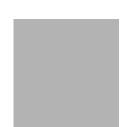
LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (CHARTH00010007) on TOWN HIGHWAY 1, crossing MAD BROOK, CHARLESTON, VERMONT

U.S. Geological Survey Open-File Report 97-213


Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (CHARTH00010007) on TOWN HIGHWAY 1, crossing MAD BROOK, CHARLESTON, VERMONT

By Erick M. Boehmler and Matthew A. Weber

U.S. Geological Survey Open-File Report 97-213

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

1997

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
References	18
Appendixes:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	29
D. Historical data form	31
E. Level I data form	37
F. Scour computations	47

FIGURES

1.	Map showing location of study area on USGS 1:24,000 scale map	3
2.	Map showing location of study area on Vermont Agency of Transportation town	
	highway map	4
3.	Structure CHARTH00010007 viewed from upstream (October 28, 1994)	5
4.	Downstream channel viewed from structure CHARTH00010007 (October 28, 1994).	5
5.	Upstream channel viewed from structure CHARTH00010007 (October 28, 1994).	6
6.	Structure CHARTH00010007 viewed from downstream (October 28, 1994).	6
7.	Water-surface profiles for the 100- and 500-year discharges at structure	
	CHARTH00010007 on Town Highway 1, crossing Mad Brook,	
	Charleston, Vermont.	15
8.	Scour elevations for the 100-year discharge at structure CHARTH00010007 on Town Highway 1,	
	crossing Mad Brook, Charleston, Vermont	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
CHARTH00010007 on Town Highway 1, crossing Mad Brook,	
Charleston, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
CHARTH00010007 on Town Highway 1, crossing Mad Brook,	
Charleston, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Ву	To obtain
Length	
25.4	millimeter (mm)
0.3048	meter (m)
1.609	kilometer (km)
Slope	
0.1894	meter per kilometer (m/km)
Area	
2.590	square kilometer (km ²)
Volume	
0.02832	cubic meter (m^3)
Velocity and Flow	
0.3048	meter per second (m/s)
0.02832	cubic meter per second (m ³ /s
0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²]
	Length 25.4 0.3048 1.609 Slope 0.1894 Area 2.590 Volume 0.02832 Velocity and Flow 0.3048 0.02832

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D ₅₀	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p	flood plain	ROB	right overbank
f/p ft ²	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (CHARTH00010007) ON TOWN HIGHWAY 1, CROSSING MAD BROOK, CHARLESTON, VERMONT

By Erick M. Boehmler and Matthew A. Weber

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure CHARTH00010007 on town highway 1 crossing Mad Brook, Charleston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the White Mountain section of the New England physiographic province in north-central Vermont in the town of Charleston. The 6.59-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture except for the upstream left bank, which is forest. The stream banks are tree covered upstream and on the downstream left bank side.

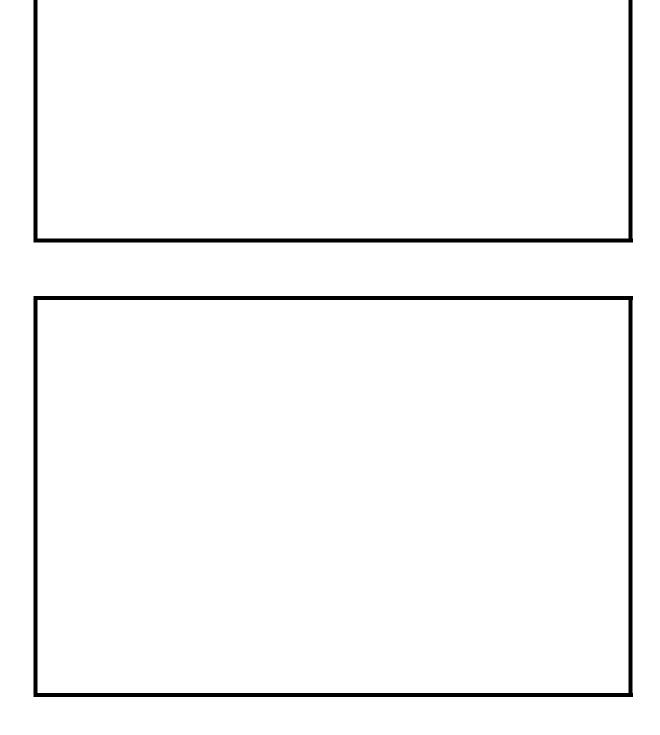
In the study area, Mad Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 41 ft and an average channel depth of 5 ft. The predominant channel bed materials range from gravel to boulders with a median grain size (D_{50}) of 105 mm (0.344 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 28, 1994, indicated that the reach was stable.

The town highway 1 crossing of Mad Brook is a 27-ft-long, two-lane bridge consisting of one 25-foot concrete T-beam span (Vermont Agency of Transportation, written communication, August 4, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening. The opening-skew-to-roadway computed from surveyed data is 5 degrees, but historical bridge records indicate this angle is closer to 10 degrees.

There was scour evident during the Level I assessment due to the presence of two subfootings at the base of each abutment wall. Although the subfootings may have been constructed at the same time as the abutment walls, the subfootings may have been constructed at a later time in response to streambed degradation under the bridge. The right abutment was noted as undermined during the Level I assessment. Scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the upstream right and downstream road embankments and type-2 stone fill on each wingwall and the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.2 to 9.4 ft. The worst-case abutment scour for the right abutment was 9.4 feet at the 100-year discharge. The worst-case abutment scour for the left abutment was 8.6 feet at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

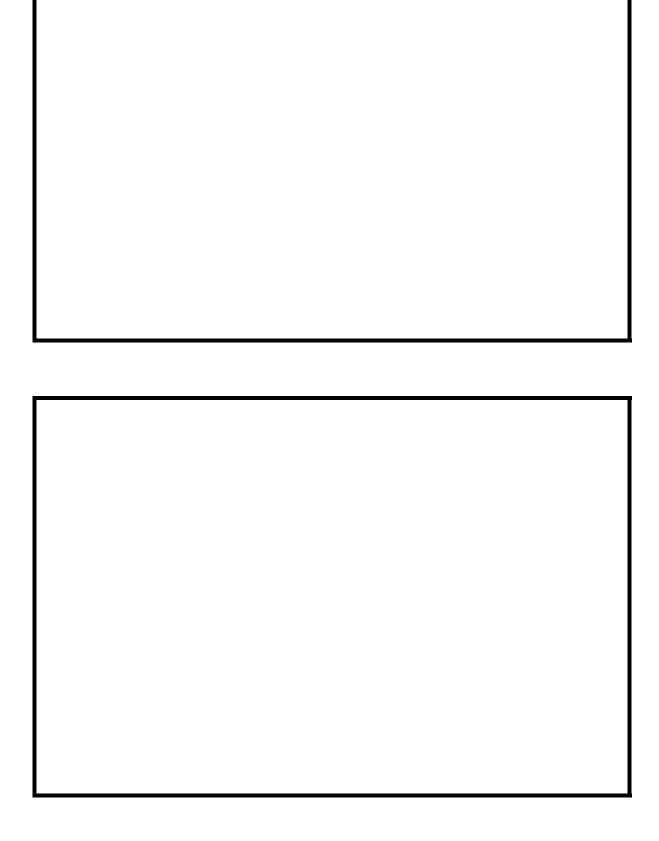


Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number —	CHARTH00010007	Stream	Mad Brook		
County Orleans		Road —	TH 1	District —	9

Description of Bridge

/	27		23.5			25
Bridge length	ft	Bridge width		ft	Max span leng	th ft
			· · · · · · · · · · · · · · · · · · ·	Straig	ht	
Alignment of bridg	<i>e to road (o</i> Vertical, cor		ignt)		Sloping	
Abutment type	No		Embankm	ent type		
Stone fill on abutme	nt? No		Date of inst utments. Ty		s noted on the up	ostream right
and both downstrea		ankments. Typ	e-2 was not	ed on ea	ch wingwall and	the left bank
downstream.						
		Abu	itments and	wingwa	lls are concrete.	There are two-
step footings expose	ed at the toe	of each abutm	ent wall. Th	e subfoc	otings were unde	rmined at the
downstream end of	the right ab	utment.				
					Y	_10
Is bridge skewed to	flood flow	according to <u></u>	N surve	y?	Angle	
<u></u>	<u></u>		, ~~, ·		·····	, ~-·,

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection10/28/94	Percent of channel bloc ked norizoniall y	Percent of about the second se
Level I	7/24/95	0	0
<i>Level II</i> growth trees	Low. The reads on both banks.	ch upstream is straight and la	terally stable with old
Potential for	r debris		

None evident on 10/28/94 or 7/24/95.

Describe any features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topog	graphy	The cha	annel is locate	ed in a moo	derate relief valle	ey set	ting. The gra	dient is
steeper upstr	eam than	downstrea	am and wider	flood plair	ns exist downstre	eam.		
Geomorphic	c condition	ns at bridg	ge site: downs	stream (D	S), upstream (US	S)		
Date of insp	ection	10/28/94	1					
DS left:	Steep cl	nannel bar	nk to a narrow	flood pla	in and a steep va	ılley v	vall.	
DS right: Moderately sloped bank to a narrow flood plain.								
US left:	Steep c	hannel ba	nk to a narrow	v flood pla	in and a steep va	alley v	wall.	
US right:	Steep c	hannel ba	nk to a narrow	v flood pla	in.			
		I	Description	of the Cl	hannel			
Average to	on width	41	ft		Average dep	oth	5	Ĥ
Predominan	-	orial	Gravel to Bo	oulders	Bank materia		Cobbles	
~	×					st <u>St</u>	raight and pe	rennial
but flashy wi	th semi-al	luvial cha	annel boundar	ies.				
							10/28/94	
Vegetative c	<i>o</i> Pasture	with trees	s along the im	mediate ba	ank.			
DS left:	Pasture	with trees	s and brush alo	ong the im	mediate bank.			
DS right:	Trees.							
US left:	Grass a	nd brush	with trees alor	ng the imn	nediate bank.			
US right:		_Y	<i>r</i>					
Do banks ap	pear stab	le? -	<u>ı</u> ııv	1 , 11.21.1111		μιυ	<u>-тэшоту и</u>	<i></i>
date of obse	ervation.							
						The	assessment	of
<u>10/28/94 no</u> Describe an	oted many y obstruct	large bou	ulders scattere	<u>d in the ch</u> ite of obse	annel upstream.			

Hydrology

Percentage of drainage area in physiographic	provinces: (approximate)
<i>Physiographic province/section</i> New England / White Mountain	Percent of drainage area100
Is drainage area considered rural or urban?	Rural Describe any significant
Is there a USGS gage on the stream of interest	<u>No</u> ?
USGS gage description	<u> </u>
USGS gage number	
Gage drainage area	mi ² No
Gage drainage area Is there a lake/p	<i>mi²</i> <u>No</u>
Is there a lake/p	d Discharges <u>1,780</u>
Is there a lake/p Calculate $Q100 ft^3/s$	d Dischargos
Is there a lake/p Calculate $Q100 ft^3/s$	d Discharges 1,780 $Q500$ ft^3/s 100- and 500-year discharges noted above are
Is there a lake/pCalculate	d Discharges <u>1,780</u> <u>$Q500$</u> ft^3/s <u>100- and 500-year discharges noted above are</u> ver Mad Brook in Charleston. The watershed
Is there a lake/pCalculate	d Discharges <u>1,780</u> <u>$Q500$</u> ft^3/s 100- and 500-year discharges noted above are ver Mad Brook in Charleston. The watershed the same. The 100- and 500-year discharges a
Is there a lake/pCalculate	d Discharges <u>1,780</u> <u>$Q500$</u> ft^3/s <u>$I00$- and 500-year discharges noted above are</u> ver Mad Brook in Charleston. The watershed the same. The 100- and 500-year discharges a several empirical relationships (Benson, 1962)

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey
Datum tie between USGS survey and VTAOT plans	None	

Description of reference marks used to determine USGS datum. RM1 is the center point

of a chiseled "X" on top of the concrete bridge deck near the upstream left corner (elev. 501.51

ft, arbitrary survey datum). RM2 is the center point of a chiseled "X" on top of the concrete

bridge deck near the downstream right corner (elev. 500.97ft, arbitrary survey datum).

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT1	-22	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXIT1)
BRIDG	0	1	Bridge section
RDWAY	13	1	Road Grade section
APTEM	47	1	Approach section as sur- veyed (Used as a tem- plate)
APPRO	50	2	Modelled Approach sec- tion (Templated from APTEM)

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.055 to 0.065, and overbank "n" values ranged from 0.045 to 0.085.

Downstream of this site, Mad Brook enters the Clyde River valley. However, the elevation at the location where Mad Brook enters the Clyde River is more than 20 feet below the channel elevation downstream of this site (below EXIT1) according to the topographic map (U.S. Geological Survey, 1988). Therefore, it was assumed there was no backwater from the Clyde River.

Normal depth at the exit section (EXIT1) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0145 ft/ft which was estimated from the topographic map (U.S. Geological Survey, 1988).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0262 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the bridge as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

For the incipient-overtopping discharge, a vertical wall was inserted at the top of the right bank upstream. This was necessary to prevent WSPRO from computing flow on the right overbank area due to high banks adjacent to the channel. WSPRO assumes critical depth at the bridge section for the incipient-overtopping discharge. A supercritical model was developed for this discharge. After analyzing both the supercritical and subcritical profiles, it can be determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumption of critical depth at the bridge is a satisfactory solution.

Bridge Hydraulics Summary

Average bridge embankment elevation501.5ftAverage low steel elevation498.9ft

100-year discharge $1,300$ ft^3/s	
Water-surface elevation in bridge opening	<u>499.1</u> <i>ft</i>
Road overtopping? Y Discharge	e over road66 s
Area of flow in bridge opening 184	ft ²
Average velocity in bridge opening	6.7 <i>ft/s</i>
Maximum WSPRO tube velocity at bridge	8.4 ft/s

Water-surface elevation at Approach section	499.9	
Water-surface elevation at Approach section	n without bridge	496.9
Amount of backwater caused by bridge	3.0 <i>t</i>	

500-year discharge	1,780 ft ³ /s	
Water-surface elevation	in bridge opening	498.9 ft
Road overtopping?	<u> </u>	rge over road335 ,. /s
Area of flow in bridge of	pening 18	$\frac{3}{ft^2}$
Average velocity in bridg	ge opening	7.9 ft/s
Maximum WSPRO tube	e velocity at bridge	<u> </u>

Water-surface elevation at Approach section with bridge500.3Water-surface elevation at Approach section without bridge497.6Amount of backwater caused by bridge2.7

Incipient overtopping discharge1,270ft³/sWater-surface elevation in bridge opening495.7ft	
Area of flow in bridge opening 107 ft ²	
Average velocity in bridge opening	
Maximum WSPRO tube velocity at bridgeft/s	
Water-surface elevation at Approach section with bridge	499.3
Water-surface elevation at Approach section without bridge	496.8
Amount of backwater caused by bridge 2.5 t	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of Laursen's clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) for the incipient road overtopping discharge. The 100- and 500-year discharges resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Therefore, contraction scour for the 100- and 500-year discharges was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). In this case, the incipient road-overflow model resulted in the worst case contraction scour with a scour depth of 0.3 ft. However, it was not the worst case total scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

The length to depth ratio of the embankment blocking flow exceeded 25 for the right abutment at the 100-year discharge and both abutments at the 500-year discharge. Although the HIRE equation (Richardson and others, 1993, p. 50, equation 25) generally is applicable when this ratio exceeds 25, the results from the HIRE equation were not used. Hydraulic Engineering Circular 18 recommends that the HIRE equation be used only when field conditions at the bridge site are similar to those for which the HIRE equation was derived (Richardson and others, 1993). Since the equation was developed from Army Corp. of Engineers' data obtained for spurs dikes in the Mississippi River, the HIRE equation was not adopted for the narrow, incised, upland valley at this site.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(
Main channel			
Live-bed scour			
Clear-water scour	0.0	0.0	0.3
Depth to armoring	0.6	1.5	21.0
Left overbank			
Right overbank			
Local scour:			
Abutment scour	8.0	7.3	8.6
Left abutment	9.4–	8.9-	6.2-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Riprap Sizing

		01	Incipient overtopping		
	100-yr discharge	500-yr discharge	discharge		
		(D_{50} in feet)			
Abutments:	0.9	1.2	1.8		
Abutments: Left abutment	0.9	1.2	1.8		
Right abutment					
Piers:					
Pier 1					
Pier 2					

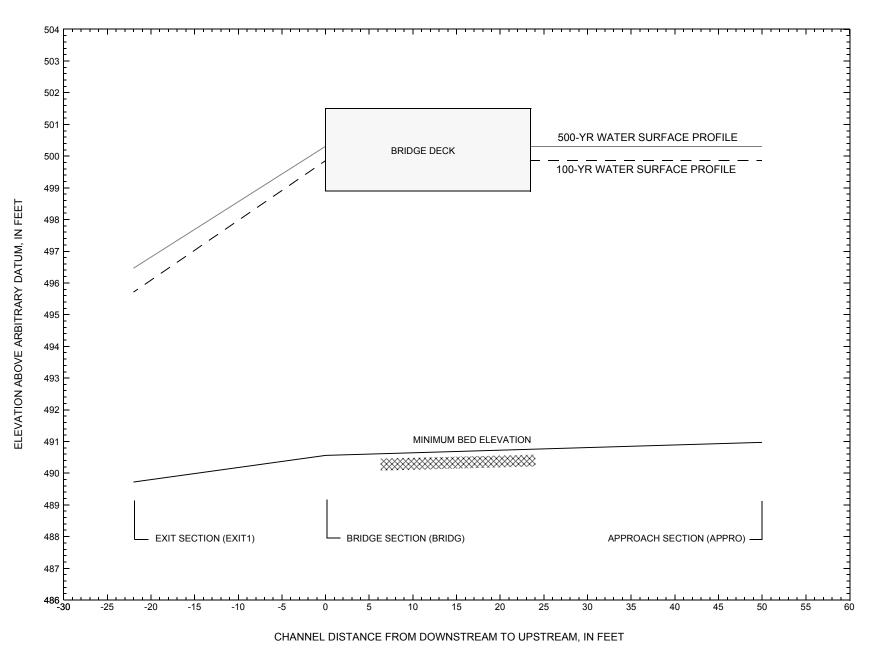


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure CHARTH00010007 on town highway 1, crossing Mad Brook, Charleston, Vermont.

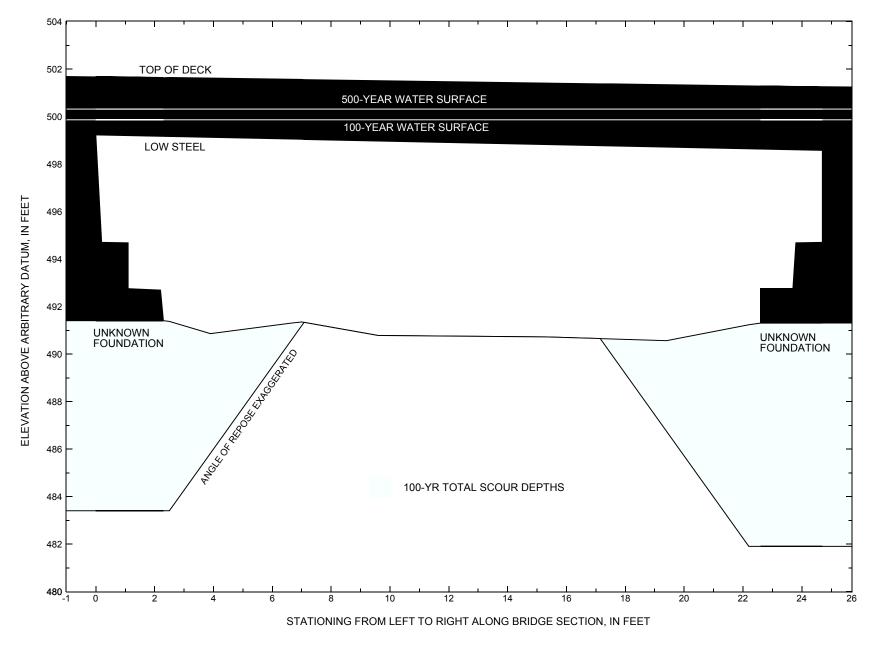


Figure 8. Scour elevations for the 100-year discharge at structure CHARTH00010007 on town highway 1, crossing Mad Brook, Charleston, Vermont.

16

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CHARTH00010007 on Town Highway 1, crossing Mad Brook, Charleston, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 1,300) cubic-feet per sec	cond				
Left abutment	0.0		499.2		491.4	0.0	8.0		8.0	483.4	
Right abutment	24.7		498.6		491.3	0.0	9.4		9.4	481.9	

Measured along the face of the most constricting side of the bridge.
 Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CHARTH00010007 on Town Highway 1, crossing Mad Brook, Charleston, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,780) cubic-feet per sec	cond				
Left abutment	0.0		499.2		491.4	0.0	7.3		7.3	484.1	
Right abutment	24.7		498.6		491.3	0.0	8.9		8.9	482.4	

^{1.} Measured along the face of the most constricting side of the bridge.

². Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1988, Island Pond, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photography, 1983, Contour interval, 20 feet, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

U.S. Geological Survey WSPRO Input File char007.wsp т1 Hydraulic analysis for structure CHARTH00010007 Date: 18-JUL-96 Т2 Т3 Town Highway 1 Crossing of Mad Brook, Charleston, VT EMB J1 * * 0.005 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 J3 1300.0, 1780.0, 1270.0 0.0145, 0.0145, 0.0145 Q 0.0145, 0.0145, SK XS EXIT1 -22 -187.1, 508.58 -113.4, 497.23 GR -54.9, 496.43 -37.0, 496.79 -26.3, 495.79 -17.4, 497.54 -5.0, 493.92 GR 0.0, 490.86 7.3, 489.83 14.1, 490.22 GR 1.3, 489.72 17.1, 490.86 GR 23.3, 491.94 27.4, 494.52 50.9, 495.35 60.0, 500.61 . 225.0, 499.70 GR 113.4, 499.66 299.3, 500.38 * Exit brought into roadway. Replaced: 148.8, 494.37 and 255.1, 497.92 with roadway elevations at STA 60.0 and higher * N 0.055 0.060 0.045 -17.4 27.4 SA XS FULLV 0 * * * 0.0157 * SRD LSEL XSSKEW 0 498.89 BR BRIDG 5.0 1.1, 494.68 0.0, 499.22 0.2, 494.70 1.1, 492.75 7.0, 491.35 GR GR 2.2, 492.69 2.3, 491.44 3.9, 490.86 19.4, 490.56 9.6, 490.78 15.3, 490.72 GR 22.6, 491.33 GR 22.6, 492.77 23.7, 492.76 23.8, 494.68 24.7, 494.70 GR 24.7, 498.57 0.0, 499.22 * 28.9 * * / · BRTYPE BRWDTH * WWWTD CD 1 4.0 0 060 Ν * * SRD EMBWID IPAVE XR RDWAY 13 23.5 1 -99.4, 503.23 0.0, 501.2 .00 70 299.3, 500.38 -181.3, 508.68 GR 0.0, 501.68 24.8, 501.24 GR 113.4, 499.66 * * Notice: For the incipient overtopping model run, a vertical wall * was inserted at station 54.1 of the approach section * below to prevent WSPRO modeling flow on the right overbank. Flow on the right overbank is not likely at this discharge. * XТ APTEM 47 GR -87.3, 505.94 -77.8, 501.08 -38.1, 500.13 -13.2, 501.23 GR -3.7, 495.31 0.0, 492.58 3.2, 491.94 7.9, 490.99 GR 10.4, 490.89 13.7, 491.34 16.9, 491.32 18.8, 491.95 22.0, 492.59 109.5, 498.20 35.1, 498.27 27.7, 495.94 GR 54.1, 499.97 112.5, 499.11 147.9, 498.45 172.9, 497.90 GR GR 173.2, 505.00 APPRO 50 * * * 0.0262 AS GT 0.085 0.065 0.045 Ν -13.2 35.1 SA * HP 1 BRIDG 499.09 1 499.09 HP 2 BRIDG 499.09 * * 1230 HP 2 RDWAY 499.86 * * 66 HP 1 APPRO 499.86 1 499.86 HP 2 APPRO 499.86 * * 1300 HP 1 BRIDG 498.89 1 498.89 HP 2 BRIDG 498.89 * * 1441 HP 2 RDWAY 500.31 * * 335 HP 1 APPRO 500.31 1 500.31 HP 2 APPRO 500.31 * * 1780 HP 1 BRIDG 495.74 1 495.74 HP 2 BRIDG 495.74 * * 1270 HP 1 APPRO 499.29 1 499.29 HP 2 APPRO 499.29 * * 1270 ΕX

ER

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File char007.wsp Hydraulic analysis for structure CHARTH00010007 Date: 18-JUL-96 Town Highway 1 Crossing of Mad Brook, Charleston, VT EMB *** RUN DATE & TIME: 10-29-96 12:57

	CROSS-SE	CTION PROPE	RTIES: ISE	Q = 3;	SECID =	BRIDG;	SRD	=	0.
		A# AREA 1 184					ΞEW	REW	QCR 6402
-	499.09	184	9777	5	59 1	.00	0	25	6402
1	HP 2 BRIDG	499.09 *	* 1230						
	VELOCITY	DISTRIBUTI	ON: ISEQ =	3; SE	CID = BR	IDG; SF	2D =	C).
		L LEW 9 0.0							
	A(I)	0.0 15.3 4.01	8.8		7.4	7.9		8.2	6.8
	A(I)	6.8 8.2 7.49	8.1		8.0	8.0		8.0	
	STA. A(I) V(I)		12.8 8.1 7.63		8.1	8.4		8.3	
		16.9 8.7 7.03			9.5	11.0			24.7

Notice: HP table computations for roadway overflow at the Q100 discharge modeled were not acceptable. Hence they were omitted from this listing of the model output.

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 50.

									.,			-,		
	WS	SEL									LPH	LEW	REW	QCR
			2	2	269	1	9024	46	5 5	0				3698
			3	3	131		4316	130	13	2				746
	499	.86			400	2	3340	176	5 18	2 1	.26	-10	173	3058
	VEI	LOCI	TY I	DISTRI	BUTI	ON: I	SEQ =	5;	SECID	= AP	PRO;	SRD =	5	0.
		W	SEL	I	LEW	REW	AR	EA	К		Q	VEL		
		499	.86	-10).9	173.0	400	.3	23340.		1300.	3.25		
Х	STA.		-	10.9		-1.3		1.3	3	3.4	4	5.3		7.0
	A(I)				28.9		18.4		16.4		14.8	3	14.2	
	V(I)				2.25		3.54		3.97		4.38	3	4.58	
х	STA.			7.0		8.5		10.1	L	11.	5	13.1		14.6
	A(I)				13.6		13.5		13.0		13.5	5	13.2	
	V(I)				4.77		4.80		5.01		4.83	3	4.93	
х	STA.			14.6		16.2		17.9	9	19.	8	21.8		24.6
	A(I)				13.5		13.8		14.8		14.9	9	18.2	
	V(I)				4.80		4.71		4.39		4.3	5	3.58	

X STA.	24.6	30.0	100.0	134.1	157.5 173.0
A(I)	22.7	50.2	35.8	30.4	26.4
V(I)	2.86	1.29	1.82	2.14	2.46

U.S. Geological Survey WSPRO Input File char007.wsp Hydraulic analysis for structure CHARTH00010007 Date: 18-JUL-96 Town Highway 1 Crossing of Mad Brook, Charleston, VT EMB *** RUN DATE & TIME: 10-29-96 12:57

	CRO	SS-SI	ECTION	PROPE	RTIES:	ISEQ	Q = 3	; SEC	CID =	BRIDG	; SRD	=	0.
	WS		SA# 1	AREA	1 (K	TOPW	WEI	'P AL	PH	LEW	REW	QCR
	498.		-	183	10	0574	12	5	1 1.	00	0	25	QCR 3962 3962
	VEL			RIBUTIO	ON: IS	SEQ =	3;	SECID	= BRI	DG;	SRD =		0.
		WS1 498.8	EL 39	LEW 0.0	REW 24.7	AH 182	REA 2.5	۴ . 10574	1	Q 441.	VEL 7.89		
			0.	0	2.9		4.1		5.1		6.0		6.9
	A(I) V(I)			16.0 4.51		9.4 7.70		7.8 9.19		7.3 9.81	:	7.0	
	STA. A(I)		6.	9 6.7	7.8	6.7	8.7	6.7	9.5	6.5	10.3	6.5	11.1
	V(I)			10.70	-	L0.83		10.69		11.04	:	11.03	
	STA. A(I)		11.	1 6.7	12.0	7.6	12.9	8.9	14.0	9.1	15.1	9.4	16.3
	V(I)												
I	A(I)		16.	9.6	17.5	9.5	18.7	10.6	20.0	11.6	21.5	18.8	24.7
1	V(I)	OCTT									SRD =		
		500.3	31	77.0	291.7	102	2.5	2072.		335.	VEL 3.27		
I	A(I)			7.7		5.3		4.7		4.5	129.4	4.5	
	V(I)												
I	STA. A(I) V(I)		136.	4.4		4.4		4.3		4.4	164.0	4.4	
			171								199.9		
I	A(I) V(I)		1,11	4.5 3.74	1,011	4.5 3.76	10011	4.5 3.73	1,21,1	4.6 3.62	19919	4.8 3.51	
XS	STA.		207.	6	215.4		223.7		233.1		246.4		291.7
	A(I) V(I)			4.8 3.49		5.0 3.32		5.5 3.06		6.3 2.66		9.4 1.79	
	CRO	SS-SI	ECTION	PROPE	RTIES:	ISEQ	2 = 5	; SEC	ID =	APPRO	; SRD	=	50.
	WS	EL S	SA# 1	0		1	7		7	PH	LEW	REW	QCR 0
			2	290 192	2	L300 7851	47 138	5 14	1				4104 1288
	500.			483	29	9152	191	19	98 1.		-41		
	VEL										SRD =		50.
		WS1 500.3	EL 31	LEW 42.3	REW 173.0	AI 482	REA 2.7	¥ 29152.	1	Q 780.	VEL 3.69		
	STA. A(I)		-42.	3 34 0	-1.2	22.3	1.7	18 9	4.0	177	6.0	17 1	7.9
	V(I)			2.61		3.99		4.72		5.03		5.22	
I	STA. A(I)		7.	9 16.0	9.6	16.0	11.4	16.1	13.1	16.1	14.9	16.1	16.8
	V(I)												
I	STA. A(I)		16.	B 16.8	18.7	17.8	20.9	19.2	23.5	24.0	27.9	34.6	42.6
	V(I) STA.										159.6		
I	51A. A(I) V(I)		42.	53.7	22.3	33.8	161.1	34.2	144.0	29.2	159.6	29.2	113.0
	. = /					2.00				2.00			

U.S. Geological Survey WSPRO Input File char007.wsp Hydraulic analysis for structure CHARTH00010007 Date: 18-JUL-96 Town Highway 1 Crossing of Mad Brook, Charleston, VT EMB *** RUN DATE & TIME: 10-29-96 12:57

		ISEQ = 3; SEC		
WSEL SA# 1	AREA	K TOPW WET	TP ALPH LEV	N REW QCR 1274 0 25 1274
495.74	107 58	26 24 3	33 1.00 0) 25 1274
		Q = 3; SECID		
		AREA H 107.2 5826.		
X STA. 0 A(I) V(I)	2 3.5 10.3 6.19 10	4.8 6.0 5.3 0.54 11.96	5.9 7 5.2 12.23	7.1 8.2 4.8 13.35
X STA. 8 A(I) V(I)	4.7	10.1 4.5 4.4 .03 14.41	4.4	4.4
X STA. 12 A(I) V(I)	7 13.6 4.3 14.64 14	14.5 4.3 4.4 .62 14.42	15.4 16 4.5 14.17	5.3 17.2 4.5 14.01
X STA. 17 A(I) V(I)	4.7	19.0 4.9 5.3 .93 12.09	6.0	10.4
CROSS-SECTION	N PROPERTIES:	ISEQ = 5; SEC	CID = APPRO; S	SRD = 50.
WSEL SA#	AREA	K TOPW WET	TP ALPH LEV	N REW QCR
WSEL SA# 2	AREA 248 147	K TOPW WE1	TP ALPH LEV	
WSEL SA# 2 499.29	AREA 248 147 248 147	K TOPW WE1	TP ALPH LEV 59 59 1.00 -9	N REW QCR 2978 9 46 2978
WSEL SA# 2 499.29 VELOCITY DIS WSEL	AREA 248 147 248 147 CRIBUTION: ISE LEW REW	K TOPW WET 193 56 5 193 56 5	TP ALPH LEW 59 59 1.00 -5 = APPRO; SRD C Q N	W REW QCR 2978 9 46 2978 = 50. 722
WSEL SA# 2 499.29 VELOCITY DIST WSEL 499.29 X STA10	AREA 248 147 248 147 CRIBUTION: ISE LEW REW -10.0 45.6 0 -1.9	K TOPW WE7 193 56 5 193 56 5 20 = 5; SECID AREA F 248.3 14793	TP ALPH LEV 59 59 1.00 -9 = APPRO; SRD C Q V . 1270. 5. 1.9 3	W REW QCR 2978 9 46 2978 = 50. 7EL 11 3.4 4.7
WSEL SA# 2 499.29 VELOCITY DIS 499.29 X STA10 A(I) V(I) X STA. 4 A(I)	AREA 248 147 248 147 CRIBUTION: ISE LEW REW 10.0 45.6 0 -1.9 20.2 1 3.14 4 .7 6.0 9.6	K TOPW WET 193 56 5 293 56 5 2Q = 5; SECID AREA F 248.3 14793.	TP ALPH LEV 59 59 1.00 - 5 = APPRO; SRD C Q T 1270. 5. 1.9 3 10.7 5.96 8.3 5 9.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
WSEL SA# 2 499.29 VELOCITY DIS 499.29 X STA10 A(I) V(I) X STA. 4 A(I)	AREA 248 147 248 147 CRIBUTION: ISE LEW REW 10.0 45.6 .0 -1.9 20.2 1 3.14 4 .7 6.0 9.6 6.59 6 .6 11.7	K TOPW WE7 '93 56 5 '93 56 5 'Q = 5; SECID AREA H 248.3 14793 .3.5 11.0 .70 5.78 9.4 9.3 .77 6.81	TP ALPH LEW 59 59 1.00 -9 = APPRO; SRD C Q X 1270. 5. 1.9 3 10.7 5.96 8.3 9 9.3 6.82 14.2 15	$\begin{array}{cccc} & REW & QCR \\ & 2978 \\ & 2978 \\ & 46 & 2978 \\ & & & \\ & & \\$

U.S. Geological Survey WSPRO Input File char007.wsp Hydraulic analysis for structure CHARTH00010007 Date: 18-JUL-96 Town Highway 1 Crossing of Mad Brook, Charleston, VT EMB *** RUN DATE & TIME: 10-29-96 12:57

 XSID:CODE
 SRDL
 LEW
 AREA
 VHD
 HF
 EGL
 CRWS
 Q
 WSEL

 SRD
 FLEN
 REW
 K
 ALPH
 HO
 ERR
 FR#
 VEL
 VEL

 EXIT1:XS

 -10
 174
 0.95

 496.66
 494.98
 1300
 495.71

 -21

 52
 10789
 1.09

 0.82
 7.46

===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.84 496.02 495.32

===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 495.21 508.93 0.50

===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 495.21 508.93 495.32

 FULLV:FV
 22
 -10
 172
 0.97
 0.32
 496.99
 495.32
 1300
 496.03

 0
 22
 51
 10646
 1.09
 0.01
 0.00
 0.84
 7.54

 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED)</td>
 FLOW>>>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.81 496.89 496.26

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 495.53 506.02 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 495.53 506.02 496.26

APPRO:AS 50 -5 143 1.28 1.02 498.17 496.26 1300 496.89 50 50 30 7769 1.00 0.16 0.00 0.81 9.08 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW. WS3,WSIU,WS1,LSEL = 495.81 499.09 499.42 498.89

===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
	22 *****	0 25	184 9775			499.78 ******	495.64 0.43	1230 6.67	499.09
	PCD FLOW		P/A 0.000						
XSID:CC	DE SRI) FLEN	HF	VHD	EGI	L ER	R) WSE	L
RDWAY:RC	3 13.	27.	0.08	0.21	499.99	9 0.0		. 499.8	
	Q WLE	IN LE	W RE	W DMA	X DAVO	G VMAX	VAVG H	AVG CAV	G
LT:	0. 34	-21	. 13	. 0.	6 0.3	3 4.0	7.2	0.7 3.	1
RT:	66. 141	. 102	. 243	. 0.	2 0.2	2.4	2.8	0.3 3.	0
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
APPRO:AS 50	21 22	-10 173	401 23391	0.21 1.26	0.15 1.38	500.07 0.00	496.26 0.42	1300 3.24	499.86

M(G) M(K) KQ XLKQ XRKQ OTEL

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID:CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXIT1:XS	-22.	-11.	52.	1300.	10789.	174.	7.46	495.71
FULLV:FV	0.	-11.	51.	1300.	10646.	172.	7.54	496.03
BRIDG:BR	0.	Ο.	25.	1230.	9775.	184.	6.67	499.09
RDWAY:RG	13.**	*****	Ο.	66.	0.**	******	1.00	499.86
APPRO:AS	50.	-11.	173.	1300.	23391.	401.	3.24	499.86
XSID:CODE	XLKQ	XRKQ	KÇ	2				

SECOND USER DEFINED TABLE.

SECOND USER DEFINED INDEE.
XSID:CODECRWSFR#YMINYMAXHFHOVHDEGLWSELEXIT1:XS494.980.82489.72508.58**********************************
APPRO:AS 496.26 0.42 490.97 506.02 0.15 1.38 0.21 500.07 499.86
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
EXIT1:XS ***** -56 226 1.06 ***** 497.52 496.00 1780 496.46 -21 ***** 53 14780 1.10 ***** ****** 0.87 7.87
===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.86 496.76 496.35
===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 495.96 508.93 0.50
===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 495.96 508.93 496.35
FULLV:FV 22 -54 224 1.07 0.32 497.86 496.35 1780 496.78 0 22 53 14653 1.10 0.01 0.86 7.94 <<<< <the above="" reflect<="" results="" td=""> "NORMAL" (UNCONSTRICTED) FLOW>>>></the>
===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.90 497.57 497.21
===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 496.28 506.02 0.50
===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 496.28 506.02 497.21
===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 0.66
APPRO:AS 50 -6 169 1.72 1.12 499.29 497.21 1780 497.57 50 50 33 9693 1.00 0.32 0.00 0.90 10.52 <<< <the "normal"="" (unconstricted)="" above="" flow="" reflect="" results="">>>></the>
===215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW. WS1,WSSD,WS3,RGMIN = 501.03 0.00 496.84 499.66
===260 ATTEMPTING FLOW CLASS 4 SOLUTION.
===240 NO DISCHARGE BALANCE IN 15 ITERATIONS. WS,QBO,QRD = 501.60 0. 1780.
===280 REJECTED FLOW CLASS 4 SOLUTION.
===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.
<<<< <results constricted="" flow="" follow="" reflecting="" the="">>>>></results>
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
BRIDG:BR 22 0 183 0.97 ***** 499.86 496.13 1441 498.89 0 ****** 25 10574 1.00 ***** ****** 0.51 7.89
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 5. 0.432 0.000 498.89 ****** ****** ******
XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 13. 27. 0.10 0.25 500.47 0.00 335. 500.31
Q WLEN LEW REW DMAX DAVG VMAX VAVG HAVG CAVG LT: 0. 35. -22. 13. 0.6 0.3 4.0 7.2 0.7 3.1 RT: 335. 215. 77. 292. 0.7 0.5 3.7 3.3 0.6 3.1
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL
APPRO:AS 21 -41 483 0.25 0.18 500.56 497.21 1780 500.31 50 22 173 29154 1.20 0.00 0.45 3.69
M(G) M(K) KQ XLKQ XRKQ OTEL ****** ****** ******* ****** ******

<<<<END OF BRIDGE COMPUTATIONS>>>>

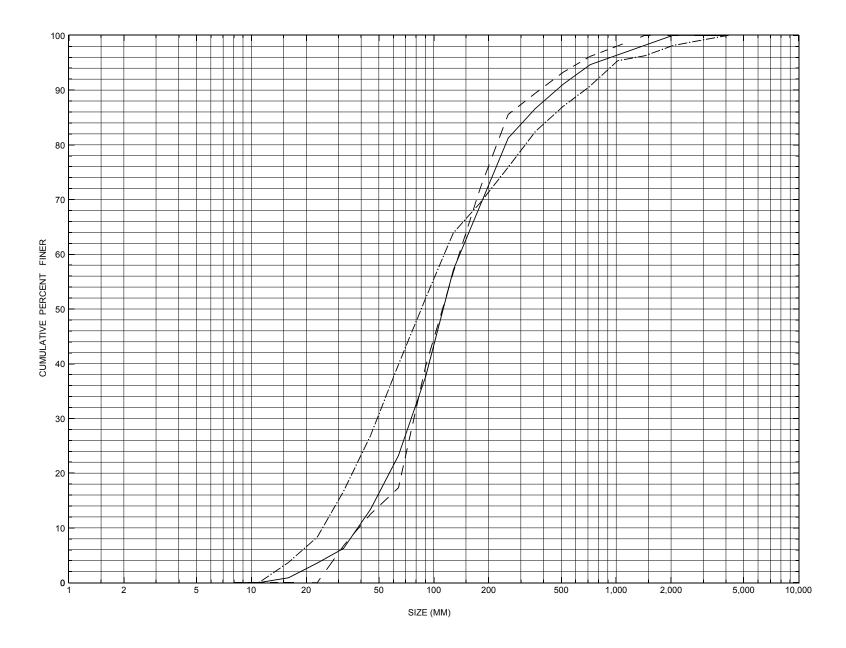
FIRST USER DEFINED TABLE.

FIRST USER	DEFINED	TABLE.							
XSID:COD	E SRD	LEW	REW		0	ĸ	AREA	VEL	WSEL
EXIT1:XS						.4780.		7.87 4	
FULLV:FV	0.	-55.	53.	178	0. 1	4653.		7.94 4	196.78
BRIDG:BR						0574.	183.		198.89
RDWAY:RG		******		33		0.			500.31
APPRO:AS	50.	-42.	1/3.	1/8	:0. ∠	9154.	483.	3.69 5	500.31
XSID:COD	e xlkq	XRKQ	K	Q					
APPRO:AS				*					
SECOND USER	DEFINED	TABLE.							
XSID.COD	E CRW	ਤ ਸੁਰ	# VM	ΤN	VMAX	нг	HO VHD	EGI	. WSEL
EXIT1:XS							*** 1.06		
FULLV:FV	496.3	5 0 8	6 490 0	07 5	08 93	0 32 0	01 1 07	497 86	5 496 78
BRIDG:BR									
RDWAY:RG									
APPRO:AS	497.2	1 0.4	5 490.3	9/ 5	06.02	0.18 0	.00 0.25	500.50	5 500.31
XSID:CODE SRD		LEW REW	AREA K 2		HF HO			Q VEL	
EXIT1:XS ** -21 **	*****						494.86 0.83	1270 7.43	495.66
===125 FR# 1							ONTINUED. 495.97		21
===110 WSEL							AY. 508.93	0.50	
===115 WSEL) WSMIN = 16 5		495.21	
		511111, WS	DIMZ, CR	wb =	495.	10 5	00.95	495.21	
FULLV:FV 0 <<<	22		10398 3	1.09	0.01	0.00	495.21 0.84 NSTRICTED	7.52	495.97
===125 FR# 1	EXCEEDS	FNTEST A	T SECID	"APP	PRO":	TRIALS C	ONTINUED.		
	FNTEST	,FR#,WSE	L,CRWS :	= 0.	80	0.80	496.84	496.2	20
===110 WSEL							AY. 506.02	0.50	
===115 WSEL							CRWS. 06.02	496.20	
APPRO:AS	50	-5					496.20		496.84
50	50 CCTHE AB	30 OVE RESU	7638 : LTS REFI				0.80 NSTRICTED	8.99) FLOW>	
===285 CRIT						^S - ^S ₁₂₇₀ .			!!!
	<<< <res< td=""><td>ULTS REF</td><td>LECTING</td><td>THE</td><td>CONSTR</td><td>RICTED FL</td><td>OW FOLLOW</td><td>>>>></td><td></td></res<>	ULTS REF	LECTING	THE	CONSTR	RICTED FL	OW FOLLOW	>>>>	
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K 2	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
BRIDG:BR 0	22 22	0 25	107 2 5830 2	2.18 1.00	**** ****	497.92 ******	495.74 1.00	1270 11.84	495.74
TYPE PP	CD FLOW	С	P/A	LSE	L BI		B XRAB		
1	±.	1.000 *							
XSID:COD RDWAY:RG							R Q RTOPPED>>		_
XSID:CODE SRD	SRDL FLEN		AREA K				CRWS FR#		WSEL
APPRO:AS	21 22	-9 46	248 (0.41	0.40	499.70	496.20 0.43	1270 5 12	499.29
50									
M(G)	M(K) 0.000	KQ 15695.	XLKQ -2.	XRK 23	CQ C)TEL 99.09			

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID:CODE EXIT1:XS FULLV:FV	SRD -22.	LEW -11. -11.	REW 51. 51.	Q 1270. 1270.	K 10540. 10398.	AREA 171. 169.	VEL 7.43 7.52	WSEL 495.66 495.97
BRIDG:BR RDWAY:RG	0.	 0 . * * * * * * * *	25.	1270.	5830.	107.	11.84	
APPRO:AS	50.	-10.	46.	1270.	14790.	248.	5.12	499.29
XSID:CODE APPRO:AS	XLKQ -2.	XRKQ 23.	KQ 15695.					


SECOND USER DEFINED TABLE.

XSID:COD	E CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
EXIT1:XS	494.86	0.83	489.72	508.58**	******	****	0.94	496.60	495.66
FULLV:FV	495.21	0.84	490.07	508.93	0.32	0.01	0.96	496.93	495.97
BRIDG:BR	495.74	1.00	490.56	499.22**	******	****	2.18	497.92	495.74
RDWAY:RG	*******	*****	499.66	508.68**	******	*****	*****	******	******
APPRO:AS	496.20	0.43	490.97	506.02	0.40	1.37	0.41	499.70	499.29
ER									

NORMAL END OF WSPRO EXECUTION.

APPENDIX C:

BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distributions for three pebble count transects at the approach cross-section for structure CHARTH00010007, in Charleston, Vermont.

APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form

Structure Number CHARTH00010007

General Location Descriptive

Data collected by (First Initial, Full last name) <u>M</u>. <u>WEBER</u>

Date (MM/DD/YY) 08 / 04 / 94

Highway District Number (I - 2; nn) 09

Town (FIPS place code; I - 4; nnnnn) 13150

Waterway (1 - 6) Mad Brook

Route Number TH001

Topographic Map Island.Pond

Latitude (I - 16; nnnn.n) 44490

County (FIPS county code; I - 3; nnn) ____019

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): _-

Vicinity (1 - 9) 0.1 MI TO JCT W CL3 TH39

Hydrologic Unit Code: 01110000

Longitude (i - 17; nnnnn.n) 71583

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10100400071004

Maintenance responsibility (I - 21; nn) 03	Maximum span length (I - 48; nnnn) 0025
Year built (I - 27; YYYY) <u>1929</u>	Structure length (I - 49; nnnnnn) 000027
Average daily traffic, ADT (I - 29; nnnnnn) 000250	_ Deck Width (I - 52; nn.n) _235
Year of ADT (1 - 30; YY) _90	Channel & Protection (I - 61; n) 5
Opening skew to Roadway (I - 34; nn) 10	Waterway adequacy (I - 71; n) 6
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn) <u>104</u>	Year Reconstructed (I - 106) 0000
Approach span structure type (I - 44; nnn)000	Clear span (<i>nnn.n f</i> t)
Number of spans (I - 45; nnn)	Vertical clearance from streambed (<i>nnn.n</i> ft) 007.7
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (nnn.n ft ²)

The structural inspection report of 6/17/94 indicates the structure is a concrete T-beam type bridge. Some deep concrete spalling is noted on the wingwalls. The report notes a possibility that the left abutment has settled. There was no channel scour noted on the report of 6/17/94. However, a previous report on 9/17/92 indicated heavy channel scour. The report of 6/17/94 indicated that riprap is needed along the new subfootings. No point bars were noted.

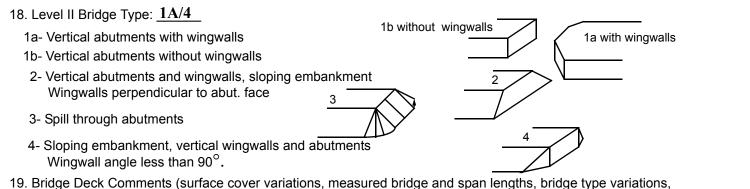
	Bride	ae Hvdr	ologic Da	ata				
Is there hydrologic data available? <u>N</u> if No, type ctrl-n h VTAOT Drainage area (mi^2): -								
Terrain character:								
Stream character & type: _								
Charles to the Standard and								
Streambed material: <u>Stones, gra</u>					0 -			
Discharge Data (cfs): Q _{2.33}								
Q ₅₀ Q ₁₀₀ Q ₅₀₀ Record flood date (<i>MM / DD / YY</i>): _ / _ / Water surface elevation (<i>ft</i>):								
Estimated Discharge (<i>cfs</i>): Velocity at Q (<i>ft/s</i>):								
Ice conditions (Heavy, Moderate, Li								
The stage increases to maximur	n highwate	er elevatio	on (Rapidly, I	Not rapidly)				
The stream response is (<i>Flashy, I</i>								
Describe any significant site con stage: _	iditions up	stream or	downstrea	m that ma	ay influence the stream's			
-								
Watershed storage area (in perce	,							
The watershed storage area is:		ainly at the h e site)	ieadwaters; 2	2- uniformly	distributed; 3-immediatly upstream			
Water Surface Elevation Estima	tes for Exi	sting Strue	<u>cture:</u>		<u>, </u>			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀			
Water surface elevation (ft))	-	-	-	-	-			
Velocity (ft / sec)	-	-	-	-	-			
Long term stream bed changes:	-							
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No	, Unknown):	U	Frequency:			
Relief Elevation (#):								
Are there other structures nearb	y? (Yes, No	, Unknown)	: <u> </u>	o or Unknov	vn, type ctrl-n os			
Upstream distance (<i>miles</i>):								
Highway No. : <u>-</u>	Structu	ure No. : _	Stru	ucture Typ	De:			
Clear span (ft): - Clear He	eight (<i>ft</i>):	· F	ull Waterw	ay (#²): <u>-</u>				

Downstream distance (<i>miles</i>):			
Highway No. : -			
Clear span (<i>t</i>): <u>-</u> Clear Clear Clear Clear Clear Comments:			
	e time of the sume 1-		
	USGS Wat	ershed Data	
Watershed Hydrographic Data	<u>.</u>		
Drainage area (DA) 6.59 Watershed storage (ST) 0	_mi ² La	ke and pond area $_0$	mi ²
Bridge site elevation <u>1196</u> Main channel length <u>4.37</u>		eadwater elevation <u>3300</u>)ft
10% channel length elevat Main channel slope (S)3 <u>Watershed Precipitation Data</u>		85% channel length e	elevation <u>2320</u> ft
Average site precipitation Maximum 2yr-24hr precipitat			ation in
Average seasonal snowfall (s	Sn) ft		

Bridge Plan Data
Are plans available? N If no, type ctrl-n pl Date issued for construction (MM / YYYY): - / - Project Number - Minimum channel bed elevation: - -
Low superstructure elevation: USLAB <u>-</u> DSLAB <u>-</u> USRAB <u>-</u> DSRAB <u>-</u> Benchmark location description: -
Reference Point (<i>MSL, Arbitrary, Other</i>): Datum (<i>NAD27, NAD83, Other</i>):
Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness Footing bottom elevation:
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? <u>N</u> If no, type ctrl-n bi Number of borings taken:
Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION
Comments: NO PLANS.

Cross-sectional Data

Is cross-sectional data available? <u>N</u> If no, type ctrl-n xs


Source (FEMA, VTAOT, Other)? _____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Comments: N	O CRO	SS SECT	ION INF	ORMAT	TION	1					
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E: LEVEL I DATA FORM

	Geological Su le Field Data C	Collection an	Qa/Qc Check by: RB Date: 2/13/96 Computerized by: RB Date: 2/23/96 Reviewd by: EB Date: 10/30/96					
			A. Genera	al Location Descriptiv	/e			
1. Data	a collected by (Fir	rst Initial, Full la	ast name) <u>N</u>	1 WEBER	Date (MM/DD/YY) <u>10</u> / <u>28</u> / <u>19</u> 94			
	way District Num			Mile marker				
	nty Orleans (0 erway <i>(l - 6)</i> M			Town Charlesto				
	e Number TH 1				ode: 01110000			
3. Des	criptive comment	:S:	,					
This s TH 39		oncrete T-bea	am type bri	dge located about 0.1 mile f	rom the intersection of TH 1 with			
			B. Bridg	ge Deck Observations	5			
4. Sur	face cover	BUS 5	RBUS 5		RBDS 4 Overall 5			
					RBDS <u>4</u> Overall <u>5</u> orushland; 6- Forest; 7- Wetland)			
				$_$ DS $\underline{2}$ (1- pool; 2- riffl				
6. Brid	lge structure type	• <u>1 (</u> 1- sing 6- box	culvert; or 7 -	other)	multiple arch; 5 - cylindrical culvert;			
7. Bri	dge length 27	(feet)			Bridge width 23.5 (feet)			
	d approach	-		Channel approach to bridge (BF):				
8. LB <u>2</u>	(0			15 Angle of enpression	10			
		even, 1- lowe	r, 2- nigner)		16. Bridge skew: <u>10</u>			
9. LB <u>1</u>	RB <u>1</u> (<i>1- F</i>	Paved, 2 - Not p		Approach Angle Q	Bridge Skew Angle			
	RB <u>1</u> (<i>1- F</i> ankment slope (<i>r</i>	Paved, 2- Not p	oaved)		Bridge Skew Angle			
	ankment slope (<i>r</i>	Paved, 2- Not p	oaved)		Bridge Skew Angle			
10. Emb US k	ankment slope (<i>r</i> eft Protection	Paved, 2 - Not p run / rise in feer US right <u></u> 13 Frosion	oaved) t / foot):		Bridge Skew Angle			
10. Emb US k	ankment slope (<i>r</i> eft Protection .Type	Paved, 2- Not p run / rise in feet US right <u></u> 13.Erosion	oaved) t / foot): 14.Severity		Bridge Skew Angle			
10. Emb US I 11 LBUS	ankment slope (<i>r</i> eft Protection	Paved, 2 - Not p run / rise in feet US right <u></u> 13.Erosion 0	oaved) t / foot): 14.Severity 0	Approach Angle Q Q Q	Bridge Skew Angle			
10. Emb US I 11 LBUS RBUS	ankment slope (<i>r</i> eft Protection .Type 12.Cond 	Paved, 2 - Not p un / rise in feet US right <u></u> 13.Erosion 0 0	oaved) t / foot): 14.Severity 0 0	Approach Angle Q Q 17. Channel impact zone 1:	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US I 11 LBUS	ankment slope (<i>r</i> eft Protection .Type 12.Cond 0 1	Paved, 2 - Not p run / rise in feet US right <u></u> 13.Erosion 0	baved) t / foot): 14.Severity 0 0 1	Approach Angle Q Q 17. Channel impact zone 1: Where? (<i>LB, RB</i>)	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US I 11 LBUS RBUS	ankment slope (<i>r</i> eft Protection .Type 12.Cond 	Paved, 2 - Not p un / rise in feet US right <u></u> 13.Erosion 0 0	oaved) t / foot): 14.Severity 0 0	Approach Angle Q Q 17. Channel impact zone 1: Where? <u>- (LB, RB)</u> Range? <u>- feet - (L</u>	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US I 11 LBUS RBUS RBDS LBDS	ankment slope (r eft Protection Type 12.Cond 0 - 1 1 1 1 1 2 ttection types: 0-	Paved, 2- Not p un / rise in feet US right <u></u> 13.Erosion 0 0 2 0 2 0	baved) t / foot): 14.Severity 0 0 1 0 1 0	Approach Angle Q Q 17. Channel impact zone 1: Where? <u>- (LB, RB)</u> Range? <u>- feet - (L</u> Channel impact zone 2:	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US I 11 LBUS RBUS RBDS LBDS Bank pro	ankment slope (r eft Protection Type 12.Cond 0 1 1 1 1 1 1 1 2 tection types: 0- 2- < 36 inch 4- < 60 inch	Paved, 2- Not p un / rise in feet US right US right 13.Erosion $000202013.Erosion 13.Erosion002013.Erosion13.Erosion13.Erosion13.Erosion13.Erosion013.Erosion13.Ero$	baved) t / foot): 14.Severity 0 0 1 0 1 0 inches; ches; tificial levee	Approach Angle Q Q 17. Channel impact zone 1: Where? <u>- (LB, RB)</u> Range? <u>- feet - (L</u> Channel impact zone 2: Where? <u>- (LB, RB)</u>	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US Id 11 LBUS RBUS RBUS LBDS Bank pro	ankment slope (r eft Protection .Type 12.Cond 0 1 1 1 1 1 2 etection types: 0- 2- < 36 inch 4- < 60 inch otection condition.	Paved, 2- Not p un / rise in feet US right	baved) t / foot): 14.Severity 14.Severity <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>0</u> inches; tificial levee slumped; failed	Approach Angle Q Q 17. Channel impact zone 1: Where? <u>- (LB, RB)</u> Range? <u>- feet - (L</u> Channel impact zone 2: Where? <u>- (LB, RB)</u> Range? <u>- feet - (LB, RB)</u> Range? <u>- feet - (LB, RB)</u>	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			
10. Emb US k 11 LBUS RBUS RBUS LBDS Bank pro Bank pro Erosion:	ankment slope (r eft Protection Type 12.Cond 0 1 1 1 1 1 1 1 2 tection types: 0- 2- < 36 inch 4- < 60 inch	Paved, 2- Not p un / rise in feet US right 13.Erosion 13.Erosion $00202020213.Erosion 20213.Erosion 20213.Erosion 20213.Erosion 20213.Erosion 20213.Erosion 20213.Erosion 20213.Erosion 213.Erosion 20213.Erosion 213.Erosion 23- eroded; 414$	baved) t / foot): 14.Severity 14.Severity <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>0</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Approach Angle Q Q 17. Channel impact zone 1: Where? <u>- (LB, RB)</u> Range? <u>- feet - (L</u> Channel impact zone 2: Where? <u>- (LB, RB)</u> Range? <u>- feet - (LB, RB)</u> Range? <u>- feet - (LB, RB)</u>	Bridge Skew Angle θ Q Q Q Q Q Q Q Q			

approach overflow width, etc.)

The bridge dimensions shown are from the VTAOT files. Field measurements of the bridge dimensions are 28.0 feet for the bridge length, 25.0 feet for the span length, and 23.5 feet for the roadway width. Surface cover on the left bank upstream consists of mostly brush with trees on the bank. The upstream right bank surface cover is small trees and shrubs on the bank with tall grass and a gravel driveway on the overbank area. Surface cover downstream consists of mainly shrubs and brush near the bridge and pasture elsewhere.

The protection indicated on the upstream right and downstream left road embankments is located around the ends of the wingwalls. There is some protection around the end of the downstream right wingwall, which is covered by sand up to 1.5 feet thick. The class of this protection is approximated. A small hole has developed in the sand / protection, which is about 1 foot in diameter, 3 feet deep, and looks like it may have developed from road wash.

	C. Upstream Channel Assessment										
2	21. Bank height (BF) 22. Bank angle (BF) 26. % Veg. cover (BF) 27. Bank material (BF) 28. Bank erosion (BF)										
20. SRD	LB	RB	LB	RB	20. % Ve	RB	LB	RB	LB	RB	
20. 010	8.5	ND	20	5.5	2	2	4	4	1	0	
					<u> </u>	<u> </u>				<u> </u>	
23. Bank v	vidth 35	5.0	24. Cha	annel width	25.0	25. Tha	lweg depth	48.5	29. Bed Mate	erial <u>5</u>	
30 .Bank p	protection	type:	LB <u>0</u>	RB_0		31. Bank pi	rotection cor	ndition: L	B <u>-</u> RE	3 <u>-</u>	
SRD - Se	ection ref.	dist. to L	IS face	% Vegetat	ion (Veg) co	over: 1-0 to 2	5%; 2- 26 to	50%; 3- 5	51 to 75%; 4 - 7	76 to 100%	
Bed and	bank Mate	erial: 0- c	organics; 1 -	- silt / clay, <	1/16mm; 2-	sand, 1/16 - 2	2mm; 3 - gra	vel, 2 - 64	mm;		
Bank Erc	osion: 0- n		,	,	,	56mm; 6 - bed I; 3 - heavy flu	,				
			, U	,				•	- wall / artificia	l levee	
Bank pro	tection col	nditions:	1- good; 2	- slumped; 3 -	- eroded; 4 -	failed					
32. Comm	ents (banł	k materia	al variation,	minor inflow	s, protection	n extent, etc.)	:				
		• •				bedrock ou	tcrop abo	ut 275 fee	et upstream.	The water	
		v	-	oceeds over							
			-			s with a few					
				-		cobbles emb		and and	gravel.		
28. There is some undercutting of the shrubs and trees on the left bank.											
1											
1											

33. Point/Side bar present? N (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 35. Mid-bar width:	-
36. Point bar extent: feet (US, UB) to feet (US, UB, DS) positioned %LB to %RE	
37. Material:	
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):	
NO POINT BARS	
39. <u>Is a cut-bank present?</u> Y (Y or if N type ctrl-n cb) 40. Where? <u>LB</u> (LB or RB)	
41. Mid-bank distance: <u>52</u> 42. Cut bank extent: <u>18</u> feet <u>US</u> (US, UB) to <u>82</u> feet <u>US</u> (US, UB, U	DS)
43. Bank damage: <u>1</u> (1- eroded and/or creep; 2- slip failure; 3- block failure)	,
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):	
There is light bank cutting present with tree and shrub root systems exposed but holding material and p	
venting more extensive erosion. The old left abutment stonework extends 17 feet upstream probably pre	
ing the cut bank from extending to the bridge. While there is some bank cutting here, there is no signific	cant
bend in the channel and hence no impact zone.	
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -	
47. Scour dimensions: Length Width Depth : Position %LB to %RB	
48. Scour comments (eg. additional scour areas, local scouring process, etc.):	
NO CHANNEL SCOUR	
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -	
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephe	meral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephe	
54. Confluence comments (eg. confluence name):	/
NO MAJOR CONFLUENCES	
D. Under Bridge Channel Assessment	
55. Channel restraint (BF)? LB 2	
56. Height (BF)57 Angle (BF)61. Material (BF)62. Erosion (BF)LBRBLBRBLBRB	
22.0 - 1.0 - 2 - 7 - 7	
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 90.0 63. Bed Material -	
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 2	256mm [.]
5- boulder, > 256mm; 6- bedrock; 7- manmade	
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting	
64. Comments (bank material variation, minor inflows, protection extent, etc.):	
5	
The bed material here is boulders mostly, embedded in sand and gravel with some cobbles.	

65. Debris and Ice Is there debris accumulation? (Y or N) 66. Where? N (1- Upstream; 2- At bridge; 3- Both) 67. Debris Potential - (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency 1 (1- Low; 2- Moderate; 3- High) 69. Is there evidence of ice build-up? 1 (Y or N) 68. Capture Efficiency 1 (1- Low; 2- Moderate; 3- High) 70. Debris and Ice Comments: 1 (Y or N) Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)									
The channel reach is straight and steep upstream, which probably prevents extensive ice formation and blockage. There are no extensive cut banks and the channel is stable. Therefore, the potential for debris production is low, even though there is a high tree cover percentage on the banks.									
Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	9 77.	Material	78. Length
LABUT		-	90	2	2	0.0	4	4.0	90.0
RABUT	1	5	90	l 	l ı	2	3	3	24.5
Materials: 1 - Co	not evident; f settled; 6 - fail oncrete; 2 - Sto	led one masonry o	nment); 2 - foc r drywall; 3 - s	oting expose steel or meta	d; 3 -underi al; 4 - wood		i; 4 - pii	des ling expose	ed;
0.0 4.0									
1									
Both abutments have 2 newer subfootings each, which hide the original scour conditions and scour depths. The lower subfootings appear poured with minimal excavation. There is some minimal undermining (less than 2 inches) visible at the downstream end of the right abutment and at 6 feet under the bridge on the left abutment from the upstream face. The top of the upper footings are about 4 feet above the bed level at the thalweg under the bridge while that of the lower are about 2 feet above the bed level. Some old slab stonework protects the upstream left wingwall. The old stonework may be the construction material for the abutments of the original structure that were since refaced with concrete. The deck concrete appears in newer condition									
80. Wingwal						USRWV			USLWW
•	t? Material?		cour Expo epth? dep		? Length	?		Vingwall ength	k
USLWW: than	1	the	abu		.5	11 -		k	
USRWW: men		con-	cret	e 0.:	5				
DSLWW:		Ther –	e is	a25.	.0			Q	
DSRWW: ver-		tical	crac	25	.5	Wingwa			
Wingwall mater	rials: 1 - Conc 4 - wood		masonry or a	lrywall; 3- st	eel or meta	<i>angle</i> DSRWV	v ¥		
82. <u>Bank / B</u>	ridge Prot	ection			_				
Location	USLWW U	SRWW LA	BUT RAE	BUT LI	3 Б	RB DSI	ww	DSRWW	
Туре	k in a	abut w	all ab	oo fee	t tl	he fr	0	upst	
Condition	the	men lo	ca ut	un	d b	rid m	l	rea	
Extent	left	t te	ed 16	6 er	g	e tl	ne	m	
Bank / Bridge protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee									

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.): face. The crack is about one eighth of an inch wide and does not include the subfootings. Y

- 1
- 0
- -
- _
- Y
- 1
- 2
- 0.0
- 4.0

Piers:

85.			- 1		,		7
Pier no.	widt	h (w)	feet	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	│/ \◀ w1
Pier 1		4.:	5 6.0	35.0	45.0	50.0	
Pier 2	3.5	6.	0 -	30.0	-	-	
Pier 3	-	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	
Level 1 Pi	er Descr		1	2	3	4]
86. Locatio	on (BF)		1	2	-	t	LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFF
87. Type			2	1	-	unde	1 - Solid pier, 2 - column, 3 - bent
88. Materia	al		0.0	1	-	rmin	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape			4.0	0	2	ing	1- Round; 2- Square; 3- Pointed
90. Inclined	d?		Y	-	1	of a	Y- yes; N- no
91. Attack	∠ (BF)		1	-	1	few	
92. Pushec	b		2	0	2	inch	LB or RB
93. Length	(feet)		-	-	-	-	
94. # of pile	es		0.0	-	1	es or	
95. Cross-r	members	5	4.0	-	1	less	 0- none; 1- laterals; 2- diagonals; 3- both 0- not evident; 1- evident (comment);
96. Scour Condition		า	2	-	Som	is	 2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed
97. Scour o	depth		1	-	e	reco	
98. Exposu	ire depth	ı	1	-	sligh	gniz-	

84. Are there piers? <u>Y</u> (Y or if N type ctrl-n pr)

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): able where the downstream right wingwall and right abutment meet. Like the abutments, the upstream and downstream right wingwalls have two subfootings that are two feet thick each. The subfootings possibly have masked the original scour conditions and depths. Only the upper subfooting on the downstream left wingwall is visible at the surface. The upstream left wingwall appears to have no subfootings and the concrete from the left abutment subfootings is molded around some very large native boulder material where the concrete ends at the upstream end of the left abutment. Protection on the upstream left wingwall consists of one, class 4 boulder, the old left abutment stonework, and a few native boulders. Concrete appears to have been poured over the old abutment walls. The concrete is spalling at all of the wingwalls except the upstream left wingwall.

100. E. Downstream Channel Assessment							
Bank height (BF) Bank angle (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF) SRD LB RB LB RB LB RB LB RB - - - - - - - - - -							
Bank width (BF) Channel width (Amb) Thalweg depth (Amb) Bed Material							
Bank protection type (Qmax): LB RB Bank protection condition: LB RB							
SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100% Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm;							
Comments (eg. bank material variation, minor inflows, protection extent, etc.):							
101. Is a drop structure present? - (Y or N, if N type ctrl-n ds) 102. Distance: - feet 103. Drop:feet 104. Structure material: - (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other) 105. Drop structure comments (eg. downstream scour depth): - - -							
43							

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-b	oar distance: Mid-bar width:					
Point bar extent: feet (US, UB, DS) to feet feet (US, UB, DS) to feet feet feet feet (US, UB, DS) to feet fe						
- - - -						
<u>Is a cut-bank present?</u> - (Y or if N type ctrl-n cb) Where? - (LB or RB) Mid-bank distance: <u>NO</u> Cut bank extent: <u>PIE</u> feet <u>RS</u> (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):						
Is channel scour present? (Y or if N type ctrl-n cs) Mid-s Scour dimensions: Length 2 Width 1 Depth: 4 Posit Scour comments (eg. additional scour areas, local scouring process, etc.): 0 4 2 0						
Are there major confluences? 1 (Y or if N type ctrl-n mc)	How many?					
Confluence 1: Distance The Confluence 2: Distance kEnters on Pro- (LB or RB)Confluence 2: Distance kEnters on Pro- (LB or RB)Confluence comments (eg. confluence name): tion consists of class 1 and 2 native (field) stone piled about 1 to 2 fe at least 300 feet downstream. There is a large sand deposit along the	Type <u>tec-</u> (1 - perennial; 2 - ephemeral) eet high in a wall type fashion extending to					

F. Geomorphic Channel Assessment

107. Stage of reach evolution str

- 1- Constructed2- Stable

- 3- Aggraded
 4- Degraded
 5- Laterally unstable
 6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

eam. The bank material is composed of mainly cobbles with sand and gravel. The bed material is composed also of mainly cobbles with a few boulders embedded in sand and gravel. The cobble material on the right bank does not appear placed for protection of the bank. However, if it was placed, it is now slumped and eroded and is not nearly as extensive as the protection clearly present on the left bank.

109. G. Plan View Sketch					
oint bar (pb) ut-bank (Cb) cour hole	debris XXX rip rap or SSOL	flow► cross-section +++++++ ambient channel	stone wall		

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: Road Number: Stream:	CHARTH00010007 TH 1 MAD BROOK	Town: County:					
Initials EMB	Date: 8/22/9	6 Checked	:				
Analysis of contr	action scour, li	ve-bed or o	clear wate	er?			
Critical Velocity of Bed Material (converted to English units) Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)							
Approach Section Characteristic		100 yr	500 yr	other Q			
Total discharge Main Channel Ar Left overbank a Right overbank Top width main Top width L ove Top width R ove D50 of channel, D50 left overba D50 right overb	ea, ft2 rea, ft2 area, ft2 channel, ft rbank, ft rbank, ft ft nk, ft	1300 269 0 131 46 0 130 0.344 0 0	1780 290 0 192 47 7 138 0.344 0 0	1270 248 0 56 0 0.344 0			
yl, average depth yl, average depth yl, average depth	, LOB, ft	5.8 ERR 1.0	6.2 0.0 1.4	4.4 ERR ERR			
Total conveyance Conveyance, mai Conveyance, LOB Conveyance, ROB Percent discrep Qm, discharge, Ql, discharge, Qr, discharge,	n channel ancy, conveyance MC, cfs LOB, cfs	23340 19024 0 4316 0.0000 1059.6 0.0 240.4	29152 21300 1 7851 0.0000 1300.6 0.1 479.4	14793 14793 0 0.0000 1270.0 0.0 0.0			
Vm, mean velocity Vl, mean velocity Vr, mean velocity Vc-m, crit. veloc Vc-l, crit. veloc Vc-r, crit. veloc	r, LOB, ft/s r, ROB, ft/s ity, MC, ft/s ity, LOB, ft/s	3.9 ERR 1.8 10.5 N/A 0.0	4.5 ERR 2.5 10.6 0.0 0.0	5.1 ERR 10.1 N/A N/A			
Results							
Live-bed(1) or Cl Main Channel	ear-Water(0) Cont	traction So 0	cour? 0	0			
ARMORING D90 D95 Critical grain si Decimal-percent c Depth to armoring	oarser than Dc	1.622 2.736 0.2762 0.602 0.55	1.622 2.736 0.3885 0.444 1.46	1.622 2.736 1.1556 0.142 20.95			

Clear Water Contraction Scour in MAIN CHANNEL

Clear Water Contraction Scour in MA		_	
y2 = (Q2 ² /(131*Dm ^(2/3) *W2 ²)) ^{(3/} ys=y2-y_bridge			English Units
(Richardson and others, 1995, p. 32	, eq. 20,	20a)	
Approach Section	Q100	Q500	Qother
Main channel Area, ft2 Main channel width, ft	269 46	290 47	248 56
yl, main channel depth, ft		6.17	
Bridge Section			
(Q) total discharge, cfs	1300	1780	1270
(Q) discharge thru bridge, cfs	1230	1441	1270
Main channel conveyance	9777	10574	5826
Total conveyance	9777	10574	5826
Q2, bridge MC discharge,cfs	1230	1441	1270
Main channel area, ft2	184	183	107
Main channel width (skewed), ft	24.6	24.6	24.4
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	24.6	24.6	24.4
y_bridge (avg. depth at br.), ft	7.49	7.42	4.39
Dm, median (1.25*D50), ft	0.43	0.43	0.43
y2, depth in contraction,ft	4.50	5.16	4.66
ys, scour depth (y2-ybridge), ft	-2.99	-2.26	0.27
ys, scour depth (y2-yfullv), ft	-0.13	-0.15	N/A
Pressure Flow Scour (contraction sc	our for o	rifice flo	ow condtions)
Hb+Ys=Cq*qbr/Vc Cq=1/Cf*Cc Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14	Hb/(ya-w)		
Chang Equation Cc=SQRT[0.10*(Hb/(ya-w) 5-146)	-0.56)]+0	.79 (<=1)
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14	Hb/(ya-w) 5-146) Q100	-0.56)]+0 Q500	
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs	Hb/(ya-w) 5-146) Q100 1230	-0.56)]+0 Q500 1441	.79 (<=1) OtherQ
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s	Hb/(ya-w) 5-146) Q100 1230 10.5	-0.56)]+0 Q500 1441 10.6	.79 (<=1) OtherQ 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244	-0.56)]+0 Q500 1441 10.6 3.230722	.79 (<=1) OtherQ 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft	Hb/(ya-w) 5-146) Q100 1230 10.5	-0.56)]+0 Q500 1441 10.6 3.230722 24.6	.79 (<=1) OtherQ 0 0 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0	.79 (<=1) OtherQ 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6	.79 (<=1) OtherQ 0 0 0 0 0 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s	Hb/(ya-w) 5-146) 2100 1230 10.5 3.200244 24.6 0 24.6 50	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 ERR
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ²	Hb/(ya-w) 5-146) 2100 1230 10.5 3.200244 24.6 0 24.6 50	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 8 RR N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ²	Hb/(ya-w) 5-146) 2100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472	.79 (<=1) OtherQ 0 0 0 0 0 0 0 8 RR N/A 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, m	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109	.79 (<=1) OtherQ 0 0 0 0 0 0 ERR N/A 0 ERR N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, mt2/s Area of full opening, ft Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51	.79 (<=1) OtherQ 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, mt2/s Area of full opening, ft Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0)	Hb/(ya-w) 5-146) 2100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1 1.5
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft	Hb/(ya-w) 5-146) 2100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, m^2/s Area of full opening, ft^2 Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of approach WS, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1 1.5 0 N/A 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1 1.5 0 N/A 0 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, m^2/s Area of full opening, ft^2 Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.88 499.88 499.3981 499.81 499.71 8.31187	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 0 0 0 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, ft^2/s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, m	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708	.79 (<=1) OtherQ 0 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1 1.5 0 N/A 0 0 0 N/A N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, m^2/s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46	.79 (<=1) OtherQ 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft w, depth of overflow, ft (>=0)	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46 0	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46 0	.79 (<=1) OtherQ 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, ft^2/s Area of full opening, ft Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46 0 0.974755	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46 0	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft tya, depth immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft w, depth of overflow, ft (>=0) Cc, vert contrac correction (<=1.0)	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46 0 0.974755	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46 0 0.962276	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft ² /s qbr, unit discharge, m ² /s Area of full opening, ft ² Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of Bed, ft Elevation of approach WS, ft HF, bridge to approach, ft Elevation of WS immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft w, depth of overflow, ft (>=0) Cc, vert contrac correction (<=1.0) Ys, depth of scour (chang), ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46 0 0.974755 -2.60664	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46 0 0.962276 -1.67591	.79 (<=1) OtherQ 0 0 0 0 0 0 0 0 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A 0 0 0 ERR N/A 0 0 0 N/A N/A 0 0 0 0 N/A
Chang Equation Cc=SQRT[0.10*((Richardson and others, 1995, p. 14 Q thru bridge main chan, cfs Vc, critical velocity, ft/s Vc, critical velocity, m/s Main channel width (skewed), ft Cum. width of piers, ft W, adjusted width, ft qbr, unit discharge, ft^2/s qbr, unit discharge, ft^2/s Area of full opening, ft Hb, depth of full opening, ft Hb, depth of full opening, m Fr, Froude number MC Cf, Fr correction factor (<=1.0) Elevation of Low Steel, ft Elevation of approach, ft Elevation of WS immediately US, ft ya, depth immediately US, ft ya, depth immediately US, m Mean elev. of deck, ft w, depth of scour (chang), ft y2, from Laursen equation, ft	Hb/(ya-w) 5-146) Q100 1230 10.5 3.200244 24.6 0 24.6 50 4.644699 184.3 7.49187 2.283411 0.43 1 498.89 491.3981 499.86 0.15 499.71 8.31187 2.58293 501.46 0 0.974755 -2.60664 4.5	-0.56)]+0 Q500 1441 10.6 3.230722 24.6 0 24.6 58.57724 5.441472 182.5 7.418699 2.261109 0.51 1 498.89 491.4713 500.31 0.18 500.13 8.658699 2.690708 501.46 0 0.962276 -1.67591 5.16	.79 (<=1) OtherQ 0 0 0 0 0 0 0 ERR N/A 0 ERR N/A 1 1.5 0 N/A 1 1.5 0 N/A 0 0 0 N/A N/A 0 0 ERR N/A 0 0 0 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28)

Characteristic	Left Abu 100 yr Q	tment 500 yr Q) Other Q	Right Ab 100 yr Ç		Other Q		
<pre>(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal_overbank to obta Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft</pre>	1300 11 38.8 100 ain Ve, le 2.58 3.53	1780 42.4 44 128.9 cave Qe bl 2.93 1.04	1270 10.3 33.7 127 ank and e 3.77 3.27	1300 148.3 154.9 	1780 148.3 129.7 	1270 20.9 33.6 79.4 ually) 2.36 1.61		
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert 0.82	i. w/ win 0.82	gwall; 0. 0.82	55, spill 0.82	thru) 0.82		
Angle (theta) of embankment (<90 theta K2 Fr, froude number f/p flow ys, scour depth, ft	if abut. 85 0.99 0.242 8.00	points DS 85 0.99 0.507 7.28	; >90 if 85 0.99 0.367 8.64	abut. poi 95 1.01 0.328 9.40	nts US) 95 1.01 0.363 8.91	95 1.01 0.328 6.21		
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and others, 1995, p. 49, eq. 29)								
a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1 Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical vertical w/ ww's spill-through	11 3.53 3.12 0.98 0.24 ERR ERR ERR	42.4 1.04 40.86 0.98 0.51 5.91 4.85 3.25	10.3 3.27 3.15 0.98 0.37 ERR ERR ERR	148.3 1.04 141.98 1.01 0.33 5.31 4.35 2.92	148.3 0.87 169.57 1.01 0.36 4.60 3.77 2.53	20.9 1.61 13.00 1.01 0.33 ERR ERR ERR		
Abutment riprap Sizing Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82)								
Characteristic	Q100	Q500	Qother					
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.43 1 y in con 7.5	0.51 tracted s 7.4	1 ectionm 4.4	0.43 nc, bridge 7.5	0.51 section) 7.4	1 4.4		
Median Stone Diameter for riprap at: left abutment right abutment, f					t			
	0.00	1 10		0.00	1 10			

Fr<=0.8	(vertical	abut.)	0.86	1.19	ERR	0.86	1.19	ERR
Fr>0.8	(vertical	abut.)	ERR	ERR	1.84	ERR	ERR	1.84