LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (DANVTH00010004) on TOWN HIGHWAY 1, crossing JOES BROOK, DANVILLE, VERMONT

Open-File Report 97-675

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior

Solve USGS

science for a changing world

LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (DANVTH00010004) on TOWN HIGHWAY 1, crossing JOES BROOK, DANVILLE, VERMONT

By ROBERT H. FLYNN AND ERICK M. BOEHMLER

U.S. Geological Survey Open-File Report 97-675

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	1
Cross-Sections Used in WSPRO Analysis	1
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	1
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	1
Riprap Sizing	1
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	
1	
FIGURES	
1. Map showing location of study area on USGS 1:25,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	•••••
highway map	
3. Structure DANVTH00010004 viewed from upstream (August 22, 1995)	
4. Downstream channel viewed from structure DANVTH00010004 (August 22, 1995)	
5. Upstream channel viewed from structure DANVTH00010004 (August 22, 1995)	
6. Structure DANVTH00010004 viewed from downstream (August 22, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	•••••
DANVTH00010004 on Town Highway 1, crossing Joes Brook,	
Danville, Vermont	
8. Scour elevations for the 100- and 500-year discharges at structure	
DANVTH00010004 on Town Highway 1, crossing Joes Brook,	
Danville, Vermont	
Danvine, vermont.	•••••
TABLES	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
DANVTH00010004 on Town Highway 1, crossing Joes Brook,	
Danville, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
DANVTH00010004 on Town Highway 1, crossing Joes Brook,	
Danville. Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model
BLB	bottom of left abutment	TD	thalweg
BRB	bottom of right abutment		
	•		

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 4 (DANVTH00010004) ON TOWN HIGHWAY 1, CROSSING JOES BROOK, DANVILLE, VERMONT

By Robert H. Flynn and Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure DANVTH00010004 on Town Highway 1 crossing Joes Brook, Danville, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the New England Upland section of the New England physiographic province in northeastern Vermont. The 42.5-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture along the upstream and downstream left banks with trees and brush along the immediate banks. The upstream and downstream right banks are forested.

In the study area, Joes Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 68 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D_{50}) of 80.1 mm (0.263 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1995, indicated that the reach was stable.

The Town Highway 1 crossing of Joes Brook is a 49-ft-long, two-lane bridge consisting of one 45-foot steel-beam span (Vermont Agency of Transportation, written communication, March 17, 1995). The opening length of the structure parallel to the bridge face is 45 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening and the computed opening-skew-to-roadway is 15 degrees.

A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the right abutment during the Level I assessment. The scour hole also extends upstream and downstream of the bridge, along the right side of the channel. The scour protection measures at the site include type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream left wingwall and along the entire base length of the downstream right wingwall. Type-3 stone fill (less than 48 inches diameter) is along the entire base length of the upstream right wingwall and type-5 protection (stone block wall) is along the upstream right bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 11.7 to 13.0 ft along the right abutment and from 6.6 to 9.4 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich and Hire equations (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

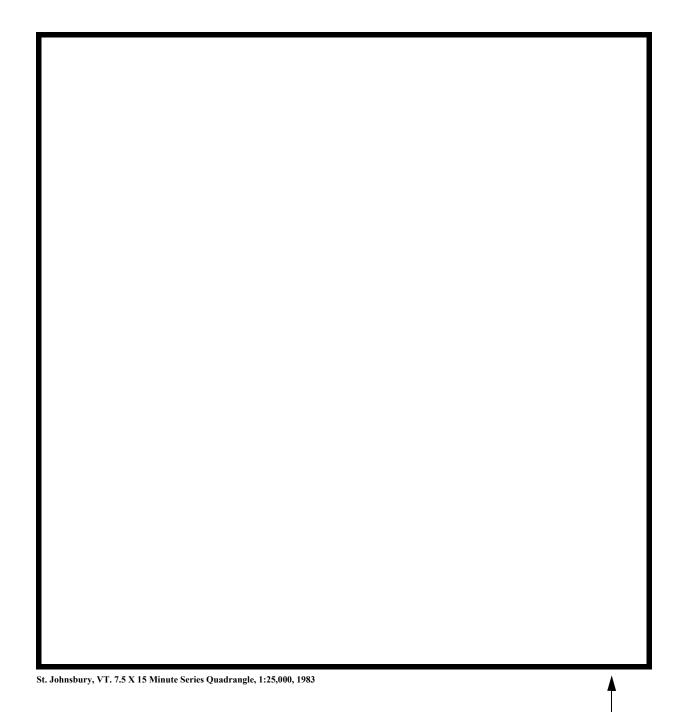
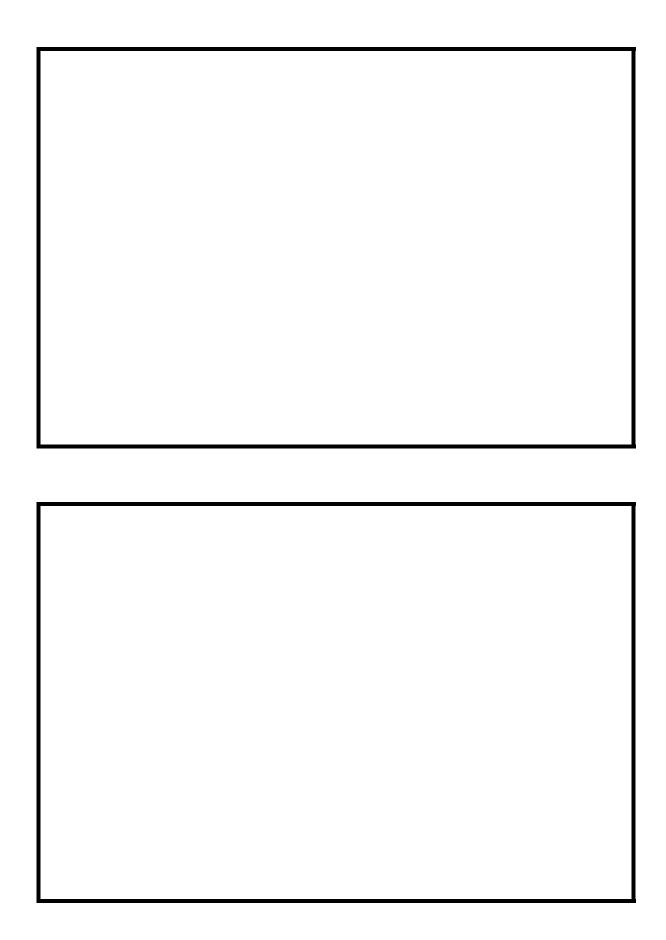



Figure 1. Location of study area on USGS 1:25,000 scale map.

NORTH

LEVEL II SUMMARY

icture Number -	DANVTH00010	0004	Stream	Joes B	Brook	
unty <u>Caledor</u>	<u>iia</u>		Road —	TH1	District	7
	Γ	Description	n of Bride	ge		
Bridge length	49 ft Br	ridge width	27.9	– <i>ft M</i> Straight	Iax span length	
Alignment of bri	idge to road (on cu Vertical, concret	ırve or straiş	ght)	Strangin	Sloping	
Abutment type	·		Embankn	nent type	8/22/95	
Stone fill on abut	ment? No Type-2,	, along the u	Data of inc pstream ei	nection nd of the up	ostream left wing	gwall and
along the entire b	base length of the d	lownstream	right wing	wall. Type-	3 along the entir	e base length
of the upstream r	ight wingwall.					
		Abut	ments and	l wingwalls	are concrete. Tl	here is a one
foot deep scour h	nole along the right	t abutment.	The scour	hole also ex	xtends upstream	and
downstream of th	ne bridge and is ap	proximately	2.5 ft dee	p at the ups	stream bridge fac	ce.
				-	Y	15
Is bridge skewed	l to flood flow acco	ording to Y	surve	ev?	Angle	
_	ate channel bend in				O	bank are
	bend impacts the	-		<u></u>	<u> </u>	
located where the	bena impacts the	ирзисант тұ	siit balik.			
Debris accumula	ation on bridge at	time of Leve	el I or Lev	el II site vi	sit:	
	Date of inspect 8/22/95		ercent of loc ked no	ohannal rizontal ly		vertically
Level I	8/22/95		0		_	0
Level II	Moder	rate. There is	s some del	oris caught	on boulders upst	tream and
	ees leaning over th	e channel at	the locati	on of the up	ostream cutbank	•
Potential fo	r uevris					
None noted as o	£ 0/22/05					
None noted as o	1 8/22/93.					

Description of the Geomorphic Setting

General topog	graphy	The cha	annel is located withi	n a moderate relief va	lley setting with little to
no flood plair	1.				
Geomorphic	conditio	ons at brid	ge site: downstream	(DS), upstream (US)	
Date of inspe	ection	8/22/95			
DS left:	Steep c	hannel bar	nk.		
DS right:	Steep c	channel bar	nk to a moderately sl	oped overbank.	
US left:	Steep c	hannel bar	ık.		
US right:	Steep c	hannel bar	nk and overbank.		
			Description of the	Channel	
		68			5
Average top			Boulder / Cobble	Average depth —	Cobble / Boulder
Predominant	t bed ma	terial		Bank material	Sinuous but stable
with non-allu	vial char	nnel bound	aries.		
					8/22/95
Vegetative co	Pasture	e with trees	s and brush along the	immediate banks.	
DS left:	Trees a	and brush.			
DS right:	Pasture	e with trees	s and brush along the	immediate banks.	
US left:	Trees a	and brush.			
US right:		<u>Y</u>	<u>-</u>		
Do banks ap	pear stal	ble? -		we weuwn unu sype	vj msmonny um
date of obser	rvation.				
				<u>1</u>	None noted as of
8/22/95. Describe any	obstruc	ctions in ci	hannel and date of o	bservation.	

Hydrology

Drainage area $\frac{42.5}{}$ mi ²	
Percentage of drainage area in physiographic p	rovinces: (approximate)
Physiographic province/section New England/New England Upland	Percent of drainage area
Is drainage area considered rural or urban? — urbanization:	Rural Describe any significant
Is there a USGS gage on the stream of interest?	<u>No</u>
USGS gage description	
USGS gage number	_
Gage drainage area	
Is there a lake/p	· · · · · · · · · · · · · · · · · · ·
$\frac{2,330}{Q100}$ Calculated ft^3/s	Discharges $3,250$ $O500$ ft^3/s
	00- and 500-year discharges are based on a
drainage area relationship.[(42.5/33.9)exp 0.67] w	rith bridge number 35 in Danville. Bridge
number 35 crosses Joes Brook upstream of this sit	
from the VTAOT database. The drainage area abo	
These values were selected due to the central tende	<u> </u>
others which were developed from empirical relating discharge (Benson, 1962; Johnson and Tasker, 197	
1887).	T, 111 WA, 1705, 10001, 1757acco, 1a1001,

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT plans,	USGS survey
Datum tie between USGS survey and VTAOT plans None	e
Description of reference marks used to determine USGS datum.	RM1 is a chiseled "X"
on top of the right end of the downstream concrete curbing (elev. 4	85.38 ft, arbitrary survey
datum). RM2 is a chiseled "X" on top of the downstream left wing	gwall (elev. 481.74 ft,
arbitrary survey datum). RM3 is a chiseled "X" on top of the upstro	eam right wingwall (elev.
483.73 ft, arbitrary survey datum).	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-49	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	15	1	Road Grade section
APPRO	73	2	Modelled Approach section (Templated from APTEM)
APTEM	80	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.050 to 0.075, and overbank "n" values ranged from 0.055 to 0.080.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0213 ft/ft, which was estimated from the topographic map (U.S. Geological Survey, 1983).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0239 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 483.0 ft	
Average low steel elevation 479.3 ft	
100-year discharge $\frac{2,330}{\text{Mater-surface elevation in bridge opening}} ft^3/s$ 473.0 ft	
Road overtopping?No Discharge over road	ft^3/s
Area of flow in bridge opening 283 ft ² Average velocity in bridge opening 8.2 ft/s Maximum WSPRO tube velocity at bridge 10.0 ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 0.2 t	474.3
500-year discharge 3,250 ft ³ /s Water-surface elevation in bridge opening 473.7 ft	
Road overtopping?No Discharge over road	ft^3/s
Area of flow in bridge opening 314 ft ² Average velocity in bridge opening 10.4 ft/s Maximum WSPRO tube velocity at bridge 12.7 /s	
Water-surface elevation at Approach section with bridge	475.8
Water-surface elevation at Approach section without bridge	475.3
Amount of backwater caused by bridge 0.5 7	
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge openingft	
Area of flow in bridge opening ft ²	
Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge	
Water-surface elevation at Approach section without bridge	
Amount of backwater caused by bridget	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour for the 100- and 500-year discharges was computed by use of the Laursen clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20).

Abutment scour for the right abutment was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the left abutment was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Scour Results

Contraction scour:		500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	0.0	0.0	 -
Depth to armoring	2.2	6.0	
Left overbank	 	 	
Right overbank			
Local scour:			
Abutment scour	6.6	9.4	
Left abutment	11.7-	13.0-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
	100-yr dischargo		Incipient overtopping discharge
		(D ₅₀ in feet)	
Abutments:	1.3	2.0	
Left abutment	1.3	2.0	
Right abutment			
Piers:			
Pier 1			
Pier 2			
11012			

Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure DANVTH00010004 on Town Highway 1, crossing Joes Brook, Danville, Vermont.

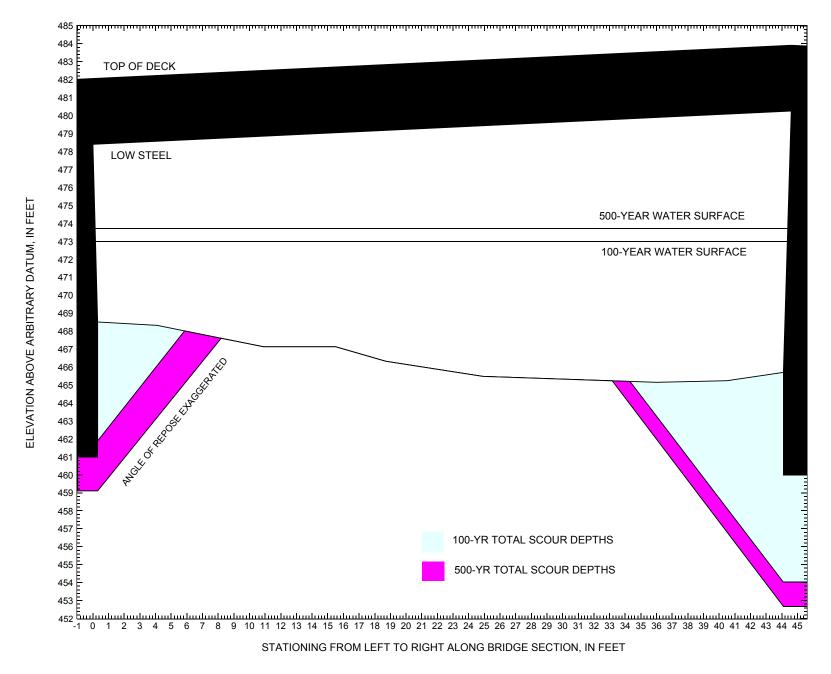


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure DANVTH00010004 on Town Highway 1, crossing Joes Brook, Danville, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure DANVTH00010004 on Town Highway 1, crossing Joes Brook, Danville, Vermont. [VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 2,330) cubic-feet per sec	cond				
Left abutment	0.0	478.5	478.4	461.0	468.5	0.0	6.6		6.6	461.9	0.9
Right abutment	44.6	480.5	480.3	460.0	465.7	0.0	11.7		11.7	454.0	-6.0

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure DANVTH00010004 on Town Highway 1, crossing Joes Brook, Danville, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-yr. discharge is 3,250 cubic-feet per second										
Left abutment	0.0	478.5	478.4	461.0	468.5	0.0	9.4		9.4	459.1	-1.9
Right abutment	44.6	480.5	480.3	460.0	465.7	0.0	13.0		13.0	452.7	-7.3

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1983, St. Johnsbury, Vermont 7.5 X 15 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:25,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File danv004.wsp
T1
T2
          Hydraulic analysis for structure DANVTH00010004
                                                           Date: 01-AUG-97
Т3
          Bridge #4 over Joes Brook in Danville, VT. RHF
*
           * * 0.002
J1
           6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
Q
            2330.0
                    3250.0
SK
            0.0213
                    0.0213
*
XS
     EXITX
            -49
                            0.
GR
           -251.8, 487.14
GR
           -153.2, 479.43
                           -115.4, 478.33
                                             -86.8, 477.59
                                                               -66.6, 473.57
GR
             0.0, 472.38
                             13.9, 466.71
                                              16.3, 466.19
                                                               18.2, 465.98
                             29.8, 466.18
                                                               41.0, 465.90
             23.0, 466.62
                                               34.1, 466.45
GR
GR
             45.8, 466.23
                             49.5, 467.05
                                              57.2, 470.65
                                                               70.4, 474.63
                                           133.5, 485.51 154.4, 491.93
GR
             90.8, 475.42
                            110.5, 482.22
            168.9, 492.35
GR
*
                                      0.070
Ν
            0.055
                        0.065
SA
                                70.4
                   0.0
*
XS
     FULLV
               0 * * *
                          0.0000
*
*
              SRD
                    LSEL
                              XSSKEW
BR
     BRIDG
              0
                    479.32
                               15.0
GR
              0.0, 478.40
                              0.3, 468.51
                                                                10.9, 467.13
                                               4.1, 468.32
GR
             15.5, 467.13
                             18.7, 466.32
                                               24.9, 465.48
                                                                36.0, 465.15
                                              44.6, 480.25
GR
             40.5, 465.24
                             44.1, 465.70
                                                                0.0, 478.40
*
*
          BRTYPE BRWDTH
                              WWANGL
                                        WWWID
                    41.2 * *
                               51.8
                                          9.4
CD
            1
Ν
            0.050
*
*
              SRD
                    EMBWID
                              IPAVE
XR
                      27.9
              15
                                1
                          -217.1, 485.78
           -388.7, 499.70
                                           -159.8, 482.36
                                                              -76.8, 480.41
GR
GR
                             49.0, 483.91
                                            194.7, 490.13
              0.0, 482.06
                                                               318.3, 495.36
*
XT
    APTEM
               80
                            0.
           -409.9, 502.19
                           -406.4, 500.08
GR
                                             -384.8, 499.77
                                                              -344.8, 491.87
GR
           -316.2, 487.07
                           -251.8, 487.14
                                            -173.9, 481.52
                                                              -140.9, 476.29
GR
           -92.3, 474.63
                              0.0, 471.50
                                               5.4, 468.32
                                                               11.9, 467.93
            19.0, 467.58
GR
                              24.7, 466.49
                                               28.7, 466.56
                                                               30.1, 466.90
                                                               47.0, 468.43
GR
             34.6, 467.06
                             39.6, 467.36
                                               40.4, 468.02
GR
             51.0, 469.61
                                               56.7, 474.38
                                                                65.5, 482.55
                             56.3, 472.58
GR
            69.6, 480.71
                            73.2, 481.80
                                           85.3, 482.26 109.9, 484.93
GR
            126.5, 495.42
*
             73 * * * 0.0239
AS
    APPRO
GT
Ν
            0.055
                      0.075
                                     0.080
SA
                    0.0
                              65.5
HP 1 BRIDG 473.00 1 473.00
HP 2 BRIDG 473.00 * * 2330
HP 1 APPRO 474.32 1 474.32
HP 2 APPRO 474.32 * * 2330
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

						V	VOPF		UIF	OI FI
WSPRO V042094							U.S.GE OFILE C			EY
Ну	draulic	analysi	s for	stru	cture	DANVTH	danv004 00010004 VT. RHF	Date	: 01-A	AUG-97
CROSS-	SECTION	PROPERT	IES:	ISEQ	= 3;	SECI	D = BRID	G; SRD	=	0.
	SA# 1	283	25		43	54				QCR 4139
473.00		283	25	339	43	54	1.00	0	44	4139
VELOCI	TY DIST	RIBUTION	ı: IS	EQ =	3; 5	ECID =	BRIDG;	SRD =		0.
	SEL .00	LEW 0.2	REW 44.4	ARI 283	EA .2 2	K 5339.	2330.	VEL 8.23		
X STA. A(I) V(I)	0.2	23.9 4.87	5.6	16.7 6.97	8.9	15.0 7.78	11.6 14. 8.0	4	13.8	
X STA. A(I) V(I)	16.	13.4 8.71		12.7		12.3	22.4 12. 9.6	1	11.7 9.98	25.8
X STA. A(I) V(I)	25.8	3 11.8 9.90		11.8		11.6	11.		11.6	
X STA. A(I) V(I)	33.′						38.8 15. 7.7			
CROSS-	SECTION	PROPERT	'IES:	ISEQ	= 5;	SECI	D = APPF	0; SRD	=	73.
WSEL	SA# 1	AREA 132		K	TOPW 88		ALPH	LEW	REW	QCR 913
474.32	2	356 488	23 27	069 725	57 145	61 149		-87	57	5062 4746
VELOCI	TY DIST	RIBUTION	ı: IS	EQ =	5; 8	SECID =	APPRO;	SRD =	7	73.
	SEL .32 -8	LEW 38.1		AR1	EA .8 2	K 17725.	2330.	VEL 4.78		

474.32 -88.1 56.8 487.8 27725. 2330. 4.78 -88.1 -31.8 -15.2 -3.6 4.5 8.1 53.7 36.4 30.8 30.1 21.9 2.17 3.20 3.78 3.87 5.31 X STA. A(I) V(I) 8.1 11.3 14.4 17.3 20.2 22.7 21.0 20.0 19.9 19.7 19.1 5.55 5.82 5.86 5.91 6.10 X STA. A(I) V(I) 22.7 25.1 27.4 29.8 32.3 18.3 18.6 18.6 19.2 19.1 6.38 6.27 6.27 6.07 6.11 X STA. A(I) V(I) 34.9 37.6 40.6 44.1 48.0 56.8 20.0 21.1 22.2 24.0 34.2 5.83 5.52 5.24 4.85 3.41 X STA. A(I) V(I)

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File danv004.wsp Hydraulic analysis for structure DANVTH00010004 Date: 01-AUG-97 Bridge #4 over Joes Brook in Danville, VT. RHF

		OSS-SECTION							
	WS	SEL SA# 1 .71	AREA	K 29509	TOPW WI	TP ALPH	LEW	REW	QCR 4818
	473	.71	313	29509	43	56 1.00	0	44	4818
	VEI	LOCITY DIST	RTBUTTO	N: TSEO =	3: SECTI) = BRTDG:	SRD =		0.
		WSEL 473.71	0.1	44.4 313	8.5 29509	K Q	10.37		
	STA.	0.	1	5.5	8.6	11.3	13.7		16.1
	A(I) V(I)		27.1 5.99	17.8 9.15	16.7 9.75	11.3 7 15.4 5 10.5	4 3 1	15.1	
Х	STA.	16.	1	18.3	20.2	22.0	23.8		25.4
	A(I) V(I)		14.8	14.1	13.6	13.3 12.3	1 0 1	13.1	
X	7 (T)	25.	4 12.9	27.0	28.6	30.2	31.8	13.1	33.4
	V(I)		12.57	12.50	12.73	12.4	6 1	2.45	
		33.	4	35.1	36.8	38.6	40.7		44.4
	A(I) V(I)		13.7 11.88	13.9 11.66	15.3 10.60	16.0 9.78	6 B	28.3 5.74	
	CRO	OSS-SECTION	PROPER	TIES: ISEÇ) = 5; SI	CID = APPRO	O; SRD	=	73.
	WS	SEL SA#	AREA 298	K	TOPW WE	TP ALPH	LEW	REW	
					122				QCR
		2	443	13866 32418	132 1 58	63			QCR 2538 6927
	475		443 741	32418 46284	132 1 58 191 1	.32 63 .95 1.13	-131	58	QCR 2538 6927 7810
		2	443 741						2538 6927 7810
	VEI	2 .83 LOCITY DIST	443 741 RIBUTIO	N: ISEQ =	5; SECII) = APPRO;	SRD =		2538 6927 7810
	VEI	2 LOCITY DIST: WSEL 475.83 -1	443 741 RIBUTIO LEW 32.3	N: ISEQ = REW AF 58.4 741	5; SECII REA 3 46284	D = APPRO; K Q 4. 3250.	SRD = VEL 4.38	7:	2538 6927 7810
	VEI	2 LOCITY DIST: WSEL 475.83 -1	443 741 RIBUTIO LEW 32.3	N: ISEQ = REW AF 58.4 741	5; SECII	D = APPRO; K Q 1. 3250.	SRD = VEL 4.38	7:	2538 6927 7810
	VEI STA. A(I) V(I)	2 .83 LOCITY DIST: WSEL 475.83 -1	443 741 RIBUTIO LEW 32.3 3 81.0 2.01	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00	5; SECII REA 3 46284 -43.3 46.3 3.55	D = APPRO; K Q 1. 3250. -29.1 3. 41.1	SRD = VEL 4.38 -17.9	73 38.9 4.18	2538 6927 7810
	VEI STA. A(I) V(I)	2 .83 LOCITY DIST: WSEL 475.83 -1	443 741 RIBUTIO LEW 32.3 3 81.0 2.01	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00	5; SECII REA 3 46284 -43.3 46.3 3.55	D = APPRO; K Q 1. 3250. -29.1 3. 41.1	SRD = VEL 4.38 -17.9	73 38.9 4.18	2538 6927 7810
	VEI STA. A(I) V(I)	2 .83 LOCITY DIST: WSEL 475.83 -1 -132.	443 741 RIBUTIO LEW 32.3 3 81.0 2.01	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00	5; SECII REA 3 46284 -43.3 46.3 3.55	D = APPRO; K Q 1. 3250. -29.1 3. 41.1	SRD = VEL 4.38 -17.9	73 38.9 4.18	2538 6927 7810
Х	VEI STA. A(I) V(I) STA. A(I) V(I)	2 .83 LOCITY DIST: WSEL 475.83 -1 -132.	443 741 RIBUTIO LEW 32.3 3 81.0 2.01 3 36.4 4.46	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00 0.1 37.8 4.30	5; SECII REA -43.3 46.3 3.53 6.1 30.6 5.33	D = APPRO; K Q 2 . 3250. -29.1 3 . 41.1 3 . 9: 10.0 5 . 29.1 5 . 5:	SRD = VEL 4.38 -17.9 5 2 13.6 5 2 29.4	38.9 4.18 29.2 5.57	2538 6927 7810 3.
X X	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	2 .83 LOCITY DIST: WSEL 475.83 -1 -132.	443 741 RIBUTIO LEW 32.3 3 81.0 2.01 3 36.4 4.46	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00 0.1 37.8 4.30	5; SECII REA -43.3 46.3 3.53 6.1 30.6 5.33	D = APPRO; K Q 2 . 3250. -29.1 3 . 41.1 3 . 9: 10.0 5 . 29.1 5 . 5:	SRD = VEL 4.38 -17.9 5 2 13.6 5 2 29.4	38.9 4.18 29.2 5.57	2538 6927 7810 3.
X X	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	2 .83 LOCITY DIST: WSEL 475.83 -1 -132	443 741 RIBUTIO LEW 32.3 81.0 2.01 3 36.4 4.46 2 28.1 5.77	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00 0.1 37.8 4.30 20.5 28.1 5.77	5; SECII REA -43.3 46.3 3.53 6.1 30.6 5.33 23.6 27.2 5.96	C = APPRO; K Q 3250. -29.1 41.1 3.9 10.0 29.5 26.5 27.1 5.9	SRD = VEL 4.38 -17.9 5 2 13.6 5 2 29.4	38.9 4.18 29.2 5.57 28.4 5.73	2538 6927 7810 3.
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	2 .83 LOCITY DIST: WSEL 475.83 -1 -132	443 741 RIBUTIO LEW 32.3 3 81.0 2.01 3 36.4 4.46 2 28.1 5.77	N: ISEQ = REW AF 58.4 741 -63.4 54.2 3.00 0.1 37.8 4.30 20.5 28.1 5.77	5; SECII REA -3 46284 -43.3 46.3 3.53 6.1 30.6 5.33 23.6 27.2 5.96	D = APPRO; K Q 2 . 3250. -29.1 3 . 41.1 3 . 9: 10.0 5 . 29.1 5 . 5:	SRD = VEL 4.38 -17.9 5 2 13.6 5 2 29.4 5 0 47.8	38.9 4.18 29.2 5.57 28.4 5.73	2538 6927 7810 3.

WSPRO OUTPUT FILE (continued)

Hydraulic analysis for structure DANVTH00010004 $\,\,$ Date: 01-AUG-97 $\,\,$ Bridge #4 over Joes Brook in Danville, VT. RHF XSID: CODE SRDL LEW AREA VHD HF EGL CRWS 0 WSEL VEL SRD FLEN REW K ALPH HO ERR FR# EXITX:XS ***** 1 267 1.19 ***** 473.22 471.06 2330 472.04 -48 ***** 15963 1.00 ***** ****** 62 8.73 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "FULLV" 49 -47 0 49 66 365 0.69 0.71 473.93 ****** 0 49 66 23453 1.08 0.00 0.00 0.66 6.39 <-<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> 460 0.46 0.65 474.58 ****** -81 57 APPRO:AS S 73 73 73 25809 1.14 0.00 -0.01 0.53 5.07 <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> XSID: CODE SEDI AREA VHD HF CRWS Q LEW EGL WSEL K ALPH VEL FLEN REW HO ERR FR# SRD 0 49 283 1.05 0.82 474.05 470.89 2330 473.00 BRIDG:BR 25346 1.00 0.00 -0.01 0.56 49 44 8 23 TYPE PPCD FLOW C P/A LISEL BLEN XLAB XRAB 1. **** 1. 1.000 ***** 479.32 ***** ***** ***** XSID:CODE SRD FLEN HF VHD EGL ERR O WSEL <><<EMBANKMENT IS NOT OVERTOPPED>>>> 15. RDWAY:RG XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL K ALPH HO ERR FR# SRD FLEN REW VEL 32 -87 488 0.41 0.33 474.73 471.86 2330 474.32 34 57 27729 1.15 0.35 0.00 0.49 4.78 M(K) OTEL KQ XLKQ XRKQ 0.682 0.270 20249. -2. 42.

U.S. Geological Survey WSPRO Input File danv004.wsp

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE EXITX:XS -49. 1. 62. 2330. 15963. 267. 8.73 472.04 23453. FULLV:FV 2330. 6.39 473.25 0. -48. 66. 365. BRIDG:BR 0. 0. 44. 2330. 25346. 283. 8.23 473.00 15.********* 0.******** RDWAY:RG 1.00****** 73. -88. 57. 2330. 27729. 488. 4.78 474.32 APPRO:AS KQ XSID:CODE XLKQ XRKQ

APPRO: AS -2. 42. 20249.

SECOND USER DEFINED TABLE.

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File danv004.wsp Hydraulic analysis for structure DANVTH00010004 Date: 01-AUG-97 Bridge #4 over Joes Brook in Danville, VT. RHF

XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

EXITX:XS ***** -38 347 1.44 **** 474.53 472.11 3250 473.08 -48 ***** 65 22251 1.06 **** ****** 0.93 9.37

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.
"FULLV" KRATIO = 1.61

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

Q XSID: CODE SEDI AREA VHD HF CRWS LEW EGL WSEL K ALPH VEL FLEN REW HO ERR FR# SRD

BRIDG:BR 49 0 314 1.67 0.85 475.38 472.00 3250 473.71 0 49 44 29526 1.00 0.01 -0.01 0.67 10.36

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 1. 1.000 ****** 479.32 ***** ***** ******

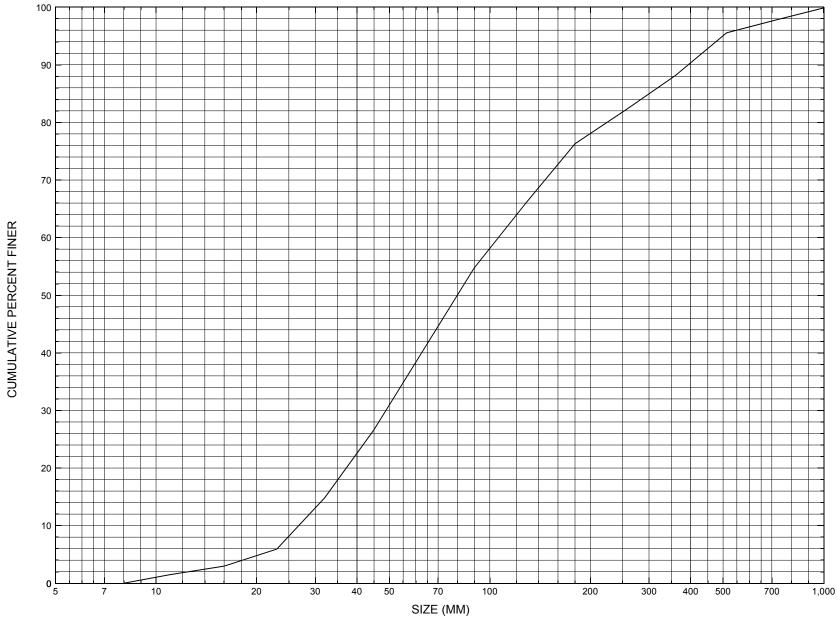
XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 32 -131 742 0.34 0.29 476.17 473.09 3250 475.83 73 35 58 46317 1.13 0.50 0.00 0.42 4.38

M(G) M(K) KQ XLKQ XRKQ OTEL 0.745 0.405 27518. -5. 39. 475.61

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.


XSID: CODE AREA EXITX:XS -49. -39. 65. 3250. 22251. 347. 9.37 473.08 0. -71. 0. 0. 35810. FULLV:FV 70. 3250. 6.09 474.51 534. 314. 10.36 473.71 BRIDG:BR 44. 3250. 29526. 0.********** 1.00***** 15.********* RDWAY:RG 73. -132. 58. 3250. 46317. 742. 4.38 475.83 APPRO:AS

XSID:CODE XLKQ XRKQ KQ APPRO:AS -5. 39. 27518.

SECOND USER DEFINED TABLE.

NORMAL END OF WSPRO EXECUTION.

APPENDIX C: **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure DANVTH00010004, in Danville, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number DANVTH00010004

Data collected by (First Initial, Full last name) E . BOEHMLER

Date (MM/DD/YY) <u>03</u> / <u>17</u> / <u>95</u>

Highway District Number (1 - 2; nn) 07

Town (FIPS place code; I - 4; nnnnn) 17125

Waterway (1 - 6) JOES BROOK

Route Number TH001

Topographic Map St. Johnsbury

Latitude (I - 16; nnnn.n) 44227

County (FIPS county code; I - 3; nnn) ____005

Mile marker (*I* - 11; nnn.nnn) <u>000000</u>

Road Name (1 - 7): _-

Vicinity (1 - 9) 0.1 MI JCT TH 74 + TH 1

Hydrologic Unit Code: 01080101

Longitude (i - 17; nnnnn.n) 72056

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) __10030300040303

Maintenance responsibility (*I - 21; nn*) 03 Maximum span length (*I - 48; nnnn*) 0045

Year built (I - 27; YYYY) 1953 Structure length (I - 49; nnnnnn) 000049

Average daily traffic, ADT (I - 29; nnnnn) 000300 Deck Width (I - 52; nn.n) 279

Year of ADT (1 - 30; YY) 91 Channel & Protection (1 - 61; n) 6

Opening skew to Roadway (I - 34; nn) 17 Waterway adequacy (I - 71; n) 7

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 104 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) 043.5

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 012.5

Number of approach spans (*I - 46; nnnn*) 0000 Waterway of full opening (*nnn.n ft*²) 544.0

Comments:

The structural inspection report of 8/30/93 indicates that the structure is a concrete T-beam type bridge. The abutment walls and wingwalls are concrete and have some minor cracks and spalls reported overall. A short section of the concrete footing is exposed at the surface on the right abutment. Some boulder stone fill was noted in front of and around the ends of the wingwalls. The report also indicates some boulder material along the banks, upstream and downstream of the bridge. The channel reportedly has scoured down approximately 3 to 4 feet along most of the base of the right abutment. The report also shows a sand and silt point bar extending along the left abutment wall.

	Brid	ge Hydro	ologic Da	ata					
Is there hydrologic data available? N if No, type ctrl-n h VTAOT Drainage area (mi²): -									
Terrain character:									
Stream character & type: _									
Streambed material: Gravel and boulders									
Discharge Data (cfs): Q _{2.33} - Q ₁₀ - Q ₂₅ -									
Q_{50} $\stackrel{-}{=}$ Q_{100} $\stackrel{-}{=}$ Q_{500} $\stackrel{-}{=}$									
Record flood date (MM / DD / YY): - / / Water surface elevation (ft): -									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, Li									
The stage increases to maximum									
The stream response is (Flashy,	Not flashy):	-							
Describe any significant site cor	nditions up	stream or	downstrea	m that ma	y influence	the stream's			
stage: -									
Watershed storage area (in neres	omt): = 0/								
Watershed storage area (in perce The watershed storage area is:		ainly at the h	eadwaters: 2	2- uniformly	distributed: 3.	Limmediatly unstream			
The watershed storage area is.		e site)	cadwaters, z	- uninonning (uistributeu, o	-iiiiiiediatiy upstreaiii			
	_								
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:	1	•	7			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀				
Water surface elevation (ft))	-	-	-	-	-				
		_							
Velocity (ft / sec)					_				
Long term stream bed changes:	Possibly	a 3 to 4 fee	et drop in t	he channe	l elevation a	along the right			
	•		e the bridg			8 8			
		0 (w.r	_				
Is the roadway overtopped below									
Relief Elevation (ft):	Discha	arge over r	oadway at	$Q_{100} (H^2)$	sec):	_			
			w.r						
Are there other structures nearb									
Upstream distance (miles):									
Highway No. :									
Clear span (ft): Clear Height (ft): Full Waterway (ft ²):									

Downstream distance (<i>miles</i>):			
Clear span (#): - Clear Heigh			
Comments:			
-			
	USGS Wate	ershed Data	
Watershed Hydrographic Data			
Drainage area (DA) 42.477 mi ² Watershed storage (ST) 2.99	Lal %	ke/pond/swamp area 1.2	mi ²
Bridge site elevation		eadwater elevation2500	<u>0</u> ft
Main channel length			
10% channel length elevation		85% channel length 6	elevation <u>2034</u> ft
Main channel slope (S)59	ft / mi		
Watershed Precipitation Data			
Average site precipitation	in Av	erage headwater precipit	ation in
Maximum 2yr-24hr precipitation e	vent (124,2)	in	
Average seasonal snowfall (Sn)	ft		

Bridge Plan Data
Are plans available? Ylf no, type ctrl-n pl Date issued for construction (MM / YYYY): 04 / 1952 Project Number SAS 1/1949 Minimum channel bed elevation: 466.0
Low superstructure elevation: USLAB 478.52 DSLAB 478.52 USRAB 480.49 DSRAB 480.49
Benchmark location description: BM#2: a spike in the root of a 24-inch elm tree located approximately 115 feet from the left abutment along the centerline of the roadway, on the left bank and approximately 20 feet in an upstream direction perpendicular to the roadway centerline on the side of the roadway, elevation 478.33
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary
Foundation Type: 1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness 2.0 Footing bottom elevation: 460.0*
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? Y If no, type ctrl-n bi Number of borings taken: _5 Foundation Material Type: _1 (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: The right abutment is sealed into the underlying bedrock. The left abutment is set in a gravel material with some sand. The right abutment footing is "stepped" and sealed into the bedrock. The plans show step-like cuts made in the bedrock into which the concrete footing was poured. The bedrock extends along the bottom of the footing over the entire length of the right abutment and the length of the upstream wingwall. The downstream wingwall is set in a sand and fine gravel material.

Comments:

*The footing bottom elevation of the left and right abutments are 461.0 and 460.0, respectively. The footing at the upstream end of the right wingwall is shown at elevation 468.0 and steps down in two foot increments to elevation 460.0 at the roadway centerline where it remains at elevation 460.0 to the downstream end. Other points that are shown with elevations on the plans are: 1) The point on the top of the upstream right wingwall concrete on the streamward edge where the concrete slope changes from horizontal to downward, elevation 483.74, and 2) The point at the same location as in (1) but on the upstream left wingwall, elevation 481.73.

Cross-sectional Data

Is cross-sectional data available? Y ____ If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

Comments: The upstream channel cross section is at stationing 0 + 92, at a distance of 8 feet from the center line of the roadway (deck). The channel baseline runs along the left bank at a skew of 83 degrees from the roadway centerline.

Station	1.0	1.4	3.0	17.0	42.8	44.3	44.5				
Feature	LCL	BLB	footing edge	TD	footing edge	BRB	LCR				
Low chord elevation	478.5						480.5				
Bed elevation		466.5	*t463	465.9	*t468	468.0					
Low chord- bed			*b461		*b466						
		•	1		•		•			•	1
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? <u>VTAO</u>T

Comments: Downstream channel cross section at stationing 1 + 10, at a distance of 10 feet from the centerline of the roadway (deck). *("t" and "b" indicate the top and bottom elevation of footing, respectively)

Station	3.5	3.8	5.5	20.0	35.0	45.5	47.0	47.7			
Feature	LCL	BLB	footing edge			footing edge	BRB	LCR			
Low chord elevation	478.5							480.5			
Bed elevation		469.5	*t463	467.1	467.0	*t462	468.4				
Low chord- bed			*b461			*b460					
			_								
Station	1	-	-	-	-	-	-	-	1	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	ı	-	-	-	-	-	-	-	ı	-	-
Bed elevation	1	-	-	-	-	-	-	-	-	-	-
Low chord- bed	•	-	-	-	-	-	-	-	ı	-	-

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number DANVTH00010004

Qa/Qc Check by: EW Date: 2/23/96

Computerized by: EW Date: 2/26/96

RF Date: 8/19/97 Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name) E BOEHMLER Date (MI	MM/DD/YY)	08 /	22 /	/ <u>19</u> 95
---	-----------	------	------	-----------------------

2. Highway District Number 07

County CALEDONIA 005

Waterway (/ - 6) JOE'S BROOK

Route Number TH01 3. Descriptive comments:

Town DANVILLE 17125

Road Name -

Mile marker -

Hydrologic Unit Code: 01080101

LOCATED 0.1 MILE SOUTH OF THE INTERSECTION OF TH74 WITH TH01

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_4___ RBUS 6 LBDS 4 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 1 UB 1 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 49.0 (feet)

Span length 45.0 (feet) Bridge width 27.9 (feet)

Road approach to bridge:

8. LB 1 RB 2 (0 even, 1- lower, 2- higher)

9. LB 1 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): **2.4:1** US right ___ US left

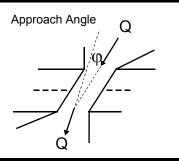
	Pr	otection	10 Erasian	14 Coverity
	11.Type	12.Cond.	13.Erosion	14.Severity
LBUS		-	0	
RBUS		-	2	2
RBDS	_0	-	0	0
LBDS	_0	-	_0	

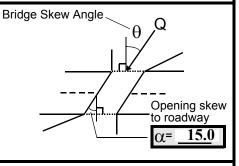
Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 15 15. Angle of approach: 0

17. Channel impact zone 1:

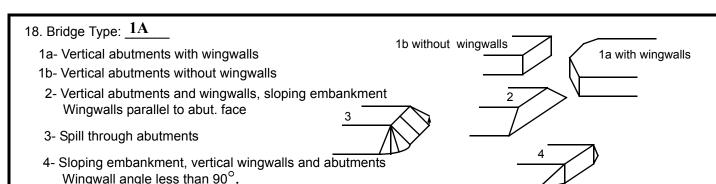
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 3

Range? 90 feet US (US, UB, DS) to 55 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 50 feet DS (US, UB, DS) to 105 feet DS

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

The embankment on road is sloped on LB side of US but near vertical on RB side US.

#4 The US and DS right banks are covered by forest for two bridge lengths.

The US left bank surface cover includes a horse corral with a strip of trees and shrubs along the immediate bank edge.

The DS left bank has a barn and a horse corral with trees along the bank.

Road overflow will occur over the left bank approach as the road dips down to the low chord elevation of the bridge.

#7 Values are from VTAOT files. Measured values: bridge length = 49.0 ft; span length = 46.0 ft; width= 27.9 ft.

C. Upstream Channel Assessment

2	1. Bank hei	ght (BF) 22. Bank	angle (BF)	26. % Ve	g. cover (BF)	27. Bank r	naterial (BF)	28. Bank	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
50.0	3.0			5.0	3	4	435	564	1	1
23. Bank v	vidth	0	24. Cha	nnel width	15.0	25. Thal	weg depth	<u>65.5</u> 2	9. Bed Mate	rial <u>546</u>
30 .Bank p	rotection ty	pe:	LB <u>0</u>	RB <u>5</u>	_	31. Bank pr	otection cor	ndition: LB :	RB	1

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

#27- Bedrock on the right bank grades into large boulders then cobble/gravel from 60 feet US to >200 feet US. LB material is fairly uniform.

#30- The RB protection is approximately 7 feet high from 35 feet US to the US face of the bridge. The material is quarried stone blocks carefully placed side by side and on top of each other to form a wall.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 30 35. Mid-bar width: 18
36. Point bar extent: 50 feet US (US, UB) to 50 feet DS (US, UB, DS) positioned 0 %LB to 25 %RB
37. Material: <u>435</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
The side bar is discontinuous from the US to DS side and is composed of cobbles with gravel and some boulders. Under the bridge, the width of the side bar is 12 feet with a composition of sand and fine gravel.
A second bar extends from about 230 feet US to 80 feet US. It is positioned 65% LB to 100% RB and is
composed mainly of cobbles with gravel and a few boulders.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 75 42. Cut bank extent: 95 feet US (US, UB) to 65 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
-
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 5.0
47. Scour dimensions: Length $\underline{76}$ Width $\underline{15}$ Depth : $\underline{2.5}$ Position $\underline{50}$ %LB to $\underline{90}$ %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.): Pridge and hadrealy constriction of flavy along the right bank side of the channel with the thelway secured.
Bridge and bedrock constriction of flow along the right bank side of the channel with the thalweg scoured deeper here than at other locations in the channel. US and DS of bridge, the thalweg depth is between 0.5 to
1.0 feet.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Harday D. Salay Oliver and Assessment
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
58. Bank width (BF) 59. Channel width 60. Thalweg depth 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5 - boulder, > 256mm; 6 - bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 435
The thalweg under the bridge is scoured out along RABUT side of channel for 40% of the channel width.

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both)

67. Debris Potential ____ (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

The banks and channel are stable, but there are a lot of trees on the banks. Debris and ice will most likely accumulate US at the cut bank where the stream bends along the right bank. However, debris and ice which have not accumulated at this point will be pushed under bridge and downstream.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	90	0	0	0	0	90.0
RABUT	1	0	90			2	2	43.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

1.0

2.0

The RABUT footing is only exposed for 2.0 feet at the most upstream 4 ft of the footing. From 4 ft US to 10 ft US, the footing is exposed <0.5 feet above the streambed.

80. Winawalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						43.0	
USRWW:	<u>Y</u>		1		0	2.0	
DSLWW:	<u>0</u>		0		<u>Y</u>	<u>29.5</u>	
DSRWW:	1		2		<u>0</u>	30.5	

USRWW USLWW Wingwall length Wingwall angle **DSRWW** DSLWW

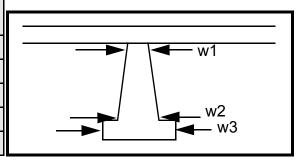
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	1	0	Y	0	1	1	-	-
Condition	Y	0	1	0	2	1	-	-
Extent	1	0	0	2	3	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

85.										
Pier no.	width (w) feet			elev	vation (e) feet					
	w1	w2	w3	e@w1	e@w2	e@w3				
Pier 1				45.0	17.5	60.0				
Pier 2				12.5	60.0	16.0				
Pier 3			-	30.0	23.0	-				
Pier 4	-	-	-	-	-	-				

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e	ner of	end at	the
87. Type	USR	the	this	USL
88. Material	WW	RAB	point	WW
89. Shape	is	UT	due	may
90. Inclined?	expo	foot-	to	be
91. Attack ∠ (BF)	sed	ing.	the	cov-
92. Pushed	for	The	stone	ered
93. Length (feet)	-	-	-	-
94. # of piles	2.5	foot-	fill.	by
95. Cross-members	feet	ing	The	strea
96. Scour Condition	from	appe	stone	m
97. Scour depth	the	ars	fill	depo
98. Exposure depth	cor-	to	on	sits.

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):							
N							
100.	E. Downstrea	am Char	nel Asse	essment			
Bank height (BF) Ba	ank angle (BF)	% Veg. o	cover (BF)	Bank mat	terial (BF)	Bank ero	sion (BF)
SRD LB RB LE	B RB	LB	RB	LB	RB	LB	RB
	— <u>-</u> L			<u>-</u>	<u> </u>		-
Bank width (BF)	Channel width	-	Thalw	eg depth <u>-</u>		Bed Materia	al <u>-</u>
Bank protection type (Qmax):	LB <u>-</u> RB <u>-</u>		Bank protect				
SRD - Section ref. dist. to US face Bed and bank Material: 0 - organics	s: 1- silt / clav. < 1/1	16mm: 2 - sa	er: 1 - 0 to 25% and, 1/16 - 2m	ım: 3 - aravel	l. 2 - 64mm:		to 100%
4 - cobble, Bank Erosion: 0 - not evident; 1 - lig	64 - 256mm; 5 - bo ht fluvial; 2 - moder						
Bank protection types: 0- absent; 1				s; 4- < 60 inc	ches; 5- wai	ll / artificial le	vee
Bank protection conditions: 1- good Comments (eg. bank material variations)	•						
_							
-							
-							
-							
-							
-							
-							
-							
-							
-							
-			r			_	
101. <u>Is a drop structure pre</u>				102. Distance		feet	4.
103. Drop: feet 105. Drop structure comments (eg.	104. Structure m		_ (1 - steel sh	eet pile; 2 - v	vood pile; 3	- concrete; 4 -	- other)
-	downou dam dodar	doptii).					
-							
-							
- -							

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar distance: - Mid-bar width: -
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB Material: Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
- - - -
Is a cut-bank present? N (Y or if N type ctrl-n cb) Where? O (LB or RB) Mid-bank distance: PIE Cut bank extent: RS feet (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 3 Scour dimensions: Length 3 Width 453 Depth: 453 Positioned 1 %LB to 1 %RB Scour comments (eg. additional scour areas, local scouring process, etc.): 435 0
Are there major confluences? - (Y or if N type ctrl-n mc) How many? Ther Confluence 1: Distance e is Enters on wea (LB or RB) Type ther (1- perennial; 2- ephemeral) Confluence 2: Distance ed Enters on and (LB or RB) Type som (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name): ewhat rounded boulder size material on the right bank. The boulder size material is located primarily between 40 feet and 55 feet DS. Angular blocks of stone fill exist from DS end of DSRWW to about 40 feet DS.
F. Geomorphic Channel Assessment
107. Stage of reach evolution 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):						
1						

109. G. Plan View Sketch							
point bar pb cut-bank cb scour hole	debris ip rap or stone fill	flow Q cross-section ++++++ ambient channel ——	stone wall				

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: DANVTH00010004 Town: Danville Road Number: TH01 County: Caledonia

Stream: Joes Brook

Initials RHF Date: 8/15/97 Checked: EW

Analysis of contraction scour, live-bed or clear water? Critical Velocity of Bed Material (converted to English units) Vc=11.21*y1^0.1667*D50^0.33 with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	2330	3250	0
Main Channel Area, ft2	356	443	0
Left overbank area, ft2	132	298	0
Right overbank area, ft2	0	0	0
Top width main channel, ft	57	58	0
Top width L overbank, ft	88	132	0
Top width R overbank, ft	0	0	0
D50 of channel, ft	0.2628	0.2628	0
D50 left overbank, ft			
D50 right overbank, ft			
y1, average depth, MC, ft	6.2	7.6	ERR
y1, average depth, LOB, ft	1.5	2.3	ERR
y1, average depth, ROB, ft	ERR	ERR	ERR
Total conveyance, approach	27725	46284	0
Conveyance, main channel	23069	32418	0
Conveyance, LOB	4656	13866	0
Conveyance, ROB	0	0	0
Percent discrepancy, conveyance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	1938.7	2276.3	ERR
Ql, discharge, LOB, cfs	391.3	973.7	ERR
Qr, discharge, ROB, cfs	0.0	0.0	ERR
Vm, mean velocity MC, ft/s	5.4	5.1	ERR
Vl, mean velocity, LOB, ft/s	3.0	3.3	ERR
Vr, mean velocity, ROB, ft/s	ERR	ERR	ERR
Vc-m, crit. velocity, MC, ft/s	9.7	10.1	N/A
Vc-l, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR

Results

Live-bed(1) or Clear-Water(0) Contraction Scour? Main Channel N/A 0 Left Overbank N/AN/A N/A Right Overbank N/AN/AN/A

Armoring

 $Dc = [(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]$ Depth to Armoring=3*(1/Pc-1)

(Federal Highway Administration, 1993)

Downstream bridge face property 100-yr 500-yr Other O Q, discharge thru bridge MC, cfs 2330 3250 N/A

Main channel area (DS), ft2

313

283

Main channel width (normal), ft 42.7 42.8 0.0 Cum. width of piers, ft 0.0 0.0 0.0 Adj. main channel width, ft 42.7 42.8 0.0 D90, ft 1.2898 1.2898 0.0000 D95, ft 1.6360 1.6360 0.0000 Dc, critical grain size, ft 0.3990 0.6055 ERR Pc, Decimal percent coarser than Dc 0.357 0.233 0.000 Depth to armoring, ft 2.16 5.99 ERR

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units $ys=y2-y_bridge$ (Richardson and others, 1995, p. 32, eq. 20, 20a)

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	2330	3250	0
(Q) discharge thru bridge, cfs	2330	3250	0
Main channel conveyance	25339	29509	0
Total conveyance	25339	29509	0
Q2, bridge MC discharge,cfs	2330	3250	ERR
Main channel area, ft2	283	313	0
Main channel width (normal), ft	42.7	42.8	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	42.7	42.8	0
y_bridge (avg. depth at br.), ft	6.63	7.31	ERR
Dm, median (1.25*D50), ft	0.3285	0.3285	0
y2, depth in contraction,ft	5.24	6.96	ERR
ys, scour depth (y2-ybridge), ft	-1.39	-0.35	N/A

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Ab	Left Abutment			Right Abutment		
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q	
(Qt), total discharge, cfs	2330	3250	0	2330	3250	0	
a', abut.length blocking flow, ft	89.1	133.2	0	13.2	14.8	0	
Ae, area of blocked flow ft2	137.8	303	0	61.1	82.3	0	
Qe, discharge blocked abut.,cfs	414.9	995.3	0	248	312.4	0	
(If using Qtotal_overbank to obt	ain Ve, le	eave Qe bi	lank and	enter Ve	and Fr ma	nually)	
Ve, (Qe/Ae), ft/s	3.01	3.28	ERR	4.06	3.80	ERR	
ya, depth of f/p flow, ft	1.55	2.27	ERR	4.63	5.56	ERR	
Coeff., K1, for abut. type (1.0,	verti.;	0.82, ver	ti. w/ w	ingwall; 0	.55, spil	.lthru)	
K1	0.82	0.82	N/A	0.82	0.82	N/A	
Angle (theta) of embankment (<90) if abut.	points D	S; >90 i	f abut. po	ints US)		
	7.5	7.5	NT / 70	105	105	NT / 70	
theta			•	105		N/A	
K2	0.98	0.98	N/A	1.02	1.02	N/A	

Fr, froude number f/p flow	0.427	0.384	ERR	0.332	0.284	ERR
ys, scour depth, ft	11.10	15.54	N/A	11.68	13.02	N/A
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and others, 1995, p. 49)), eq. 29)					
a'(abut length blocked, ft) y1 (depth f/p flow, ft)	89.1	133.2	N/A ERR	13.2	14.8	N/A ERR
a'/yl	57.61 0.95	58.56 0.95	ERR N/A	2.85 1.03	2.66 1.03	ERR N/A
Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55:	0.43	0.38	N/A N/A	0.33	0.28	N/A N/A
vertical	8.07	11.46	ERR	ERR	ERR	ERR
vertical w/ ww's spill-through	6.62 4.44	9.40 6.30	ERR ERR	ERR ERR	ERR ERR	ERR ERR
apiti ciitougii	7.77	0.50	131/1/	131/1/	121/1/	71711

Abutment riprap Sizing

Isbash Relationship

D50= $y*K*Fr^2/(Ss-1)$ and D50= $y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	0.56	0.67	N/A	0.56	0.67	N/A
y, depth of flow in bridge, ft	6.63	7.33	N/A	6.63	7.33	N/A
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	1.29	2.03	0.00	1.29	2.03	0.00
Fr>0.8 (vertical abut.)	ERR	ERR	ERR	ERR	ERR	ERR
Fr<=0.8 (spillthrough abut.)	1.12	1.77	0.00	1.12	1.77	0.00
Fr>0.8 (spillthrough abut.)	ERR	ERR	ERR	ERR	ERR	ERR