the upstre upstream bridge face. The same for the upstream bridge face.	am left bank because	the bank is in front o	•	•
N -				
	E Downstree	om Channal Ass	ocomont .	
100.	E. Downstrea	am Channel Ass	essment	
Bank height (BF SRD LB RB) Bank angle (BF) LB RB	% Veg. cover (BF) LB RB	Bank material (BF LB RB <u>-</u> -	Bank erosion (BF) LB RB
Bank width (BF)	Channel width (Amb)	Thalweg de	epth (Amb)	Bed Material -
Bank protection type (Qmax): LB <u>-</u> RB <u>-</u>	Bank protect	ction condition:	B <u>-</u> RB <u>-</u>
SRD - Section ref. dist. to US Bed and bank Material: 0- or 4- co Bank Erosion: 0- not evident Bank protection types: 0- abs Bank protection conditions: 1 Comments (eg. bank material	ganics; 1 - silt / clay, < 1/1 bbble, 64 - 256mm; 5 - bo ; 1 - light fluvial; 2 - moder sent; 1 - < 12 inches; 2 - < l- good; 2 - slumped; 3 - e	16mm; 2 - sand, 1/16 - 2 ulder, > 256mm; 6 - bedi rate fluvial; 3 - heavy fluv 36 inches; 3 - < 48 inch roded; 4 - failed	mm; 3 - gravel, 2 - 64n rock; 7 - manmade _r ial / mass wasting	
101. Is a drop structure 103. Drop: feet 105. Drop structure comments	104. Structure m	naterial: <u></u> (1 - steel s	102. Distance: heet pile; 2 - wood pile	feet ; 3- concrete; 4- other)

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar	distance: Mid-bar w	vidth: <u>-</u>
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) to feet (US, UB, DS)		<u>-</u> %RB
Point or side bar comments (Circle Point or Side; note additional bars, material v	ariation, status, etc.):	
-		
- NO DIEDO		
NO PIERS		
Is a cut-bank present? (Y or if N type ctrl-n cb) Where? Cut bank extent: feet (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.): 3 3 12 12		nce:
Is channel scour present? 3 (Y or if N type ctrl-n cs) Mid-sco	ur distance: 3	
·	ed %LB to 2 %RB	
Scour comments (eg. additional scour areas, local scouring process, etc.): The confluence with the New Haven River is about 300 feet downstrea		
The right bank protection extends from the downstream right wingwa	ll to 35 feet downstream.	
Are there major confluences? Th (Y or if N type ctrl-n mc)	How many? <u>e left</u>	
Confluence 1: Distance <u>bank</u> Enters on <u>dow</u> (LB or RB)	Type <u>nstr</u> (1- perennial; 2-	- ephemeral)
Confluence 2: Distance <u>eam</u> Enters on <u>is</u> (LB or RB)	Type <u>seve</u> (1- perennial; 2-	ephemeral)
Confluence comments (eg. confluence name):		
rely eroded with large trees falling into the stream.		
F. Geomorphic Channel Asse	ssmont	
1. Geomorphic Ghainer Asse		

107. Stage of reach evolution Th

- Constructed
 Stable
 Aggraded
 Degraded
 Laterally unstable
 Vertically and laterally unstable

right bank dov	nents (Channel evolution not considering bridge effects; S nstream is steep from erosion and there are a lot o	of exposed roots and trees leaning into
ne stream.		
O DROP STR	CTUDE	
O DROP STR	CIURE	

	109. G. F	Plan View Sketch	-
point bar pb	debris	flow Q	stone wall
cut-bank cb scour hole	rip rap or stone fill	cross-section ++++++ ambient channel ——	other wall
VII)	0.0		

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BRISVT01160006 Town: Bristol Road Number: VT 116 County: Addison

Stream: Little Notch Brook

Initials EMB Date: 11/26/96 Checked: SAO

I. Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	1690	2350	1050
	282	299	229
	25	48	8
	559	646	287
	34	34	34
	33	59	6
	175	175	175
	0.057	0.057	0.057
y1, average depth, MC, ft	8.3	8.8	6.7
y1, average depth, LOB, ft	0.8	0.8	1.3
y1, average depth, ROB, ft	3.2	3.7	1.6
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	53053 32814 499 19740 0.0000 1045.3 15.9 628.8	36179 1024 25122 -0.0016 1364.2 38.6	
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	3.7	4.6	3.6
	0.6	0.8	0.9
	1.1	1.5	0.8
	6.1	6.2	5.9
	ERR	ERR	ERR
	ERR	ERR	ERR

Results

Live-bed(1) or Clear-Water(0) Contraction Scour?
Main Channel 0 0

Clear Water Contraction Scour in MAIN CHANNEL

Critical grain size, Dc, ft

Depth to armoring, ft

Decimal-percent coarser than Dc

 $y2 = (Q2^2/(131*Dm^2(2/3)*W2^2))^3(3/7)$ Converted to English Units ys=y2-y bridge (Richardson and others, 1995, p. 32, eq. 20, 20a) Approach Section Q100 Q500 Qother Main channel Area, ft2 282 299 229 Main channel width, ft 34 y1, main channel depth, ft 8.29 8.79 6.74 Bridge Section (Q) total discharge, cfs 2350 1050 1690 (Q) discharge thru bridge, cfs 1116 1227 1050 11035 Main channel conveyance 11035 8374 Total conveyance 11035 11035 8374 Q2, bridge MC discharge, cfs 1116 1227 1050 Main channel area, ft2 136 136 91 17.2 Main channel width (skewed), ft 17.2 17.2 Cum. width of piers in MC, ft 0.0 0.0 0.0 17.2 W, adjusted width, ft 17.2 17.2 y bridge (avg. depth at br.), ft 7.88 7.88 5.30 0.07125 0.07125 0.07125 Dm, median (1.25*D50), ft y2, depth in contraction,ft 9.41 10.21 8.93 ys, scour depth (y2-ybridge), ft 1.53 2.33 3.63 Comparison of Chang and Laursen results (for unsubmerged orifice flow) y2, from Laursen's equation, ft 9.410939 10.20776 8.931825 Full valley WSEL, ft 499.61 500.12 0 6.637907 7.147907 5.302326 Full valley depth, ft Ys, depth of scour (y2-yfullv), ft 2.773032 3.059853 N/A ARMORING D90 0.103 0.103 0.1259 D95 0.1259 0.1259

0.1464

24.09

0.0179

0.1769

0.012

43.70

0.3222

N/A

ERR

Pressure Flow Scour (contraction scour for orifice flow conditions)

Hb+Ys=Cq*qbr/Vc	Cq=1/Cf*Cc	Cf=1.5*Fr^0.43	(<=1)
Chang Equation	Cc=SQRT[0.10(Hb/(y	ra-w)-0.56)]+0.79	(<=1)
(Richarson and others,	1995, p. 145-146)		

Q100	Q500	OtherQ
		1050
	1227	1050
	11035	8374
11035	11035	8374
1116	1227	1050
6.14	6.20	5.93
1.87	1.89	1.81
17.2	17.2	17.2
0.0	0.0	0.0
17.2	17.2	17.2
64.9	71.3	61.0
6.0	6.6	5.7
135.5	135.5	91.2
7.88	7.88	5.30
2.40	2.40	1.62
0.54	0.6	0
1.00	1.00	0.00
500.85	500.85	0
492.97	492.97	-5.30
502.41	502.91	0
0.04	0.06	0
502.37	502.85	0.00
9.40	9.88	5.30
2.86	3.01	1.62
503.06	503.06	0
0.00	0.00	0.00
0.96	0.94	1.00
3.17	4.31	N/A
	1690 1116 11035 11035 1116 6.14 1.87 17.2 0.0 17.2 64.9 6.0 135.5 7.88 2.40 0.054 1.00 500.85 492.97 502.41 0.04 502.37 9.40 2.86 503.06 0.00 0.96	1690 2350 1116 1227 11035 11035 11035 11035 11035 11035 1116 1227 6.14 6.20 1.87 1.89 17.2 17.2 0.0 0.0 17.2 17.2 64.9 71.3 6.0 6.6 135.5 135.5 7.88 7.88 2.40 2.40 0.54 0.6 1.00 1.00 500.85 500.85 492.97 492.97 502.41 502.91 0.04 0.06 502.37 502.85 9.40 9.88 2.86 3.01 503.06 503.06 0.00 0.00 0.96 0.94

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28)

	Left Abu	tment		Right Ab	utment	
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q
(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal overbank to obta	1690 44.3 97.5 241 ain Ve, le	2350 70.4 126.1 340.8 ave Oe bl	1050 16.8 63.4 165.4 ank and e	1690 181 475 nter Ve a	2350 181 474.6 nd Fr man	1050 181 326.5 360.9 ually)
Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft	2.47	2.70	2.61 3.77	1.31 2.62	1.67 2.62	1.11
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert 0.82	i. w/ win 0.82	gwall; 0. 0.82	55, spill 0.82	thru) 0.82
Angle (theta) of embankment (<90 theta K2	if abut. 65 0.96	points DS 65 0.96	; >90 if 65 0.96	abut. poi 115 1.03	nts US) 115 1.03	115 1.03
Fr, froude number f/p flow	0.294	0.356	0.237	0.126	0.150	0.145
ys, scour depth, ft	8.96	10.04	9.09	11.43	12.41	9.55
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49), eq. 29)					
a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1 Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical vertical w/ ww's spill-through	44.3 2.20 20.13 0.92 0.29 ERR ERR ERR	70.4 1.79 39.30 0.92 0.36 8.52 6.99 4.69	16.8 3.77 4.45 0.92 0.24 ERR ERR ERR	181 2.62 68.97 1.06 0.13 10.21 8.37 5.62	181 2.62 69.03 1.06 0.15 10.81 8.86 5.94	181 1.80 100.34 1.06 0.15 7.35 6.03 4.04
Abutment riprap Sizing						
Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr (Richardson and others, 1995, p112,						
Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.54 d y in con 7.88	0.6 tracted s 7.88	0.88 ectionm 5.30	0.54 c, bridge 7.88	0.6 section) 7.88	0.88
Median Stone Diameter for riprap at Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	: left ab 1.42 ERR	utment 1.75 ERR	ERR 2.14	right ab 1.42 ERR	outment, f 1.75 ERR	t ERR 2.14