LEVEL II SCOUR ANALYSIS FOR BRIDGE 10 (WFIETH00170010) on TOWN HIGHWAY 17, crossing TAFT BROOK, WESTFIELD, VERMONT

U.S. Geological Survey Open-File Report 97-344

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 10 (WFIETH00170010) on TOWN HIGHWAY 17, crossing TAFT BROOK, WESTFIELD, VERMONT

By SCOTT A. OLSON

U.S. Geological Survey Open-File Report 97-344

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	1
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	1
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	
1	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway maphighway map	
3. Structure WFIETH00170010 viewed from upstream (June 26, 1995)	
4. Downstream channel viewed from structure WFIETH00170010 (June 26, 1995)	
5. Upstream channel viewed from structure WFIETH00170010 (June 26, 1995)	
6. Structure WFIETH00170010 viewed from downstream (June 26, 1995).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	•••••
WFIETH00170010 on Town Highway 17, crossing Taft Brook,	
Westfield, Vermont. 8. Scour elevations for the 100- and 500-year discharges at structure	
WFIETH00170010 on Town Highway 17, crossing Taft Brook,	
Westfield, Vermont.	
westner, vermont	
TABLES	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
WFIETH00170010 on Town Highway 17, crossing Taft Brook,	
Westfield, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
WFIETH00170010 on Town Highway 17, crossing Taft Brook,	
Westfield, Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 10 (WFIETH00170010) ON TOWN HIGHWAY 17, CROSSING TAFT BROOK, WESTFIELD, VERMONT

By Scott A. Olson

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure WFIETH00170010 on Town Highway 17 crossing Taft Brook, Westfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the Green Mountain section of the New England physiographic province in northern Vermont. The 2.39-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the immediate channel banks have thick woody vegetation while the overbanks are grass or pasture.

In the study area, Taft Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 38 ft and an average bank height of 6 ft. The predominant channel bed material is cobble with a median grain size (D_{50}) of 85.3 mm (0.280 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 26, 1995, indicated that the reach was stable.

The Town Highway 17 crossing of Taft Brook is a 26-ft-long, two-lane bridge consisting of one 24-foot concrete span (Vermont Agency of Transportation, written communication, March 7, 1995). The opening length of the structure parallel to the bridge face is 23.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is 25 degrees.

There is 0.1 ft (vertical) undermining of both abutments and 0.8 feet of undermining at the downstream right wingwall. Scour countermeasures at the site include sparsely placed type-2 stone fill (less than 36 inches diameter) at the ends of each wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.1 to 0.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour at the left abutment ranged from 6.1 to 7.7 ft. Abutment scour at the right abutment ranged from 4.3 to 5.4 ft. The worst-case abutment scour occurred at the 500-year discharge for both abutments. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

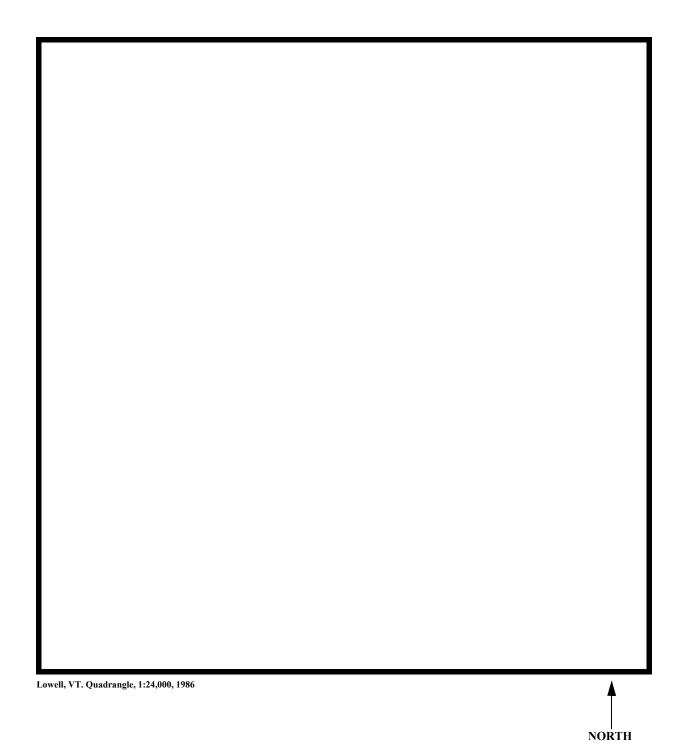
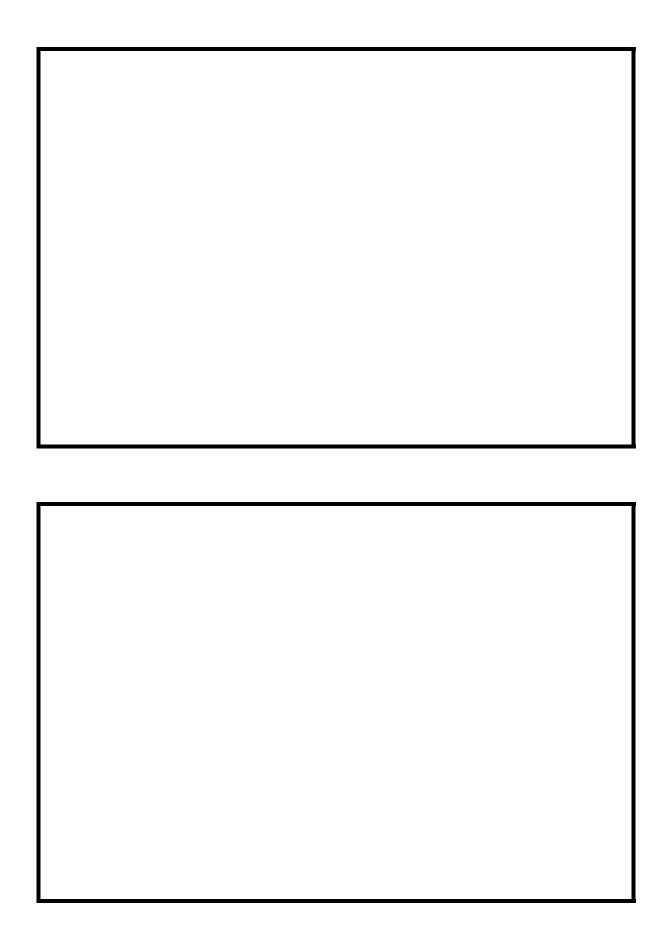



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

cture Number -	WFIETH00170010	— Stream	Taft Br	UUK	
nty Orleans		— Road —	TH17	District	9
	Descri	iption of Bridg	je		
Bridge length	26 ft Bridge w	vidth 24.3	- <i>ft M</i> Straight	ax span length	
Alignment of bri	dge to road (on curve or Vertical, concrete	straight) Embankm	ent tyne	Sloping	
Stone fill on abut	There is some	Date of insta	n <i>oct</i> ion -	6/26/95 s of each wingv	vall.
		Abutments and	wingwalls	are concrete. Bo	oth abutment
are undermined u	up to 0.1 ft. The downstre		_		
	up to 0.1 ft. The downstre		_		
Y	up to 0.1 ft. The downstre	eam right wingw	all is under	mined as much	as 0.8 ft.
Y		eam right wingw	all is under	mined as much	as 0.8 ft.
Y Is bridge skewed 6/26/95		eam right wingw	all is under	it: mined as much Angle	as 0.8 ft. N
Y Is bridge skewed 6/26/95	to flood flow according ution on bridge at time of	to surve	all is under	it: mined as much Angle	as 0.8 ft. N
Is bridge skewed 6/26/95 Debris accumula Level II entire chan	to flood flow according ation on bridge at time of the position of the positi	to' surve f Level I or Leve Percent of oblocked not on the percent of oblocked not on the percent of oblocked not	all is under	it: Percent	as 0.8 ft. N A of 6/26/2 rel Vertically 0
Is bridge skewed 6/26/95 Debris accumula Level II	to flood flow according ation on bridge at time of the position of the positi	to' surve f Level I or Leve Percent of oblocked not on the percent of oblocked not on the percent of oblocked not	all is under	it: Percent	as 0.8 ft. N A G 6/26/ Vertically 0

Description of the Geomorphic Setting

General topog	graphy	The chann	el is located v	within mo	derate relief, no	on-alluvial valley with no
flood plains.	Left of the	bridge is a	350 ft wide, f	flat, terrac	e-like feature.	
Geomorphic	condition	s at bridge :	site: downstre	eam (DS),	upstream (US))
Date of inspe	ection -	6/26/95				
DS left:	Steep cha	annel bank t	to a wide terra	ace-like fe	eature.	
DS right:	Steep ch	annel bank t	to moderately	sloped or	verbank.	
US left:	Steep cha	ınnel bank t	o a wide terra	ice-like fe	ature.	
US right:	Steep cha	ınnel bank t	to moderately	sloped ov	verbank.	
		De	scription of	the Cha	innel	
		38				6
Average to	p width	<u>C</u>	obbles		Average dept	Cobbles G
Predominan	t bed mate	rial			Bank material	Straight and stable
with non-allu	vial chann	el boundari	es.	•		
						6/26/95
Vegetative co	Trees and	d brush with	h field grasses	s on the or	verbank.	
DS left:	Trees an	d brush with	h lawn and tre	es on the	overbank.	
DS right:	Trees an	d brush with	h lawn on the	overbank		
US left:	Trees and	d brush with	n lawn and tre	es on the	overbank.	
US right:		Y				
Do banks ap	pear stabl	e? -	<u></u>		vanon una 191 1	c oj msmonny unu
date of obse	rvation.					
_						
					-	The assessment of
6/26/95 note	ed debris b	locking the	entire channe	el about 8	0 feet upstream ation.	of the bridge.
Describe any	y obstructi	ons in chan	inel and date	of observ	ation.	

Hydrology

Drainage area $\frac{2.39}{\text{mi}^2}$		
Percentage of drainage area in physiographic p	provinces: (ap	proximate)
Physiographic province/section New England/Green Mountain	Pe	rcent of drainage area 100
Is drainage area considered rural or urban? None. urbanization:	Rural	— Describe any significant
urbanization.		
Is there a USGS gage on the stream of interest. USGS gage description	No_ ? 	
USGS gage number		
Gage drainage area Is there a lake/p	 mi ²	No
<u>*</u>		
625 Calculate	d Discharges	940
$Q100 ft^3/s$	Q50	•
	-	rear discharges were computed
using methods described in "Peak rates of runoff		
(Potter, 1957 b) and graphically extrapolated to the	•	
chosen due to their central tendency among other	•	
and Tasker, 1974; FHWA, 1983; Talbot, 1887). For and within 3 per cent of the average.	n example, the	e Q100 resuit was the median
and within 5 per cent of the average.		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAO)	f plans)	USGS survey
Datum tie between USGS survey and VTAOT plans		
Description of reference marks used to determine USGS date top of the downstream end of the right abutment (elev. 499.4)		RM1 is a chiseled X on rary survey datum). RM2
is a chiseled X on top of the upstream end of the left abutmed datum).	ent (elev. 4	99.46 ft, arbitrary survey

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-36	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	14	1	Road Grade section
APPRO	53	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.065, and overbank "n" values ranged from 0.045 to 0.075.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0365 ft/ft which was determined from surveyed thalweg points downstream of the bridge. For the 500-year discharge, 940 cfs, this slope resulted in a normal depth that was supercritical. However, the computed normal depth was only 0.14 ft below critical depth and thus, the use of the critical water surface to start the 500-year model was considered appropriate.

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

For the 100- and 500-year discharges, WSPRO assumes critical depth at the bridge section. Supercritical models were developed for these discharges. After analyzing both the supercritical and subcritical profiles for each discharge, it can be determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumptions of critical depth at the bridge are satisfactory solutions.

Bridge Hydraulics Summary

Average bridge embankment elevation 499.7 ft	
Average low steel elevation 498.5 ft	
100-year discharge $\frac{625}{\text{Mater-surface elevation in bridge opening}} ft^3/s$	
Road overtopping?N Discharge over road	3/s
Area of flow in bridge opening 63 ft ² Average velocity in bridge opening 10.0 ft/s Maximum WSPRO tube velocity at bridge 11.9 ft/s	
Water-surface elevation at Approach section with bridge	496.6
Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.3 t	495.3
500-year discharge $\frac{940}{\text{Mater-surface elevation in bridge opening}} ft^3/s$	
Road overtopping?N Discharge over road	,. /s
Area of flow in bridge opening Average velocity in bridge opening Maximum WSPRO tube velocity at bridge 11.3 ft/s 13.8 /s	
Water-surface elevation at Approach section with bridge	497.9
Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.9 f	496.0
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft	
Area of flow in bridge openingft ²	
Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge	
Water-surface elevation at Approach section without bridge	
Amount of backwater caused by bridget	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). Results of this analysis are presented in figure 8 and tables 1 and 2. For the 100-year event, the streambed armoring depths computed suggest that armoring will not limit the depth contraction scour. For the 500-year discharge, less than five percent of the bed material was larger than the critical grain size (incipient motion size), thus, armoring is not probable for this event.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	•	500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	0.1	0.4	 -
Depth to armoring	17.9 [—] -	N/A ⁻	 -
Left overbank		 	
Right overbank			
Local scour:			
Abutment scour	6.1	7.7	
Left abutment	4.3-	5.4-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
			Incipient overtopping
	100-yr dischargo	·	discharge
	1.3	(D ₅₀ in feet) 1.7	
Abutments:	1.3	1.7	
Left abutment			
Right abutment			
Piers:			
Pier 1			
Pier 2			

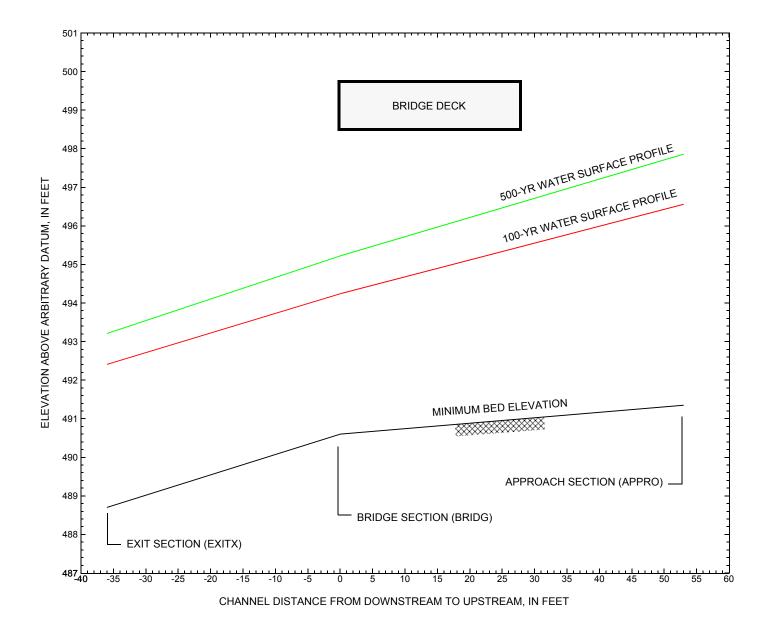


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure WFIETH00170010 on Town Highway 17, crossing Taft Brook, Westfield, Vermont.

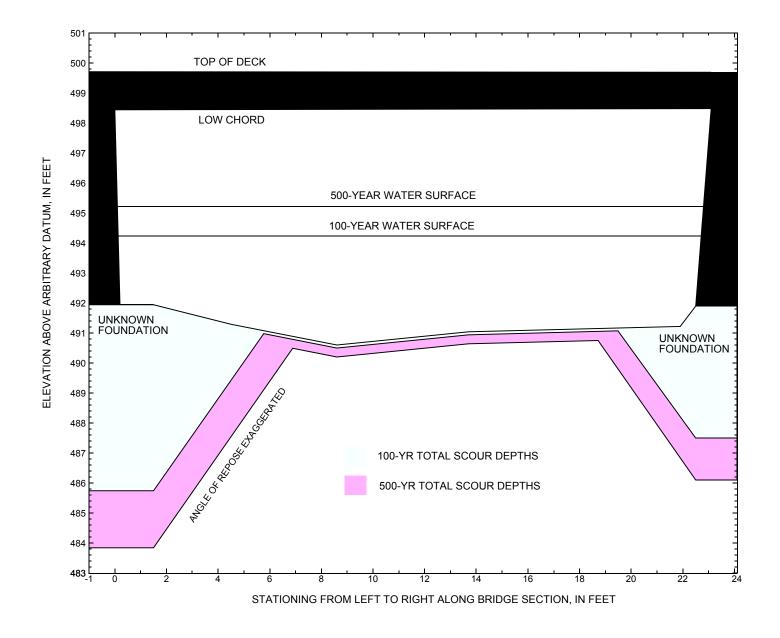


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure WFIETH00170010 on Town Highway 17, crossing Taft Brook, Westfield, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure WFIETH00170010 on Town Highway 17, crossing Taft Brook, Westfield, Vermont. [VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-уг	discharge is 625	cubic-feet per seco	ond				
Left abutment	0.0		498.4		491.9	0.1	6.1		6.2	485.7	
Right abutment	23.1		498.5		491.9	0.1	4.3		4.4	487.5	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure WFIETH00170010 on Town Highway 17, crossing Taft Brook, Westfield, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-yr. discharge is 940 cubic-feet per second										
Left abutment	0.0		498.4		491.9	0.4	7.7		8.1	483.8	
Right abutment	23.1		498.5		491.9	0.4	5.4		5.8	486.1	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1986, Lowell, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File wfie010.wsp
T1
         Hydraulic analysis for structure wfieth00170010 Date: 09-APR-97
T2
Т3
         Westfield bridge 10 over Taft Brook SAO
*
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
Q
          625 940
SK
          0.0365 0.0365
*
XS
    EXITX
           -36
GR
          -111.2, 497.78
                        -82.8, 497.03 -49.1, 496.57 -29.4, 492.79
GR
                                                           5.4, 489.29
          -17.4, 493.58
                          -9.2, 495.75
                                           0.0, 491.91
           13.4, 488.70
GR
                          22.1, 489.41
                                          29.5, 492.23
                                                         51.5, 492.59
           65.1, 495.93 91.0, 498.17
GR
Ν
           0.075 0.065 0.070
                  -9.2
SA
                             29.5
*
XS
    FULLV 0 * * * 0.030
*
BR
   BRIDG
            0 498.46 25
GR
            0.0, 498.44
                           0.2, 491.95
                                           1.5, 491.94
                                                           4.5, 491.29
                        13.7, 491.04
                                           21.9, 491.22
GR
            8.6, 490.60
                                                           22.5, 491.90
GR
            23.1, 498.48
                          0.0, 498.44
Ν
            0.045
CD
            1 35 * * 75 2
*
XR RDWAY 14 24 2
GR
         -111.3, 501.13
                          -60.8, 500.49
                                           0.0, 499.71
                                                           24.4, 499.69
                          143.4, 499.45 199.9, 502.61
GR
           83.6, 498.45
*
AS APPRO
            53
         -112.8, 501.42 -75.9, 501.21
-4.2, 495.62 0.0, 491.82
17.6, 492.39 21.3, 495.47
                                          -17.9, 502.83
                                                           -8.7, 501.03
GR
GR
                                           3.5, 491.35
                                                           10.3, 491.96
GR
                                           28.9, 499.38
                                                           74.0, 500.86
N
           0.045 0.065
                              0.055
                  -8.7
                              28.9
SA
HP 1 BRIDG 494.24 1 494.24
HP 2 BRIDG 494.24 * * 625
HP 1 APPRO 496.56 1 496.56
HP 2 APPRO 496.56 * * 625
HP 1 BRIDG 495.22 1 495.22
HP 2 BRIDG
           495.22 * * 940
HP 1 APPRO 497.86 1 497.86
HP 2 APPRO 497.86 * * 940
EΧ
ER
```

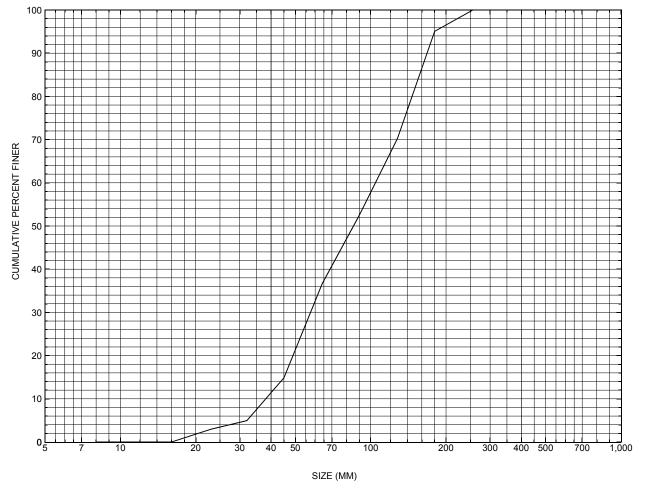
APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

		ET.	SA#	PROPER' AREA 63.		K	TOPW	WETP	ALPH			
	494.	24		63.	380)4.	20.	25.	1.00	0.	23.	
		W.S	SEL.	TRIBUTIO	REW	A1	REA	K		0 V	EL.	
1	A(I)		0.	0.1 .1 5.3 5.86	22.7	3.6	2.8 4.1	3.2	5.3	5. 9. 6 3.1	96 .4 2.8	7.3
1	V(I)											
1	STA. A(I) V(I)		7.	2.8 11.14	8.2	2.6 L1.90	9.0	2.7 11.73	9.8	10 2.6 .88	.6 2.7 11.76	11.5
	STA. A(I) V(I)		11.	.5 2.7 11.75	12.4	2.8 L1.30	13.3	2.7 11.37	14.3	15 2.8 .35	.2 2.8 11.02	16.2
1	STA. A(I) V(I)			.2 2.8 10.97		3.0		3.1		3.5	5.2	
	CRO WS	SS-S EL	SECTION SA# 2	PROPER' AREA	TIES:	ISEG K	Q = 5 TOPW 28.	; SEC WETP 32.	ID = AP ALPH	PRO; S LEW	RD =	53. QCR 1161.
		OCII	ry DIST	TRIBUTIO	N: IS	SEQ =	5;	SECID	= APPRO	; SRD	=	
1	STA. A(I) V(I)	496.	.56 -5.	LEW -5.0 .0 9.3 3.36	23.4	10	6.0 0.6	5424.	62 1.6	5. 5. 2	90 .6	3.5
1	STA. A(I) V(I)			4.4 7.10								
2	STA. A(I) V(I)		7.	4.4 7.03	8.8	4.5 6.94	9.7	4.6 6.85	10.7	11 4.6 .74	.7 4.8 6.53	12.8
1	STA. A(I) V(I)			4.9		5.2		5.4		6.2	9.7	

WSPRO OUTPUT FILE (continued)

			_							
	CROSS-	SECTION	PROPER	TIES:	ISEQ =	3; SEC	ID = BRI	DG; SRI) =	0.
	WSEL	SA#	AREA		K TOPV	WETF	ALPH	LEW	REW	QCR
		1	83.	5753	. 21.	27.				944.
	495.22		83.	5753	. 21.	27.	1.00	0.	23.	944.
	VELOCI	דע סדכד	יק ד דוויד ד ח	N. TSE	n = 3·	SECID	= BRIDG;	SRD -		0
	VILOUI	ISEL	LEW	REW	AREA	K	- DRIDG,	O VEI		٠.
	495	5.22	0.1	22.8	82.9	5753.	940	. 11.34	1	
X	STA.	0.	1	2.6	4.	0	940 5.2	6.3	3	7.2
	A(I)		7.4		4.9	4.2	3	. 9	3.7	
	V(I)		6.39	9	.68	11.32	3 11.	91	12.58	
Х	STA.	7.	2	8.1	8.	9	9.8	10.6	5	11.5
	A(I)		3.6		3.4	3.4	3	.5	3.4	
	V(I)		12.94	13	.67	13.70	3 13.	60	13.83	
x	STA.	11.	5	12.4	13.	3	14.2	15.1	1	16.1
	A(I)		3.5		3.5	3.6	14.2	.6	3.7	
	V(I)		13.37	13	.61	13.21	13.	16	12.75	
x	STA.	16.	1	17.1	18.	2	19.3	20.5	5	22.8
	A(I)		3.7		3.9	4.0	4	. 7	7.4	
	V(I)		12.68	12	.10	11.62	10.	05	6.37	
	CROSS-	SECTION	PROPER	TIES.	TSEO -	5. SEC	CID = APE	PO SRI	n =	53
	WSEL	SA#	AREA		K TOPV	J, WETE	ALPH	LEW	REW	OCR
		2	145.	8391	. 32.	36.		22	112.11	1755.
	497.86		145.	8391	. 32.	36.	1.00	-6.	26.	1755.
	VELOCI	דצות עדי	יק ד דוויד ד ח	N. TSE	n = 5.	SECID	= APPRO;	SRD -		53
	V	ISEL	LEW	REW	AREA	K		O VEI	L	
	497	7.86	-6.1	25.9	145.2	8391.	940	. 6.47	7	
Х	STA.	-6.	1	-1.2	0.	3	940 1.4	2.4	1	3.4
	A(I)		12.9		8.3	6.9	7.	. 4	6.2	
	V(I)		3.65	5	.64	6.78	7.	35	7.52	
Х	STA.	3.	4	4.3	5.	3	6.2	7.1	l	8.1
	A(I)		5.9		6.0	5.9	6.2	. 8	5.9	
	V(I)		7.94	7	.80	8.03	8.	8 0	7.94	
Х	STA.	8.	1	9.1	10.	1	11.1	12.2	2	13.3
	A(I)		5.9		6.0	6.1	11.1	. 4	6.3	
	V(I)		7.94	7	.81	7.68	7.	38	7.42	
Х	STA.	13.	3	14.5	15.	7	17.1	18.8	3	25.9
	A(I)		6.7		7.0	7.4	9	.0	14.0	
	V(I)		7.04	6	.67	6.36	5.	21	3.36	


WSPRO OUTPUT FILE (continued)

West	field br	idge 10	over T	aft Br	rook	SAO			
XSID:CODE SRD	SRDL FLEN		AREA K			EGL ERR		Q VEL	WSEL
EXITX:XS **							492.19 1.02		492.41
===125 FR# 1							CONTINUED. 493.74		27
===110 WSEL	NOT FOU	ND AT SE	CID "F	ULLV":	REDU	JCED DELT			
===115 WSEL	NOT FOU	ND AT SE	CID "F	ULLV":	USEI	O WSMIN =			
FULLV:FV	36.	-2.	92.	0.79	1.13	494.53	493.27 0.96	625.	493.74
0.	36. < <the ab<="" td=""><td>52. OVE RESU</td><td>3814. LTS RE</td><td>1.09 FLECT</td><td>0.00 "NORM</td><td>0.01 AL" (UNC</td><td>0.96 ONSTRICTED</td><td>6.83) FLOW></td><td>>>></td></the>	52. OVE RESU	3814. LTS RE	1.09 FLECT	0.00 "NORM	0.01 AL" (UNC	0.96 ONSTRICTED	6.83) FLOW>	>>>
===125 FR# 1	FNTEST	,FR#,WSE	L,CRWS	= 0.	80	0.90	495.28		07
===110 WSEL							TAY. 502.83	0.50	
===115 WSEL							CRWS.	495.07	
APPRO:AS	53.						495.07		495.28
53. <<<							0.90 ONSTRICTED		>>>>
===285 CRIT	ICAL WAT	ER-SURFA ECID "BR	CE ELE IDG"	VATION Q,C	I A _ CRWS =	S _ S _ 625.	U _ M _ E	_ D !!	!!!
	<<< <res< td=""><td>ULTS REF</td><td>LECTIN</td><td>G THE</td><td>CONST</td><td>RICTED FI</td><td>LOW FOLLOW</td><td>'>>>></td><td></td></res<>	ULTS REF	LECTIN	G THE	CONST	RICTED FI	LOW FOLLOW	'>>>>	
XSID:CODE SRD		LEW REW	AREA K					Q VEL	WSEL
BRIDG:BR							494.24		494.24
0.	36.	23.	3809.	1.00	****	*****	1.00	9.95	
		C 1.000 *					AB XRAB		
XSID:COD		FLEN				GL EF S NOT OVE	-		L
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
APPRO:AS 53.							495.07 0.54		496.56
M(G) 0.096		KQ 5780.				OTEL 96.18			
		<<< <en< td=""><td>D OF B</td><td>RIDGE</td><td>COMPU</td><td>TATIONS>:</td><td>>>>></td><td></td><td></td></en<>	D OF B	RIDGE	COMPU	TATIONS>:	>>>>		
FIRST USER	חפנונפח	יין דע איי							
XSID: COD			REW		Q	K	AREA	VEL	WSEL
EXITX:XS					25.			7.88	
FULLV:FV BRIDG:BR			52. 23.		25.	3814. 3809.	92. 63.	6.83 9.95	
RDWAY:RG		*****				*****		2.00**	
APPRO:AS	53.	-5.	23.	62	25.	5427.	106.	5.90	496.56
XSID:CODI APPRO:AS	-	XRKQ 19.							
SECOND USER	DEFINED	TABLE.							
XSID: COD							HO VHD		
EXITX:XS FULLV:FV							**** 0.99 0.00 0.79		
BRIDG:BR							**** 1.54		
RDWAY:RG	*****	*****	* 498	.45 5	02.61	******	******	*****	******
APPRO:AS	495.0	7 0.5	4 491	.35 5	02.83	0.37 (0.54	497.1	0 496.56

WSPRO OUTPUT FILE (continued)

West	field br	idge 10	over Ta	ait Bro	ook	SAO			
===015 WSI	IN WRONG	FLOW RE	EGIME AT	r secii	"EX	ITX":	USED WSI =	CRWS.	
			WSI,CH	RWS =	493	.07	493.21		
XSID:CODE	SDDI.	LEW	AREA	AHD	HF	EG	L CRWS	Q	WSEL
	FLEN		K					VEL	
EXITX:XS *									493.21
-36. *	****	54.	5332.	1.19 '	****	*****	* 1.06	7.58	
===125 FR#	EXCEEDS	FNTEST A	AT SECII	"FULI	√V":	TRIALS	CONTINUED		
							494.38	494.	29
===110 WSEL							LTAY. 499.25	0.50	
===115 WSEL								0.50	
							499.25	494.29)
FULLV:FV	2.6	2.2	107	1 01	1 00	405.3	5 494.29	0.4.0	494.34
0.		-32. 54.	5493.	1.19	0.00	0.0	0 1.03	7.38	494.34
	< <the ab<="" td=""><td>OVE RESU</td><td>JLTS REI</td><td>FLECT '</td><td>'NORM</td><td>AL" (UN</td><td>CONSTRICTE</td><td>D) FLOW></td><td>>>>></td></the>	OVE RESU	JLTS REI	FLECT '	'NORM	AL" (UN	CONSTRICTE	D) FLOW>	>>>>
405 55 11							~~~~		
===125 FR#							495.98		0.0
===110 WSEL								-50.	-
	W	SLIM1,WS	SLIM2,DE	ELTAY =	49	93.84	502.83	0.50	
===115 WSEL	NOT FOU	ND AT SE ST.TM1 שים	STIMS CE	PPRO":	USEI	ر WSMIN 84	= CRWS. 502.83	496 00)
===130 CRIT	ICAL WAT	ER-SURFA	ACE ELEV	VATION	A	S S	U M	E D !	. 1 1 1 1
	ENERGY	EQUATIO	ON N_O	_T B_ <i>F</i>	A_L_A_	_N_C_E_	D AT SECI	D "APPRO)"
	W	SBEG,WSE	END, CRWS	5 = 4	196.00	5	02.83	496.00	
APPRO:AS	53.	-5.	91.	1.67	****	497.6	8 496.00	940.	496.00
	53.	22.	4357.	1.00 '	****	*****	* 1.00	10.37	
<<<	< <the ab<="" td=""><td>OVE RESU</td><td>JLTS REI</td><td>FLECT '</td><td>'NORM</td><td>AL" (UN</td><td>CONSTRICTE</td><td>D) FLOW></td><td>>>>></td></the>	OVE RESU	JLTS REI	FLECT '	'NORM	AL" (UN	CONSTRICTE	D) FLOW>	>>>>
===285 CRIT	TCAL WAT	ER-SURFA	ACE ELEV	VATTON	A	s s	IJ M	E D!!	111
===285 CRIT	S	ECID "BF	RIDG"	Q,CF	RWS =	94	0. 495	.22	
				~					
	<<< <res< td=""><td>ULTS REE</td><td>LECTING</td><td>3 THE (</td><td>CONSTI</td><td>KICLED</td><td>FLOW FOLLO</td><td>W>>>></td><td></td></res<>	ULTS REE	LECTING	3 THE (CONSTI	KICLED	FLOW FOLLO	W>>>>	
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EG	L CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ER	R FR#	VEL	
BRIDG:BR	36.	0.	83	2 00 3	****	497 2	2 495.22	940	495.22
							* 1.00		
	CD FLOW	C 1 000 *	P/A ****	LSEI	」 BI 5 ***:	LEN X	LAB XRAB		
1.	Ι.	1.000		450.40	,				
XSID: COD							ERR	-	EL
RDWAY:RG	14.		<<< <en< td=""><td>MBANKMI</td><td>ENT IS</td><td>S NOT O</td><td>VERTOPPED></td><td>>>>></td><td></td></en<>	MBANKMI	ENT IS	S NOT O	VERTOPPED>	>>>>	
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EG	L CRWS	Q	WSEL
	FLEN						R FR#	~	
		_							
APPRO:AS	18. 19	-6. 26	145.	1 00	0.35	498.5 -0 0	1 496.00 2 0.54	940. 6 47	497.86
55.	1).	20.	0337.	1.00	0.55	0.0	2 0.34	0.47	
M(G)			XLKQ			OTEL			
0.159	0.000	8983.	-4.	19.	. 49	97.50			
		<<< <en< td=""><td>ND OF BE</td><td>RIDGE (</td><td>COMPU</td><td>TATIONS</td><td>>>>></td><td></td><td></td></en<>	ND OF BE	RIDGE (COMPU	TATIONS	>>>>		
FIRST USER XSID:COD EXITX:XS FULLV:FV	DEFINED	TABLE.	DEE		0	77	7007	17777	MCTET
EXITX:XS	-36	-32	54	940).	5332.	AREA 124.	VEL 7.58	WSEL 493.21
FULLV: FV	0.	-32.	54.	940).	5493.	124. 127. 83.	7.38	494.34
BRIDG:BR	0.	0.	23.	940).	5754.	83.		
RDWAY:RG APPRO:AS	14.	*******	****** 76	940).*** [;]	****** 8307	****** 145.	2.00**	497 86
ALTRO: Ab	٠٠.	-0.	۷0.	シせし		5571.	140.	0.4/	101.00
XSID: COD	E XLKQ	XRKQ	I	KQ					
APPRO:AS	-4.	19.	8983	3.					
SECOND USER	DEFINED	TABLE.							
XSID: COD	E CRW	S FF	R# YI				HO VHD		
EXITX:XS							***** 1.0		
FULLV:FV BRIDG:BR	494.2	9 1.0 2 1.0					0.00 1.0 **** 2.0		

APPRO:AS	496.0	0 0.5	54 491	.35 50	02.83	0.35	0.93 0.6	5 498.5	1 497.86

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure WFIETH00170010, in Westfield, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number WFIETH00170010

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) __03_ / _07_ / _95_

Highway District Number (*I* - 2; *nn*) <u>09</u> County (*FIPS county code*; *I* - 3; *nnn*) <u>019</u>

Town (FIPS place code; I - 4; nnnnn) 80200 Mile marker (I - 11; nnn.nnn) 000000

Waterway (1 - 6) TAFT BROOK Road Name (1 - 7):

Route Number TH017 Vicinity (/ - 9) 0.01 MI TO JCT W C3 TH18

Topographic Map Lowell Hydrologic Unit Code: 02010007

Latitude (I - 16; nnnn.n) 44518 Longitude (i - 17; nnnnn.n) 72272

Select Federal Inventory Codes

FHWA Structure Number (*I* - 8) <u>10101800101018</u>

Maintenance responsibility (1 - 21; nn) 03 Maximum span length (1 - 48; nnnn) 0024

Year built (1 - 27; YYYY) 1968 Structure length (1 - 49; nnnnnn) 000026

Average daily traffic, ADT (I - 29; nnnnnn) 000020 Deck Width (I - 52; nn.n) 243

Year of ADT (1 - 30; YY) 91 Channel & Protection (1 - 61; n) 5

Opening skew to Roadway (I - 34; nn) ___25 ___ Waterway adequacy (I - 71; n) __6__

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43; nnn*) <u>501</u> Year Reconstructed (*I - 106*) <u>0000</u>

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) -

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 7.0

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) _____

Comments:

The structural inspection report of 7/1/93 indicates the structure is a prestressed voided concrete slab type bridge. Both concrete abutment walls are in like new condition, with the exception of some minor vertical concrete shrinkage cracks. The wingwalls also are in like new condition. The footings are exposed at both abutments. At the upstream end of each abutment the top of the footings are flush with the adjacent streambed. At the downstream end of each abutment the streambed level is about 1.5 feet below the top of the footings. In places, the concrete of the footings has eroded away. Some slight undermining of the downstream left wingwall is noted. The waterway proceeds straight through (Continued, page 31)

Bridge Hydrologic Data								
Is there hydrologic data available	e? <u>N</u> if	No, type ctr	l-n h VTA	OT Drain	age area (r	mi²): <u>-</u>		
Terrain character:								
Stream character & type: Moun	tain stream	1						
Streambed material: Stones and	d gravel, w	ith some s	mall boulde	ers				
	Discharge Data (cfs): Q _{2.33} Q ₁₀ Q ₂₅							
Q ₅₀		Q ₁	00		Q ₅₀₀			
Record flood date (MM / DD / YY) Estimated Discharge (cfs):								
Ice conditions (Heavy, Moderate, L								
The stage increases to maximu	m highwat	er elevatio	n (<i>Rapidly, I</i>	Not rapidly)	:			
The stream response is (Flashy,	Not flashy):	-						
Describe any significant site con	nditions up	stream or	downstrea	m that ma	ay influence	e the stream's		
stage: -								
Watershed storage area (in perce	ent): - %							
The watershed storage area is:	<i>'</i> ——	ainly at the h	neadwaters; 2	2- uniformly	distributed; 3	3-immediatly upstream		
	oi th	e site)						
Water Surface Elevation Estima	ites for Exi	stina Stru	cture:					
		1			1.	1		
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀			
Water surface elevation (ft))	-	-	-	-	-			
Velocity (ft / sec)	-	-	-	-	-			
						_		
Long term stream bed changes	-							
Is the roadway overtopped belo	w the Q ₁₀₀	? (Yes, No	, Unknown):	_U	Frequen	ıcy: <u>-</u>		
Relief Elevation (ft): Discharge over roadway at Q ₁₀₀ (ft ³ /sec):								
Are there other structures nearly	y? (Yes, No	o, Unknown): <u>U</u> If No	o or Unknov	wn, type ctrl-r	1 os		
Upstream distance (miles):						ilt:		
Highway No. : -								
Clear span (#): Clear Height (#): Full Waterway (# ²):								

Downstream distance (miles): Town:	Year Built:
Highway No. : - Structure No. : - Structure Type: _	
Clear span (#): Clear Height (#): Full Waterway (#²):	
Comments:	
the structure. The streambed consists of stones and gravel with some small boul	lders. There are numerous
logs and debris across the channel reported near 100 feet upstream. The banks trees and vegetation. No settlement is noted. Stone fill protection is noted as "lit	
trees and vegetation. No settlement is noted. Stone in protection is noted as in	the present.
110001111111111111111111111111111111111	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 2.39 mi ² Lake and pond area 0	mi ²
Watershed storage (ST) %	
Bridge site elevation ft Headwater elevation 871	ft
Main channel length mi	
10% channel length elevationft 85% channel length el	evationft
Main channel slope (S)304.85 ft / mi	
Watershed Precipitation Data	
watershed Fredipitation Data	
Average site precipitation in Average headwater precipita	tion in
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	
J , , , , , , , , , , , , , , , , , , ,	

Bridge Plan Data									
Are plans available? NIf no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number									
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation:									
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation: Is boring information available? _N If no, type ctrl-n bi									
Comments: While not expressed explicitly, the footings appear to be spread footing type on mainly regolith material.									

Cross-sectional Data

Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? - NO CROSS SECTION INFORMATION Comments:

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	ı	ı	ı	ı	ı	-	ı	ı	ı	ı	ı
Low cord to bed length	ı	ı	ı	ı	ı	-	ı	ı	ı	ı	ı
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	1	1	-	-	ı	1	1	ı	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	ı	1	1	ı	-	-	-	1	-	1	1
Bed elevation	ı	ı	ı	ı	-	-	-	ı	-	ı	ı
Low cord to bed length	ı	1	1	-	-	-	-	1	-	1	1
Station	1	1	1	ı	-	-	-	1	-	1	1
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	1	1	1	1	-	-	-	1	-	1	1
Low cord to bed length	1	1	1	-	-	-	-	1	-	1	-

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number WFIETH00170010

Qa/Qc Check by: **RB** Date: 3/26/96

Computerized by: **RB** Date: 4/8/96

SAO Date: 5/6/97 Reviewd by:

A. General Location Descriptive

- 1. Data collected by (First Initial, Full last name) D. SONG Date (MM/DD/YY) 06 / 25 / 1995
- 2. Highway District Number 09

County ORLEANS (019)

Waterway (/ - 6) TAFT BROOK

Route Number TH017

3. Descriptive comments:

Located 0.01 miles to the junction with C3 TH18.

Mile marker 000

Town WESTFIELD (80200)

Road Name BALANCE ROCK ROAD

Hydrologic Unit Code: 02010007

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_4___ RBUS 4 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 26 (feet)

Span length 24 (feet) Bridge width 24.3 (feet)

Road approach to bridge:

- 8. LB **0** RB **1** (**0** even, **1** lower, **2** higher)
- 9. LB 2 RB 2 (1- Paved, 2- Not paved)
- 10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	10 Erasian	14 Coverity
	11.Type	12.Cond.	13.Erosion	14.Severity
LBUS	2	2	2	1
RBUS	1	1	0	
RBDS		1	1	0
LBDS		2	2	1

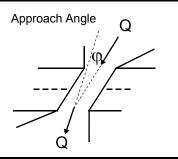
Bank protection types: **0**- none; **1**- < 12 inches;

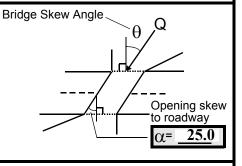
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 15 15. Angle of approach: 0

17. Channel impact zone 1:

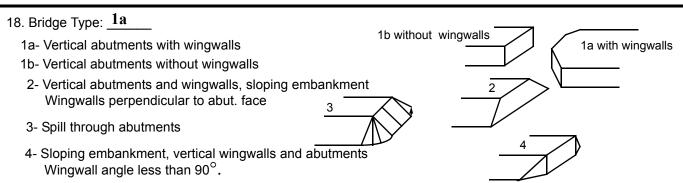
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 10 feet US (US, UB, DS) to 40 feet US

Channel impact zone 2:


Exist? \mathbf{N} (Y or N)

Where? _-__ (LB, RB)

Severity -

Range? _____ feet ___ (US, UB, DS) to ____ feet ____

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. On the right bank DS there are shrubs and pasture close to the bridge and forest beyond. On the left bank DS there is forest one bridge length away from the stream and a road and pasture beyond.
- 7. Values are from the VT AOT files.
- 18. The wingwalls are a combination of 1a and 4 but there is no embankment.

C. Upstream Channel Assessment

21	l. Bank hei	ght (BF)	22. Bank	angle (BF)	26. % Ve	eg. cover (BF)	27. Bank r	material (BF)	28. Bank e	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
27.0	9.0			<u>7.0</u>	4	4	432	432	2	1
23. Bank w	ridth35.	0	24. Cha	nnel width	30.0	25. Thal	weg depth	<u>37.5</u>	9. Bed Mate	rial <u>435</u>
			0	O		04.5.1				

30 .Bank protection type: LB <u>0</u> RB <u>0</u> 31. Bank protection condition: LB <u>-</u> RB <u>-</u>

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

There is a large debris accumulation across the channel at 80 feet US with the potential to clog the bridge opening.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 60 35. Mid-bar width: 10
36. Point bar extent: 40 feet US (US, UB) to 80 feet US (US, UB, DS) positioned 0 %LB to 50 %RB
37. Material: 4
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
The side bar is established behind the major debris pile 80 feet US which pushes flow to the right bank.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 50 42. Cut bank extent: 15 feet US (US, UB) to 80 feet US (US, UB, DS)
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
Tree roots are exposed and undermined and the bank material is slumping.
45 lo channel accur procent? N (44 (54) 46 Mid accur distance.
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Width Depth : Position %LB to %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.): NO CHANNEL SCOUR
NO CHANNEL SCOOK
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB
18.5 1.0 2 7 7 -
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 435
-

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? Y ___ (1- Upstream; 2- At bridge; 3- Both) 67. Debris Potential 1 (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

There is a large debris pile of logs and twigs 80 feet US that is already constricting flow. The bridge has a low vertical clearance from the streambed and has good potential to trap debris.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		5	90	2	3	0	1.5	90.0
RABUT	1	-	90	1	l 1	2	3	21.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1.5

There is slight undermining and erosion of both abutments. Both the left and the right abutment footings are exposed 1.4 feet and undermined 0.1 foot.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						21.0	
USRWW:	<u>Y</u>		1		0	0.5	
DSLWW:	<u>0</u>		0		<u>Y</u>		
DSRWW:	1		2		<u>0</u>		

USRWW **USLWW** Wingwall length Wingwall angle **DSRWW** DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	0.8	3	Y	0	1	1	-	-
Condition	Y	0	1	2.3	2	2	-	-
Extent	1	1.2	3	2	2	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

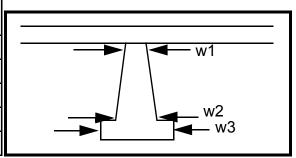
Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

2

1

3


2

1 3

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

					,			
85.								
Pier no.	widt	h (w) f	eet	elev	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3		
Pier 1		7.5	7.5	65.0	85.0	115.0		
Pier 2	8.5	8.5	-	65.0	-	-		
Pier 3		-	ı		1	-		
Pier 4		-	,	1	•	-		

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e DS	foot of	sed 1.5	
87. Type	left	unde	feet	
88. Material	wing	rmin	with	
89. Shape	wall	ing.	0.8	
90. Inclined?	foot-	The	foot	
91. Attack ∠ (BF)	ingis	DS	unde	
92. Pushed	expo	right	rmin	
93. Length (feet)	-	-	-	-
94. # of piles	sed	wing	ing	
95. Cross-members	1.1	wall	at its	N
96. Scour Condition	feet	foot-	US	-
97. Scour depth	with	ingis	end.	-
98. Exposure depth	0.1	expo		-

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration	n, protection and protection	on extent, unusual s	cour processe	es, etc.):
-				
-				
-				
-				
-				
-				
-				
-				
-				
E Down	stream Channel	Accoccmont		
100.		Assessifient		
Bank height (BF) Bank angle (Bl	-) % Veg. cover (I	BF) Bank mate	erial (BF)	Bank erosion (BF)
SRD LB RB LB RB	LB RB	LB	RB	LB RB
		<u>-</u>		<u>-</u> -
Bank width (BF) - Channel width (A	Amb) - Thalw	reg depth (Amb)	В	ed Material -
Bank protection type (Qmax): LB -		protection condition		 RB -
	etation (Veg) cover: 1 - 0	'		
Bed and bank Material: 0- organics: 1- silt / cla	v. < 1/16mm: 2 - sand. 1/1	16 - 2mm: 3 - aravel.	2 - 64mm:	,,6, 1 / 6 16 / 66,6
#- cobble, 64 - 256mm Bank Erosion: 0 - not evident; 1 - light fluvial; 2 -	; 5 - boulder, > 256mm; 6 moderate fluvial: 3 - heav			
Bank protection types: 0- absent; 1- < 12 inche				artificial levee
Bank protection conditions: 1- good; 2- slumpe				
Comments (eg. bank material variation, minor in	flows, protection extent, e	etc.):		
_				
- -				
-				
-				
-				
-				
- -				
- -				
-				
-				
-				
-				
-				
101. <u>Is a drop structure present?</u> - 103. Drop: <u>-</u> feet 104. Structure comments (eg. downstream	cture material: <u>-</u> (1 - s			
_				
-				
-				
-				

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: NO Mid-bar width: PIE								
Point bar extent: RS feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material:								
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):								
4								
Is a cut-bank present? 3 (Y or if N type ctrl-n cb) Where? 432 (LB or RB) Mid-bank distance: 432 Cut bank extent: 0 feet 0 (US, UB, DS) to 435 feet 0 (US, UB, DS) Bank damage: 0 (1- eroded and/or creep; 2- slip failure; 3- block failure)								
Cut bank comments (eg. additional cut banks, protection condition, etc.):								
- -								
Bank erosion is not evident within 2 bridge lengths, but steep cutting of both banks exist further DS.								
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance:								
Scour dimensions: Length Width Depth: Positioned %LB to %RB								
Scour comments (eg. additional scour areas, local scouring process, etc.):								
And the are made a conflict and a co								
Are there major confluences? (Y or if N type ctrl-n mc) How many? Confluence 1: Distance N								
Confluence 1: Distance N Enters on (LB or RB) Type NO_ (1- perennial; 2- ephemeral)								
Confluence 1: Distance \underline{N} Enters on $\underline{-}$ (LB or RB) Type \underline{NO} (1- perennial; 2- ephemeral) Confluence 2: Distance \underline{DRO} Enters on \underline{P} (LB or RB) Type \underline{STR} (1- perennial; 2- ephemeral)								
Confluence 1: Distance \underline{N} Enters on $\underline{-}$ (LB or RB) Type \underline{NO} (1- perennial; 2- ephemeral) Confluence 2: Distance \underline{DRO} Enters on \underline{P} (LB or RB) Type \underline{STR} (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name):								
Confluence 1: Distance \underline{N} Enters on $\underline{-}$ (LB or RB) Type \underline{NO} (1- perennial; 2- ephemeral) Confluence 2: Distance \underline{DRO} Enters on \underline{P} (LB or RB) Type \underline{STR} (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name):								
Confluence 1: Distance N Enters on (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								
Confluence 1: Distance N Enters on - (LB or RB) Type NO (1- perennial; 2- ephemeral) Confluence 2: Distance DRO Enters on P (LB or RB) Type STR (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): UCTURE F. Geomorphic Channel Assessment 107. Stage of reach evolution 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable								

1	08. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):
I	N
-	
-	· ·
-	
-	
-	

109. G. Plan View Sketch								
point bar pb cut-bank cb scour hole	debris	flow Q cross-section ++++++ ambient channel —	stone wall					

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: WFIETH00170010 Town: Westfield Road Number: TH17 County: Orleans

Stream: Taft Brook

Initials SAO Date: 5/2/97 Checked: MAI

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2	625 106 0	940 145 0	0 0 0
Right overbank area, ft2	0	0	0
Top width main channel, ft	28	32	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	0	0	0
D50 of channel, ft	0.280	0.280	0
D50 left overbank, ft			
D50 right overbank, ft			
y1, average depth, MC, ft	3.8	4.5	ERR
y1, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	ERR	ERR	ERR
Total conveyance, approach	5424	8391	0
Conveyance, main channel	5424	8391	0
Conveyance, LOB	0	0	0
Conveyance, ROB	0	0	0
Percent discrepancy, conveyance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	625.0	940.0	ERR
Ql, discharge, LOB, cfs	0.0	0.0	ERR
Qr, discharge, ROB, cfs	0.0	0.0	ERR
Vm, mean velocity MC, ft/s	5.9	6.5	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	ERR	ERR	ERR
Vc-m, crit. velocity, MC, ft/s	9.2	9.4	N/A
Vc-1, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR
Results			
Live-bed(1) or Clear-Water(0) Contra	action Sco	our?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units $ys=y2-y_bridge$ (Richardson and others, 1995, p. 32, eq. 20, 20a)

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	625	940	0
(Q) discharge thru bridge, cfs	625	940	0
Main channel conveyance	3804	5753	0
Total conveyance	3804	5753	0
Q2, bridge MC discharge,cfs	625	940	ERR
Main channel area, ft2	62.8	82.9	0
Main channel width (normal), ft	20.5	20.6	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	20.5	20.6	0
<pre>y_bridge (avg. depth at br.), ft</pre>	3.06	4.02	ERR
Dm, median (1.25*D50), ft	0.35	0.35	0
y2, depth in contraction,ft	3.13	4.42	ERR
ys, scour depth (y2-ybridge), ft	0.06	0.39	N/A

Armoring

 $Dc = [(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]$ Depth to Armoring=3*(1/Pc-1) (Federal Highway Administration, 1993)

Downstream bridge face property 100-yr 500-yr Other Q Q, discharge thru bridge MC, cfs 625 940 N/A Main channel area (DS), ft2 62.8 82.9 0 Main channel width (normal), ft 20.5 20.6 0.0 Cum. width of piers, ft 0.0 0.0 0.0 Adj. main channel width, ft 20.5 20.6 0.0 D90, ft 0.5509 0.5509 0.0000 D95, ft 0.5901 0.5901 0.0000 Dc, critical grain size, ft 0.5614 0.6430 ERR

Pc, Decimal percent coarser than Dc 0.086

0.038

0.000

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Abutment			Right Abutment				
Characteristic	100 yr Q 5	500 yr Q C	ther Q 1	00 yr Q 5	00 yr Q Ot	ther Q		
(Qt), total discharge, cfs	625	940	0	625	940	0		
a', abut.length blocking flow, ft	5	6.1	0	2.9	5.3	0		
Ae, area of blocked flow ft2	12.4	19.5	0	5.1	10.5	0		
Qe, discharge blocked abut.,cfs	48.1	84.6	0	16.5	35.1	0		
(If using Qtotal_overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually)								
Ve, (Qe/Ae), ft/s	3.88	4.34	ERR	3.24	3.34	ERR		
ya, depth of f/p flow, ft	2.48	3.20	ERR	1.76	1.98	ERR		
Coeff., K1, for abut. type (1.0,	Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru)							
K1	0.82	0.82	0.82	0.82	0.82	0.82		
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi:	nts US)			
theta	65	65	65	115	115	115		
K2	0.96	0.96	0.96	1.03	1.03	1.03		
Fr, froude number f/p flow	0.434	0.428	ERR	0.430	0.419	ERR		
ys, scour depth, ft	6.08	7.68	N/A	4.26	5.40	N/A		
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55								
(Richardson and others, 1995, p. 49	, eq. 29)							
a'(abut length blocked, ft)	5	6.1	0	2.9	5.3	0		
y1 (depth f/p flow, ft)	2.48	3.20	ERR	1.76	1.98	ERR		
a'/yl	2.02	1.91	ERR	1.65	2.68	ERR		
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00		
Froude no. f/p flow	0.43	0.43	N/A	0.43	0.42	N/A		
Ys w/ corr. factor K1/0.55:								
vertical	ERR	ERR	ERR	ERR	ERR	ERR		
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR		
spill-through	ERR	ERR	ERR	ERR	ERR	ERR		

Abutment riprap Sizing

Isbash Relationship

D50= $y*K*Fr^2/(Ss-1)$ and D50= $y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Downstream bridge face property	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number y, depth of flow in bridge, ft	1 3.06	1 4.02	0	1 3.06	1 4.02	0
<pre>Median Stone Diameter for riprap Fr<=0.8 (vertical abut.)</pre>	at: left ERR	abutment ERR	0.00	right ERR	abutment, ERR	ft 0.00
Fr>0.8 (vertical abut.)	1.28	1.68	ERR	1.28	1.68	ERR