LEVEL II SCOUR ANALYSIS FOR BRIDGE 9 (BLOOVT01020009) on STATE ROUTE 102, crossing the NULHEGAN RIVER, BLOOMFIELD, VERMONT

U.S. Geological Survey Open-File Report 97-389

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 9 (BLOOVT01020009) on STATE ROUTE 102, crossing the NULHEGAN RIVER, BLOOMFIELD, VERMONT

By JOSEPH D. AYOTTE

U.S. Geological Survey Open-File Report 97-389

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	1
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure BLOOVT01020009 viewed from upstream (July 6, 1995)	
4. Downstream channel viewed from structure BLOOVT01020009 (July 6, 1995)	
5. Upstream channel viewed from structure BLOOVT01020009 (July 6, 1995)	
6. Structure BLOOVT01020009 viewed from downstream (July 6, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
BLOOVT01020009 on State Route 102, crossing the Nulhegan River,	
Bloomfield, Vermont	•••••
8. Scour elevations for the 100- and 500-year discharges at structure	
BLOOVT01020009 on State Route 102, crossing the Nulhegan River,	
Bloomfield, Vermont	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BLOOVT01020009 on State Route 102, crossing the Nulhegan River,	
Bloomfield, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BLOOVT01020009 on State Route 102, crossing the Nulhegan River,	
	1
Bloomfield. Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 9 (BLOOVT01020009) ON STATE ROUTE 102, CROSSING THE NULHEGAN RIVER, BLOOMFIELD, VERMONT

By Joseph D. Ayotte

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BLOOVT01020009 on State Route 102 crossing the Nulhegan River, Bloomfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 144-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except for the downstream right bank area which is shrub and brush land. The Nulhegan River flows into the Connecticut River 210 feet downstream of this bridge.

In the study area, the Nulhegan River has an incised, sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 164 ft and an average channel depth of 5 ft. The predominant channel bed material is cobble with a median grain size (D_{50}) of 152 mm (0.498 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 6, 1995, indicated that the reach was laterally unstable. This was due to numerous point bars and side bars indicating an unstable thalweg.

The State Route 102 crossing of the Nulhegan River is a 134-ft-long, two-lane bridge consisting of one 130-foot steel-truss span (Vermont Agency of Transportation, written communication, August 4, 1994). The field measured clear span was 131.6 ft. The bridge is supported by vertical, concrete abutments with rip-rapped spill-through slopes. The channel is skewed approximately 25 degrees to the opening while the measured opening-skew-to-roadway is 5 degrees.

A scour hole 3.5 ft deeper than the mean thalweg depth was observed 250 ft upstream during the Level I assessment. It was noted that the scour was localized on the right bank side and due to the presence of an old abutment. Scour countermeasures include the type-3 stone-fill (less than 48 inches diameter) which forms the spill-through slopes of the abutments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Computed contraction scour for all modelled flows was zero ft. Abutment scour ranged from 4.5 to 5.0 ft at the left abutment and 9.6 to 11.4 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

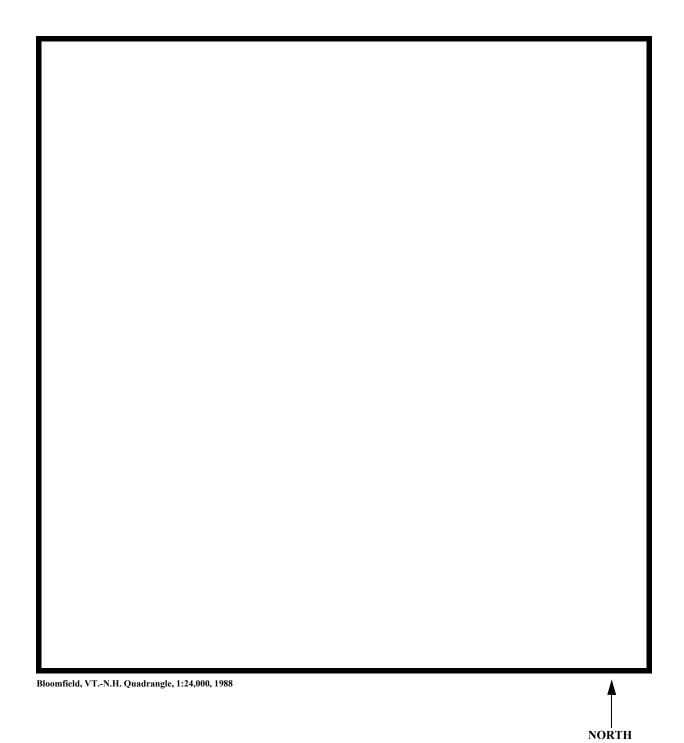
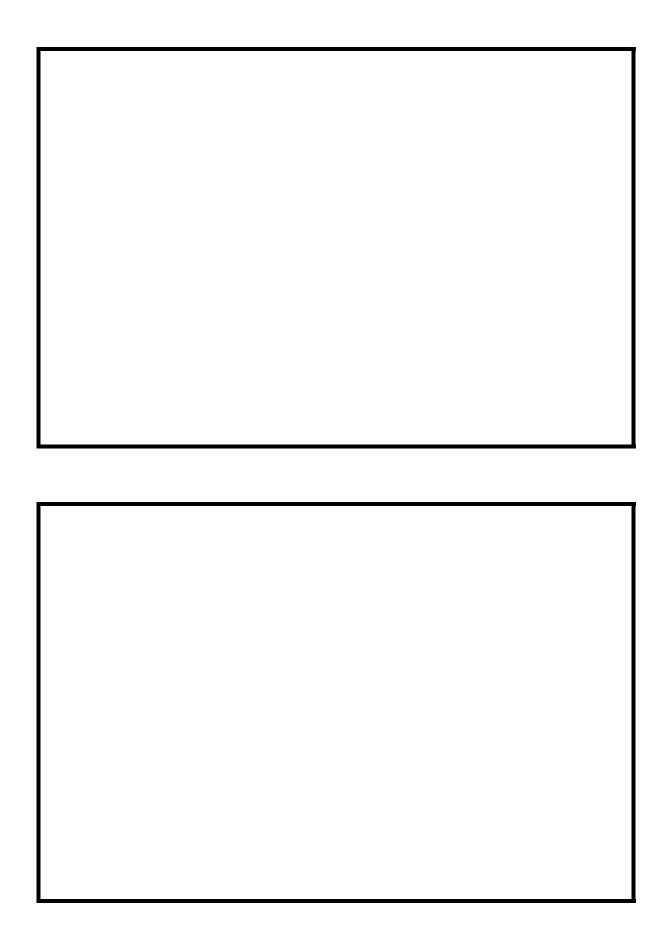



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

cture Number –	BLOOVT01	020009	Stream	Nulh	egan River	
nty Essex			Road —	VT 102	2 District	9
		Descriptio	n of Bridg	je		
Bridge length -	134 ft	Bridge width	24.4	- ft	Max span length	130
Alignment of brid	•	-	iaht) —	straigh		
_	spill-through		-		sloping	
Abutment type	Yes		Embankm	• •	07/06/95	
Stone fill on abuth	nent? The	re are spill-thro	<i>Date of inc</i> ough slopes	at each a	butment consistii	ng of type-3
stone-fill.	£11	•				
		•			<u>Y</u>	_25
In builder a alread	to flood flow a	according to N	Surve	y?	Angle	
is briage skewea			- , ~-, .		<u>,</u> ,	
						,
Debris accumula	tion on bridge	at time of Lev	vel I or Levo	el II site	visit:	
	tion on bridge Date of inco	nection]	Percent of	hannal	Percent	t of ^!-~-net t verticativ
Debris accumula	Date of inci	nection I		hannal	Percent	t of ahamael t vertically 0
Debris accumula Level I Level II	Date of inst 07/06/9	pection I 05 5	Percent of 0 bloc ked no	hannal rizontail y	Percent	1 věrticatty 0
Debris accumula	Date of inst 07/06/9 07/06/9	pection I 05 5	Percent of 0 bloc ked no	hannal rizontail y	Percent blocked	1 věrticatly 0
Debris accumula Level I Level II low.	Date of inst 07/06/9 07/06/9 Mo	bestion Post 1955 Properties of the post 1955 Properties o	Percent of oblocked not oblocked not oblocked not oblocked that	the captu	Percent blocked	1 věrticatly 0

Description of the Geomorphic Setting

General topos	graphy	The channel is located w	ithin a 1000 foot-wide, mo	oderate relief valley at
the confluence	ce with th	e Connecticut River with m	noderate valley walls.	
Geomorphic	conditio	ns at bridge site: downstrea	um (DS), upstream (US)	
Date of insp	ection	07/06/95		
DS left:	Modera	ately sloped overbank		
DS right:	Modera	tely sloped overbank		
US left:	Modera	tely sloped overbank		
US right:	Steep b	ank to over bank		
		Description of t	the Channel	
		164		5
Average to	p width	Cobbles	Average depth	Gravel/Cobbles
Predominan	t bed ma	terial	Bank material	Sinuous with semi-
alluvial to all	uvial cha	nnel boundaries and a mode	erately wide flood plain.	
				07/06/95
Vegetative c	o Trees a	nd brush		
DS left:	Trees a	and brush		
DS right:	Trees a	and brush		
US left:	Shrubs	and brush		
US right:		<u>N</u>		
Do banks ap	pear stal	ble? On 07/06/95, moderate	fluvial erosion was noted	along the
downstrear	n right ba	ank. Bank cutting is occurring	ig along the left bank from	71 ft upstream of the
bridge to 14				
			<u>_T</u>	he assessment of 07/
06/95 noted Describe an	l large co y obstruc	bble point bars in the US an tions in channel and date of	d DS reaches as well as un fobservation.	nder the bridge.

Hydrology

Drainage area $\frac{144}{}$ mi ²				
Percentage of drainage area in physiographic p	provinces: (app	roximate)		
Physiographic province/section New England/White Mountain	Percent of drainage area			
Is drainage area considered rural or urban? None urbanization:	Rural	Describe any significant		
Is there a USGS gage on the stream of interest:	No			
USGS gage description				
USGS gage number				
Gage drainage area	mi ²	No		
Is there a lake/p		^		
Calculate	d Discharges	10,700		
$Q100$ ft^3/s	Q500	ft ³ /s ar discharges were the median		
of several empirical methods for estimating flood	•			
Tasker, 1974; Potter, 1957a&b Talbot, 1887) app	olicable to this s	ite.The flood frequency curves		
developed for this site were graphically extrapola	ted to the 500-y	ear return period.		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS Survey
Datum tie between USGS survey and VTAOT plans	Add 1.0 ft to	USGS datum to
obtain VTAOT datum.		
Description of reference marks used to determine USGS date top of the upstream end of the right abutment (elev. 195.96 ft,	—	M1 is a chiseled X on vey datum). RM2 is a
chiseled X on top of the upstream end of the left abutment (e	lev. 195.87 ft	, VTAOT survey
datum).		

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT1	-90	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXIT1)
BRIDG	0	1	Bridge section
RDWAY	12	1	Road Grade section
APPRO	155	2	Modelled Approach section (Templated from APTEM)
APTEM	175	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.060, and overbank "n" values ranged from 0.040 to 0.080.

Normal depth at the exit section (EXIT1) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.005 ft/ft, which was estimated from surveyed channel thalweg points between the bridge and the exit sections. This slope matched the channel slope upstream of the bridge measured from the topographical map (USGS, 1988).

Using normal depth as the starting water-surface ignores the effects of backwater from the Connecticut River, 210 ft downstream. However, due to the difference in drainage areas at the confluence and the significant storage in the Connecticut River basin, the extent of backwater from the Connecticut River while the Nulhegan River is at a peak discharge is unknown. Thus, normal depth is appropriate.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.011 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation Average low steel elevation 191.0 ft	
100-year discharge 8,330 ft ³ /s Water-surface elevation in bridge opening 187.9 ft Road overtopping? N Discharge over road 746 ft ² Average velocity in bridge opening 11.2 ft/s Maximum WSPRO tube velocity at bridge 13.4 ft/s	ft³/s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 0.6 t	189.6
500-year discharge 10,700 ft³/s Water-surface elevation in bridge opening 188.3 ft Road overtopping? N Discharge over road Area of flow in bridge opening ft² Average velocity in bridge opening 13.5 ft/s Maximum WSPRO tube velocity at bridge 16.2 /s	ft³/s
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.3	191.6
Incipient overtopping discharge N/A ft ³ /s Water-surface elevation in bridge opening ft Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour was computed by use of the clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). In this case, computed contraction scour was zero feet for both of the modelled discharges.

Abutment scour at the right abutment was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the left abutment was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Scour Results

Contraction scour:	•	500-yr discharge	Incipient overtopping discharge
	(.	Scour depths in feet)	
Main channel			
Live-bed scour	0.0	0.0	
Clear-water scour	4.3	16.5	
Depth to armoring			
Left overbank	—		
Right overbank			
Local scour:			
Abutment scour	4.5	5.0	
Left abutment	9.6-	11.4-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizin	g	
	100 1. 1		Incipient overtopping
	100-yr discharg	, ,	discharge
	2.3	(D ₅₀ in feet) 2.7	
Abutments:	2.3	2.7	
Left abutment			
Right abutment			
Piers:			
Pier 1			
Pier 2			

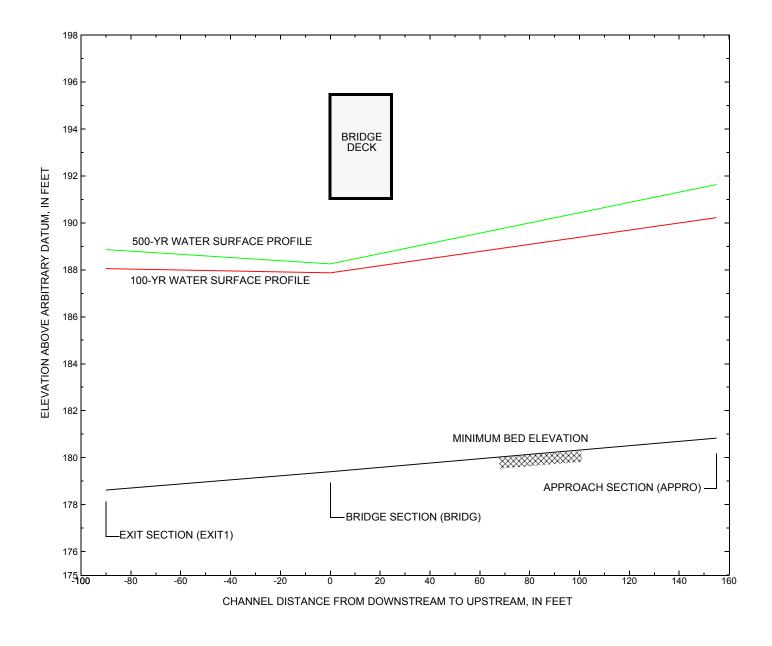


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BLOOVT01020009 on State Route 102, crossing the Nulhegan River, Bloomfield, Vermont.

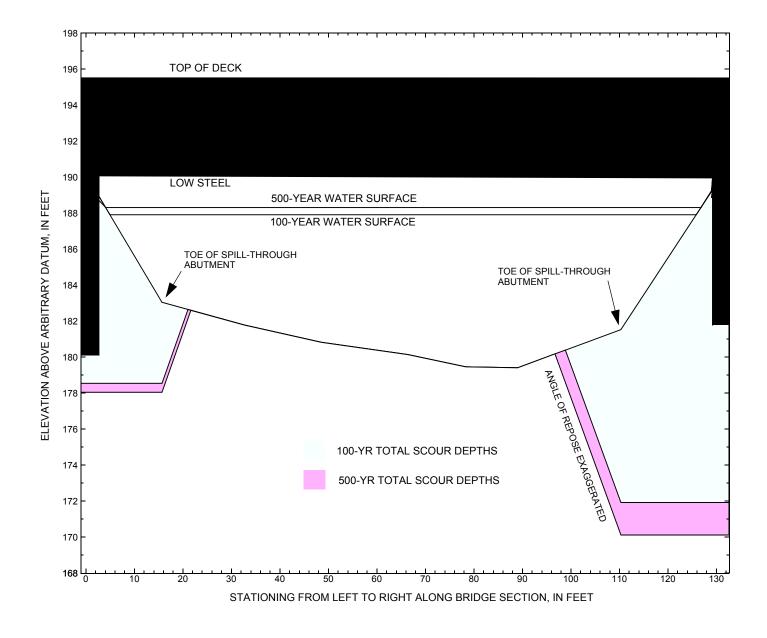


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BLOOVT01020009 on State Route 102, crossing the Nulhegan River, Bloomfield, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BLOOVT01020009 on State Route 102, crossing the Nulhegan River, Bloomfield, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-yr. discharge is 8,330 cubic-feet per second										
Left abutment	0.0	191.1	190.1	180.1							-1.6
Toe of spill-thru	15.7				183.0	0.0	4.5		4.5	178.5	-1.6
Toe of spill-thru	110.3				181.5	0.0	9.6		9.6	171.9	-9.9
Right abutment	131.6	191.1	190.0	181.8							-9.9

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BLOOVT01020009 on State Route 102, crossing the Nulhegan River, Bloomfield, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT bridge seat elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr. d	lischarge is 10,700	cubic-feet per sec	cond				
Left abutment	0.0	191.1	190.1	180.1							-2.1
Toe of spill-thru	15.7				183.0	0.0	5.0		5.0	178.0	-2.1
Toe of spill-thru	110.3				181.5	0.0	11.4		11.4	170.1	-11.7
Right abutment	131.6	191.1	190.0	181.8							-11.7

^{1.} Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1988, Bloomfield, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File bloo009.wsp
T1
         Hydraulic analysis for structure BLOOVT01020009 Date: 11-APR-96
T2
Т3
         Bloomfield Br 9, crossing Nulhegan R., VT Rte 102
                                                                   JDA
           8330.0 10700.0
0
SK
           0.005 0.005
J3
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
*
XS
     EXIT1
                           0.
          -200.0, 188.48
                            -41.9, 187.16
                                             -6.1, 183.38
GR
                                                              11.7, 181.36
GR
            42.1, 180.84
                            45.0, 180.71
                                             59.0, 180.29
                                                             76.7, 179.64
GR
            86.0, 178.88
                            99.0, 178.62
                                            109.7, 180.68
                                                             114.0, 182.20
GR
           118.7, 186.09
                          167.9, 188.08
                                           194.0, 193.57 356.2, 192.88
                         559.7, 198.85
           449.6, 194.72
GR
                                    0.040
Ν
           0.040 0.045
SA
                 -41.9
                             118.7
*
               0 * * *
XS
    FULLV
                          0.005
*
*
                             XSSKEW
             SRD
                    LSEL
BR
    BRIDG
              0
                   190.98
                              5.0
GR
             0.0, 191.08
                             0.0, 190.07
                                             1.7, 190.12
                                                               2.6, 190.10
GR
             2.7, 188.93
                            15.7, 183.04
                                             32.7, 181.77
                                                             48.5, 180.82
            66.4, 180.13
                                             89.0, 179.40
                                                             103.3, 180.83
                            78.3, 179.45
GR
GR
           110.3, 181.52
                            129.0, 189.20
                                            129.2, 189.94
                                                             129.9, 189.96
GR
           131.6, 189.95
                         131.6, 190.88
                                             0.0, 191.08
*
         BRTYPE BRWDTH
                           EMBSS
                                 EMBELV
CD
                   23.6
                            2.2
                                  195.5
            3
           0.040
Ν
*
*
*
             SRD
                    EMBWID
                             IPAVE
XR
              12
                      24.4
                               1
          -584.9, 209.54
                           -568.3, 201.56
                                           -355.1, 198.68
                                                            -289.1, 194.00
GR
          -244.5, 193.03
                          -190.7, 192.14
                                           -149.7, 193.92
                                                           -138.6, 196.98
GR
GR
          -105.6, 197.44
                           -49.3, 197.63
                                             1.1, 197.67
                                                           133.0, 197.54
GR
           143.1, 197.87
                         143.4, 195.40
                                           180.4, 195.66 183.0, 196.90
           237.1, 206.02
                            297.2, 214.24
GR
*
*
XT
    APTEM
            175
          -323.5, 199.31
                          -258.2, 195.80
                                           -194.9, 192.72
                                                             -13.1, 189.48
GR
GR
             8.9, 186.27
                            12.0, 183.43
                                            30.4, 181.86
                                                             52.7, 181.13
GR
            69.6, 181.05
                            107.1, 183.19 111.5, 185.29
                                                             131.2, 186.84
           178.0, 208.02
GR
*
           155 * * * 0.011
AS
    APPRO
GT
Ν
           0.080
                        0.060
                 -13.1
SA
HP 1 BRIDG
             187.87 1 187.87
HP 2 BRIDG
             187.87 * * 8330
HP 1 APPRO 190.22 1 190.22
HP 2 APPRO 190.22 * * 8330
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

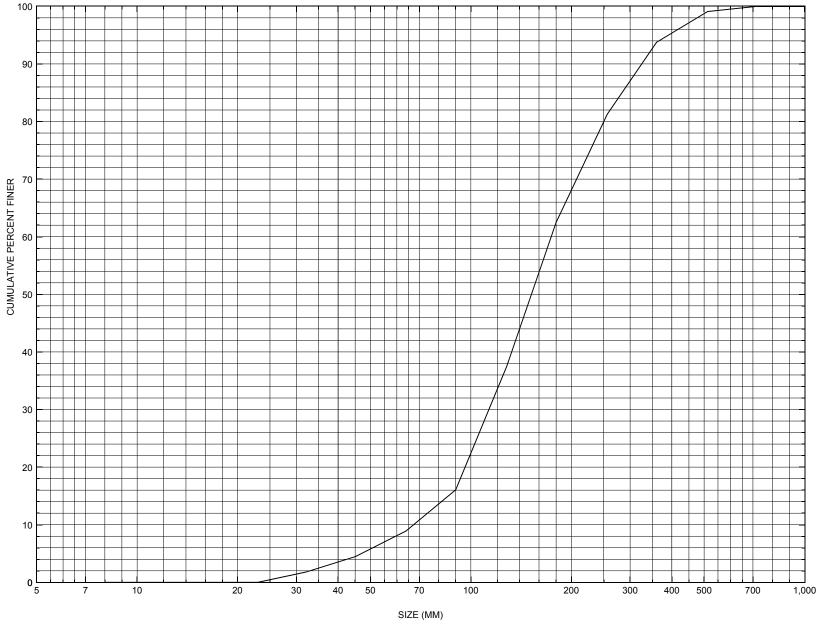
U.S. Geological Survey WSPRO Input File bloo009.wsp Hydraulic analysis for structure BLOOVT01020009 Date: 11-APR-96 Bloomfield Br 9, crossing Nulhegan R., VT Rte 102 JDA

		Bl	oomfie:	ld Br 9,	cross	ing :	Nulhega	an R.,	, VT R	te 10	2		JDA
	CRO	oss-	SECTION	N PROPER	TIES:	ISE	0 = 3	; SEC	CID =	BRIDG	; SRI	D =	0.
	WS	SEL	SA#	AREA		K	TOPW	WETI	P ALP	н :	LEW	REW	OCR
			1	745.	92408	3.	120.	123					10531.
	187.	. 87		745. 745.	92408	3.	120.	123	. 1.0	0	5.	126.	10531.
	VEI	LOCI	TY DIS	TRIBUTIO	N: IS	EQ =	3;	SECID	= BRI	DG;	SRD =		0.
		W	SEL	LEW	REW	A	REA	I	K	Q	VE	L	
		187	.87	5.0	125.8	74	5.4	92408	. 8	330.	11.1	7	
X	STA.		5	. 0	22.1		30.0		36.5		42.	3	47.6
	A(I)			58.1	4	14.2		39.4		37.7		35.8	
	V(I)			7.16	9	9.43		10.57		11.05		11.63	
Х	STA.		47	. 6	52.6		57.3		61.9		66.	2	70.4
	A(I)			35.3									
	V(I)			11.80	12	2.12		12.17		12.70		12.78	
Х	STA.		70	.4	74.4		78.1		81.9		85.	6	89.4
	A(I)			32.3	:	31.2		31.9		31.1		32.0	
	V(I)			12.90	13	3.37		13.06		13.38		13.00	
Х	STA.		89	. 4	93.5		97.9		102.9		108.	9	125.8
	A(I)			33.3		34.3		36.2		40.7		58.0	
	V(I)			12.50	12	2.15		11.51		10.23		7.18	
	CRC	oss-	SECTIO	N PROPER	TIES.	TSE	0 = 5	· SEC	TD =	APPRO	· SRI	D =	155
	WS	SEL.	SA#	AREA		K	TOPW	WETI	P AT.P	Н	, DIG	REW	QCR
			1	26.	29!	5.	54.	54				11211	102.
			2	26. 1014.	88130	ο.	152.	155					14859.
	190.	. 22		1040.	8842	5.	206.	209	. 1.0	4 -	67.	139.	12997.
	VET	OCT	יסות עיד	TRIBUTIO	M. TQI	7 ∩ –	5. (SECID	- 7\DD	PO -	- חקפ	1	55
	V 111			LEW									
		190	.22 .	-67.0	139.2	104	0.3	38425	. 8	330.	8.0	1	
Х	STA.		-67	-67.0 .0	13.2		21.2		27.6	550.	33.	1	38.4
	A(I)			107.9		59.8		51.5		47.2		46.6	
	V(I)			107.9 3.86		5.97		8.09		8.83		8.95	
Х	STA.		38	. 4	43.4		48.2		52.9		57.	5	62.1
	A(I)			44.5	4	13.7		43.0		42.9		43.0	
	V(I)			44.5 9.36	9	9.53		9.69		9.72		9.70	
Х	STA.		62	. 1	66.6		71.1		75.8		80.	8	86.2
	A(I)												
	V(I)			42.3 9.85	9	9.84		9.60		9.41		9.03	
Х	STA.		86	. 2	91.7		97.9		104.9		115.	1	139.2
	A(I)												
	V(I)			46.1 9.04	8	3.51		7.82		6.82		5.04	

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File bloo009.wsp
Hydraulic analysis for structure BLOOVT01020009 Date: 11-APR-96
Bloomfield Br 9, crossing Nulhegan R., VT Rte 102 JDA

		Blo	oomfiel	d Br 9,		ing 1	Nulhega	ın R.,	VT Rt	e 102	2		JDA
	CRO	oss-s	SECTION	PROPER	TIES:	ISE	O = 3;	SEC	CID = E	BRIDG	SRI) =	0.
	WS	SEL	SA#	AREA		K	TOPW	WETE	ALPI	I I	LEW	REW	QCR
			1	791.	10106	55.	122.	125.					11438.
	188	.25		791.	10106	55.	122.	125.	1.00)	4.	127.	11438. 11438.
		WS	SEL	LEW	REW	AI	REA	F	C	0	VEI		0.
		188.	.25	4.2	126.7	79	1.5 10	1065.	. 107	700.	13.52	2	
Х	STA.		4.	2	21.7		29.3		36.0		41.8	3	47.1
	A(I)			62.4		44.8		43.1		40.1		38.0	
	V(I)			8.58	1	1.95	1	2.40	1	L3.36		14.09	
	STA.		47.	1	52.2		56.9		61.5		65.9)	70.1
	A(I)			37.4 14.31		36.4		35.4		35.6		34.3	
	V(I)			14.31	1	4.70	1	5.12	1	15.02		15.61	
	STA.		70.	1	74.1	22.6	78.0	22.0	81.9	22.0	85.6	5	89.6
	A(I) V(I)			33.7 15.86	1	33.6	-	33.8	-	33.0		34.8	
	V(I)												
Χ	STA.		89.	6	93.6		98.1		103.1		109.2	2	126.7
	A(I)			34.6 15.48		36.4		38.5		43.5		62.2	
	V(I)			15.48	1	4.68	1	3.89	1	L2.31		8.60	
	CRO	OSS-S	SECTION	PROPER	RTIES:	ISE	Q = 5;	SEC	CID = A	APPRO	SRI) =	155.
	CR(OSS-S	SECTION	PROPER AREA	RTIES:	ISE	Q = 5;	SEC	CID = A	APPRO;	SRI LEW) =	155. QCR
	CR(OSS-S	SECTION SA# 1	AREA	328	ISE(K	Q = 5; TOPW 133.	SEC WETE	CID = A	H I	LEW) = REW	QCR 973.
	WS	SEL	SECTION SA# 1	AREA	328	ISE(K	Q = 5; TOPW 133.	SEC WETE	CID = A	H I	LEW) = REW	QCR 973.
	WS	SEL	SECTION SA# 1 2	AREA 158. 1231. 1389.	328 11996 12324	ISE(K 86. 52.	Q = 5; TOPW 133. 155. 288.	SEC WETE 133. 158. 291.	CID = A P ALPH	H I	LEW) = REW 142.	QCR 973. 19670. 15959.
	WS	SEL .63	SECTION SA# 1 2	AREA 158. 1231. 1389.	328 11996 12324 DN: IS	ISEQ K 86. 52. 18.	Q = 5; TOPW 133. 155. 288.	SEC WETH 133. 158. 291.	CID = A P ALPH	H I 7 -14 RO; S	LEW 16. SRD =) = REW 142.	QCR 973.
	191 . VEI	SEL .63 LOCIT	SECTION SA# 1 2	AREA 158. 1231. 1389. RIBUTIO	328 11996 12324 ON: IS	ISEQ =	Q = 5; TOPW 133. 155. 288.	SEC WETE 133. 158. 291.	CID = ALPH	H I 7 -14 RO; S	LEW 16. SRD =) = REW 142.	QCR 973. 19670. 15959.
X	191 . VEI	SEL .63 LOCIT	SECTION SA# 1 2	AREA 158. 1231. 1389. RIBUTIO	328 11996 12324 ON: IS	ISEQ =	Q = 5; TOPW 133. 155. 288.	SEC WETE 133. 158. 291.	CID = ALPH	H I 7 -14 RO; S	LEW 16. SRD =) = REW 142.	QCR 973. 19670. 15959.
	VEI	.63 LOCIT	SECTION SA# 1 2 FY DIST: SEL .63 -1146.	AREA 158. 1231. 1389. RIBUTIC LEW 46.1	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. BEQ = AI 1388	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12	SEC WETF 133. 158. 291. SECID F	CID = A P ALPH . 1.17 = APPH (107 22.5	H I 7 -14 RO; S Q 700.	SRD = VEI 7.70 28.7) = REW 142.	QCR 973. 19670. 15959. 55.
	VEI STA. A(I)	SEL .63 LOCIT WS 191	SECTION SA# 1 2 FY DIST: SEL .63 -1146.	AREA 158. 1231. 1389. RIBUTIC LEW 46.1	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. BEQ = AI 1388	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12	SEC WETF 133. 158. 291. SECID F	CID = A P ALPH . 1.17 = APPH (107 22.5	H I 7 -14 RO; S Q 700.	SRD = VEI 7.70 28.7) = REW 142.	QCR 973. 19670. 15959. 55.
	VEI	SEL .63 LOCIT WS 191	SECTION SA# 1 2 FY DIST: SEL .63 -1146.	AREA 158. 1231. 1389. RIBUTIO	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. BEQ = AI 1388	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12	SEC WETF 133. 158. 291. SECID F	CID = A P ALPH . 1.17 = APPH (107 22.5	H I 7 -14 RO; S Q 700.	SRD = VEI 7.70 28.7) = REW 142.	QCR 973. 19670. 15959. 55.
х	VEI STA. A(I) V(I) STA.	SEL .63 LOCIT WS 191	SECTION SA# 1 2 TY DIST: SEL 63 -1 -146.	AREA 158. 1231. 1389. RIBUTIO LEW 46.1 1 211.5 2.53	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12 15.0	SEC WETF 133. 158. 291. SECID F 3248.	CID = A P ALPH 1.17 = APPH C . 107 22.5	H I 7 -14 RO; S Q 7000.	GEW 46. GRD = VEI 7.70 28.7) = REW 142. 1 58.3 9.18	QCR 973. 19670. 15959. 55.
х	VEI STA. A(I) V(I) STA.	SEL .63 LOCIT WS 191	SECTION SA# 1 2 TY DIST: SEL 63 -1 -146.	AREA 158. 1231. 1389. RIBUTIO LEW 46.1 1 211.5 2.53	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12 15.0	SEC WETF 133. 158. 291. SECID F 3248.	CID = A P ALPH 1.17 = APPH C . 107 22.5	H I 7 -14 RO; S Q 7000.	GEW 46. GRD = VEI 7.70 28.7) = REW 142. 1 58.3 9.18	QCR 973. 19670. 15959. 55.
Х	VEI STA. A(I) V(I)	SEL .63 LOCIT WS 191	SECTION SA# 1 2 TY DIST: SEL 63 -1 -146.	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 86. 52. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12 15.0	SEC WETF 133. 158. 291. SECID F 3248.	CID = A P ALPH 1.17 = APPH C . 107 22.5	H I 7 -14 RO; S Q 7000.	GEW 46. GRD = VEI 7.70 28.7) = REW 142. 1 58.3 9.18	QCR 973. 19670. 15959. 55.
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA.	SEL .63 LOCIT WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53 5 55.8 9.59	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 66. 62. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12.0	SECUD F33248.	EID = ALPF . 1.17 = APPF (. 22.5)	H I 7 -14 RO; S Q 7000. 59.6 8.98	JEW 16. SRD = VEI 7.70 28.7	142. 142. 158.3 9.18 53.4 10.01	QCR 973. 19670. 15959. 55. 34.5
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) A(I) A(I)	SEL .63 LOCIT WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53 5 55.8 9.59	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 66. 62. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; S REA 8.9 12.0	SECUD F33248.	EID = ALPF . 1.17 = APPF (. 22.5)	H I 7 -14 RO; S Q 7000. 59.6 8.98	JEW 16. SRD = VEI 7.70 28.7	142. 142. 158.3 9.18 53.4 10.01	QCR 973. 19670. 15959. 55. 34.5
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA.	SEL .63 LOCIT WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53 5 55.8 9.59	328 11996 12324 ON: IS REW 142.3 2.3	ISEQ K 66. 62. 88. SEQ = AI 1388 81.1 6.60	Q = 5; TOPW 133. 155. 288. 5; \$ REA 8.9 12 15.0	SECUD F33248.	EID = ALPF . 1.17 = APPF (. 22.5)	H I 7 -14 RO; S Q 7000. 59.6 8.98	JEW 16. SRD = VEI 7.70 28.7	142. 142. 158.3 9.18 53.4 10.01	QCR 973. 19670. 15959. 55. 34.5
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) A(I) A(I)	.63 WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53 5 55.8 9.59 4 53.7 9.96	328 11996 12324 DN: IS REW 142.3 2.3 40.0	ISEQ K 622. 88. 81.1 1388 81.1 6.600 54.7 9.78	Q = 5; TOPW 133. 155. 288. 5; \$ REA 8.9 12. 15.0	SEC WETTE 133. 158. 291. SECID F 3248. 67.0 7.99 55.0 9.72 53.5 9.99	EID = ALPF 1.17 = APPF 2.2.5 50.4 75.4	7 -14 RO; S Q 700. 59.6 8.98 53.3 L0.05	EEW 66. GRD = VEI 7.70 28.7 55.4) = REW 142. 1 58.3 9.18 53.4 10.01 3 57.2 9.35	QCR 973. 19670. 15959. 55. 34.5 60.4 86.6
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	.63 LOCIT WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIC LEW 46.1 1 211.5 2.53 5 55.8 9.59 4 53.7 9.96	328 11996 12324 DN: IS REW 142.3 2.3 40.0	ISEQ K 622. 88. 81.1 1388 81.1 6.600 54.7 9.78	Q = 5; TOPW 133. 155. 288. 5; \$ REA 8.9 12. 15.0	SEC WETTE 133. 158. 291. SECID F 3248. 67.0 7.99 55.0 9.72 53.5 9.99	EID = ALPF 1.17 = APPF 2.2.5 50.4 75.4	7 -14 RO; S Q 700. 59.6 8.98 53.3 L0.05	EEW 66. GRD = VEI 7.70 28.7 55.4) = REW 142. 1 58.3 9.18 53.4 10.01 3 57.2 9.35	QCR 973. 19670. 15959. 55. 34.5 60.4 86.6
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I) STA. A(I) STA. A(I) V(I) STA.	.63 LOCIT WS 191	SECTION SA# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA 158. 1231. 1389. RIBUTIO LEW 46.1 1 211.5 2.53 5 55.8 9.59 4 53.7 9.96	328 11996 12324 DN: IS REW 142.3 2.3 40.0	ISEQ K 622. 88. 81.1 1388 81.1 6.600 54.7 9.78	Q = 5; TOPW 133. 155. 288. 5; \$ REA 8.9 12. 15.0	SEC WETTE 133. 158. 291. SECID F 3248. 67.0 7.99 55.0 9.72	EID = ALPF 1.17 = APPF 2.2.5 50.4 75.4	7 -14 RO; S Q 700. 59.6 8.98 53.3 L0.05	EEW 66. GRD = VEI 7.70 28.7 55.4) = REW 142. 1 58.3 9.18 53.4 10.01 3 57.2 9.35	QCR 973. 19670. 15959. 55. 34.5 60.4 86.6


WSPRO OUTPUT FILE (continued)

Hydi	raulic a	nalysis	rvey WSP for str rossing	ucture	BLOOV	T0102000)9 Date	: 11-APF			
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL		
		-149. 167.	1116. 117785.			189.02 *****	185.91 0.74	8330. 7.46	188.05		
FULLV:FV 0.	90.		1120. 118168. SULTS RE	1.12	0.45 0.00 "NORMA	0.01		8330. 7.44 D) FLOW>	188.51		
<pre></pre>											
APPRO:AS 155.	155. 155. << <the #<="" td=""><td>-30. 138. ABOVE RE</td><td>918. 74765. SULTS RE</td><td>1.01</td><td>1.22 0.16 "NORM#</td><td>0.00</td><td>****** 0.69 ONSTRICTE</td><td>8330. 9.08 D) FLOW></td><td></td></the>	-30. 138. ABOVE RE	918. 74765. SULTS RE	1.01	1.22 0.16 "NORM#	0.00	****** 0.69 ONSTRICTE	8330. 9.08 D) FLOW>			
	<<< <re< td=""><td>SULTS R</td><td>EFLECTIN</td><td>G THE</td><td>CONSTR</td><td>RICTED FI</td><td>LOW FOLLO</td><td>W>>>></td><td></td></re<>	SULTS R	EFLECTIN	G THE	CONSTR	RICTED FI	LOW FOLLO	W>>>>			
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL		
BRIDG:BR 0.	90. 90.	5. 126.	746. 92518.		0.60	189.81 -0.01	186.89 0.79	8330. 11.17	187.87		
TYPE PE 3. **	PCD FLOW		P/A *****		EL BI 98 ****		AB XRAB				
XSID: COI	DE SF	D FLE	N HF	VHD	EG	יד די	RR	O WSE	7.7		
RDWAY:RG	12						ertopped>	2	ST1		
RDWAY:RG XSID:CODE SRD								2	WSEL		
XSID:CODE	12 SRDL	LEW	<<< <e< td=""><td>MBANKN VHD ALPH 1.04</td><td>MENT IS HF HO</td><td>NOT OVE</td><td>ERTOPPED> CRWS</td><td>>>>> Q</td><td>WSEL</td></e<>	MBANKN VHD ALPH 1.04	MENT IS HF HO	NOT OVE	ERTOPPED> CRWS	>>>> Q	WSEL		
XSID:CODE SRD	SRDL FLEN 131. 133. M(K)	LEW REW	<<< <e 1041.="" 88491.="" area="" k="" q="" td="" xlkq<=""><td>WBANKN VHD ALPH 1.04 1.04 XRF</td><td>HF HO 1.17 0.28</td><td>EGL ERR 191.26</td><td>ERTOPPED> CRWS FR# 187.85</td><td>>>>> Q VEL 8330.</td><td>WSEL</td></e>	WBANKN VHD ALPH 1.04 1.04 XRF	HF HO 1.17 0.28	EGL ERR 191.26	ERTOPPED> CRWS FR# 187.85	>>>> Q VEL 8330.	WSEL		
XSID:CODE SRD APPRO:AS 155.	SRDL FLEN 131. 133. M(K)	LEW REW -67. 139. K 89107	<<< <e 1041.="" 88491.="" area="" k="" q="" td="" xlkq<=""><td>VHD ALPH 1.04 1.04 XRF</td><td>HF HO 1.17 0.28</td><td>EGL ERR 191.26 -0.01 OTEL 89.07</td><td>CRWS FR# 187.85 0.64</td><td>>>>> Q VEL 8330.</td><td>WSEL</td></e>	VHD ALPH 1.04 1.04 XRF	HF HO 1.17 0.28	EGL ERR 191.26 -0.01 OTEL 89.07	CRWS FR# 187.85 0.64	>>>> Q VEL 8330.	WSEL		
XSID:CODE SRD APPRO:AS 155.	12 SRDL FLEN 131. 133. M(K) 0.000 R DEFINE PSC (C)	LEW REW -67. 139. K 89107 <><<< CD TABLE RD LE L-150	<pre></pre>	WBANKN VHD ALPH 1.04 1.04 XRF 116 RIDGE	HF HO 1.17 0.28 COMPUT Q 0.0. 11 30. 13 30. 20 0.****	EGL ERR 191.26 -0.01 OTEL 89.07 CATIONS>:	CRWS FR# 187.85 0.64 >>>> AREA 1116. 1120. 746.	VEL 7.46 7.44 11.17 1.00**	WSEL 190.22 WSEL 188.05 188.51		
XSID:CODE SRD APPRO:AS 155. M(G) 0.263 FIRST USER XSID:COI EXITI:XS FULLV:FV BRIDG:BR RDWAY:RG	12 SRDL FLEN 131. 133. M(K) 0.000 R DEFINE 90. (C) (C) (C) 12. 155. DE XLE	LEW REW -67. 139. K 89107 <<<<< CD TABLE RD LE 00149 0150 05 2.******* 667 KQ XRK	<pre></pre>	MBANKN VHD ALPH 1.04 1.04 XRF 118 RIDGE 833 833 833	HF HO 1.17 0.28 COMPUT Q 0.0. 11 30. 13 30. 20 0.****	EGL ERR 191.26 -0.01 OTEL 89.07 CATIONS>:	CRWS FR# 187.85 0.64 >>>> AREA 1116. 1120. 746.	VEL 7.46 7.44 11.17 1.00**	WSEL 190.22 WSEL 188.05 188.51 187.87		

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File bloo009.wsp Hydraulic analysis for structure BLOOVT01020009 Date: 11-APR-96 Bloomfield Br 9, crossing Nulhegan R., VT Rte 102 XSID: CODE SRDL LEW AREA VHD HF EGL CRWS WSEL SRD FLEN REW K ALPH HO ERR VEL FR# EXIT1:XS ****** -200. 1403. 1.09 ***** 189.94 186.89 10700. 188.86 -90. ***** 172. 151189. 1.20 ***** ****** 0.76 7.63 ===140 AT SECID "FULLV": END OF CROSS SECTION EXTENDED VERTICALLY. WSEL, YLT, YRT = 189.32 90. -200. 1408. 1.08 0.45 190.40 ******* 10700. 189.32 0. 90. 172. 151866. 1.20 0.00 0.01 0.75 7.60 <>>>THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> ===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS = 0.80 0.81 188.81 ===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY = 188.82 ===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS = 188.82 207.80 188.81 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 0.60APPRO:AS <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> XSID: CODE SRDL LEW AREA VHD HF EGL CRWS 0 WSEL ERR SRD FLEN REW K ALPH HO FR# VET. 90. 4. 791. 2.90 0.67 191.15 187.95 10700. 188.25 90. 127. 101040. 1.02 0.52 -0.01 0.95 13.52 C LSEL BLEN XLAB TYPE PPCD FLOW P/A 3. *** 1. 0.991 ***** 190.98 ***** ***** XSID: CODE SRD FLEN HF VHD EGL <><<EMBANKMENT IS NOT OVERTOPPED>>>> LEW XSID:CODE SRDL AREA VHD HF EGI. CRWS Q WSEL SRD FLEN REW K ALPH НО ERR :AS 131. -146. 1390. 1.08 1.22 192.72 188.81 10700. 191.63 155. 133. 142. 123330. 1.18 0.36 0.02 0.67 7.70 APPRO:AS KQ XLKQ XRKQ 66. -3. 119. M(G) M(K) OTEL 0.403 0.040 117866. 190.64 <><<END OF BRIDGE COMPUTATIONS>>>> FIRST USER DEFINED TABLE. Q XSID:CODE SRD LEW REW AREA VEL WSEL 172. 10700. 151189. 1403. 7 63 188 86 EXIT1 · XS -90. -200. 0. -200. 172. 10700. 151866. 1408. FULLV: FV 7.60 189.32 BRIDG: BR 0. 4. 127. 10700. 101040. 791. 13.52 188.25 12.******* 0.****** 1.00****** RDWAY.RG 155. -146. 142. 10700. 123330. 1390. 7.70 191.63 APPRO:AS XSID:CODE XLKQ XRKQ KO APPRO:AS -3. 119. 117866. SECOND USER DEFINED TABLE. XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EXIT1:XS 186.89 0.76 178.62 198.85******* 1.09 189.94 188.86 1.08 190.40 FULLV:FV ****** 0.75 179.07 199.30 0.45 0.00 BRIDG:BR 187.95 0.95 179.40 191.08 0.67 0.52 2.90 191.15 188.25 RDWAY:RG *********** 192.14 214.24********************** APPRO:AS 188.81 0.67 180.83 207.80 1.22 0.36 1.08 192.72 191.63

APPENDIX C: **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure BLOOVT01020009, in Bloomfield, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BLOOVT01020009

General Location [Descriptive
Data collected by (First Initial, Full last name) M. WEBER	
Date (MM/DD/YY)08 / _04 / _94	
Highway District Number (I - 2; nn)	County (FIPS county code; I - 3; nnn)009
Town (FIPS place code; I - 4; nnnnn) <u>06325</u>	Mile marker (I - 11; nnn.nnn) 000170
Waterway (1 - 6) NULHEGAN RIVER	Road Name (I - 7):
Route Number <u>VT102</u>	Vicinity (1 - 9) 0.2 MI S JCT. VT.105
Topographic Map Bloomfield	Hydrologic Unit Code: 01080101
Latitude (I - 16; nnnn.n) 44451	Longitude (i - 17; nnnnn.n) 71379

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) <u>20027100090503</u>	<u> </u>
Maintenance responsibility (I - 21; nn)01	Maximum span length (I - 48; nnnn) 0130
Year built (I - 27; YYYY)1937	Structure length (I - 49; nnnnnn) <u>000134</u>
Average daily traffic, ADT (I - 29; nnnnnn) 000360	Deck Width (I - 52; nn.n) 244
Year of ADT (1 - 30; YY)92	Channel & Protection (I - 61; n) 8
Opening skew to Roadway (I - 34; nn)00	Waterway adequacy (I - 71; n) 7
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (1 - 43; nnn) <u>310</u>	Year Reconstructed (I - 106)
Approach span structure type (I - 44; nnn)000	Clear span (nnn.n ft)
Number of spans (I - 45; nnn) 001	Vertical clearance from streambed (nnn.n ft) 010.0
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (nnn.n ft²)
	** * * * * * * * * * * * * * * * * * * *

The bridge in the photos supplied with the bridge record looks much newer than 1937, renovation/reconstruction suspected. The existing structure is a steel truss type bridge. Structural inspection report of 10/21/93 indicated asphalt cracking over end joints and extensive rust on steel girders. The right abutment stem has heavy spalling and cracks in the floor beam. The stone fill at abutments is in good shape.

	Brid	ge Hydro	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctrl	-n h VTA	OT Draina	age area <i>(mi</i>	i ²): <u>-</u>
Terrain character:						
Stream character & type: _						
Streambed material: _Boulders,	coarse gra	vel, cobble	s			
Discharge Data (cfs): Q _{2.33}					Q ₂₅ -	 -
					Q ₅₀₀	
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs):	V	elocity at	Q <u>-</u> (ft/s	s): _ -		
Ice conditions (Heavy, Moderate, Li	ght) : Light	<u>t</u> C	ebris <i>(Hea</i> r	vy, Moderate	e, Light): Lig	<u>ht</u>
The stage increases to maximum	m highwate	er elevatio	n (<i>Rapidly, I</i>	Not rapidly):		
The stream response is (Flashy, I	• , .					
Describe any significant site cor stage: -	iditions up	stream or	downstrea	m that ma	y influence	the stream's
Watershed storage area (in perce	ent): <u>-</u> %					
The watershed storage area is:			eadwaters; 2	2- uniformly	distributed; 3-i	immediatly upstream
	OI th	e site)				
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
Water surface elevation (ft))	-	-	-	-	-	
			_			
Velocity (ft / sec)						
Long term stream bed changes:	_	•	•	•	<u> </u>	
le the ready of evertenced below	u tha O	2 (V N-	1.1	T I	Fraguana	
Is the roadway overtopped below						
Relief Elevation (ft):	DISCHE	ilge over i	oauway at	Q ₁₀₀ (117)	sec)	_
Assistance of the second second second	0 () (II			
Are there other structures nearb						
Upstream distance (<i>miles</i>): Highway No. :						
Clear span (ft): Clear He						
Clear span (#): Clear He	eignt (#):	· Ի	uli waterw	′ay (#²): <u>-</u>		

Downstream distance (miles): Town: Year Built: Highway No. : Structure No. : Structure Type: Clear span (#): Clear Height (#): Full Waterway (#²): Comments:	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 143.61 mi ² Lake and pond area 8.06 mi ² Watershed storage (ST) 5.6 % Bridge site elevation 900 ft Headwater elevation 2948 ft Main channel length 21.23 mi	
10% channel length elevation $\phantom{00000000000000000000000000000000000$:
Watershed Precipitation Data	
Average site precipitation in Average headwater precipitation in	
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	

Bridge Plan Data
Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 05 / 1937 Project Number 231 - L Minimum channel bed elevation: 181.0 Low superstructure elevation: USLAB 191.08 DSLAB 191.08 USRAB 191.08 DSRAB 191.08 Benchmark location description: BM, wash boring on top of stone at end of downstream left wingwall, elevation 192.40.
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary Foundation Type: 1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness 2.3 Footing bottom elevation: 182.* If 2: Pile Type: - (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: - If 3: Footing bottom elevation: -
Is boring information available? Y If no, type ctrl-n bi Number of borings taken: 2 Foundation Material Type: 1 (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around piles: COARSE GRAVEL AND BOULDERS.
Comments: *The left abutment bottom of footing is shown at elevation 181.08 and that of the right abutment is shown at elevation 182.83.

Cross-sectional Data											
Is cross-sectional data available? Y If no, type ctrl-n xs											
Source (FEMA	Source (FEMA, VTAOT, Other)? <u>VTAOT</u>										
Comments: (ny cross s	section da	ata surve	yed for t	his
study and is not comparable. Data was not retrieved.											
Station											
Feature											
Low cord elevation											
Bed elevation											
Low cord to bed length											
			l.			l.					
Station											
Feature											
Low cord elevation											
Bed elevation											
Low cord to bed length											
Source (FEMA	A, VTAOT,	Other)? _				•					
Comments:											
	.		1	1	.	1	1	1	1	1	1
Station											
Feature											
Low cord elevation											
Bed elevation											
Low cord to bed length											
			1			1	1	1	1	1	
Station											
Feature											
Low cord elevation											
Bed elevation											
Low cord to bed length											

APPENDIX E:

LEVEL I DATA FORM

Structure Number BLOOVT01020009

Qa/Qc Check by: MAI Date: 10/24/95

Computerized by: MAI Date: 10/24/95

Reviewd by: <u>JDA</u> Date: <u>01/08/97</u>

A. General Location Descriptiv	Α.	General	Location	Desc	cript	ίΙV
--------------------------------	----	---------	----------	------	-------	-----

. Data collected by (First Initial, Full last name) E. Boehml	er Date (MM/DD/YY) 07 / 06 / 1995
---	-----------------------------------

2. Highway District Number 09 Mile marker 000170

County Essex (009) Town Bloomfield (0

County Essex (009)

Waterway (1 - 6) Nulhegan River

Town Bloomfield (06325)

Road Name -

Route Number VT 102

Hydrologic Unit Code: 01080101

3. Descriptive comments:

Located 0.2 miles south of the junction with state route 105. Jim Degnan assisted with the following assessment.

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBUS 6 LBDS 6 RBDS 5 Overall 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 134.0 (feet)

Span length 130.0 (feet)

Bridge width 24.4 (feet)

Road approach to bridge:

8. LB 1 RB 1 (0 even, 1- lower, 2- higher)

9. LB_1 RB 1 (1- Paved, 2- Not paved)

10. Embankment slope (*run / rise in feet / foot*):

US left 2.2:1 US right _--___

	Pr	otection	40 Enanting	14.Severity	
	11.Type	12.Cond.	13.Erosion		
LBUS		-	0	0	
RBUS	0	-	0	0	
RBDS	_0	-	0	0	
LBDS	_0	-	0	_0	

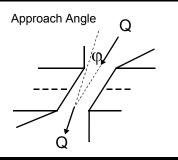
Bank protection types: 0- none; 1- < 12 inches;

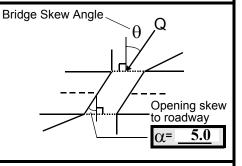
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none; 1- channel erosion; 2road wash; 3- both; 4- other


Erosion Severity: 0 - none; 1- slight; 2- moderate;

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 5 16. Bridge skew: 25

17. Channel impact zone 1:

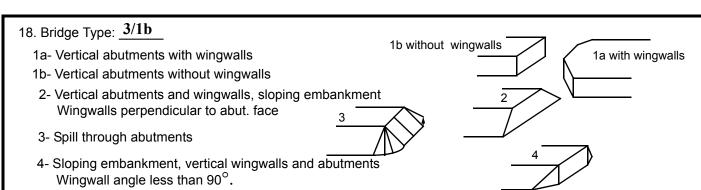
Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

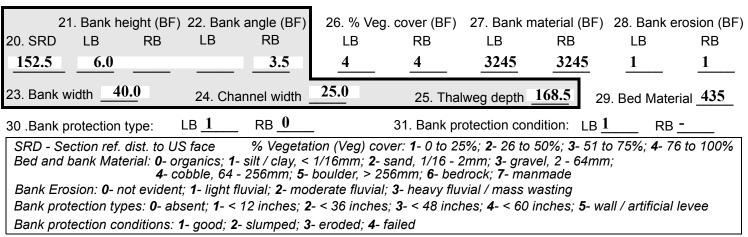
Range? 52 feet US (US, UB, DS) to 35 feet DS

Channel impact zone 2:


Exist? \mathbf{N} (Y or N)

Where? ____ (LB, RB)

Severity ____


Range? _____ feet ____(US, UB, DS) to _____feet ____

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. The predominant surface cover is forest except for on the downstream right bank which has some shrubs along the immediate bank and sparse trees and grass on the overbank.
- 7. Measured bridge dimensions matched the historical values.

C. Upstream Channel Assessment

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 27. Bank material consists of gravel, sand, cobble, and some boulders.
- 29. Bed material consists of cobble, gravel, and boulders.
- 30. Left bank protection extends 70 to 220 feet upstream. The protection appears to be native material pushed up on the bank and served as protection for a previous structure. There is a pile of stone fill similar to that on the left bank across the channel from a remnant left abutment wall.

A scour hole has developed just DS from the stone fill pile on the right bank.

22 Doint/Side har present? V Wash KNA
33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 265 35. Mid-bar width: 85
36. Point bar extent: 400 feet US (US, UB) to 100 feet US (US, UB, DS) positioned 95 %LB to 65 %RB
37. Material: <u>345</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
Point bar consisting of gravel, cobble, and boulders. The US end is more cobble boulder grading down to
gravel with some sand at the very highest part of the bar. Shrubs, brush, and small trees are growing in the
sandy part of the bar.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 35 42. Cut bank extent: 71 feet US (US, UB) to 145 feet DS (US, UB, DS)
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
Bed material at the toe of riprap along the right abutment has eroded primarily at the DS end. A couple of
the stones have slumped. This cut bank extends under the bridge with the stones protecting the bank.
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 250
47. Scour dimensions: Length 105 Width 45 Depth: 3.5 Position 70 %LB to 95 %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.): This localized scour hole is on the right bank side just DS of the old abutment location. Ambient depth of the
This localized scour hole is on the right bank side just DS of the old abutment location. Ambient depth of the channel is 1.0 feet.
Channel is 1.0 feet.
42 Are there major confluences? Now we want to be a second
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance <u>-</u> 52. Enters on <u>-</u> (<i>LB or RB</i>) 53. Type <u>-</u> (<i>1- perennial; 2- ephemeral)</i>
Confluence 2: Distance <u>-</u> Enters on <u>-</u> (<i>LB or RB</i>) Type <u>-</u> (<i>1- perennial; 2- ephemeral</i>)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB LB RB
95.0 1.5 2 7 7 -
58. Bank width (BF) 59. Channel width (Amb) 60. Thalweg depth (Amb) 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
435
Bed material consists of cobble, gravel, and boulders.

65. Debris and Ice	Is there debris accumulation?	(Y or N) 66. Where? Y	_ (1 - Upstream; 2 - At bridge; 3 - Both
67. Debris Potential 1	(1 - Low; 2 - Moderate; 3 - High)	68. Capture Efficiency 2	(1 - Low; 2 - Moderate; 3 - High)

70. Debris and Ice Comments:

69. Is there evidence of ice build-up? $\frac{1}{N}$ (Y or N) Ice Blockage Potential $\frac{N}{N}$ (1- Low; 2- Moderate; 3- High)

Lots of trees on the banks upstream with potential for bank instability and erosion. The bridge opening will accommodate debris flow.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	45	0	0	0	0	90.0
RABUT	1	25	35	1	l 1	2	0	129.0

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0

The concrete abutments are visible at the top of the riprapped spill-through slopes.

80 Wingwalls.

00. <u>******</u>		Material?	Scour Condition?	Scour depth?	Exposure depth?	81. Angle?	Length?
USLWW:						95.0	
USRWW:	N		-		-	1.5	
DSLWW:	_				N	23.5	
DSRWW:			-		-	23.5	

USLWW USRWW Wingwall length Wingwall angle **DSRWW** DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	-	N	-	ı	ı	1	1
Condition	N	-	-	-	-	-	1	1
Extent	-	-	-	-	-	3	3	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwal	ll and pro	otection	commer	nts (eg. unde	rmined pene	tration, unusu	ual scour processes, etc.):
-							
- -							
-							
-							
-							
- -							
-							
-							
- 							
<u>Piers</u> :							
	e piers?		(Y or if N	type ctrl-n p	r)		1
85. Pier no.	widt	:h (w) 1	foot	olov	ration (a) f	oot	
FIELTIO.		<u> </u>	1	e@w1	vation (e) fe		
Pier 1	w1	w2	w3		e@w2	e@w3	w1
Pier 2	-	-	-	-	-	-	
Pier 3	-	-		-	-	_	w2
Pier 4	_	_	1	-	-	-	→ w 3
rici 4	-	-	1-	-	-	-	
Level 1 Pi	er Descr	r.	1	2	3	4	
86. Locatio	on (BF)			-	-	-	LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP
87. Type				-	-	-	1- Solid pier, 2- column, 3- bent
88. Materia	al			-	-	-	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape				-	-	-	1- Round; 2- Square; 3- Pointed
90. Inclined	d?			-	-	-	Y- yes; N- no
91. Attack	∠ (BF)			-	-	-	
92. Pushed	d			-	-	-	LB or RB
93. Length	(feet)		-	-	-	-	
94. # of pile	es			-	-	-	
95. Cross-r	members	s		-	-	-	0- none; 1- laterals; 2- diagonals; 3- both
96. Scour (Condition	n		-	-	-	 0- not evident; 1- evident (comment); 2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed
97. Scour o	depth		N	-	-	-	
98. Exposu	ıre depth	า	-	-	-	-	

99. Pier comments (eg. undermined penetration,	protection and protection ext	ent, unusual scour pi	rocesses, etc.):
-			
-			
- -			
-			
-			
-			
-			
100. E. Downs	tream Channel Asso	essment	
Bank height (BF) Bank angle (BF)	% Veg. cover (BF)	Bank material (Bl	F) Bank erosion (BF)
SRD LB RB LB RB	LB RB	LB RB	LB RB
	<u>- NO</u>	PIE RS	
Bank width (BF) Channel width (A	mb) Thalweg de	pth (Amb)	Bed Material
Bank protection type (Qmax): LB	RB Bank protec	tion condition:	_B RB
	tation (Veg) cover: 1 - 0 to 259		
Bed and bank Material: 0 - organics; 1 - silt / clay, 4 - cobble. 64 - 256mm:	< 1/16mm; 2- sand, 1/16 - 2r. 5- boulder, > 256mm; 6- bedr	mm; 3- gravel, 2 - 64 <i>i</i> ock: 7 - manmade	mm;
Bank Erosion: 0- not evident; 1- light fluvial; 2- n	noderate fluvial; <mark>3</mark> - heavy fluvi	ial / mass wasting	
Bank protection types: 0- absent; 1- < 12 inches		es; 4 - < 60 inches; 5 -	wall / artificial levee
Bank protection conditions: 1- good; 2- slumped Comments (eg. bank material variation, minor influence)	•		
Comments (eg. bank material variation, minor initial	owo, proteotion extent, etc.).		
4			
345			
345			
0			
2			
435 0			
3			
-			
2			
Right bank protection has eroded and slipp Bank material consists of gravel, cobble, an	•	ling 35 feet DS.	
101. Is a drop structure present? Be	(Y or N. if N type ctrl-n ds)	102. Distance: -	feet
	ure material: \mathbf{d} (1- steel sl		
105. Drop structure comments (eg. downstream s		, ,	, ,
material consists of cobble, gravel, and boo			

106. Point/Side bar present? (Y or N. if N type ctr	d-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet _ Material: NO	(<i>US, UB, DS</i>) positioned N %LB to - %RB
Point or side bar comments (Circle Point or Side; note additional b	pars_material_variation_status_etc.);
DROP STRUCTURE	aro, material variation, status, steet,
DROP STRUCTURE	
Is a cut-bank present? (Y or if N type ctrl-n cb)	
Cut bank extent: $\underline{0}$ feet $\underline{50}$ (US, UB, DS) to $\underline{79}$ feet \underline{US}	
Bank damage: <u>210</u> (<i>1- eroded and/or creep; 2- slip failure; 3- b</i> Cut bank comments (eg. additional cut banks, protection condition	,
DS	, 5.6).
0 30	
435	
Is channel scour present? Th (Y or if N type ctrl-n cs) Mid-scour distance: e
·	Positioned ton %LB to the %RB
Scour comments (eg. additional scour areas, local scouring proces	
bar is at the DS bridge face. There is a little vegetation or	the bar occupying less than 5% of the area. The
bar ends at the confluence with the Connecticut River. The	he bar consist mostly of cobble and boulders.
N	
Are there major confluences? - (Y or if N type ctrl	<i>l-n mc</i>) How many? <u></u>
Confluence 1: Distance Enters on (LB	· ————
Confluence 2: Distance (LB	or RB) Type $\underline{\mathbf{NO}}$ (1 - perennial; 2 - ephemeral)
Confluence comments (eg. confluence name):	
CUT BANKS	
F. Geomorphic Cha	nnal Assassmant
•	
2-	Constructed Stable
4-	Aggraded Degraded
	Laterally unstable Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):
${f N}$
-
- -
- -
- -
NO CHANNEL SCOUR
\mathbf{Y}

109. G. Plan View Sketch						
point bar (pb)	debris	flow Q	stone wall			
cut-bank cb	rin ran or OOD	cross-section ++++++	other wall			
scour hole	rip rap or stone fill	ambient channel ——				

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BLOOVT01020009 Town: Bloomfield

Road Number: VT102

County: Essex

Stream: Nulhegan River

Initials JDA Date: 1/8/97 Checked: EMB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	8330	10700	0
	1014	1231	0
	26	158	0
	0	0	0
	152	155	0
	54	133	0
	0	0	0
	0.498	0.498	0
y1, average depth, MC, ft	6.7	7.9	ERR
y1, average depth, LOB, ft	0.5	1.2	ERR
y1, average depth, ROB, ft	ERR	ERR	ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	88425	123248	0
	88130	119962	0
	295	3286	0
	0	0	0
	0.0000	0.0000	ERR
	8302.2	10414.7	ERR
	27.8	285.3	ERR
	0.0	0.0	ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	8.2	8.5	ERR
	1.1	1.8	ERR
	ERR	ERR	ERR
	12.2	12.6	N/A
	ERR	ERR	ERR
	ERR	ERR	ERR
Results			
Live-bed(1) or Clear-Water(0) Contr Main Channel Left Overbank Right Overbank	action Sc 0 N/A N/A	our? 0 N/A N/A	N/A N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \mbox{Converted to English Units } ys=y2-y_bridge \\ (Richardson and others, 1995, p. 32, eq. 20, 20a)$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	8330	10700	0
(Q) discharge thru bridge, cfs	8330	10700	0
Main channel conveyance	92408	101065	0
Total conveyance	92408	101065	0
Q2, bridge MC discharge,cfs	8330	10700	ERR
Main channel area, ft2	745	791	0
Main channel width (normal), ft	107.3	108.1	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	107.3	108.1	0
<pre>y_bridge (avg. depth at br.), ft</pre>	6.94	7.32	ERR
Dm, median (1.25*D50), ft	0.6225	0.6225	0
y2, depth in contraction,ft	5.91	7.28	ERR
ys, scour depth (y2-ybridge), ft	-1.03	-0.04	N/A

```
Armoring
Dc=[(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]
Depth to Armoring=3*(1/Pc-1)
(Federal Highway Administration, 1993)
```

Downstream bridge face property Q, discharge thru bridge MC, cfs	100-yr 8330	500-yr 10700	Other Q N/A
Main channel area (DS), ft2	745	791	0
Main channel width (normal), ft	107.3	108.1	0.0
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	107.3	108.1	0.0
D90, ft	1.0663	1.0663	0.0000
D95, ft	1.2823	1.2823	0.0000
Dc, critical grain size, ft	0.6584	0.9410	ERR
Pc, Decimal percent coarser than Dc	0.317	0.146	0.000
Depth to armoring, ft	4.26	16.51	ERR

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

Characteristic	Left Abu 100 yr Q !		Other Q 1	Right Ab .00 yr Q 5		ther Q
(Qt), total discharge, cfs a', abut.length blocking flow, ft	8330 76.2	10700 154.9	0	8330 22.7	10700 25.4	0
Ae, area of blocked flow ft2	102.5	253	0	77.9	108.4	0
Qe, discharge blocked abut.,cfs	395.7	808.8	0	392.3	587.1	0
(If using Qtotal overbank to obtain						
Ve, (Qe/Ae), ft/s	3.86	3.20	ERR	5.04	5.42	ERR
ya, depth of f/p flow, ft	1.35	1.63	ERR	3.43	4.27	ERR
Coeff., K1, for abut. type (1.0,	verti.; 0	.82, vert	i. w/ win	gwall; 0.	55, spill	thru)
K1	0.55	0.55	0.55	0.55	0.55	0.55
Angle (theta) of embankment (<90		_		_		
theta	95	95	95	85	85	85
K2	1.01	1.01	1.01	0.99	0.99	0.99
Fr, froude number f/p flow	0.587	0.441	ERR	0.479	0.462	ERR
ys, scour depth, ft	8.28	10.46	N/A	9.55	11.38	N/A
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$						
(Richardson and others, 1995, p. 4	9, eq. 29)					
a'(abut length blocked, ft)	76.2	154.9	0	22.7	25.4	0
y1 (depth f/p flow, ft)	1.35	1.63	ERR	3.43	4.27	ERR
a'/y1	56.65	94.84	ERR	6.61	5.95	ERR
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00
Froude no. f/p flow	0.59	0.44	N/A	0.48	0.46	N/A
Ys w/ corr. factor K1/0.55:			,			,
vertical	8.20	9.07	ERR	ERR	ERR	ERR
vertical w/ ww's	6.73	7.43	ERR	ERR	ERR	ERR
spill-through	4.51	4.99	ERR	ERR	ERR	ERR

Abutment riprap Sizing

Isbash Relationship $D50=y*K*Fr^2/(Ss-1)$ and $D50=y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Q100	Q500	Other Q	Q100	Q500	Other Q
0.79 6.94	0.95 7.32	0	0.79 6.94	0.95 7.32	0 0.00
t: left	abutment		right	abutment,	ft
2.34	ERR	0.00	2.34	ERR	0.00 ERR
	0.79 6.94 t: left	0.79 0.95 6.94 7.32 t: left abutment 2.34 ERR	0.79 0.95 0 6.94 7.32 0.00 t: left abutment 2.34 ERR 0.00	0.79 0.95 0 0.79 6.94 7.32 0.00 6.94 t: left abutment right 2.34 ERR 0.00 2.34	0.79 0.95 0 0.79 0.95 6.94 7.32 0.00 6.94 7.32 t: left abutment right abutment, 2.34 ERR 0.00 2.34 ERR