LEVEL II SCOUR ANALYSIS FOR BRIDGE 11R (ROCKTH0001011R) on TOWN HIGHWAY 1 (VT 121, FAS 125), crossing the SAXTONS RIVER, ROCKINGHAM, VERMONT

U.S. Geological Survey Open-File Report 97-345

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 11R (ROCKTH0001011R) on TOWN HIGHWAY 1 (VT 121, FAS 125), crossing the SAXTONS RIVER, ROCKINGHAM, VERMONT

By Erick M. Boehmler

U.S. Geological Survey Open-File Report 97-345

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire 1997

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Su	ımmary of Results
Level II summary	·
Description of I	Bridge
Description of t	he Geomorphic Setting
Description of t	he Channel
	Discharges
	he Water-Surface Profile Model (WSPRO) Analysis
	ons Used in WSPRO Analysis
	ssumptions Used in WSPRO Model
	ics Summary
Scour Analysis	Summary
Special Cor	nditions or Assumptions Made in Scour Analysis
Scour Resu	lts
References	
Appendixes:	
	at file
	ıt file
	out file
	particle-size distribution
D. Historical da	ta form
E. Level I data f	Form
F Scour compu	tations
	cation of study area on USGS 1:24,000 scale map
	· · · · · · · · · · · · · · · · · · ·
	y map
	TH0001011R viewed from upstream (September 3, 1996)
	annel viewed from structure ROCKTH0001011R (September 3, 1996)el viewed from structure ROCKTH0001011R (September 3, 1996)
	TH0001011R viewed from downstream (September 3, 1996).
	rofiles for the 100- and 500-year discharges at structure TH0001011R on Town Highway 1, crossing the Saxtons River,
	gham, Vermont
	THO001011R on Town Highway 1, crossing the Saxtons River,
Kocking	gham, Vermont.
TADLES	
TABLES	
	ng/pile depth at abutments for the 100-year discharge at structure
	0001011R on Town Highway 1, crossing the Saxtons River,
	am, Vermont
	ng/pile depth at abutments for the 500-year discharge at structure
	0001011R on Town Highway 1, crossing the Saxtons River,
Rockingh	am, Vermont

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 11R (ROCKTH0001011R) ON TOWN HIGHWAY 1, (VT121, FAS 125) CROSSING THE SAXTONS RIVER, ROCKINGHAM, VERMONT

By Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH0001011R on Town Highway 1 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 68.3-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of houses, short grass, and scattered trees except along the immediate river banks, which are tree covered.

In the study area, the Saxtons River has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 121 ft and an average bank height of 8 ft. The predominant channel bed materials are gravel and cobbles with a median grain size (D_{50}) of 109 mm (0.359 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 3, 1996, indicated that the reach was laterally unstable. Lateral instability was evident with respect to a cut-bank on the left bank upstream with slip failure of bank material. Furthermore, there is a wide point bar along the right bank upstream opposite the cut-bank.

The Town Highway 1 crossing of the Saxtons River is a 184-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 30, 1995). The bridge is supported by vertical, concrete, skeletal-style abutment walls with spill-through embankments adjacent to each wall. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 30 degrees.

The only scour protection measure at the site was type-3 stone fill (less than 48 inches diameter) on the spill-through embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

There was no computed contraction scour for all modelled flows at this site. Abutment scour ranged from 9.0 to 13.4 feet. The worst-case abutment scour occurred at the 500-year discharge for the left abutment. There are two piers for which computed pier scour ranged from 9.0 to 18.4 feet. The left and right piers in this report are presented as pier 1 and pier 2, respectively. The worst-case pier scour occurred at pier 2 for the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

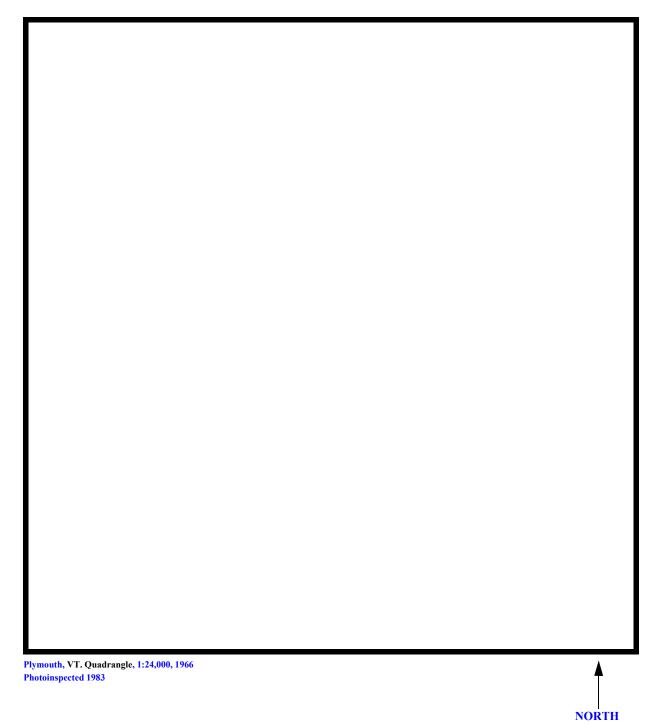
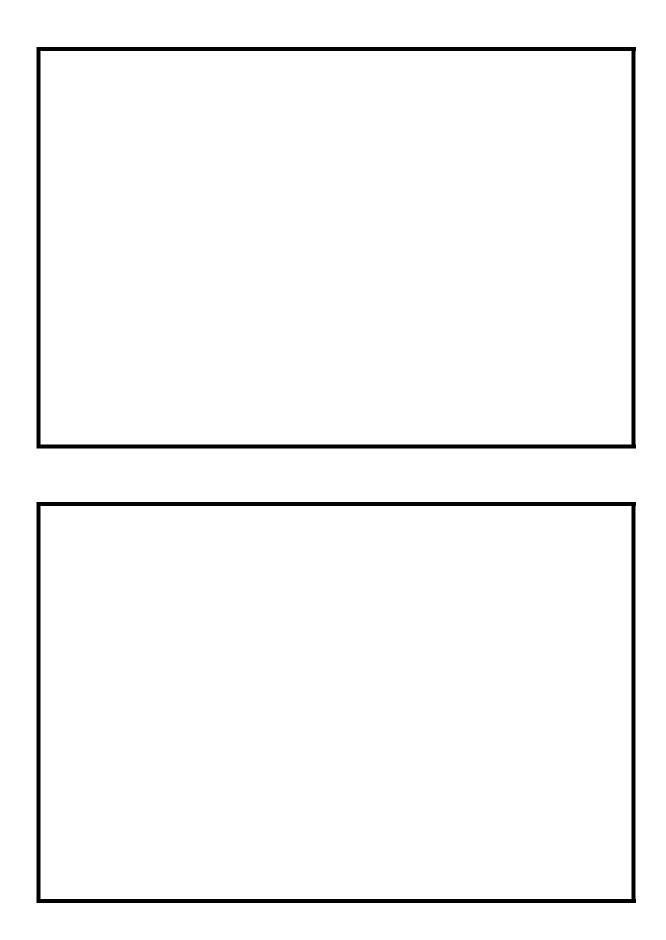



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ucture Number	ROCKTH0001011R	— Stream	Saxton	.5 141, 61	
unty Windha	am	— Road —	TH 1	— District –	2
	Descrip	otion of Bridg	je		
Bridge length	184 ft Bridge wi	39.0 dth	ft M	ax span length	
Alignment of br	ridge to road (on curve or s		Straight,	left; Curve, right	
Abutment type	Spill-through	 Embankn	ent type	Sloping	
Stone fill on abu	Yes	Date of inci		9/3/96	
Description of a	Type-3 on the s	spill-through er	nbankment	s adjacent to each	abutment
wall.	**************************************				
		Abutments are	concrete, sl	keletal style walls	s with spill-
through embank					_
	ments. Piers are solid conc				_
through embank the bridge seat e	ments. Piers are solid conc			ger at the stream	bed than at
the bridge seat e	ments. Piers are solid concelevation.	erete and are wi	der and lon	ger at the stream Yes	_
the bridge seat e	elevation. d to flood flow according to	erete and are wi	der and lon	ger at the stream Yes Angle	bed than at
the bridge seat e	ments. Piers are solid concelevation.	erete and are wi	der and lon	ger at the stream Yes Angle	bed than at
the bridge seat e	elevation. d to flood flow according to	erete and are wi	der and lon	ger at the stream Yes Angle	bed than at
the bridge seat e	elevation. d to flood flow according to	erete and are wi	der and lon	ger at the stream Yes Angle	bed than at
the bridge seat e	elevation. d to flood flow according to	rete and are wi	der and lon	ger at the stream Yes Angle	bed than at
the bridge seat e	elevation. d to flood flow according to channel bend in the upstrea	rete and are wi	der and lon ey? el II site vis	Yes Angle	35
the bridge seat e	d to flood flow according to channel bend in the upstread	rete and are wi	der and lon ey? el II site vis	Yes Angle	35
the bridge seat e	d to flood flow according to channel bend in the upstread lation on bridge at time of 19/3/96 9/3/96	rete and are wind to Yes surve m reach. Level I or Level Percent of blocked no.	el II site vis	Yes Angle	35 35 26 a Lamel operticatly 0
the bridge seat end of the bridge skewer. Is bridge skewer. There is a mild of the bridge skewer. Debris accumulated the bridge skewer. Level II channel is	d to flood flow according to channel bend in the upstread lation on bridge at time of 9/3/96 9/3/96 Moderate. The laterally unstable.	rete and are wind a rete and	el II site vis	Yes Angle Percent of blocked v	35 35 26 a Lamel operticatly 0
the bridge seat e	d to flood flow according to channel bend in the upstread lation on bridge at time of 9/3/96 9/3/96 Moderate. The laterally unstable.	rete and are wind a rete and	el II site vis	Yes Angle Percent of blocked v	35 35 26 a Lamel operticatly 0
the bridge seat end of the bridge skewer. Is bridge skewer. There is a mild of the bridge skewer. Debris accumulated the bridge skewer. Level II channel is	d to flood flow according to channel bend in the upstread lation on bridge at time of 9/3/96 Moderate. The laterally unstable.	rete and are wind a rete and	el II site vis	Yes Angle Percent of blocked v	35 35 26 a Lamel operticatly 0

Description of the Geomorphic Setting

General topog	graphy The channel is located in a mo	oderate relief valley setting with narro	Ν,
irregular over	rbank areas and steep valley walls on both	n sides.	
Geomorphic	c conditions at bridge site: downstream (L	DS), upstream (US)	
Date of inspe	ection <u>9/3/96</u>		
DS left:	Mild sloping channel bank to a narrow of	overbank.	
DS right:	Mildly sloping channel bank to a narrow	w overbank.	
US left:	Moderately sloping channel bank to a na	arrow overbank.	
US right:	Steep channel bank to a narrow terrace.		
	Description of the C	Channel	
	121	8	
Average top	p width Gravel / Cobbles	Average depth Gravel/Cobbl	a les
Predominant	nt bed material	Bank material Sinuous and later	ally
unstable with	wide point bars and semi-alluvial channe	el boundaries	•
		9/3/96	
Vegetative co	Trees and brush	•	
DS left:	Trees, shrubs, and brush		
DS right:	Trees and brush		
US left:	Trees and shrubs		
US right:	No		
Do banks ap	ppear stable? The assessment on 9/3/96 in	dicated the reach, was laterally unstable	. A
point bar ad	djacent to a cut-bank was noted in the upst	tream reach near the bridge. The bank	
material at t	the cut-bank was noted as slumped and the	e point bar width occupied about 60 per	rcent
of the chann	nel width on the right side.		
		A large deltaic	
accumulatio	on of material was noted on 9/3/96. It is loo y obstructions in channel and date of obs	cated on the left bank side of the chann	el at
	ream face of the bridge where a small tribu		
accumulation	on blocks flows up to three feet in the left s	span.	

Hydrology

Drainage area $\frac{68.3}{mi^2}$		
Percentage of drainage area in physiographic p	provinces: (app	proximate)
Physiographic province/section New England / New England Upland	Pe	rcent of drainage area 100
Is drainage area considered rural or urban?	Rural	— Describe any significant
urounization.		
Is there a USGS gage on the stream of interest?	Yes Saxtons Rive	er at Saxtons River, VT
USGS gage description		(Discontinued, 1982)
USGS gage number	72.2	
Gage drainage area	mi ²	No
Is there a lake/p	. • • • •	
Calculated	d Discharges	16,000
$Q100$ ft^3/s The 1	Q50 00- and 500-y	0 ft ³ /s ear discharges were taken from
the flood insurance study for the town of Rocking	ham (Federal	Emergency Management
Agency, 1979). These discharges were based on the	he period of ga	aged streamflow records from
1940 through 1982.		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	olans) USGS survey
Datum tie between USGS survey and VTAOT plans	Subtract 23.9 feet from the USGS
arbitrary survey datum to obtain the VTAOT plans' datum.	
Description of reference marks used to determine USGS data	um. RM1 is the center point
of a chiseled "X" on top of the left abutment concrete at the d	ownstream end (elev. 520.43 feet,
arbitrary survey datum). RM2 is the center point of a chiseled	"X" on top of the 10th concrete
guardrail post from the left end of the bridge on the downstrea	ım side (elev. 523.14 feet, arbitrary
survey datum).	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-170	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	26	1	Road Grade section
APPRO	204	2	Modelled Approach section (Templated from APTEM)
APTEM	231	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.055, and overbank "n" values ranged from 0.050 to 0.060.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0053 ft/ft, which was estimated from the 100-year-discharge water surface profile downstream of the site presented in the flood insurance study for the town of Rockingham (FEMA, 1979).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0022 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 519.5	ft
Average low steel elevation 515.3 ft	J
100-year discharge $\frac{10,600}{\text{Mater-surface elevation in bridge opening}}$	502.5 f t
	ge over road ft ³ /s
Area of flow in bridge opening Average velocity in bridge opening Maximum WSPRO tube velocity at bridge	
Water-surface elevation at Approach section Water-surface elevation at Approach section Amount of backwater caused by bridge	
500-year discharge 16,000 ft ³ /s Water-surface elevation in bridge opening Road overtopping? No Discharg Area of flow in bridge opening Average velocity in bridge opening Maximum WSPRO tube velocity at bridge	ge over road ft ³ /s
Water-surface elevation at Approach section	on with heidaa 505.9
Water-surface elevation at Approach section Amount of backwater caused by bridge	m wun bruge
Incipient overtopping discharge Water-surface elevation in bridge opening Area of flow in bridge opening Average velocity in bridge opening Maximum WSPRO tube velocity at bridge	ft ³ /s ft ² ft/s ft/s
Water-surface elevation at Approach section	on with bridge
Water-surface elevation at Approach section Amount of backwater caused by bridge	on without bridge

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). For contraction scour computations, the average depth in the contracted section (AREA/TOPWIDTH) is subtracted from the depth of flow computed by the scour equation (Y2) to determine the actual amount of scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Because the influence of scour processes on the spill-through embankment material is uncertain, the scour depth at the vertical concrete abutment walls is unknown. Therefore, scour depths were applied for the entire spill-through embankment area below the elevation at the toe of each embankment, as shown in figure 8.

Pier scour was computed by use of an equation developed at Colorado State University (Richardson and others, 1995, p. 36, equation 21) for all discharges modeled. Variables for the pier scour equation include pier length, pier width, average depth and maximum velocity (for the froude number) immediately upstream of the bridge, and correction factors for pier shape, flow attack angle, streambed-form, and streambed armoring.

Scour Results

Main channel	Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
Live-bed scour 0.0 0.0 0.0 0.0 0.4		(Scour depths in feet)	
Live-bed scour 0.0 0.0 0.0	Main channel			
Depth to armoring	Live-bed scour			
Left overbank	Clear-water scour			 -
Local scour:	Depth to armoring	0.4	2.9	 -
Local scour: Abutment scour 9.0 13.4 Left abutment 9.1- 11.7- Right abutment Pier scour 9.0 12.1 Pier 1 13.7 18.4 Pier 2	Left overbank		 	_
Abutment scour 9.0 13.4 Left abutment 9.1- 11.7- Right abutment Pier scour 9.0 12.1 Pier 1 13.7 18.4 Pier 2	Right overbank			
Left abutment 9.1- 11.7- Right abutment 9.0 12.1 Pier 1 13.7 18.4 Pier 2	Local scour:			
Right abutment 9.0 12.1 Pier scour 9.0 12.1 Pier 1 13.7 18.4 Pier 2	Abutment scour	9.0	13.4	
Pier scour 9.0 12.1 Pier 1 13.7 18.4 Pier 2	Left abutment	9.1-	11.7-	
Pier 1 13.7 18.4 Pier 2	Right abutment			
Pier 2	Pier scour	9.0	12.1	
	Pier 1	13.7	18.4	
Pier 3	Pier 2			
	Pier 3			
Riprap Sizing		Riprap Sizin	ng	
Incipient overtopping 100-yr discharge 500-yr discharge discharge		100-yr dischar		overtopping
(D ₅₀ in feet)			(D_{50} in feet)	
1.5 2.4 Abutments:	Abutments:	1.5		
Left abutment	Left abutment	1.5	2.4	
Right abutment	-			
1.4 2.3 Piers:				
Pier 1 2.3		1.4	2.3	
Pier 2				

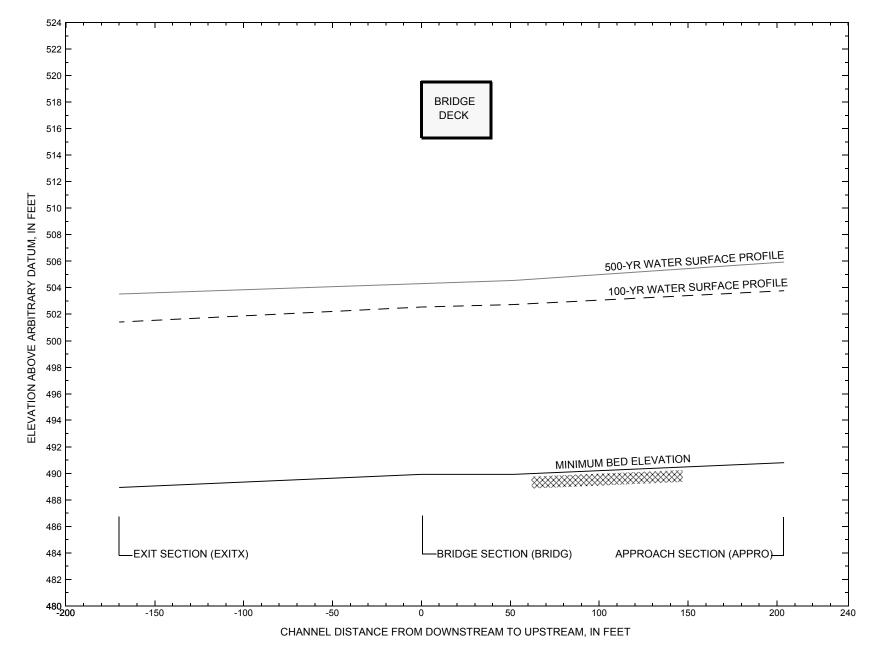


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure ROCKTH0001011R on Town Highway 1, crossing the Saxtons River, Rockingham, Vermont.

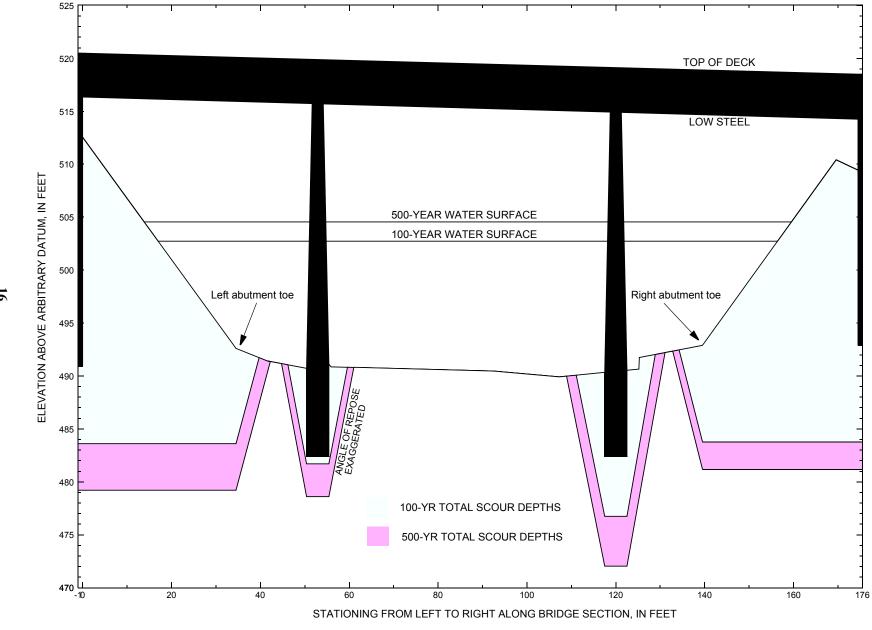


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure ROCKTH0001011R on Town Highway 1, crossing the Saxtons River, Rockingham, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure ROCKTH0001011R on Town Highway 1, crossing the Saxtons River, Rockingham, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT Bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr. di	scharge is 10,600	cubic-feet per seco	ond				
Left abutment	0.0	491.3	516.4	490.9	512.6						-7.3
Left abutment toe	34.5				492.6	0.0	9.0		9.0	483.6	
Pier 1	52.9	490.6		482.4	490.7	0.0		9.0	9.0	481.7	-0.7
Pier 2	120.0	489.8		482.4	490.4	0.0		13.7	13.7	476.7	-5.7
Right abutment toe	139.5				492.9	0.0	9.1		9.1	483.8	
Right abutment	174.5	489.2	514.3	492.9	509.4						-9.1

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure ROCKTH0001011R on Town Highway 1, crossing the Saxtons River, Rockingham, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT Bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr. di	scharge is 16,000	cubic-feet per seco	ond				_
Left abutment	0.0	491.3	516.4	490.9	512.6						-11.7
Left abutment toe	34.5				492.6	0.0	13.4		13.4	479.2	
Pier 1	52.9	490.6		482.4	490.7	0.0		12.1	12.1	478.6	-3.8
Pier 2	120.0	489.8		482.4	490.4	0.0		18.4	18.4	472.0	-10.4
Right abutment toe	139.5				492.9	0.0	11.7		11.7	481.2	
Right abutment	174.5	489.2	514.3	492.9	509.4						-11.7

^{1.} Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Federal Emergency Management Agency, 1979, Flood Insurance Study, Town of Rockingham and Village of Bellows Falls, Windham County, Vermont: Washington, D.C., November 1979.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1985, Bellows Falls, Vermont 7.5 by 15 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photographs, 1977; Contour interval, 6 meters; Scale 1:25,000
- U.S. Geological Survey, 1984, Saxtons River, Vermont 7.5 by 15 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Aerial photographs, 1977; Contour interval, 6 meters, Scale 1:25,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File rock11r.wsp
T1
T2
         Hydraulic analysis for structure ROCKTH0001011R Date: 31-JAN-97
Т3
         Town Highway 1 (VT 121 & FAS 125) over Saxtons River, Rockingham
                                                                       EMB
*
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
Q
         10600.0 16000.0
SK
          0.0053 0.0053
*
XS
    EXITX -170
GR
           -99.1, 511.76
                        -59.1, 501.45 20.0, 499.57 44.8, 492.20
GR
           62.0, 490.18
                          82.8, 489.63
                                          94.4, 488.93 110.4, 489.69
GR
           112.6, 490.23 142.9, 499.00 163.9, 501.64 324.9, 506.18
           370.2, 515.62
GR
*
                 0.050 0.055
Ν
           0.060
                  20.0 142.9
SA
*
             0 * * * 0.00582
XS
    FULLV
*
*
            SRD
                   LSEL
                           XSSKEW
BR
    BRIDG
             0
                 515.31
                            30.0
                          0.0, 512.55 34.5, 492.61 41.5, 491.43
55.9, 490.86 92.4, 490.47 107.3, 489.92
GR
            0.0, 516.35
GR
           51.3, 490.66
                        125.3, 491.74 139.5, 492.89
                                                          169.6, 510.42
           125.2, 490.65
GR
GR
           174.5, 509.44
                         174.5, 514.26
                                          0.0, 516.35
*
           Scour hole removed as it is not present at upstream face...
*
           118.2, 487.48 122.8, 488.36
                                         52.9, 514.37 120.0, 513.64
*
         BRTYPE BRWDTH EMBSS EMBELV
           3 52.6 1.0 519.5
         489.92, 10.0 514.91, 5.0 514.91, 2.5 515.72, 2.5
PW
PW
         515.72, 0.0
Ν
           0.040
*
*
            SRD EMBWID IPAVE
            26 39.0 1
XR
    RDWAY
         -172.8, 523.63 -135.5, 522.25 -11.0, 520.07 0.0, 520.49
GR
GR
          174.2, 518.51
*
XΤ
    APTEM
           231
           -45.1, 517.18
                         -12.6, 503.03
                                          20.0, 502.42
                                                           30.6, 499.28
GR
GR
           45.3, 492.80
                           51.7, 492.11
                                          53.3, 491.31
                                                          59.2, 491.14
           67.6, 490.99
                           71.3, 490.86
                                           78.0, 491.25
                                                           84.9, 492.07
GR
           67.6, 490.99 71.3, 490.86 78.0, 491.25
109.1, 495.13 132.3, 496.84 138.8, 502.10
GR
                                                          156.0, 501.38
           166.7, 509.50 205.2, 513.84 263.9, 514.96
GR
*
AS
   APPRO 204 * * * 0.0022
GT
           0.050 0.055
N
                  20.0
SA
HP 1 BRIDG 502.54 1 502.54
HP 2 BRIDG 502.54 * * 10600
HP 2 BRIDG 502.73 * * 10600
HP 1 APPRO 503.77 1 503.77
HP 2 APPRO 503.77 * * 10600
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File rockl1r.wsp
Hydraulic analysis for structure ROCKTH0001011R Date: 31-JAN-97
Town Highway 1 (VT 121 & FAS 125) over Saxtons River, Rockingham EMB
*** RUN DATE & TIME: 02-20-97 13:30

	*** RU	N DATE	& TIME:	02-2	20-97	13:30)				
CROSS	S-SECTION	PROPE	RTIES:	ISEQ	= 3;	SECI	ID = E	BRIDG;	SRD	=	0.
WSEI	SA#	AREA 1203	2001			WETE 127		PH	LEW	REW	QCR 21592
502.54		1203	2001	67	120	127	7 1.0	00	17	156	
VELOC	CITY DIST	RIBUTIO	ON: ISE	Q =	3; S	ECID =	= BRII	OG; S	RD =		0.
	WSEL 02.54		REW 156.1					Q 500.			
STA. A(I) V(I)	17.		37.2 6 8								
STA. A(I) V(I)	60.		66.3 5 9								
A(T)	87.	52 4	5	2 9		52 4		51 8		53 4	
STA. A(I) V(I)	111.		5							98.1 5.40	
VELOC	CITY DIST	RIBUTIO	ON: ISE	Q =	3; S	ECID =	BRII	OG; S	SRD =		0.
	WSEL 02.73	LEW 17.0	REW 156.4	ARI 1225	EA .6 20	K 5820.	106	Q 500.	VEL 8.65		
STA. A(I) V(I)	17.		6							57.2 9.26	
STA. A(I) V(I)	60.		66.2 5 9								
STA. A(I) V(I)	87.	53.0		3.4		53.0		54.6		53.1	
STA. A(I) V(I)	111.		5								
CROSS	S-SECTION	PROPE	RTIES:	ISEQ	= 5;	SECI	ID = P	APPRO;	SRD	=	204.
WSEI	SA#	AREA 37			TOPW 34			PH	LEW	REW	QCR 215
503.77	2	1135 1172	1216	0.0	139 174	144	Į.)4	-13	159	18387 16957
VELOC	CITY DIST	RIBUTIO	ON: ISE								
50	WSEL 3.77 -	LEW 14.4	REW 159.2	ARI 1171	EA .7 12	K 2740.	106	Q 500.	VEL 9.05		
STA. A(I) V(I)	-14.	4 111.6 4.75	37.7 6 8	3.1	44.6	53.4 9.92	49.3	50.1 L0.58	53.6	47.7 L1.12	57.3
STA. A(I) V(I)	57.	3 45.8	61.0 4 11	5.8	64.5	45.5	68.1	45.3	71.6	45.1	75.1
STA. A(I) V(I)	75.	1	78.8 4 11		82.7		86.8		91.4		96.5
STA. A(I) V(I)	96.		102.2								

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File rockl1r.wsp
Hydraulic analysis for structure ROCKTH0001011R Date: 31-JAN-97
Town Highway 1 (VT 121 & FAS 125) over Saxtons River, Rockingham EMB
*** RUN DATE & TIME: 02-20-97 13:30

				IWAY I IN DATE						ACOIIS N	ivei,	KOCKII	igiiaiii Er
	CRO	OSS-SI	ECTION	I PROPEI	RTIES:	ISEQ	= 3	; SEC	CID	= BRIDG	; SRD	=	0.
	WS		5A# 1	AREA 1418	254	K 921	TOPW 125	WET	ΓP .	ALPH	LEW	REW	QCR 27048 27048
	504	. 29		1418	254	921	125	13	34	1.00	14	159	27048
	VE									RIDG;			0.
										Q 16000.			
	STA. A(I) V(I)		14.	3 115.9 6.90	35.8 1	77.7	43.0	70.6 11.32	49	.2 65.7 12.18	54.8	65.8 12.17	60.4
	STA.		60.	4	65.8	62.0	71.2		76	.5	81.7	61.0	86.9
	A(I) V(I)			12.72	1	.2.53		12.90		.5 61.6 13.00)	12.94	
	STA. A(I) V(I)			61.4		61.9		61.3		.2 60.5 13.22		63.7	
Х	STA. A(I) V(I)		112.	3 64.1 12.48	117.5	66.0	123.0	76.3 10.48	129	.9 79.4 10.07	137.6	115.0 6.95	159.1
	VE	LOCIT	Y DIST	RIBUTIO	ON: IS	SEQ =	3;	SECID	= B	RIDG;	SRD =		0.
										Q 16000.			
	STA. A(I) V(I)		13.	8 120.3 6.65	35.8	79.2	43.0	72.0 11.11	49	.1 66.9 11.96	54.7	67.0 11.94	60.4
	STA. A(I) V(I)		60.	4 64.1 12.49	65.7 1	65.1	71.2	63.2 12.66	76	.4 62.7 12.76	81.6	62.9 12.71	86.8
	STA. A(I) V(I)			63.6		62.2		62.5		.2 64.3 12.44		62.4	
	STA. A(I) V(I)		112.	2 65.4 12.23	117.5	69.4 1.54	123.2	78.1 10.24	130	.1 79.2 10.11	137.7	119.8 6.68	159.5
	CRO	OSS-SI	ECTION	I PROPEI	RTIES:	ISEQ	= 5	; SEC	CID	= APPRO	; SRD	=	204.
	WS	SEL S	SA# 1	AREA	-	K	TOPW	WET	ľP.	ALPH	LEW	REW	QCR 1142
	505	. 94	2	117 1440 1557	177 185	919	142 182	14	18	1.05	-18	162	26018 25263
										PPRO;			
		WS!	EL 94 -	LEW	REW 162.1	AR: 1557	EA .0 1	F 85032.	ζ.	Q 16000.	VEL 10.28		
	STA. A(I) V(I)		-19.	4 145.8 5.49	26.4	97.2 8.23	39.0	77.0 10.39	45	.5 65.6 12.19	50.3	65.1 12.28	54.9
	STA. A(I) V(I)		54.	60.9		61.0		60.6		.1 60.2 13.28	!	60.1	
	STA. A(I) V(I)			1 61.8	79.3	63.7	83.8	64.4	88	.4 68.5 11.68	93.7	70.6	99.3
	STA. A(I) V(I)		99.							.1 96.8 8.26			

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File rockl1r.wsp
Hydraulic analysis for structure ROCKTH0001011R Date: 31-JAN-97
Town Highway 1 (VT 121 & FAS 125) over Saxtons River, Rockingham EMB
*** RUN DATE & TIME: 02-20-97 13:30

	*** RUN I	DATE & T	IME: 02	-20-97	7 13:3	30			
VOID CODE	CDDI	T 1711/1	3003	THID		DOI	apwa	0	MODI
XSID:CODE	FLEN	DEM	AREA	VHD AT.DH	HF.	EGL	CRWS FR#	VFI.	WSEL
SKD	FLEN	KEW	А	ALIFI	но	EKK	F.K.#	VEL	
EXITX:XS -169	*****	-57	1213	1.33	****	502.74	498.32	10600	501.41
-169	*****	162	145582	1.12	****	*****	0.69	8.74	
FULLV:FV							*****	10600	502.31
0		161					0.70		
< -	<<< <the al<="" td=""><td>BOVE RES</td><td>ULTS RE</td><td>FLECT</td><td>"NORMA</td><td>AL" (UNCC</td><td>NSTRICTE</td><td>) FLOW></td><td>>>>></td></the>	BOVE RES	ULTS RE	FLECT	"NORMA	AL" (UNCC	NSTRICTE) FLOW>	>>>>
APPRO:AS							****** 0.64		503.66
< •	<< <iine ai<="" td=""><td>SOVE KES</td><td>OLIS KE</td><td>PECI</td><td>NORMA</td><td>TT (OINCE</td><td>NSTRICTEI</td><td>)) FLOWS</td><td>>>>></td></iine>	SOVE KES	OLIS KE	PECI	NORMA	TT (OINCE	NSTRICTEI)) FLOWS	>>>>
	<<< <re< td=""><td>SULTS RE</td><td>FLECTIN</td><td>G THE</td><td>CONSTR</td><td>RICTED FI</td><td>LOW FOLLOW</td><td>l>>>></td><td></td></re<>	SULTS RE	FLECTIN	G THE	CONSTR	RICTED FI	LOW FOLLOW	l>>>>	
XSID.CODE	SRDL	LEW	AREA	VHD	нг	EGL	CRWS	0	WSEL
XSID:CODE SRD	FLEN	REW	K	ALPH	HO	ERR			
BRIDG:BR	170	17	1202	1.25	1.04	503.78	498.93	10600	502.54
0	170	156	200076	1.03	0.00	0.02	0.50	8.82	
	PPCD FLOW								
3.	0. 1.	0.985	0.092	515.3	31 ****	** ****	* *****		
									_
RDWAY:RO							R (Ь
KDWAI:K	3 20	•	<<<<	MDANKI	JENI IS	NOI OVE	ERTOPPED>>	•>>>	
XSID:CODE	SRDI	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
	FLEN						FR#		
APPRO:AS							500.64		503.77
204	153	159	122625	1.04	0.19	0.01	0.63	9.05	
	M(K)								
0.204	1 0.000	125946.	5.	144	1. 50	2.53			
		<<< <e< td=""><td>ND OF B</td><td>RIDGE</td><td>COMPUT</td><td>ATIONS></td><td>>>>></td><td></td><td></td></e<>	ND OF B	RIDGE	COMPUT	ATIONS>	>>>>		
FIRST US	ER DEFINEI	O TABLE.							
XSID:C	DDE SRI	D LEW	REW		Q	K	AREA	VEL	WSEL
EXITX:X		58.					1213.	8.74	501.41
FULLV: F	V 0	54.	161.	1060	00. 14	13000. 0076.	1193.	8.88	502.31
BRIDG:B								8.82	502.54
RDWAY:RO						*******		1.00**	
APPRO: AS	3 204	-14.	159.	1060	00. 12	22625.	1171.	9.05	503.77
VOID O	DD 777			· · ·					
	DDE XLK								
APPRO: AS	5	. 144.	12594	٥.					
SECOND USI	ים אים מים	יו זמאים כ							

XSID: CODE	E CRWS	FR#	YMIN	YMAX	HF	НО	VHD	EGL	WSEL
EXITX:XS	498.32	0.69	488.93	515.62*	*****	****	1.33	502.74	501.41
FULLV:FV	*****	0.70	489.92	516.61	0.92	0.02	1.36	503.68	502.31
BRIDG:BR	498.93	0.50	489.92	516.35	1.04	0.00	1.25	503.78	502.54
RDWAY:RG	******	*****	518.51	523.63*	*****	*****	*****	*****	*****
APPRO:AS	500.64	0.63	490.80	517.12	1.11	0.19	1.32	505.09	503.77

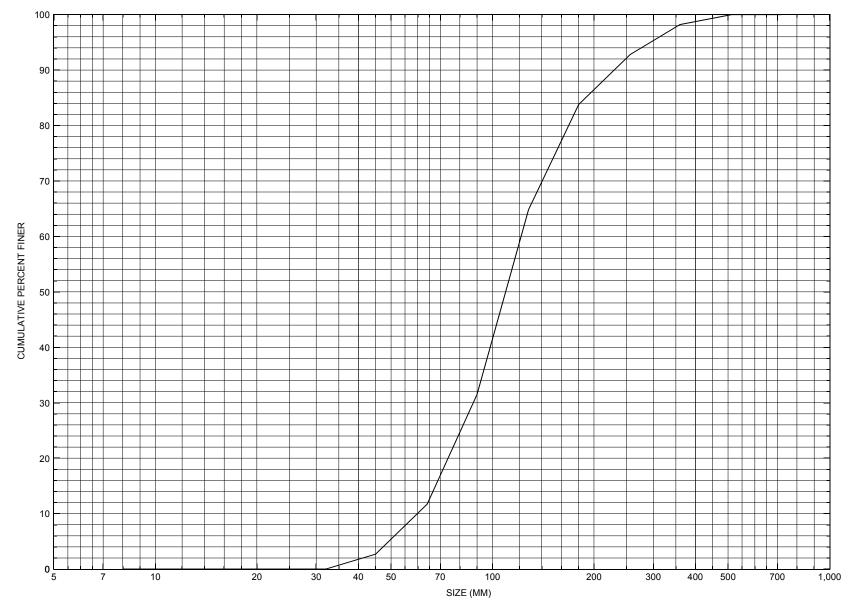
WSPRO OUTPUT FILE (continued)

	*** KUN	DAIL &	IIME: UZ	-20-91	13:3	. 0			
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	0	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
EXITX:XS	*****	-66	1754	1.67	****	505.19	500.70	16000	503.52
-169	*****	231	219580	1.29	****	*****	0.75	9.12	
FULLV:FV									
							0.76		
<	<<< <the< td=""><td>ABOVE RE</td><td>SULTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNCC</td><td>NSTRICTE</td><td>D) F.TOM></td><td>>>>></td></the<>	ABOVE RE	SULTS RE	FLECT	"NORMA	L" (UNCC	NSTRICTE	D) F.TOM>	>>>>
APPRO:AS	204	-18	1518	1 81	1 36	507 54	*****	16000	505 73
							0.66		
							NSTRICTE		
						,		,	
	<<< <r< td=""><td>ESULTS R</td><td>EFLECTIN</td><td>G THE</td><td>CONSTR</td><td>CICTED FI</td><td>LOW FOLLO</td><td>W>>>></td><td></td></r<>	ESULTS R	EFLECTIN	G THE	CONSTR	CICTED FI	LOW FOLLO	W>>>>	
XSID:CODE	SRDI	LEW	AREA	VHD	HF	EGL	CRWS	0	WSEL
							FR#		
BRIDG:BR									504.29
0	170	159	254810	1.00	0.00	-0.02	0.59	11.29	
							AB XRAB		
3.	0. 1	. 1.000	0.087	515.3	1 ****	** ****	* *****		
VCID.C	מתר	ים מים מסי	м пр	משט	E.C.	יז די	RR	O WCE	т
							ERTOPPED>		ш
ICDWIII . IC				11D1HVIU	ILIVI ID	NOI OVI	MIOII DD>		
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
APPRO:AS									505.94
204	153	162	185122	1.05	0.26	0.01	0.63	10.27	
M/G	M (TC)	77	O WI WO	VDI	70 0	mmr			
		K . 184617							
0.19	0.001	10461/	. 3.	14 /	. 50	14./1			

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-170.	-67.	231.	16000.	219580.	1754.	9.12	503.52
FULLV:FV	0.	-67.	227.	16000.	215770.	1727.	9.27	504.42
BRIDG:BR	0.	14.	159.	16000.	254810.	1417.	11.29	504.29
RDWAY:RG	26.**	*****	*****	0.*	******	*****	1.00*	*****
APPRO:AS	204.	-19.	162.	16000.	185122.	1558.	10.27	505.94


XSID:CODE XLKQ XRKQ KQ APPRO:AS 3. 147. 184617.

SECOND USER DEFINED TABLE.

XSID:COD	E CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
EXITX:XS	500.70	0.75	488.93	515.62*	*****	****	1.67	505.19	503.52
FULLV:FV	******	0.76	489.92	516.61	0.92	0.02	1.71	506.13	504.42
BRIDG:BR	501.28	0.59	489.92	516.35	1.07	0.00	1.98	506.27	504.29
RDWAY:RG	******	*****	518.51	523.63*	*****	*****	*****	*****	*****
APPRO:AS	503.25	0.63	490.80	517.12	1.15	0.26	1.72	507.66	505.94
ER									

NORMAL END OF WSPRO EXECUTION.

APPENDIX C: BED-MATERIAL PARTICAL-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure ROCKTH0001011R, in Rockingham, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number ROCKTH0001011R

General Eccation Describity	General	Location	Descriptive
-----------------------------	---------	----------	-------------

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) <u>03</u> / <u>30</u> / <u>95</u>

Highway District Number (1 - 2; nn) 02

Town (FIPS place code; I - 4; nnnnn) 60250

Waterway (1 - 6) SAXTONS RIVER

Route Number TH001

Topographic Map Saxtons.River

Latitude (I - 16; nnnn.n) 43084

County (FIPS county code; I - 3; nnn) ____025

Mile marker (I - 11; nnn.nnn) 003360

Hydrologic Unit Code: 01080107

Longitude (i - 17; nnnnn.n) 72301

Select Federal Inventory Codes

FHWA Structure Number (*I* - 8) **200126011R1314**

Maintenance responsibility (I - 21; nn) 03 Maximum span length (I - 48; nnnn) 0069

Year built (1 - 27; YYYY) 1954 Structure length (1 - 49; nnnnnn) 000184

Average daily traffic, ADT (I - 29; nnnnn) 002480 Deck Width (I - 52; nn.n) 390

Year of ADT (1 - 30; YY) 91 Channel & Protection (1 - 61; n) 6

Opening skew to Roadway (I - 34; nn) 30 Waterway adequacy (I - 71; n) 6

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 402 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) -

Number of spans (I - 45; nnn) $\underline{003}$ Vertical clearance from streambed (nnn.n ft) $\underline{022.0}$

Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) _-

Comments:

The structural inspection report of 8/10/94 indicates the structure is a three span, continuous steel stringer type bridge with a concrete deck and an asphalt roadway surface. The abutments are the concrete skeletal type, which reportedly have only minor cracks. The wingwalls are concrete, which is in good condition overall. The wingwalls are very short and only exposed at the very top where the flow through abutment embankments end at the wingwall and abutment concrete. Both piers are solid concrete, which have some minor cracks and scaling at the ends of each. The footings of the piers are not exposed. There is some local scour reported at the upstream end of the left pier. In the scour hole, (Continued, page 31)

	Brid	ge Hydr	ologic Da	ata		
Is there hydrologic data availab	le? <u>N</u> if	No, type ctr	l-n h VTA	OT Draina	age area (n	ni²): <u>-</u>
Terrain character:						
Stream character & type: _						
0, , , , , , , ,						
Streambed material:					<u> </u>	
Discharge Data (cfs): Q _{2.33}						
Record flood date (MM / DD / YY)						
Estimated Discharge (cfs):						
Ice conditions (Heavy, Moderate, L						
The stage increases to maximu						
The stream response is (Flashy,	Not flashy):	-				
Describe any significant site con	nditions up	stream or	downstrea	m that ma	y influence	e the stream's
stage: -						
Watershed storage area (in perc	ent): - %					
The watershed storage area is:	-		eadwaters; 2	2- uniformly	distributed; 3	3-immediatly upstream
	oi th	e site)				
Water Surface Elevation Estima	ates for Exi	istina Stru	rture:			
		1	1	1	1	1
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (ft))	-	-	-	-	-	
Velocity (ft / sec)	-	-	-	-	-	
]
Long term stream bed changes	: -					
Is the roadway overtopped belo	w the Q ₁₀₀	? (Yes, No	, Unknown):	U	Frequen	cy:
Relief Elevation (#):	_					
Are there other structures nearly	y? (Yes, N	o, Unknown)	: U _{If No}	o or Unknov	vn. tvpe ctrl-n	ı os
Upstream distance (miles):						ilt:
Highway No. :	Struct	ure No. : <u>-</u>	Str	ucture Typ	oe: <u>-</u>	
Clear span (ft): Clear H	eight (ft): _	F	ull Waterw	ay (ft²): <u>-</u>		

Downstream distance (<i>miles</i>): Town: Highway No. : Structure No. : Structure Type: _	
Clear span (#): Clear Height (#): Full Waterway (# ²):	
Comments: there is heavy stone riprap reported. The waterway proceeds straight through consists of stone and gravel. There is a shallow point bar reported in the right middle span. Debris accumulation is reported as minor at this site. The report is not evident.	most span and part of the
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 68.27 mi^2 Lake and pond area 0.30 Watershed storage (ST) 0.5 %	mi ²
Bridge site elevation $\frac{433}{}$ ft Headwater elevation $\frac{2894}{}$ Main channel length $\frac{16.95}{}$ mi	<u> </u>
10% channel length elevation $\underline{512}$ ft 85% channel length e Main channel slope (S) $\underline{92.89}$ ft / mi	levation <u>1693</u> ft
Watershed Precipitation Data	
Average site precipitation in Average headwater precipitation	ation in
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	

Bridge Plan Data
Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 08 / 1953 Project Number S 156(3) Minimum channel bed elevation: 466.0
Low superstructure elevation: USLAB 491.51 DSLAB 491.28 USRAB 489.47 DSRAB 489.21 Benchmark location description: BM#1, chiseled square, located 147 feet from the center-line of the left abutment, and 17 feet left of the roadway center-line, elevation 500.0
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary
Foundation Type: 1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness 2.5 Footing bottom elevation: 467.0*
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? Y If no, type ctrl-n bi Number of borings taken: 9
Foundation Material Type: _1 (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: Borings surrounding the right abutment: B1 (downstream bankward corner) stone and boulder, B7 (center bankward) gravel with clay filler, B8 (downstream side of abutment) boulder and stone. Right pier: B2 (downstream bankward side) gravel with clay filler, B3 (upstream bankward side) gravel with clay filler (hard) at the footing depth. Left pier: B4 (upstream streamward side) gravel with clay filler, B5 (downstream streamward side) gravel with clay filler at the footing depth. Left abutment: B6 (streamward side) sharp medium sand small amount of fine gravel with clay filler.
Comments:

*The right and left pier footing base elevation is shown at an elevation of 458.5 with a 3 foot thickness. The left abutment footing base elevation is shown at 467.0 with a 2.5 foot thickness, set on a sharp medium sand with a small amount of fine gravel with clay filler. The right abutment footing base elevation is shown at 469.0, with a 2.5 foot thickness and set on a stone and boulder material. The low superstructure elevations of the piers: pier 1(left) upstream end 490.88 and downstream end 490.63; pier 2(right) upstream end 490.09 and downstream end 489.84.

Cross-sectional Data

Is cross-sectional data available? \underline{Y} If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? FEMA

Comments: The station and elevation measurements are in feet. The low cord to bed length measurements at the abutments differ from the 9/96 survey.

Station	315	325	366	400	436	485	491	-	-	-	-
Feature	LAB						RAB	-	-	-	-
Low cord elevation	449.3	449.2	448.7	448.3	447.8	447.3	447.2	-	-	-	-
Bed elevation	435.7	426.3	423.4	423	423.4	432.5	433.1	ı	ı	ı	ı
Low cord to bed length	13.6	22.9	25.3	25.3	25.3	14.8	14.1	-	-	-	-
					_	_	-		_	_	
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? VTAOT

Comments: Since the bridge is skewed to the channel, the VTAOT cross sections at the bridge are not reproducible and hence were not retrieved.

<u> </u>											
Station	1	1	1	1	1	-	-	-	1	1	1
Feature	-	-	-	-	-	-	-	-	-	-	-
Low cord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	ı	1	ı	ı	ı	-	-	-	ı	ı	1
Low cord to bed length	ı	1	ı	ı	ı	-	-	-	ı	ı	1
Station	ı	ı	ı	ı	-	-	-	-	ı	ı	ı
Feature	1	1	-	-	-		-	-	-	-	-
Low cord elevation	-	1	-	-	-	-	-	-	-	-	1
Bed elevation	ı	-	-	-	1	-	-	-	-	-	1
Low cord to bed length	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E:

LEVEL I DATA FORM

Structure Number ROCKTH0001011R

Qa/Qc Check by: EW Date: 10/9/96

Computerized by: EW Date: 10/9/96

Reviewd by: **EMB** Date: 2/21/97

A. General Location Descriptive

. Data collected by (First Initial, Full last name) E . BOEHMLER Date (N	M/DD/YY) 0	<u>9</u> _/_	03	/ <u>1996</u>
--	--------------	--------------	----	----------------------

2. Highway District Number 02Mile marker 003360 County Windsor (025)

Town Rockingham (60250)

Waterway (1 - 6) Saxtons River

Road Name -Hydrologic Unit Code: 01080107

Route Number TH001

3. Descriptive comments: Located 4.1 miles west of the intersection of TH 1 with US route 5. This roadway also is labeled as State Route 121 and Federal Aid System Route 125.

B. Bridge Deck Observations

- 4. Surface cover... LBUS_2___ RBDS 4 RBUS 6 LBDS 4 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 1 UB 1 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 2 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 184 (feet)

Span length 69 (feet) Bridge width 39 (feet)

Road approach to bridge:

8. LB 2 RB 1 (0 even, 1- lower, 2- higher)

9. LB_1__ RB 1___ (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left _-_ US right _--

	Pr	otection	10 Francisco	14.Severity	
	11.Type	12.Cond.	13.Erosion	14.Seventy	
LBUS	3	1	0	-	
RBUS	3	1	0		
RBDS	3	1	0		
LBDS	3	1	0	-	

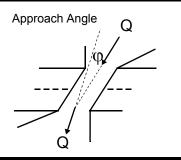
Bank protection types: **0**- none; **1**- < 12 inches;

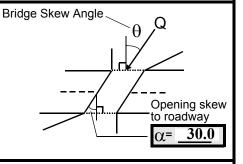
2- < 36 inches; **3**- < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 5 16. Bridge skew: 35

17. Channel impact zone 1:

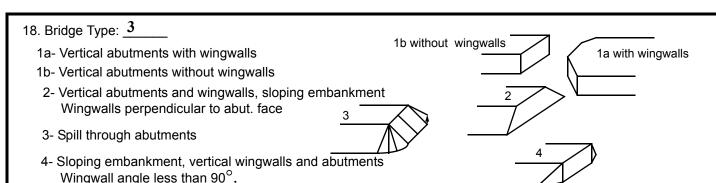
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 200 feet US (US, UB, DS) to 100 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 20 feet UB (US, UB, DS) to 95 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

USRB coverage is forest with a strip of grass and brush land bisecting trees on immediate bank and forest on valley wall. USLB has trees and brush along immediate bank with houses and lawn on overbank for entire 300 feet or so up LB side. RBDS coverage is also lawn with a house and tree cover on immediate bank. DSLB cover is also lawn with a house and tree cover on immediate bank. Between 0 feet downstream and 100 feet downstream on LOB is tree cover.

Bridge dimensions measured in field were the same as historical form values.

C. Upstream Channel Assessment

21. Bank height (BF) 22. Bank angle (BF)					26. % Veg	g. cover (BF)	27. Bank r	material (BF) 28. Bank	erosion (BF)	
	20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
	176.0	6.5			8.0	3	4	342	342	2	1
	23. Bank w	ridth25	.0	24. Cha	nnel width	35.0	25. Thal	weg depth	<u>119.0</u>	29. Bed Mate	erial <u>345</u>

30 .Bank protection type: LB $\underline{0}$ RB $\underline{0}$ 31. Bank protection condition: LB $\underline{-}$ RB $\underline{-}$

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

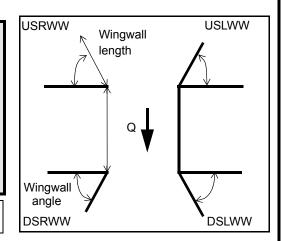
The channel upstream flows along the LB side. The LB is cut and there is a point bar along the RB side. The channel gradient upstream is moderate and steady. The water surface at this stage is riffle along the side of the point bar and is pooled beyond 400 feet upstream. There is a third point bar upstream on LB extending from 450 feet upstream to 370 feet upstream on LB; it is composed of gravel and cobbles at its upstream end, and grades to sand at its downstream end. The point bar is located at an old bridge crossing where abutments still exist, but deck does not.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 280 35. Mid-bar width: 60 36. Point bar extent: 395 feet US (US, UB) to 35 feet DS (US, UB, DS) positioned 40 %LB to 100 %RB
37. Material: 435 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): The point bar is long and high, approximately 2.5 to 3 feet higher along crest of point bar material. The point bar is about 20% vegetation covered with more coverage and older growth coverage mainly at downstream end of the bar. Vegetation at upstream end of bar has been swept over by a recent high flow event.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 240 42. Cut bank extent: 300 feet US (US, UB) to 85 feet US (US, UB, DS) 43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.): Near mid-bank, there are water swept young trees and shrubs that have fallen over in flow direction or are leaning in the direction of flow. The thin soil layer present on top of bank material has a ragged edge and overhangs the bank material below. The bank material has slipped down on the bank slope in places, leaving the soil layer on top overhanging. The bank ends where the stone fill abutment slope begins.
45. <u>Is channel scour present?</u> N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Width Depth : Position %LB to %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.): NO CHANNEL SCOUR
NO CHARACED SCOOK
40 Are there major confluences? No avertal track to the second of
49. <u>Are there major confluences?</u> N (Y or if N type ctrl-n mc) 50. How many? - 51. Confluence 1: Distance - 52. Enters on - (LB or RB) 53. Type - (1- perennial; 2- ephemeral)
Confluence 2: Distance (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name): NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment 55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB LB RB
110.5 1.0 2 5 5
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7 - manmade Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
345
The channel gradient upstream becomes flatter and the water surface pools at this stage from 65 feet upstream to 35 feet under bridge. Both abutments are concrete walls with type 2 stone fill spill-through slopes from the walls to the channel had. The LP out bank upstream ands where the spill through abutment slope.

upstream to 35 feet under bridge. Both abutments are concrete walls with type 2 stone fill spill-through slopes from the walls to the channel bed. The LB cut-bank upstream ends where the spill-through abutment slope intersects the bank about 85 feet upstream. The bank cutting near this intersection area has not damaged the spill-through slope as slumping or other evidence of erosion of stone fill is not evident. The channel width shown above is the distance between the toe of each spill-through embankment.

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both) 68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High) 67. Debris Potential ____ (1- Low; 2- Moderate; 3- High) 69. Is there evidence of ice build-up? 1 (*Y or N*) Ice Blockage Potential Y (1- Low; 2- Moderate; 3- High) 70. Debris and Ice Comments: There is some minor debris (sticks, twigs and leaves) caught in tree limbs on upstream point bar. These trees and those at the downstream end of LB cut-bank upstream have been scarred by ice. Trees and shrubs on the point bar and cut-bank are damaged and may be stripped from the bar or bank by subsequent high flow events. The piers are off to the sides of the channel. The left pier would have the greatest tendency to 73. Toe 74. Scour 75. Scour 76. Exposure 71. Attack 72. Slope \angle 77. Material 78. Length Abutments Condition depth depth ∠(BF) loc. (BF) (Qmax) 90.0 impa capture debr is as flow cts it **LABUT** muc 174.5 h SO than more **RABUT** Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood 79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.): the right pier.

- 40


0

2 5 35

80. Wingwalls:

· · · · · · · · · · · · · · · · · · ·	,	•				81.	
	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:	0		0		-	105.5	
USRWW:			2		The	0.5	
DSLWW:	spill-		thro		ugh	52.5	
DSRWW:	slope		on		RAB	52.5	

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

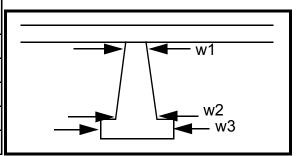
82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	UT	sta-	the	the	alm	belo	base	90
Condition	app	ble,	top	slop	ost 1	w	of	degr
Extent	ears	but	of	e is	foot	the	the	ee

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other


83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.): concrete wall as a result of the skeleton type concrete abutment. Both concrete abutment walls are vertical skeleton style walls. The back of the wall may be seen underneath.

N

Piers:

84. Are there piers? ___ (*Y or if N type ctrl-n pr*)

85. Pier no.	width (w) feet			elev	elevation (e) feet				
	w1	w2	w3	e@w1	e@w2	e@w3			
Pier 1	-	-	-	-	-	-			
Pier 2	-	2.5	5	-	-	-			
Pier 3	-	2.5	5	-	-	-			
Pier 4	-	-	-	-	-	-			

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	-	N	1	-
87. Type	1	1	1	1
88. Material	N	ı	3	ı
89. Shape	1	ı	1	1
90. Inclined?	-	-	1	-
91. Attack ∠ (BF)	-	•	-	No
92. Pushed	-	-	-	wing
93. Length (feet)	-	-	-	-
94. # of piles	N	-	-	walls
94. # of piles 95. Cross-members	N -	1	-	walls exist
	N - -	-	- -	
95. Cross-members	N	- - -	- - -	exist

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): tion from abutment slopes wraps around ends of abutments at all four corners of structure.									
I om avaement stopes wraps arou	and of abath	ut un 10	on corner	o or structi	••				
100. E. Dow	nstream Cha	nnel Ass	essment	t					
Bank height (BF) Bank angle	(BF) % Vea.	. cover (BF)	Bank ma	aterial (BF)	Bank ero	sion (BF)			
5 \ ,	RB LB	RB	LB	RB	LB	RB			
<u> </u>	Y	<u>MC</u>	<u>L</u>	1	2	1			
Bank width (BF) Channel width	n (Amb) <u>52</u>	Thalweg de	pth (Amb)	52	Bed Materia				
Bank protection type (Qmax): LB 0		Bank protec			RB_				
Bed and bank Material: 0- organics; 1- silt / 6	/egetation (Veg) cov clay, < 1/16mm; 2 -3	sand, 1/16 - 2r	mm; 3 - grave	el, 2 - 64mm;		0 100%			
4- cobble, 64 - 256n Bank Erosion: 0- not evident; 1- light fluvial;	2- moderate fluvial;	: 3 - heavy fluvi	ial / mass wa	asting	U /				
Bank protection types: 0 - absent; 1 - < 12 inc Bank protection conditions: 1 - good; 2 - slum			es; 4 - < 60 ir	ncnes; 5 - wai	II / artificiai le	vee			
Comments (eg. bank material variation, minor 2	inflows, protection	extent, etc.):							
4.5									
1.0 MCR									
1									
2 1									
Y									
5 RB									
-									
1									
1.5 0									
·									
101. <u>Is a drop structure present?</u> 103. Drop: feet	(Y or N, if N ty tructure material:				feet - concrete: 4 -	- other)			
105. Drop structure comments (eg. downstream		(1-3100131	icci piic, z -	wood piic, o	- concrete, 4	- Girier)			

106. Point/Side bar present? (Y or N	I. if N type ctrl-n pb)Mid-bar distance:	Mid-bar width:
Point bar extent: feet (US, UB, DS) to _ Material:	feet (US, UB, DS) positioned	%LB to %RB
Point or side bar comments (Circle Point or Side; not less a cut-bank present? (Y or if N type) Cut bank extent: re is feet no (US, UB, DS) to st Bank damage: pro (1- eroded and/or creep; 2- sli) Cut bank comments (eg. additional cut banks, protection on pier 2. A small scour hole is evident primarily on the left side. The hole is 33 feet lo	e ctrl-n cb) Where tone feet fill (US) ip failure; 3- block fount it at the downstre	? (LB or RB) Mid ; UB, DS) ailure) o: e am end of pier 2 ,	d-bank distance: <u>The</u>
to 20 feet downstream of pier. It is 7 feet wide There is some protection on bed at upstream of the channel scour present?	end of pier 1 mai	inly on the LABUT side	e of the pier. Footing is
Is channel scour present? exp (Y or if N Scour dimensions: Length 1 Width foot Dep		Positioned nos %LB to	
Scour comments (eg. additional scour areas, local so flush with adjacent streambed along mid-span from 25 feet upstream of pier 1 to 20 feet along hole is 4.5 feet at most below ambient thalweg about 8 feet from the right side of the pier towards.	ouring process, etc side of pier for g right side of pi depth. The hole	e.): 8 feet from upstream e er and 12 feet along LA extends 4 feet from the	nd. Scour hole extends ABUT side of pier. The e left side of the pier and
Are there major confluences? is (Yo	r if N type ctrl-n mo	How many? <u>47</u>	
Confluence 1: Distance <u>feet</u> Enters of	on <u>at</u> (LB or RB	Type <u>the</u> (1 -	perennial; 2 - ephemeral)
Confluence 2: Distance top Enters o	n <u>and</u> (LB or RB	Type <u>52</u> (1 -)	perennial; 2 - ephemeral)
Confluence comments (eg. confluence name):			
feet at base.			
F. Geomor _l	phic Channe	l Assessment	
107. Stage of reach evolution 3	1- Cons 2- Stabl 3- Aggra 4- Degra 5- Later 6- Vertic	e aded	

42 42 45	108. Evolution codescriptors):	omments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic
42 45 The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,	3	
45 The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,		
The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,		
The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,)	
The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,	, 1	
The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,		
The channel downstream has a moderately sloping and steady gradient. The water surface at this stage is iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,)	
iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,	,)	
iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,	,	
iffle from about 10 feet under the bridge (from the downstream face) to about 280 feet downstream,		
	riffle from abo	ut 10 feet under the bridge (from the downstream face) to about 280 feet downstream,

109. G. Plan View Sketch					
point bar (pb) cut-bank (cb) scour hole	debris rip rap or stone fill	flow Q ross-section ++++++ ambient channel —	stone wall	Fr	

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: ROCKTH0001011R Town: Rockingham Road Number: TH 1 (VT 121 & FAS 125) County: Windham

Stream: Saxtons River

Initials EMB Date: 2/20/97 Checked: RF

I. Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	10600 1135 37 0 139 34 0 0.3589		0 0 0 0 0 0 0 0 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	8.2 1.1 ERR	10.1 3.0 ERR	ERR ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	10501.5	177919 7113 0 0.0000 15384.9 615.1	0 0 0 0 ERR ERR ERR ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	9.3 2.7 ERR 11.3 ERR ERR		ERR ERR ERR N/A ERR ERR

Results

Live-bed(1) or Clear-Water(0) Contraction Scour? Main Channel 0 0 N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^2(2/3)*W2^2))^3(3/7)$ Converted to English Units ys=y2-y_bridge
(Richardson and others, 1995, p. 32, eq. 20, 20a)

Approach Section	Q100	Q500	Qother
,	1135 139 8.17	142	0
Bridge Section			
(Q) total discharge, cfs(Q) discharge thru bridge, cfs	10600 10600		0
Main channel conveyance Total conveyance Q2, bridge MC discharge,cfs Main channel area, ft2 Main channel width (skewed), ft Cum. width of piers in MC, ft W, adjusted width, ft y_bridge (avg. depth at br.), ft Dm, median (1.25*D50), ft y2, depth in contraction,ft	200167 10600 1083 105.6 8.8 96.8 11.19	254921 254921 16000 1281 108.2 8.6 99.6 12.86 0.448625 12.10	0 ERR 0 0.0 0.0 0 ERR 0
ys, scour depth (y2-ybridge), ft	-2.48	-0.76	N/A
ARMORING D90 D95 Critical grain size,Dc, ft Decimal-percent coarser than Dc Depth to armoring,ft	0.965 0.3695 0.7		0 ERR 0

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28)

Characteristic	Left Abu 100 yr Ç	ıtment Q 500 yr Q	Other Q	Right Ab 100 yr Q		Other Q
(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal_overbank to obta Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft	10600 48.3 103.5 491.3 ain Ve, le 4.75 2.14	16000 52 193.6 1193.7 eave Qe bl 6.17 3.72	0 0 0 0 ank and e ERR ERR	10600 19.5 66.6 311.3 enter Ve a 4.67 3.42	16000 21 95.2 543.7 .nd Fr man 5.71 4.53	0 0 0 0 ually) ERR ERR
Coeff., K1, for abut. type (1.0, K1 $$	verti.; 0 0.55	0.82, vert 0.55	i. w/ wir 0.55	ngwall; 0. 0.55	55, spill 0.55	thru) 0.55
Angle (theta) of embankment (<90 theta K2	if abut. 60 0.95	points DS 60 0.95	; >90 if 60 0.95	abut. poi 120 1.04	nts US) 120 1.04	120 1.04
Fr, froude number f/p flow	0.571	0.563	ERR	0.446	0.473	ERR
ys, scour depth, ft	9.03	13.38	N/A	9.13	11.73	N/A
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49), eq. 29)					
a'(abut length blocked, ft) yl (depth f/p flow, ft) a'/yl Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical vertical w/ ww's spill-through	48.3 2.14 22.54 1.00 0.57 ERR ERR ERR	52 3.72 13.97 1.00 0.56 ERR ERR ERR	0 ERR ERR 1.00 N/A ERR ERR ERR	19.5 3.42 5.71 1.00 0.45 ERR ERR ERR	21 4.53 4.63 1.00 0.47 ERR ERR ERR	0 ERR ERR 1.00 N/A ERR ERR ERR
Abutment riprap Sizing						
<pre>Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82)</pre>						
Characteristic	Q100	Q500	Qother			
Fr, Froude Number (Fr from the characteristic V and y, depth of flow in bridge, ft	0.5 d y in cor 11.19	0.59 ntracted s 12.86	0 ectionm 0.00	0.5 nc, bridge 11.19	0.59 section) 12.86	0
Median Stone Diameter for riprap at	: left ab	outment		right ab	outment, f	t
Fr<=0.8 (spillthrough abut.) Fr>0.8 (spillthrough abut.)	1.51 ERR	2.41 ERR	0.00 ERR	1.51 ERR	2.41 ERR	0.00 ERR

```
Pier Scour(both live-bed and clear water scour)
ys/y1=2.0*K1*K2*K3*K4*(a/y1)^0.65*Fr1^0.43
(Richardson and others, 1995, p. 36, eq. 21)
K1, corr. factor for pier nose shape
  Sharp nose, 0.9; round nose, cylinder, or cylinder grp., 1.0; square nose, 1.1
K2, corr. factor attack angle (see Table 3, p 37)
         K2=[cos(attackangle)+L/a*sin(attackangle)]^0.65
K3, corr. factor for bed condition
   Clear-water, plane bed, antidune, 1.1; med. dunes, 1.1-1.2 (see Tab.4,p37)
K4, corr. factor for armoring (the following equations are in Si units)
   K4 = [1-0.89*(1-Vr)^2]^0.5
     Vr=(V1-Vi)/(Vc90-Vi)
     V1=0.645*((D50/a)^0.053)*Vc50
     Vc=6.19*(y^1/6)*(Dc^1/3)
Note for round nose piers:
   ys <= 2.4 times the pier width (a) for Fr <= 0.8
   ys<=3.0 times the pier width (a) for Fr>0.8
                                                        Qother
Pier 1
                                               0500
Pier stationing, ft
                                     52.9
                                               52.9
                                                        0
Area of WSPRO flow tube, ft2
                                     53
                                               62.2
                                                        0
Skewed width of flow tube, ft
                                     4.2
                                               4.3
                                                        0
y1, pier approach depth, ft
                                     12.62
                                               14.47
                                                        ERR
y1 in meters
                                     3.846
                                               4.409
                                                        N/A
V1, pier approach velocity, ft/s
                                     10
                                               12.9
                                                        0
a, pier width, ft
L, pier length, ft
                                               5
                                                        0
                                     5
                                     52
                                               52
                                                        0
Fr1, Froude number at pier
                                     0.496
                                               0.598
                                                        ERR
Pier attack angle, degrees
                                     0
                                               0
                                                        0
K1, shape factor
K2, attack factor
K3, bed condition factor
                                     1.00
                                              1.00
                                                        ERR
                                     1.1
                                              1.1
                                                        0
                                     0.3589
                                               0.3589
  D50, ft
                                                        0
  D50, m
                                     0.109387 0.109387 0
                                     0.753
                                               0.753
  D90, ft
  D90, m
                                     0.229503 0.229503 0
  Vc50, critical velocity(D50), m/s
                                     3.706
                                              3.791
                                                        N/A
                                               4.853
  Vc90,critical velocity(D90),m/s
                                     4.744
                                                        N/A
  Vi, incipient velocity, m/s
                                     2.079
                                               2.126
                                                        ERR
  Vr, velocity ratio
                                     0.364
                                               0.662
                                                        ERR
K4, armor factor
                                     0.80
                                               0.95
                                                        N/A
ys, scour depth (K4 applicable) ft 9.00
                                              12.12
ys, scour depth (K4 not applied)ft ERR
                                              ERR
                                                        ERR
Pier 2
                                     Q100
                                              0500
                                                        Qother
Pier stationing, ft
                                     120
                                               120
                                                        0
Area of WSPRO flow tube, ft2
                                     53
                                               62.2
Skewed width of flow tube, ft
                                     4.2
                                                        Ω
                                               4.3
y1, pier approach depth, ft
                                     12.62
                                               14.47
                                                        ERR
y1 in meters
                                     3.846
                                               4.409
                                                        N/A
V1, pier approach velocity, ft/s
                                     10
                                               12.9
                                                        Λ
a, pier width, ft
                                                        0
L, pier length, ft
                                     52
                                               52
                                                        Ω
Fr1, Froude number at pier
                                     0.496
                                               0.598
                                                        ERR
                                     5
Pier attack angle, degrees
                                               5
                                                        Ω
K1, shape factor
                                     1
                                               1
                                                        0
K2, attack factor
                                     1.52
                                              1.52
                                                        ERR
K3, bed condition factor
                                              1.1
                                                        0
                                     1.1
  D50, ft
                                     0.3589
                                              0.3589
                                                        Ω
  D50, m
                                     0.109387 0.109387 0
  D90, ft
                                     0.753
                                              0.753
                                                        Λ
  D90, m
                                     0.229503 0.229503 0
  Vc50, critical velocity(D50), m/s
                                     3.706
                                              3.791
                                                        N/A
  Vc90, critical velocity(D90), m/s
                                     4.744
                                               4.853
                                                        N/A
                                     2.079
  Vi, incipient velocity, m/s
                                              2.126
                                                        ERR
  Vr, velocity ratio
                                     0.364
                                               0.662
                                                        ERR
K4, armor factor
                                     0.80
                                               0.95
                                                        N/A
ys, scour depth, (K4 applicable) ft 13.67
                                               18.41
ys, scour depth, (K4 not applied)ft ERR
```

ERR

ERR

D50=0.692(K*V)^2/(Ss-1)*2*g (Richardson and others, 1995, p.115, eq. 83)

Pier-shape coefficient (K), round nose, 1.5; square nose, 1.7 Characteristic avg. channel velocity, V, (Q/A): (Mult. by 0.9 for bankward piers in a straight, uniform reach, up to 1.7 for a pier in main current of flow around a bend)

Pier 1 K, pier shape coeff. V, char. aver. velocity, ft/s	Q100 1.5 9.8	Q500 1.5 12.5	Qother 0 0
D50, median stone diameter, ft	1.41	2.29	0.00
Pier 2 K, pier shape coeff. V, char. aver. velocity, ft/s	1.5 9.8	1.5 12.5	0
D50, median stone diameter, ft	1.41	2.29	0.00