LEVEL II SCOUR ANALYSIS FOR BRIDGE 43 (CHESVT00110043) on STATE ROUTE 11, crossing the MIDDLE BRANCH WILLIAMS RIVER, CHESTER, VERMONT

U.S. Geological Survey Open-File Report 97-342

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 43 (CHESVT00110043) on STATE ROUTE 11, crossing the MIDDLE BRANCH WILLIAMS RIVER, CHESTER, VERMONT

By Lora K. Striker and Ronda L. Burns

U.S. Geological Survey Open-File Report 97-342

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	•••••
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting.	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure CHESVT00110043 viewed from upstream (September 11, 1996)	
4. Downstream channel viewed from structure CHESVT00110043 (September 11, 1996)	
5. Upstream channel viewed from structure CHESVT00110043 (September 11, 1996)	
6. Structure CHESVT00110043 viewed from downstream (September 11, 1996)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
CHESVT00110043 on State Route 11, crossing	
the Middle Branch Williams River, Chester, Vermont.	1
8. Scour elevations for the 100- and 500-year discharges at structure	
CHESVT00110043 on State Route 11, crossing	
the Middle Branch Williams River, Chester, Vermont	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
CHESVT00110043on State Route 11, crossing	
the Middle Branch Williams River, Chester, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
CHESVT00110043 on State Route 11, crossing	
the Middle Branch Williams River, Chester, Vermont	1

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 43 (CHESVT00110043) ON STATE ROUTE 11, CROSSING THE MIDDLE BRANCH WILLIAMS RIVER, CHESTER, VERMONT

By Lora K. Striker and Ronda L. Burns

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure CHESVT00110043 on State Route 11 crossing the Middle Branch of the Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is principally in the Green Mountain section of the New England physiographic province in southeastern Vermont. The 13.7-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forest except for the area downstream and right of the bridge which is pasture.

In the study area, the Middle Branch of the Williams River has a sinuous channel with a slope of approximately $0.01\,$ ft/ft, an average channel top width of 77 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulder with a median grain size (D_{50}) of 76.6 mm (0.251 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 11, 1996, indicated that the reach was laterally unstable. Lateral instability was evident from the several point bars and cut banks located through the study reach.

The State Route 11 crossing of the Middle Branch of the Williams River is a 76-ft-long, two-lane bridge consisting of two 37-foot concrete Tee-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening. The computed opening-skew-to-roadway was 30 degrees but the historical records indicate this angle is 25 degrees.

Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the downstream banks and the upstream right wing wall. Type-2 (less than 36 inches diameter) stone fill protection is noted on the upstream and downstream left wingwalls and upstream along the left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. Pier scour ranged from 7.3 to 8.6 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

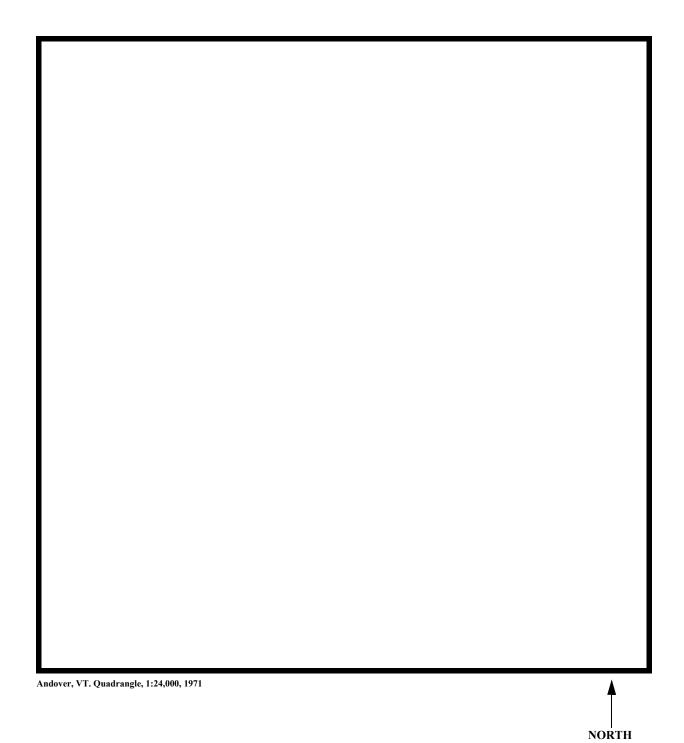


Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

Description of Bridge Bridge length	length ght, left ing near vertical left wingwall and pe-1, along entire
Bridge length	ght, left ing near vertical left wingwall and pe-1, along entire erete. The pier is a
Alignment of bridge to road (on curve or straight) Vertical, concrete Abutment type No Stone fill on abutment? Type-2, around the upstream end of the upstream left bank. Ty base length of the upstream right wingwall and downstream banks. Abutments and wingwalls are conditioned foot wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	ght, left ing near vertical left wingwall and pe-1, along entire erete. The pier is a
Abutment type No Stone fill on abutment? Type-2, around the upstream end of the upstream left bank. Ty base length of the upstream right wingwall and downstream banks. Abutments and wingwalls are conditioned foot wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	left wingwall and pe-1, along entire erete. The pier is a
Stone fill on abutment? No Type-2, around the upstream end of the upstream downstream end of the downstream left wingwall and upstream left bank. Ty base length of the upstream right wingwall and downstream banks. Abutments and wingwalls are conditioned for wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	left wingwall and pe-1, along entire erete. The pier is a
Type-2, around the upstream end of the upstream downstream end of the downstream left wingwall and upstream left bank. Ty base length of the upstream right wingwall and downstream banks. Abutments and wingwalls are conditioned wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	pe-1, along entire
	erete. The pier is a
Abutments and wingwalls are condition foot wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	
foot wide 37 foot long square nosed concrete pier. YES Is bridge skewed to flood flow according to YES survey? And There is a mild channel bend at the bridge. A point bar has developed under the bridge forcing the flow under the left span.	
bridge forcing the flow under the left span.	gle
	ne right span of the
Debris accumulation on bridge at time of Level I or Level II site visit:	
Date of inspection Percent of channel blocked norizontally	Percent of alama blocked vertically
Level I 9/11/96 0	0
Level II Moderate. There is some debris noted in the cha	nnel at the right cu
bank and along the left bank at the landslide. Potential for debris	
There is a significant buildup of sediment under the right span of the bridge	
Describe any features near or at the hridge that may affect flow (include of flows with water surface elevations below 486.2 at the approach under the left	which will force

Description of the Geomorphic Setting

General topog	graphy	The chan	nel is located in a i	moderate relief valley	with narrow flood
plains, steep	valley wa	alls on the let	ft, and moderately	sloping valley walls o	n right.
Geomorphic	conditio	ns at bridge	site: downstream	(DS), upstream (US)	
Date of insp	ection	9/11/96			
DS left:	Modera	ately sloped	overbank to narrov	v flood plain	
DS right:	Steep b	ank to narro	w flood plain		
US left:	Modera	tely sloping	channel bank to va	alley wall	
US right:	Modera	ately sloping	bank to narrow ov	rerbank	
		De	escription of the	Channel	
		77			8
Average to	p width	_(Cobble/Boulder	Average depth	Cobble/Boulder
Predominan	t bed ma	terial		Bank material	Sinuous, equiwidth,
and laterally	unstable	with non-allu	uvial channel bour	idaries.	
					9/11/96
Vegetative co	Trees a	nd brush			
DS left:	Trees				
DS right:	Trees a	and brush			
US left:	Small t	rees and brus	sh		
US right:		No			
Do banks ap	pear stal	ble? Lateral i	instability is indica	nted at the site due to p	oint bars and cut
banks through	ighout th	e reach. The	re is also a large la	ndslide located on the	left bank upstream.
The assess	sment of				
				9	/11/96 noted a point
bar along the Describe and	ne right b v obstruc	ank that bloc	ks half the bridge nnel and date of o	opening on the right sibservation.	de up to a water
		486.2 (figure			

Hydrology

Drainage area 13.7 mi ²	
Percentage of drainage area in physiographic p	rovinces: (approximate)
Physiographic province/section New England/New England Upland	Percent of drainage area 30
New England/Green Mountain	
Is drainage area considered rural or urban?	Rural Describe any significant
urbanization: — -	
Is there a USGS gage on the stream of interest?	<u>No</u>
USGS gage description	
USGS gage number	
Gage drainage area	 mt ²
Is there a lake/pond that will significantly affect	No No thydraulies?
- 	
Calculated 3570	Discharges 5240
$Q100 ft^3/s$	$Q500 ft^3/s$
The 1	00- and 500-year discharges are based on a
drainage area relationship [(13.7/14.8)exp 0.67] v	vith bridge number 46 in Chester. Bridge
number 46 crosses the Middle Branch Williams F	River downstream of this site and has flood
frequency estimates available from the VTAOT d	atabase. The drainage area above bridge
number 46 is 14.8 square miles. These computed	discharges were within a range defined by use
of several empirical equations. (Benson, 1962; Jol	hnson and Tasker, 1974; FHWA, 1983; Potter,
1957a&b Talbot, 1887)	

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	olans) USGS	survey
Datum tie between USGS survey and VTAOT plans	Subtract 406 feet from	n USGS
arbitrary survey datum to obtain VTAOT plans datum to the	nearest foot.	
Description of reference marks used to determine USGS date chiseled square at the upstream end of the right abutment (ele	·····	survey
datum). RM2 is a chiseled X on top of the left abutment conc		*
499.07 ft, arbitrary datum).		

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-61	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	14	1	Road Grade section
APPRO	91	2	Modelled Approach section (Templated from APTEM)
АРТЕМ	127	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.065 to 0.070, and overbank "n" values ranged from 0.038 to 0.075.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0132 ft/ft, which was estimated from the 100-year water surface profile downstream of the site presented in the flood insurance study for the Town of Chester, Vermont (Federal Emergency Management Agency, 1982).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0209 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This approach section location also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation		499.7	ft			
	95.8	ft	- J ·			
100-year discharge	3570	ft^3/s				
Water-surface elevation	in bridg	e opening	3 _	491.8	ft	
Road overtopping?	N	Dischar	rge over	road		0,s
Area of flow in bridge of Average velocity in bridg Maximum WSPRO tube	ge openi	_	9.5	_ ft/s _ 11.7	ft/s	
Water-surface elevation Water-surface elevation Amount of backwater ca	at Appr	oach secti		_	ge	494.0
500-year discharge Water-surface elevation Road overtopping? Area of flow in bridge of Average velocity in bridg Maximum WSPRO tube	N pening ge openi	Dischar 40 ng	ge over 6 ft		0	, /s
Water-surface elevation Water-surface elevation Amount of backwater ca	at Appr	oach secti	ion with	_	ge	496.4
Incipient overtopping di Water-surface elevation Area of flow in bridge of Average velocity in bridg Maximum WSPRO tube	in bridg pening ge openi	e opening - ng	ftr	ft ³ /s - 2 ft/s	_ft/s	
Water-surface elevation Water-surface elevation Amount of backwater ca	at Appro	oach secti oach secti	ion with	_		<u>- ,</u>

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour for the 100- and 500-year discharges were computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour at the 500-year discharge.

Abutment scour for the left and right abutments for the 100- and 500-year discharges was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Pier scour for the 100- and 500-year discharges was computed by use of an equation based on the CSU equation (Richardson and others, 1995, p. 36, eq. 21). Variables for the equation include: pier length, pier width, approach velocity and correction factors for pier shape, attack angle, bed condition, and armoring.

Scour Results

Contraction scour:	•	500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	0.0	1.5	-
Depth to armoring	3.6	33.6	-
Left overbank	⁻	<u></u> -	 -
Right overbank			
Local scour:			
Abutment scour	7.2	9.9	-
Left abutment	8.1-	10.7-	
Right abutment			
Pier scour	7.3	8.6	
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
	100-yr dischargo		Incipient overtopping discharge
	100 yr uisenurg.	(D ₅₀ in feet)	uisenuige
Abutments:	1.8	2.6	-
	1.8	2.6	-
Left abutment			
Right abutment	2.2	3.5	
Piers:			
Pier 1			
Pier 2			

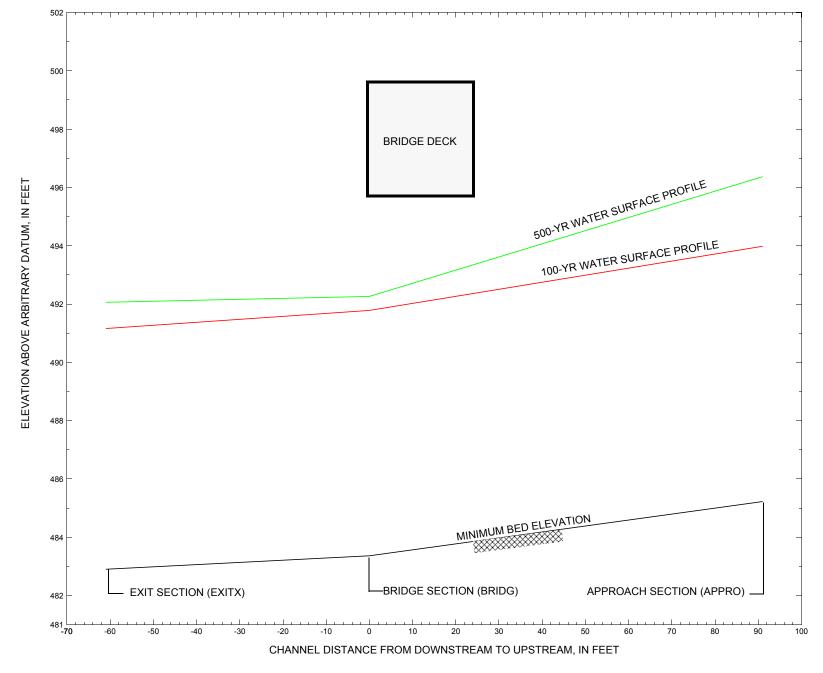


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure CHESVT00110043 on State Route 11, crossing the Middle Branch Williams River, Chester, Vermont.

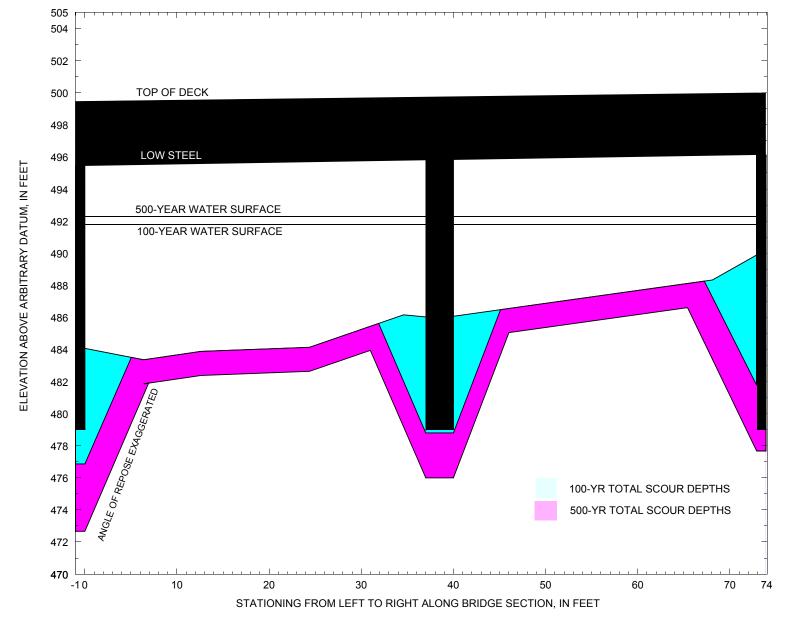


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure CHESVT00110043 on State Route 11, crossing Middle Branch Williams River, Chester, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CHESVT00110043 on State Route 11, crossing Middle Branch Williams River, Chester, Vermont.[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 3570) cubic-feet per sec	cond				
Left abutment	0.0	89.8	495.5	479	484.1	0.0	7.2		7.2	476.9	-2
Pier	36.5	89.9	495.8	479	486.1	0.0		7.3	7.3	478.8	0
Right abutment	73.1	90.0	496.2	479	489.9	0.0	8.1		8.1	481.8	3

^{1.}Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CHESVT00110043 on State Route 11, crossing Middle Branch Williams River, Chester, Vermont.[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
500-yr. discharge is 5240 cubic-feet per second											
Left abutment	0.0	89.8	495.5	479	484.1	1.5	9.9		11.4	472.7	-6
Pier	36.5	89.9	495.8	479	486.1	1.5		8.6	10.1	476.0	-3
Right abutment	73.1	90.0	496.2	479	489.9	1.5	10.7		12.2	477.7	-1

^{1.} Measured along the face of the most constricting side of the bridge.

^{2.}Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Federal Emergency Management Agency, 1982, Flood Insurance Study, Town of Chester, Windsor County, Vermont: Washington, D.C., February 1982.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1971, Andover, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
T1
        U.S. Geological Survey WSPRO Input File ches043.wsp
T2
         Hydraulic analysis for structure chesvt00110043 Date: 31-JAN-97
         Vermont State Route 11 over the Middle Branch of the Williams River
Т3
Д3
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
Ο
          3570.0 5240.0
SK
          0.0132 0.0132
XS
    EXITX
          -61
                        0.
GR
         -279.1, 504.51
                        -258.0, 494.99
                                       -143.6, 494.82
                                                       -77.6, 495.92
                                       24.6, 483.39
36.2, 482.96
GR
          -21.0, 494.84
                          0.0, 488.29
                                                        27.6, 483.46
                                                       27.0, 1
38.9, 483.14
                         34.1, 483.02
          30.6, 482.90
GR
           46.6, 483.18
                         48.1, 483.44
                                        57.2, 489.44
                                                        189.6, 490.67
GR
          270.4, 493.72 300.1, 497.19
                                       390.8, 518.98
GR
          0.038 0.065 0.050
N
SA
                 -21.0
                           57.2
*
XS
    FULLV
            0 * * * 0.0095
            SRD LSEL
                          XSSKEW
            0 495.81
BR
    BRIDG
                           30.0
            0.0, 495.47
                           0.0, 484.07
                                         6.4, 483.36 12.6, 483.88
GR
           24.4, 484.14
                        34.6, 486.16 38.5, 485.95 68.1, 488.33
GR
GR
           72.7, 489.88
                         73.1, 496.15
                                         0.0, 495.47
         BRTYPE BRWDTH
                         WWANGL WWWID
CD
          1 38.5 * *
                           60.0
                                   7.0
          486.1, 3
PW
N
         0.070
                 EMBWID IPAVE
           SRD
    RDWAY 14 32.8 1
                                       -52.9, 498.93 -26.9, 498.93
GR
         -152.2, 506.28 -118.7, 498.93
          -21.8, 498.94
                         0.0, 499.46
                                        33.9, 499.72
                                                        68.3, 499.95
GR
GR
          133.1, 500.38
                        281.5, 500.49 384.5, 504.73 490.5, 509.02
GR
          518.4, 514.97
*
    APTEM 127
XТ
          -61.3, 529.99
                          0.0, 495.10
                                        13.5, 488.86
                                                        30.4, 487.78
GR
GR
          32.7, 486.72
                         34.4, 486.27
                                       39.3, 486.49
                                                        49.1, 486.73
GR
           52.2, 485.97
                         60.1, 486.82
                                        75.9, 495.48 104.3, 495.03
                        414.2, 505.72 464.0, 508.54
          249.4, 500.94
                                                       499.7, 511.68
GR
GR
          516.7, 519.10
*
AS
   APPRO
          91 * * * 0.0209
GT
          0.065 0.075
N
                75.9
SA
HP 1 BRIDG
          491.78 1 491.78
HP 2 BRIDG 491.78 * * 3570
HP 1 APPRO 493.98 1 493.98
HP 2 APPRO
          493.98 * * 3570
* pier scour
HP 2 BRIDG 492.65 * * 3570
HP 1 BRIDG 492.26 1 492.26
HP 2 BRIDG 492.26 * * 5240
HP 1 APPRO 496.37 1 496.37
HP 2 APPRO 496.37 * * 5240
* pier scour
HP 2 BRIDG 493.73 * * 5240
ΕX
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File ches043.wsp Hydraulic analysis for structure chesvt00110043 Date: 31-JAN-97 Vermont State Route 11 over the Middle Branch of the Williams River *** RUN DATE & TIME: 03-25-97 09:14 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW
1 376 23758 63 73
P1.78 376 23758 63 73 1.00 0 73 1 491.78 5200 0 HP 2 BRIDG 491.78 * * 3570 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL LEW REW AREA K Q VEL 191.78 0.0 72.8 375.5 23758. 3570. 9.51 4.3 6.9 9.3 11.5 19.8 18.8 16.9 15.7 15.4 19.8 9.49 10.58 11.40 11.61 X STA. 13.8 A(I) 29.8 V(I) 5.98 13.8 16.1 18.3 20.6 22.9 15.5 15.2 15.2 15.5 15.3 11.53 11.73 11.75 11.55 11.66 X STA. A(I) V(I) 25.2 27.8 30.7 34.1 37.9 16.1 16.9 17.9 18.5 18.4 11.09 10.58 10.00 9.63 9.72 X STA. 41.6 18.4 9.72 A(T) V(I) 6 45.7 50.2 55.7 62.0 19.6 19.7 22.1 23.0 30.2 9.13 9.05 8.06 7.77 5.92 X STA. 41.6 A(T) V(T) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW 1 446 32870 74 78 1.00 1 75 91. 6232 6232 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = WSEL LEW REW AREA K Q VEL 493.98 0.8 74.5 446.4 32870. 3570. 8.00 0.8 13.6 18.0 21.8 25.2 37.8 26.8 23.4 22.2 22.1 4.72 6.66 7.63 8.05 8.09 X STA. A(I) V(I) 31.5 34.0 36.2 38.5 20.2 18.6 18.8 18.6 8.86 9.61 9.49 9.59 X STA. 18.6 A(I) 21.1 8.44 40.7 43.0 45.3 47.7 50.0 18.9 18.7 18.8 18.6 19.1 9.47 9.53 9.49 9.57 9.35 X STA. A(I) V(I) 52.2 54.5 56.8 59.4 62.9 19.5 19.5 21.4 25.3 37.0 9.15 9.15 8.35 7.06 4.82 X STA. A(I) V(I) * pier scour HP 2 BRIDG 492.65 * * 3570 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = LEW REW AREA K Q VEL 0.0 72.9 430.4 29360. 3570. 8.29 WSEL 492 65
 4.7
 7.4
 9.9
 12.2

 21.8
 19.5
 18.1
 18.2

 8.18
 9.18
 9.87
 9.78
 X STA. 35.7 A(T) V(I) 5.00 X STA 14.6 17.0 26.5 A(I) 17.5 V(I) 10.17 29.3 32.4 36.0 X STA. 39.5 18.7 19.6 20.3 20.4 20.8 9.10 8.78 8.74 8.57 A(I) V(I) 9.55 .3 47.3 51.9 57.1 63.1 21.6 22.9 24.6 25.8 33.9 8.26 7.80 7.25 6.92 5.27 X STA. A(I) V(I)

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File ches043.wsp Hydraulic analysis for structure chesvt00110043 Date: 31-JAN-97 Vermont State Route 11 over the Middle Branch of the Williams River *** RUN DATE & TIME: 03-25-97 09:14 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD =
WSEL SA# AREA K TOPW WETP ALPH LEW REW
1 406 26802 63 74
492.26 406 26802 63 74 1.00 0 73 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = WSEL LEW REW AREA K Q VEL 492.26 0.0 72.9 405.8 26802. 5240. 12.91 4.6 7.2 9.6 11.9 19.8 18.3 17.5 16.7 13.24 14.28 14.97 15.71 X STA. A(I) 33.4 7.85 18.9 21.2 23.6 5 16.5 16.5 5 15.86 15.84 1 16.6 16.5 15.85 X STA. 16.8 16.8 15.62 A(I) V(I) 15.58 28.6 31.7 35.2 38.8 18.3 19.4 19.4 20.0 14.34 13.51 13.47 13.13 X STA. 26.0 17.4 A(I) V(T) 15.04 46.7 51.2 56.4 62.6 3 21.5 23.0 24.6 32.5 1 12.19 11.37 10.64 8.06 X STA. 20.8 A(T) V(T) 12.61 CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = WSEL SA# AREA K TOPW WETP ALPH LEW REW 84 55416 1 631 79 10084 2576 107 8.0 8.0 701 737 159 164 1.20 57992 8231 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = WSEL LEW REW AREA K Q VEL 496.37 -3.6 155.7 737.5 57992. 5240. 7.11 496.37 -3.6 11.6 16.3 20.4 24.1 58.5 38.3 34.8 33.0 31.7 4.48 6.85 7.53 7.93 8.28 X STA. A(I) V(I) 27.6 30.9 33.9 36.5 30.6 30.1 28.4 27.8 8.56 8.71 9.24 9.43 X STA. A(I) .3 47.0 49.7 52.2 27.7 27.9 27.6 28.1 9.46 9.40 9.50 9.33 41.7 44.3 27.9 X STA. A(I) V(I) 9.40 9.33
 54.7
 57.5
 60.4
 64.3
 72.4
 155.7

 29.1
 30.4
 35.2
 47.2
 115.8

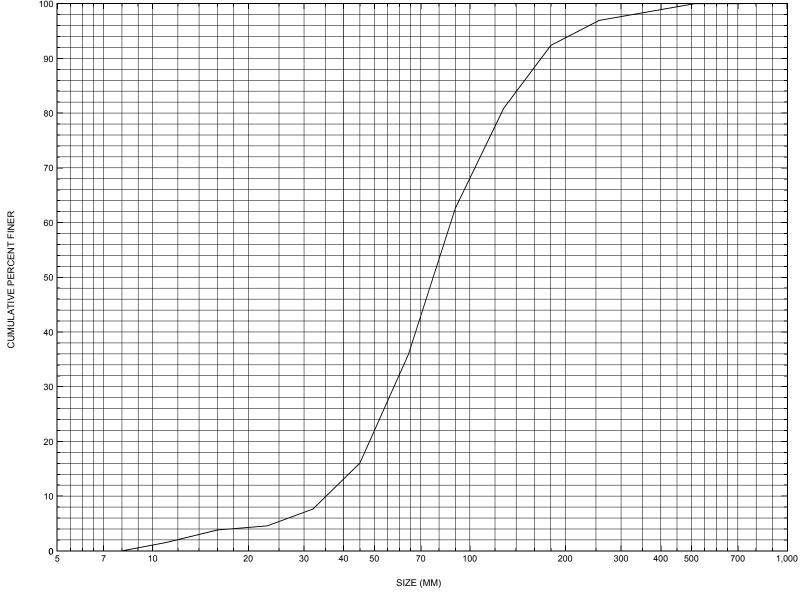
 9.01
 8.61
 7.44
 5.55
 2.26
 X STA. A(I) V(I) * pier scour HP 2 BRIDG 493.73 * * 5240 VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = K Q VEL 12. 5240. 10.51 LEW REW AREA K WSEL 493 73
 4.9
 7.9
 10.5
 13.0

 26.5
 22.7
 21.7
 21.3

 9.90
 11.55
 12.08
 12.28
 X STA. 42.2 A(T) V(I) 6.21 5 17.9 20.3 22.8 25.3 20.5 20.4 20.3 20.7 21.1 12.77 12.87 12.91 12.66 12.44 X STA. 15.5 A(I) V(I) 30.8 34.1 27.9 X STA. 37.6 21.6 22.8 23.0 23.3 23.7 12.10 11.50 11.38 11.23 11.05 A(I) V(I) 11.05 .8 48.9 53.2 58.2 63.8 25.2 25.5 27.5 29.0 39.6 10.40 10.27 9.52 9.04 6.62 44.8 V(I)

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File ches043.wsp Hydraulic analysis for structure chesvt00110043 Date: 31-JAN-97 Vermont State Route 11 over the Middle Branch of the Williams River *** RUN DATE & TIME: 03-25-97 09:14


XSID:CODE S			AREA K				CRWS FR#	~	WSEL
EXITX:XS ***						492.06 *****	490.84 0.86	3570 4 6.81	91.16
0							****** 0.72 NSTRICTED)		
	91	73	25493	1.00	0.36	0.00	****** 0.73 NSTRICTED)		
<<	<< <resu< td=""><td>LTS REF</td><td>LECTIN</td><td>G THE</td><td>CONST</td><td>RICTED FI</td><td>OW FOLLOW></td><td>>>>></td><td></td></resu<>	LTS REF	LECTIN	G THE	CONST	RICTED FI	OW FOLLOW>	>>>>	
XSID:CODE S	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR		Q VEL	WSEL
BRIDG:BR 0							490.60 0.69	3570 4 9.51	91.78
							AB XRAB		
XSID:CODE RDWAY:RG		FLEN	HF <<< <e< td=""><td>VHD MBANKI</td><td>EO MENT IS</td><td>EL ER S NOT OVE</td><td>RR Q IRTOPPED>>></td><td>WSEL</td><td></td></e<>	VHD MBANKI	EO MENT IS	EL ER S NOT OVE	RR Q IRTOPPED>>>	WSEL	
XSID:CODE S			AREA K				CRWS FR#		WSEL
	53 57						491.81 0.57		93.98
M(G) 0.000 C	M(K)	KQ 31525.	XLKQ 15.	XRI 88	KQ (OTEL 93.29			
		<<< <en< td=""><td>D OF B</td><td>RIDGE</td><td>COMPU</td><td>TATIONS>></td><td>>>>></td><td></td><td></td></en<>	D OF B	RIDGE	COMPU	TATIONS>>	>>>>		
FIRST USER I	DEFINED	TABLE.							
XSID:CODE EXITX:XS FULLV:FV BRIDG:BR RDWAY:RG APPRO:AS	-61. 0. 0. 14.*	-10.	202. 211. 73. *****	35° 35° 35°	70. 3 70. 3 70. 2	K 31042. 35879. 23735. ******	524. 596. 375.	6.81 49 5.99 49	2.07 1.78 ***
XSID:CODE APPRO:AS	XLKQ 15.	XRKQ 88.	3152	KQ 5.					
SECOND USER DEFINED TABLE.									
	490.84 *****	0.8 0.7 0.6 *****	6 482 2 483 9 483 * 498	.90 5 .48 5 .36 4	518.98; 519.56 196.15 514.97;	0.70 0 1.06 0	**** 0.91 0.00 0.69	492.06 492.76 493.18	491.16 492.07 491.78 *****

WSPRO OUTPUT FILE (continued)

STID CODE STID LEW AREA VHD HF EGL CRWS Q WSEL	**	* RUN DA	TE & TIM	E: 03	-25-97	09:1	.4			
### PULLY:FV	XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
<pre></pre>	EXITX:XS ** -60 **	****	-11 226 4	727 5595	0.97 1.20	*****	493.02 *****	491.68 0.80	5240 7.21	492.06
FNTEST, FR#, WSEL, CRWS = 0.80 0.89 493.73 493.23 ===110 WSEL NOT FOUND AT SECID "APPROW": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY = 492.44 529.24 0.50 ===115 WSEL NOT FOUND AT SECID "APPROW": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS = 492.44 529.24 493.23 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 0.60 APPRO:AS 91 1 428 2.33 1.57 496.06 493.23 5240 493.73 91 91 74 30951 1.00 0.77 0.00 0.89 12.24 <	0									
### WSLIM1, WSLIM2, DELTAY = 492.44 529.24 0.50 ### S29.24 529.24 493.23 ### S29.24 493.73 ###	===125 FR# E									23
### WSLIM1, WSLIM2, CRWS = 492.44 529.24 493.23 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.	===110 WSEL								0.50	
APPRO** KRATIO = 0.60** APPRO**: APPRO*** KRATIO = 0.60** APPRO**: APPRO**: APPRO*** KRATIO = 0.60** **APPRO**: APPRO**: APPRO**	===115 WSEL								493.23	
91 91 74 30951 1.00 0.777 0.00 0.89 12.24 <	===135 CONVE	YANCE RA								
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL BRIDG:BR 61 0 406 2.59 1.37 494.85 492.00 5240 492.26 0 61 73 26794 1.00 0.46 0.00 0.90 12.92 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. 0. 1. 1.000 0.046 495.81 ****** ******* XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 14. ***********************************	91	91	74 3	0951	1.00	0.77	0.00	0.89	12.24	
BRIDG:BR	<	<<< <resu< td=""><td>LTS REFL</td><td>ECTIN</td><td>G THE</td><td>CONSTR</td><td>ICTED FI</td><td>LOW FOLLOW</td><td>l>>>></td><td></td></resu<>	LTS REFL	ECTIN	G THE	CONSTR	ICTED FI	LOW FOLLOW	l>>>>	
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. 0. 1. 1.000 0.046 495.81 ***** ****** XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 14.										
XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL	BRIDG:BR 0	61 61	0 73 2	406 6794	2.59	1.37	494.85	492.00 0.90	5240 12.92	492.26
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL										
SRD FLEN REW K ALPH HO ERR FR# VEL APPRO:AS 53 -3 738 0.94 0.99 497.31 493.23 5240 496.37 91 56 156 58046 1.20 1.47 0.02 0.64 7.10 M(G) M(K) KQ XLKQ XRKQ OTEL 0.000 0.073 53650. 14. 87. 495.90										
91 56 156 58046 1.20 1.47 0.02 0.64 7.10 M(G) M(K) KQ XLKQ XRKQ OTEL 0.000 0.073 53650. 14. 87. 495.90										
0.000 0.073 53650. 14. 87. 495.90 <pre></pre>										496.37
FIRST USER DEFINED TABLE. XSID:CODE SRD LEW REW Q K AREA VEL WSEL EXITX:XS -6112. 226. 5240. 45595. 727. 7.21 492.06 FULLV:FV 013. 234. 5240. 51421. 800. 6.55 492.94 BRIDG:BR 0. 0. 73. 5240. 26794. 406. 12.92 492.26 RDWAY:RG 14.************************************										
XSID:CODE SRD LEW REW Q K AREA VEL WSEL EXITX:XS -6112. 226. 5240. 45595. 727. 7.21 492.06 FULLV:FV 013. 234. 5240. 51421. 800. 6.55 492.94 BRIDG:BR 0. 0. 73. 5240. 26794. 406. 12.92 492.26 RDWAY:RG 14.************************************			<<< <end< td=""><td>OF B</td><td>RIDGE</td><td>COMPUT</td><td>'ATIONS></td><td>>>></td><td></td><td></td></end<>	OF B	RIDGE	COMPUT	'ATIONS>	>>>		
EXITX:XS -6112. 226. 5240. 45595. 727. 7.21 492.06 FULLV:FV 013. 234. 5240. 51421. 800. 6.55 492.94 BRIDG:BR 0. 0. 73. 5240. 26794. 406. 12.92 492.26 RDWAY:RG 14.************************************	FIRST USER	DEFINED	TABLE.							
APPRO:AS 14. 87. 53650.	EXITX:XS FULLV:FV BRIDG:BR RDWAY:RG	-61. 0. 0. 14.*	-12. -13. 0.	226. 234. 73. ****	524 524 524	0. 4 0. 5 0. 2 0.****	5595. 1421. 6794.	727. 800. 406.	7.21 4 6.55 4 12.92 4 1.00***	192.06 192.94 192.26
SECOND USER DEFINED TABLE.										
	SECOND USER	DEFINED	TABLE.							
XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EGL WSEL EXITX:XS 491.68 0.80 482.90 518.98************** 0.97 493.02 492.06 FULLV:FV ******** 0.69 483.48 519.56 0.71 0.00 0.78 493.72 492.94 BRIDG:BR 492.00 0.90 483.38 496.15 1.37 0.46 2.59 494.85 492.26 RDWAY:RG ************************************	EXITX:XS FULLV:FV BRIDG:BR RDWAY:RG APPRO:AS ER	491.68 ****** 492.00 ****** 493.23	0.80 0.69 0.90 *******	482 483 483 498 485	.90 5 .48 5 .36 4 .93 5 .22 5	18.98* 19.56 96.15 14.97*	0.71 (1.37 (*******	**** 0.97 0.00 0.78 0.46 2.59	493.02 493.72 494.85	492.06 492.94 492.26

NORMAL END OF WSPRO EXECUTION.

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure CHESVT00110043, in Chester, Vermont.

APPENDIX D: HISTORICAL DATA FORM

FHWA Structure Number (1 - 8) **20001600431407**

Structure Number CHESVT00110043

Data collected by (First Initial, Full last name) M. IVANOFF Date (MM/DD/YY) 03 / 29 / 95 Highway District Number (I - 2; nn) 02 County (FIPS county code; I - 3; nnn) 027

Town (FIPS place code; I - 4; nnnnn) 13675 Mile marker (I - 11; nnn.nnn) 000270

Waterway (1 - 6) MIDDLE BRANCH WILLIAMS RIVER Road Name (1 - 7):

Route Number VT 11 Vicinity (1 - 9) 5.2 MI E JCT VT 121

Topographic Map Andover Hydrologic Unit Code: 01080107

Latitude (I - 16; nnnn.n) 43154 Longitude (i - 17; nnnnn.n) 72048

Select Federal Inventory Codes

Maintenance responsibility (I - 21; nn) 01 Maximum span length (I - 48; nnnn) 0037

Year built (*I* - 27; YYYY) 1933 Structure length (*I* - 49; nnnnnn) 000076

Average daily traffic, ADT (I - 29; nnnnnn) 002736 Deck Width (I - 52; nn.n) 328

Year of ADT (1 - 30; YY) 92 Channel & Protection (1 - 61; n) 7

Opening skew to Roadway (I - 34; nn) ____25 ___ Waterway adequacy (I - 71; n) ___5

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43; nnn*) <u>104</u> Year Reconstructed (*I - 106*) <u>1974</u>

Approach span structure type (I - 44; nnn) __000 __ Clear span (nnn.n ft) __-

Number of spans (I - 45; nnn) 002 Vertical clearance from streambed (nnn.n ft) 10.0

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) <u>-</u> Comments:

The structural inspection report of 11/10/93 indicates that the structure is a two span concrete T-beam bridge with an asphalt road surface. Both concrete abutment walls have some minor cracks reported with some minor spalls on the wingwalls. There is some scaling noted along the flow line of the left abutment. The pier is solid concrete with a new addition of concrete ends to accommodate the widening of the structure. Apparently the pier joint above span 2 leaks heavily. There are remains of a concrete block support system for the patching of the pier cap alongside the pier. The waterway makes a slight turn through the skewed structure. Presently, all the flow is beneath the left span (Continued, page 31).

Bridge Hydrologic Data									
Is there hydrologic data available? Y if No, type ctrl-n h VTAOT Drainage area (mi²): 13.6									
Terrain character: hilly and fore	ested								
Stream character & type: _									
Streambed material: stone and gravel with some boulders									
Discharge Data (cfs): Q _{2.33} - Q ₁₀ 1650 Q ₂₅ 2300 Q ₅₀ -									
Q ₅₀	2900	Q ₁₀₀	3500		Q ₅₀₀ _				
Record flood date (MM / DD / YY):	<u>-</u> / <u>-</u> /	<u>-</u> V	Vater sur	face eleva	ation (ft,): <u>-</u>			
Estimated Discharge (cfs):	Velo	ocity at Q	(ft/s	s):					
Ice conditions (Heavy, Moderate, Lig									
The stage increases to maximur	•			Not rapidly):	: <u>-</u>				
The stream response is (<i>Flashy, I</i>	- ,			414	: 				
Describe any significant site con stage: -	aitions upstr	ream or do	ownstrea	m that ma	ay intiu	ence the stream's			
_									
Watershed storage area (in perce	ent): <u>-</u> %								
The watershed storage area is:			adwaters; 2	2- uniformly	distribut	ed; 3-immediatly upstream			
	oi the s	site)							
Water Surface Elevation Estima	tes for Existi	ina Structi	ıre:						
		<u> </u>							
Peak discharge frequency	Q _{2.33}	Q ₁₀ 4.1	Q ₂₅ 5.2	Q ₅₀ 6.1	Q ₁₀	0			
Water surface elevation (ft))		7.1	3.4	0.1	0.7				
Velocity (ft / sec)									
Long term stream bed changes: -									
Is the roadway overtopped below the Q ₁₀₀ ? (Yes, No, Unknown):U Frequency:									
Relief Elevation (#): Discharge over roadway at Q ₁₀₀ (# ³ / sec):									
Are there other structures nearb	y? (Yes, No, L	Unknown): _	Y If No	o or Unknov	vn, type	ctrl-n os			
Upstream distance (miles):	То	own: And	dover		_ Yea	r Built:			
Highway No. : TH0029					oe: <u>ST</u>	EEL BEAM			
Clear span (#): 32 Clear Height (#): 9 Full Waterway (#²): -									

Daymatraam diatanaa (milaa): -	Town	- CHES	STER	Vana D.::!4. 1974
Downstream distance (<i>miles</i>): - Highway No. : TH0056	Structure No.	. 061	Structure Type:	STEEL BEAM
Clear span (#): 26 Clear Heig	ght (#): _7	Full Wa	aterway (#²): -	
Comments: None of the footings are in view. Th mately 300 feet upstream there is so			O	* *
	USGS Wat	torchoo	4 Data	
Watershed Hydrographic Data	USGS YVal	.ersnec	I Dala	
Drainage area (DA) 13.70 mir Watershed storage (ST) 0 Bridge site elevation 940 Main channel length 7.34	_ft He			
10% channel length elevation _ Main channel slope (S)140.19 Watershed Precipitation Data	_	85%	ochannel length e	elevation <u>1772</u> ft
Average site precipitation Maximum 2yr-24hr precipitation e Average seasonal snowfall (Sn)	event (124,2)			ation <u>-</u> in

Bridge Plan Data									
Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 01 / 1969 Project Number FAP 100G Minimum channel bed elevation: 78.0									
Low superstructure elevation: USLAB 89.8 DSLAB - USRAB 90.0 DSRAB - Benchmark location description: BM#2 spike is in a root or trunk of an 18" elm tree at the intersect point of the upstream right road embankment bottom of the older bridge and the top of the right stream bank, elevation 85.41. There is also riprap stones drawn as they existed for the original bridge. The benchmark is a few feet upstream of the end of the riprap, upstream from the right abutment on the original structure.									
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary									
Foundation Type:1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)									
If 1: Footing Thickness 2.0 Footing bottom elevation: 72.5									
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length:									
If 3: Footing bottom elevation:									
Is boring information available? N If no, type ctrl-n bi Number of borings taken:									
Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown)									
Briefly describe material at foundation bottom elevation or around piles: There was no foundation material information available.									
Comments: The available plans are for the bridge widening project using the original abutments and pier. Elevations are taken from plans of original structure attached to the bridge widening plans. The other elevation points are: 1) the upstream end, streamward corner on top of concrete of the upstream left wingwall, elevation 83.75 and 2) a point at the some location described above except on the upstream right wingwall, elevation 88.0. The low superstructure elevation for the pier is about 90 with a footing bottom elevation of about 72.5. The pier footing is 2 feet thick.									

Cross-sectional Data

Is cross-sectional data available? \underline{YES} If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? FEMA

Comments: The elevation and station measurements are in feet.

Station	489	501	526	530	534	540	546	567	-	-	-
Feature	LAB							RAB	-	-	-
Low cord elevation	936.8	936.8	936.8	936.8	936.8	936.8	936.8	936.8	-	-	-
Bed elevation	924.8	924.8	925.8	928.8	926.8	926.6	926.8	930.3	-	-	-
Low cord to bed length	12	12	11	8	10	10.2	10	6.5	-	-	-
		_	_		-	_				_	_
Station	1	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

Station	-	-	ı	-	-	1	-		-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	1	-	1	1	1	1		1	1	-	-
		_								_	
Station	1	-	-	ı	1	1	1	ı	ı	-	-
Feature	-	-	ı	-	-	1	-	-	-	-	-
Low cord elevation	ı	-	ı	ı	-	ı	ı	ı	ı	-	
Bed elevation	ı	-	1	-	1	ı	ı	-	ı	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number CHESVT00110043

Qa/Qc Check by: EW Date: 10/02/96

Computerized by: EW Date: 10/02/96

Reviewd by: LKS Date: 03/14/97

A. General Location Descriptive

- 1. Data collected by (First Initial, Full last name) R. BURNS Date (MM/DD/YY) 09 / 11 / 19 96
- 2. Highway District Number 02

County WINDSOR (027)

Waterway (1 - 6) The Middle Branch Williams River

Route Number VT 11 3. Descriptive comments: Mile marker 000270

Town CHESTER (13675)

Road Name -

Hydrologic Unit Code: 01080107

The bridge is located 5.2 miles east of the junction of VT 11.

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBDS 4 RBUS 6 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 2 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 76 ____ (feet)

Span length 37 (feet) Bridge width 32.8 (feet)

Road approach to bridge:

- 8. LB $\mathbf{0}$ RB $\mathbf{0}$ ($\mathbf{0}$ even, $\mathbf{1}$ lower, $\mathbf{2}$ higher)
- 9. LB_1__ RB 1___ (1- Paved, 2- Not paved)
- 10. Embankment slope (run / rise in feet / foot): US left - US right -

	Pr	otection	12 Erasian	14.Severity	
	11.Type	12.Cond.	13.Erosion	14.Seventy	
LBUS		-	2	1	
RBUS		-	2	1	
RBDS		-	0		
LBDS		1	2	1	

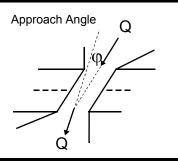
Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

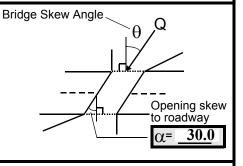
4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed

Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:


3- severe

Channel approach to bridge (BF):

15. Angle of approach: 20

16. Bridge skew: 35

17. Channel impact zone 1:

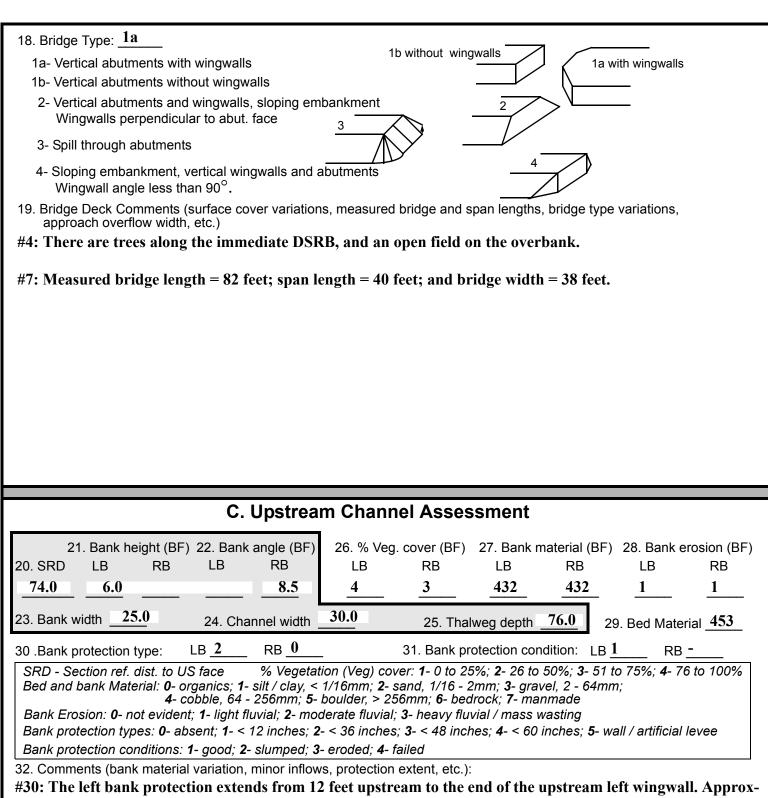
Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 0 feet US (US, UB, DS) to 0 feet DS

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 70 feet **DS** (US, UB, DS) to 100 feet **DS**

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

#30: The left bank protection extends from 12 feet upstream to the end of the upstream left wingwall. Approximately 12 feet upstream on the left bank there is a transition from type 2 to type 1 stone fill. Type 1 stone fill extends from 12 feet upstream to 70 feet upstream, however, there is type 1 dumped stone fill built up like a levee along the left bank.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 0 DS 35. Mid-bar width: 48 36. Point bar extent: 54 feet US (US, UB) to 68 feet DS (US, UB, DS) positioned 50 %LB to 100 %RB
37. Material: <u>432</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): The point bar is vegetated with grass and shrubs upstream and downstream of the bridge. Under the bridge,
the point bar material is almost exclusively sand with cobbles and gravel along the pier. Another point bar
extends from 234 feet upstream to the bridge. It is cobbles, boulders, and gravel with grass along the left bank.
It is positioned 0%LB to 60%RB, with a mid-bar distance at 134 feet upstream where it is 32 feet wide.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 173 42. Cut bank extent: 308 feet US (US, UB) to 71 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure) 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
From 236 feet upstream to 173 feet upstream, some large trees have fallen across the stream from the right
bank. On the left bank from 360 feet upstream to 152 feet upstream, there is a land slide area. Large trees are
lying across the stream at the upstream and downstream ends of the landslide.
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance:
47. Scour dimensions: Length - Width - Depth : - Position - %LB to - %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
There is no channel scour present as of 9/11/96.
A see the see see the see see the see see O. Ni
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? - (A parameter 2 arthur are 1)
51. Confluence 1: Distance
54. Confluence comments (eg. confluence name):
There are no major confluences present.
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB LB RB
46.5 2 7
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 453
The main channel goes between the pier and the left abutment. The bridge deck was widened with steel
I-beams which where placed on the upstream and downstream faces. These I-beams are 1 foot higher than the
concrete low cord, and 0.2 feet higher than the bridge seat.

65. Debris and Ice	Is there debris accumulation?	(Y or N)	66. Where?	<u>Y</u> (1-	- Upstream; 2	- At bridge; 3	- Both
--------------------	-------------------------------	----------	------------	--------------	----------------------	-----------------------	--------

67. Debris Potential 1 (1- Low; 2- Moderate; 3- High)

68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

#67: The debris potential is moderate because of vegetation and trees along the unstable channel banks which have already slumped into the stream channel.

#68/69: The capture efficiency and ice blockage potential is moderate because of the pier.

There is debris accumulation upstream at the cut-bank and the landslide.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		10	90	2	0	-	-	90.0
RABUT	1	0	90			0	0	62.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: **0**- not evident; **1**- evident (comment); **2**- footing exposed; **3**-undermined footing; **4**- piling exposed; **5**- settled; **6**- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1

80. Wingwalls:

· · · · · · · · · · · · · · · · · · ·	,	•				81.	
	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						62.0	
							
USRWW:	Y		1		0	0.5	
DSLWW:			-		<u>Y</u>	28.0	
DSRWW:	1		<u>0</u>				

USRWW **USLWW** Wingwall length Wingwall angle **DSRWW** DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

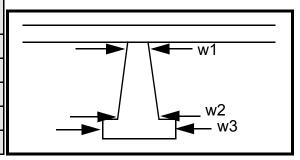
Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	0	Y	-	1	1	-	-
Condition	Y	-	1	-	2	1	-	-
Extent	1	-	0	2	1	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):


2

1 3

Piers:

84. Are there piers? <u>Th</u> (Y or if N type ctrl-n pr)

85.								
Pier no.	width (w) feet			elevation (e) feet				
	w1	w2	w3	e@w1	e@w2	e@w3		
Pier 1				90.0	12.5	30.0		
Pier 2				15.5	30.0	18.0		
Pier 3			3	85.0	12.0	485.95		
Pier 4	-	3	-	-	495.81	-		

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e	of	alon	cov-
87. Type	dow	type	g the	ered
88. Material	nstre	1 fill	bot-	by
89. Shape	am	at	tom	free
90. Inclined?	left	the	half	pour
91. Attack ∠ (BF)	wing	top	of	ed
92. Pushed	wall	of	the	asph
93. Length (feet)	-	-	-	-
94. # of piles	pro-	the	bank	alt.
95. Cross-members	tec-	bank	. The	
96. Scour Condition	tion	and	fill	Ther
97. Scour depth	con-	type	has	e is
98. Exposure depth	sists	2 fill	been	bank

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

	99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):										
	material in front of the downstream right wingwall.										
	CM										
	E. Downstream Channel Assessment										
	Bank height (BF) Bank angle (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF)										
	SRD LB RB LB RB LB RB										
	<u> </u>										
	ank width (BF) - Channel width (Amb) - Bed Material 0										
	ank protection type (Qmax): LB 0 RB 0 Bank protection condition: LB - RB -										
	RD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%										
	d and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm;										
	4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade										
	ank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting ank protection types: 0 - absent; 1 - < 12 inches; 2 - < 36 inches; 3 - < 48 inches; 4 - < 60 inches; 5 - wall / artificial levee										
	ank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed										
	nments (eg. bank material variation, minor inflows, protection extent, etc.):										
	interior (og. sam material variation, minerio, protestion extent, etc.).										
	. <u>Is a drop structure present? - (Y or N, if N type ctrl-n ds)</u> 102. Distance: feet										
Ī											
	5. Drop:feet 104. Structure material: (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other)										
	Drop structure comments (eg. downstream scour depth):										

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material: Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
- -
There is an 8 ft. x 3.7 ft. x 3.4ft concrete block attached to the middle of the left side of the pier. It is 0.75 feet
Is a cut-bank present? ab (Y or if N type ctrl-n cb) Where? ove (LB or RB) Mid-bank distance: the Cut bank extent: strea feet m (US, UB, DS) to bed feet alo (US, UB, DS) Bank damage: ng (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.): its entire length. The pier faces are at a 10 degrees off from vertical angle (the pier is slightly longer at low steel than the stream bed). The upstream pier face concrete facing ends 2 feet above the stream bed and the old pier is exposed beneath it. There is a large placed boulder at the upstream pier face.
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance:
Scour dimensions: Length Width Depth: 4 Positioned 2 %LB to 453 %RB Scour comments (eg. additional scour areas, local scouring process, etc.): 453 0 1 453
Are there major confluences? 0 (Y or if N type ctrl-n mc) How many? 2
Confluence 1: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
Confluence 2: Distance <u>bank</u> Enters on <u>pro-</u> (<i>LB or RB</i>) Type <u>tec-</u> (<i>1- perennial; 2- ephemeral</i>) Confluence comments (eg. confluence name):
tion on right bank is dumped fill, extending from 68 feet downstream to 237 feet downstream.
F. Geomorphic Channel Assessment
107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

lescriptors):	nents (Channel evolution n	ot considering bridge	e enecis, see nec-	-20, Figure 1 for geor	погрпіс
N					

109. G. Plan View Sketch						
point bar pb	debris	flow Q	stone wall			
cut-bank cb scour hole	rip rap or stone fill	cross-section ++++++ ambient channel ——	other wall			
Social Fiole (11)	Storie IIII					

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: CHESVT00110043 Town: CHESTER Road Number: VT 11 County: WINDSOR

Stream: MIDDLE BRANCH WILLIAMS RIVER

Initials LKS Date: 02/13/97 Checked: EB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	3570 446 0 0 74 0 0 0.25144	5240 631 0 107 79 0	0 0 0 0 0
yl, average depth, MC, ft yl, average depth, LOB, ft yl, average depth, ROB, ft	6.0 ERR ERR	8.0 ERR 1.3	ERR ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	32870 32870 0 0 0.0000 3570.0 0.0	57992 55416 0 2576 0.0000 5007.2 0.0 232.8	0 0 0 0 ERR ERR ERR ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	8.0 ERR ERR 9.5 ERR ERR	7.9 ERR 2.2 10.0 ERR ERR	ERR ERR ERR N/A ERR
Results			
Live-bed(1) or Clear-Water(0) Contr Main Channel Left Overbank Right Overbank	action Sc 0 N/A N/A	our? 0 N/A N/A	N/A N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \mbox{Converted to English Units } ys=y2-y_bridge \\ (Richardson and others, 1995, p. 32, eq. 20, 20a)$

Approach Section	Q100	Q500	Qother
Main channel Area, ft2 Main channel width, ft y1, main channel depth, ft	446 74 6.03	79	
Bridge Section			
<pre>(Q) total discharge, cfs (Q) discharge thru bridge, cfs Main channel conveyance Total conveyance Q2, bridge MC discharge,cfs Main channel area, ft2 Main channel width (skewed), ft Cum. width of piers in MC, ft W, adjusted width, ft y_bridge (avg. depth at br.), ft Dm, median (1.25*D50), ft y2, depth in contraction,ft ys, scour depth (y2-ybridge), ft</pre>	3.0 60 5.97 0.3143 5.72	5240 26802 26802 5240 406 63.1 3.0 60.1 6.43 0.3143 7.93	ERR 0 0.0 0.0 0 ERR 0
ARMORING D90 D95 Critical grain size,Dc, ft Decimal-percent coarser than Dc Depth to armoring,ft	0.5504 0.7231 0.3809 0.2416 3.59	0.7231 0.6827 0.0575	ERR 0

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Abu	tment		Right Ab	utment	
Characteristic	100 yr Q	500 yr Q (Other Q 1	.00 yr Q 5	00 yr Q O	ther Q
(Qt), total discharge, cfs	3570	5240	0	3570	5240	0
a', abut.length blocking flow, ft	4.1	8.5	0	6.5	87.7	0
Ae, area of blocked flow ft2	12.1	32.7	0	20.7	141.4	0
Qe, discharge blocked abut.,cfs	57.2	146.5	0	100	404.3	0
(If using Qtotal_overbank to obta	ain Ve, le	ave Qe bl	ank and e	nter Ve a	nd Fr man	ually)
Ve, (Qe/Ae), ft/s	4.73	4.48	ERR	4.83	2.86	ERR
ya, depth of f/p flow, ft	2.95	3.85	ERR	3.18	1.61	ERR
Coeff., K1, for abut. type (1.0,	verti.; 0	.82, vert	i. w/ win	gwall; 0.	55, spill	thru)
K1	0.82	0.82	0.82	0.82	0.82	0.82
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi	nts US)	
theta	120	120	120	60	60	60
K2	1.04	1.04	1.04	0.95	0.95	0.95
Fr, froude number f/p flow	0.485	0.403	ERR	0.477	0.397	ERR
ys, scour depth, ft	7.18	9.85	N/A	8.05	10.65	N/A
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55						
(Richardson and others, 1995, p. 4	9, eq. 29)					
a'(abut length blocked, ft)	4.1	8.5	0	6.5	87.7	0
y1 (depth f/p flow, ft)	2.95	3.85	ERR	3.18	1.61	ERR
a'/y1	1.39	2.21	ERR	2.04	54.39	ERR
Skew correction (p. 49, fig. 16)	1.07	1.07	1.07	0.90	0.90	0.90
Froude no. f/p flow	0.48	0.40	N/A	0.48	0.40	N/A
Ys w/ corr. factor K1/0.55:						
vertical	ERR	ERR	ERR	ERR	7.78	ERR
vertical w/ ww's	ERR	ERR	ERR	ERR	6.38	ERR
spill-through	ERR	ERR	ERR	ERR	4.28	ERR

Abutment riprap Sizing

Isbash Relationship $D50=y*K*Fr^2/(Ss-1)$ and $D50=y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and		0.9 tracted s	0 ectionm	0.69 c, bridge	0.9 section)	0
y, depth of flow in bridge, ft	5.97	6.43	0.00	5.97	6.43	0.00
Median Stone Diameter for riprap at: left abutment right abutment, ft						-
nearan scome sramecor ror reprap ac	· ICIC GD	acilicite		right ab	utilient, I	L
Fr<=0.8 (vertical abut.)	1.76	ERR	0.00	1.76	ERR	0.00
			0.00 ERR	1.76	•	
Fr<=0.8 (vertical abut.)	1.76	ERR		1.76	ERR	0.00

Pier Scour (both live-bed and clear water scour)

 $ys/y1=2.0*K1*K2*K3*K4*(a/y1)^0.65*Fr1^0.43$ (Richardson and others, 1995, p. 36, eq. 21)

K1, corr. factor for pier nose shape
Sharp nose, 0.9; round nose, cylinder, or cylinder grp., 1.0; square nose, 1.1

K3, corr. factor for bed condition
 Clear-water, plane bed, antidune, 1.1; med. dunes, 1.1-1.2 (see Tab.4,p37)

K4, corr. factor for armoring (the following equations are in Si units) $\begin{array}{l} K4 = [1 - 0.89 * (1 - Vr)^2]^0.5 \\ Vr = (V1 - Vi) / (Vc90 - Vi) \\ V1 = 0.645 * ((D50/a)^0.053) * Vc50 \\ Vc = 6.19 * (y^1/6) * (Dc^1/3) \end{array}$

Note for round nose piers:

ys<=2.4 times the pier width (a) for Fr<=0.8 ys<=3.0 times the pier width (a) for Fr>0.8

Pier 1	Q100	Q500	Qother
Pier stationing, ft	36.5	36.5	0
Area of WSPRO flow tube, ft2	17.2	20.3	0
Skewed width of flow tube, ft	2.08	2.16	0
y1, pier approach depth, ft	8.27	9.40	ERR
y1 in meters	2.520	2.864	N/A
V1, pier approach velocity, ft/s	10.4	12.86	0
a, pier width, ft	3	3	3

```
L, pier length, ft
                                   39
                                            39
Fr1, Froude number at pier
                                   0.637
                                             0.739
Pier attack angle, degrees
                                   0
                                             0
                                                     0
K1, shape factor
                                   1
                                             1
                                                     0
K2, attack factor
                                   1.00
                                            1.00
                                                     1.00
K3, bed condition factor
                                   1.1
                                            1.1
                                                     0
  D50, ft
                                   0.25144 0.25144 0
  D50, m
                                   0.076635 0.076635 0
  D90, ft
                                   0.5504
                                            0.5504
                                                     0
  D90, m
                                   0.167754 0.167754 0
  Vc50, critical velocity(D50), m/s 3.067
                                          3.133
                                                     N/A
  Vc90, critical velocity(D90), m/s 3.983
                                            4.068
                                                     N/A
  Vi, incipient velocity, m/s
                                   1.735
                                            1.772
                                                     N/A
  Vr, velocity ratio
                                    0.638
                                            0.935
                                                     ERR
                                    0.94
K4, armor factor
                                            1.00
                                                     N/A
ys, scour depth (K4 applicable) ft 7.29
                                            8.63
                                                     ERR
ys, scour depth (K4 not applied)ft ERR
                                                     ERR
                                            ERR
```

D50=0.692(K*V) 2 /(Ss-1)*2*g (Richardson and others, 1995, p.115, eq. 83)

Pier-shape coefficient (K), round nose, 1.5; square nose, 1.7 Characteristic avg. channel velocity, V, (Q/A): (Mult. by 0.9 for bankward piers in a straight, uniform reach, up to 1.7 for a pier in main current of flow around a bend)

Pier 1	Q100	Q500	Qother
K, pier shape coeff.	1.7	1.7	0
V, char. aver. velocity, ft/s	10.78	13.65	0
D50, median stone diameter, ft	2.19	3.51	0.00