U. S. DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

by

Manuel Nathenson

OPEN-FILE REPORT 97-692

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

1U.S. Geological Survey, 345 Middlefield Road MS 910, Menlo Park, California 94025

1997
The Volcano Hazards Program of the U.S. Geological Survey is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. In Fiscal Year 1995, the separate Geothermal Research Program was folded into an expanded Volcano and Geothermal Investigations Program that was subsequently renamed the Volcano Hazards Program. This report includes citations for the previously separate Geothermal Research Program.

Investigations are carried out in the Geologic and Water Resources Divisions of the U.S. Geological Survey and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions.

This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Volcano Hazards Bibliography 1994 - 1996

Cashman, K. V., and Mangan, M. T., 1994, Physical aspects of magmatic degassing; II, Constraints on vesiculation processes from textural studies of eruptive products, in Carroll,

Duchi, Vittorio, Campana, M. E., Minissale, Angelo, and Thompson, J. M., 1994, Geochemistry of thermal fluids on the volcanic Isle of Pantelleria, southern Italy: Applied Geochemistry, v. 9, p. 147-160.

Friedman, I., 1994, Effect of potential geothermal development on the thermal features of Yellowstone National Park; Part 1, Perspective 3; Possible effect of nearby geothermal development on Yellowstone National Park: GSA Today, v. 4, no. 12, p. 297-299.

Kong, L. S. L., Okubo, P. G., Webb, S. C., Duennebier, F. K., McDonald, M. A.,
Crawford, W. C., and Hildebrand, J. A., 1995, Seismic imaging of Kilauea Volcano and
Loihi Seamount: 1994 onshore-offshore experiment data from the Hawaiian Volcano
Koyanagi, R. Y., and Nakata, J. S., 1994, Seismicity and volcanic activity in Hawaii, 1986,
Engineering Laboratory and adjoining areas, eastern Idaho: U.S. Geological Survey
Miscellaneous Investigations Series Map I-2330, scale 1:100,000.
Basin and Range Province: 2. Implications of heat flow for regional extension and
metamorphic core complexes: Journal of Geophysical Research, v. 99, p. 22,121-
22,133.
Earthquake classification, location, and error analysis in a volcanic environment:
implications for the magmatic system of the 1989-1990 eruptions at Redoubt Volcano,
Alaska, in Miller, T. P., and Chouet, B. A., eds., The 1989-1990 eruptions of Redoubt
Langbein, J., Dzurisin, D., Marshall, G., Stein, R., and Rundle, J., 1995, Shallow and
peripheral volcanic sources of inflation revealed by modeling two-color geodimeter and
leveling data from Long Valley caldera, California, 1988-1992: Journal of Geophysical
Research, v. 100, p. 12,487-12,495.
international conference on geochronology, cosmochronology, and isotope geology: U.S.
flanks of the Hawaiian Islands, a simplified approach: U.S. Geological Survey Open-File
Crater Peak, Redoubt, Iliamna, Augustine, Douglas, and Aniakchak volcanoes, Alaska:
pressure from rising bubbles as a mechanism for remotely triggered seismicity: Nature,
v. 371, no. 6496, p. 408-410.
Lipman, P. W., 1995, Declining growth of Mauna Loa during the last 100,000 years: rates of
lava accumulation vs. gravitational subsidence, in Rhodes, J. M., and Lockwood, J. P.,
eds., Mauna Loa revealed; structure, composition, history, and hazards: American
Geophysical Union, Geophysical Monograph 92, p. 45-80.
Lipman, P. W., Dungan, M. A., Brown, L. L., and Deino, Alan, 1996, Recurrent eruption
and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field,
Lipman, P. W., and Moore, J. G., 1996, Mauna Loa accumulation rates at the Hilo drill site:
formation of lava deltas during a period of declining overall volcanic growth: Journal of
Installation, operation, and technical specifications of the first Mount Pinatubo telemetered
seismic network, in Newhall, C. G., and Punongbayan, R. S., eds., Fire and Mud:
Eruptions and Lahars of Mount Pinatubo, Philippines: Philippine Institute of Volcanology

Mariner, R. H., and Young, H. W., and Evans, W. C., 1994, Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon: Geothermal Resources Council, Transactions, v. 18, p. 221-228.

Muffler, L. J. P., and Guffanti, M., 1995, Are there significant hydrothermal resources in the U.S. part of the Cascade Range?: Proceedings, Twentieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p.9-17.

Neal, Christina, and Doukas, Mike, 1994, What is the Alaska Volcano Observatory?: U.S. Geological Survey Fact Sheet 94-71, 2 p.

Simkin, T., Unger, J. D., Tilling, R. I., Vogt, P. R., and Spall, H. R., 1994, This dynamic planet; world map of volcanoes, earthquakes, impact craters, and plate tectonics: U. S. Geological Survey Special Map, 1 map sheet, scale 1:30,000,000.

Turrin, B. D., Donnelly-Nolan, J. M., and Hearn, B. C., Jr., 1994, $^{40}\text{Ar}/^{39}\text{Ar}$ ages from the rhyolite of Alder Creek, California: age of the Cobb Mountain normal polarity subchron revisited: Geology, v. 22, p. 251-254.

