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ABSTRACT

Medicine Lake volcano, a Pleistocene to Holocene Cascade shield volcano in the
northeastern part of California, is one of the most promising geothermal energy prospects
in the Pacific Northwest. Industry evaluation of the geothermal energy potential of the
Medicine Lake area included completion of several exploration drill holes. At present,
data (temperature, chemistry, etc.) obtained from the drill holes is proprietary. However,
drill-core samples recovered from 12 holes have been made available for scientific
investigations. Studies of hydrothermal alteration minerals contained in the drill core
samples and fluid inclusions in a few mineral specimens provide reasonable estimates of
late Pleistocene to present-day temperatures of fluids circulating through rocks penetrated
by the drill holes.

More than 600 rhyolitic to basaltic drill-core specimens from the 12 drill holes
(ranging in depth from about 340 to 1,370 m) were collected for this investigation.
Volcanic glass and open spaces of fractures, vesicles, and between breccia fragments in
core specimens from drill holes located both outside and within the caldera show the
effects of hydrothermal alteration. The alteration is more pervasive and reflective of
higher temperatures in the two intracaldera drill holes. Forty-five hydrothermal minerals
were identified from these drill holes. Many clay minerals, zeolites, carbonates, silica
minerals, sulfides, sulfates, iron oxides, and hydrated calcium silicate minerals
undoubtedly formed at zeolite-facies temperatures (<~200°C). The presence of minor
garnet, epidote, actinolite/tremolite, prehnite, and talc, from the intracaldera drill holes
(ML 28-32 and ML 45-36) suggest previous higher (about 200° to 400°C) sub-
greenschist- to greenschist-facies temperatures.

Homogenization temperatures (Th) of fluid inclusions in hydrothermal quartz,
calcite, and wairakite from drill hole ML 45-36 range between 178° and 373°C and
confirm the higher temperatures suggested by alteration mineralogy of this drill hole. In
the second studied intracaldera drill hole (ML 28-32), fluid-inclusion T measurements in
hydrothermal quartz and calcite range between 125° and 225°C. However, the presence
of several greenschist-facies hydrothermal minerals (garnet, epidote, prehnite,
actinolite/tremolite, and talc) indicate that past temperatures have been substantially
higher than suggested by the fluid-inclusion measurements of specimens from the lower
part of the drill hole.

Minimum fluid-inclusion Th measurements for hydrothermal mineral specimens
at given depths in holes drilled in modern geothermal areas frequently coincide with
present-day temperatures. Th values of fluid inclusions in these minerals generally fall
between a theoretical reference boiling-point curve and the present measured temperature
at the sample depth. Minimum T, values within the lower half of the ML 45-36 drill
hole suggest that current temperatures near the bottom of this drill hole are approximately
200°C. Many of the ML 45-36 higher T, values plot above the theoretical reference
boiling-point curve drawn to the present ground surface. These liquid-rich fluid
inclusions with high Th measurements did not originate during boiling conditions.
Instead, the high T, values reflect pressures that were greater than at present. The fluid
inclusions most likely formed during the late Pleistocene when the effective ground
surface is estimated to have been at least 150 m higher than at the present time due to the
presence of glacial ice.

Dozens of tiny (<0.5 to ~5 pm), mostly rod-shaped, bacteria-like moving particles
were trapped inside a liquid-rich, primary fluid inclusion. The inclusion occurs within a
hydrothermal quartz crystal that formed on a fracture in rhyolitic lava from 856-m depth
in drill hole ML 45-36. The movement appears to be due to Brownian motion. If the
particles are the remains of thermophilic microorganisms, the fluid-inclusion studies
indicate that they must have been trapped at temperatures above 200°C.



INTRODUCTION

Medicine Lake volcano is a large (about 2,000 km2) Pleistocene to Holocene
volcano located in the Cascade Range of northeastern California about 50 km east-
northeast of Mount Shasta (Figure 1) (Donnelly-Nolan, 1988; 1990). The accumulation

Figure 1 near here

of lava flows that comprise this low, broad, shield volcano probably began erupting about
1 million years ago (Donnelly-Nolan and others, 1990). At least 17 eruptions have
occurred at Medicine Lake volcano during the past 12,000 years; composition of these
lava flows ranges between basalt and rhyolite with only scarce dacite lavas (Donnelly-
Nolan and others, 1990). The most recent volcanic activity (about 900 years ago), at
Glass Mountain and Little Glass Mountain, occurs in the vicinity of the 7 x 12 km caldera
(Figure 2) (Donnelly-Nolan and others, 1990).

Figure 2 near here

This recent volcanism makes Medicine Lake volcano and the Glass Mountain
KGRA one of the most promising geothermal energy prospects in the Pacific Northwest.
Industry evaluation of the geothermal energy potential of this area includes completion of
several drill holes. Some general information on the petrology of eight flank drill holes is
provided by Donnelly-Nolan (1990). A temperature of 105°C at 1.2 km depth and a
geothermal gradient of 100°C/km between depths of 0.5 and 1.2 km are reported for the
ML 88-12 drill hole (not shown in Figure 2) located about halfway between Mount
Shasta and the Medicine Lake volcano (Blackwell and others, 1990). Measured
geothermal gradients of 88°C km-1, 227°C km-1, and 548°C km™! are given for 3 wells
sited within the caldera of Medicine Lake volcano (Donnelly-Nolan and others, 1990).

At the present time, temperature, fluid composition, and other data from these
drill holes is mostly proprietary; however, rhyolitic- to basaltic-core specimens from 12
drill holes were made available for study through the geothermal core storage facility at
the Earth Science Environmental Research Institute in Salt Lake City, Utah. We
collected more than 600 representative core specimens from the 12 drill holes, that range
in depth from about 340 m to 1,370 m (see Figure 2 for locations of all but the ML 88-12
hole), in order to obtain information on hydrothermal alteration of the Medicine Lake
volcanic rocks. Some volcanic glass, the open spaces of many fractures, vesicles, and
areas between fragments of breccias in core specimens from all 12 drill holes show
alteration effects caused by circulating hydrothermal fluids. This study of drill-hole
samples from the Medicine Lake volcano area identified forty-five metamorphic minerals
(Table 1) that formed by hydrothermal alteration at low to moderate temperatures. Table

Table 1 near here

1 shows the temperatures at which these minerals were found in well-studied geothermal
areas throughout the world. Such metamorphic mineral assemblages are described as
"very low grade metamorphism" by Frey and Kisch (1987), who used the term to refer to
metamorphism that takes place in the temperature range of about 150° to 200° through
350° to 400°C. Mineral assemblages occurring in this temperature range include "zeolite-
facies" minerals, which formed at (and below) the stated lower temperatures, and
"subgreenschist-facies" and "greenschist-facies" minerals, which were produced at the
higher temperatures (Liou and others, 1987). These facies terms are useful in conveying
an impression of the degree to which a designated group of rocks have been
metamorphosed.



In this report, we somewhat arbitratily simplified the temperature ranges of Frey
and Kisch (1987) to indicate that zeolite-facies minerals mostly form at temperatures
below 200°C and subgreenschist- to greenschist-facies minerals usually originate at
temperatures between 200° and 400°C. These distinctions are merely intended to
characterize the approximate temperature range at which the various minerals most likely
formed. Many exceptions do occur. For example, the zeolite minerals analcime and
wairakite have been reported at temperatures as high as 300°C (Kristmannsdéttir and
Témasson, 1978). Also, some subgreenschist to greenschist minerals such as chlorite
have been found at temperatures below 100°C (Hulen and Nielson, 1986).

Temperature- and fluid-composition-data also were obtained from
heating/freezing studies of fluid inclusions trapped inside appropriate hydrothermal
mineral specimens from several depths in the two (ML 28-32 and ML 45-36) intracaldera
drill holes (Figure 2). These studies provide valuable insight into the late Pleistocene to
present-day geothermal regime of Medicine Lake volcano. Fluid inclusion studies of
several geothermal drill holes in Japan indicate that at a given depth minimum
homogenization temperature (Th) values are generally the same or slightly warmer than
the present measured temperatures (Taguchi and Hayashi, 1982; and Taguchi and others,
1984). These workers indicate that minimum T values can be used to estimate present-
day temperatures where drill-hole temperature-data was not obtained or is unavailable for
proprietary reasons.

ANALYTICAL METHODS

Mineral identifications were made by routine binocular microscope or
petrographic microscope methods and X-ray diffraction (XRD) analyses (using a Norelco

X-ray unit and Cu-Kao radiation). Semiquantitative chemical analyses were obtained for
several minerals, using a Cambridge Stereoscan 250 scanning electron microscope
equipped with an energy dispersive spectrometer (EDS), during scanning electron
microscope studies of the paragenesis and morphology of the hydrothermal minerals.
Quantitative chemical analyses of several minerals were obtained with a JEOL JXA-
8900L electron probe microanalyzer using natural and synthetic mineral standards
(Tables 2-14). Instrument conditions for analysis of the carbon-coated, polished thin-
sections include a sample current of 7.5nA, beam diameter of 20 wm, count times of 20
seconds, and an accelerating voltage of 7.5 kV. Possible errors in the microprobe
analyses might be as great as ¥20% for concentrations <1% and as high as £100% for
concentrations <0.1% (L. Calk, personal commun., 1996). Total iron is reported as FeO
or FepO3 whichever is appropriate for the analyzed mineral. Balance errors (<17 is an
acceptable analysis) for zeolite mineral analyses (Tables 2-8) are calculated according to
a formula given in Passaglia (1970).

Doubly-polished thick sections of hydrothermal quartz, calcite, and wairakite,
along with a few unpolished calcite cleavage chips, were utilized for fluid-inclusion
analyses. Fluid-inclusion homogenization (Th) and ice-melting (T) temperatures were
obtained using a Linkam THM 600 heating/freezing stage and TMS 90 temperature
control system. Successive calibration runs, using synthetic fluid inclusions (Bodnar and
Sterner, 1984) and chemical compounds with known melting points recommended in
Roedder (1984), suggest that the accuracy of the Th measurements is within £2.0°C and
the Ty, values are accurate to at least £0.2°C. Salinities of the inclusion fluids were
calculated, in weight % NaCl equivalent, using the equation given in Potter and others
(1978).



HYDROTHERMAL MINERALOGY

Fractures and vesicles of drill core specimens from a few of the Medicine Lake
volcano geothermal drill holes contain crystals of vapor-phase minerals (tridymite,
plagioclase, and hematite?) and granophyric quartz. These minerals formed during
cooling of the volcanic rocks prior to hydrothermal mineralization. Some orange to
reddish staining and powdery to clayey deposits associated with the vapor-phase
mineralization are amorphous to X-rays and appear to be early hydrothermal iron-oxide
alteration. Hydrothermal alteration is most extensive in the two holes (ML 28-32 and ML
45-36) drilled within the caldera of Medicine Lake volcano (Figures 3d and f; Table 1).

Figure 3 near here

One or more hydrothermal minerals were identified in core samples from each of the
flank drill holes but alteration appears to be much less prevalent outside the caldera rim.
Forty-five hydrothermal alteration minerals identified from the 12 geothermal prospect
drill holes include several clay minerals, zeolites, carbonates, silica minerals, sulfides,
sulfates, and other oxide and silicate minerals (Table 1) (Bargar and Keith, 1993). The
majority of these minerals most likely formed at temperatures <200°C and would be
compatible with zeolite-facies metamorphism. However, some minerals from the lower
parts of the two intracaldera drill holes contain minerals such as talc, garnet, epidote,
actinolite/tremolite, and prehnite that undoubtedly formed at temperatures characteristic
of sub-greenschist- to greenschist-facies metamorphism (about 200° to 400°C).

ZEOLITE MINERALS

The Medicine Lake volcano drill hole core samples contain eleven zeolite
minerals; the number of zeolite specimens identified from a single drill hole varies from 0
to 6 (Table 1). The temperatures at which several zeolite minerals were found in active
Icelandic geothermal areas (Kristmannsdéttir and Témasson, 1978) provides a generally
accepted guide (where temperature data are not available) for estimating the approximate
temperatures at which these minerals most likely precipitated in other geothermal areas of
the world. Chemical formulas for the zeolites (and other minerals) discussed below are
from Fleischer and Mandarino (1991) except where noted.

Analcime. Analcime was only identified in vesicles of 3 specimens from the ML
86-23 (Figure 3j) drill hole in association with earlier smectite, and later calcite. Vesicles
and fractures in these core samples also contain scolecite, levyne, stilbite/stellerite,
thomsonite, phillipsite, gyrolite, apophyllite, and adularia. The analcime occurs as
colorless, euhedral to subhedral crystals that range up to about 1 mm in size (Figure 4).

Figure 4 near here

Usually analcime forms clean trapezohedral crystals similar to the one shown in the lower
right-hand corner of Figure 4. The majority of analcime crystals in Figure 4 display an
unusual morphology that we previously have not observed elsewhere. Smaller tabular to
prismatic crystals of another mineral (stilbite/stellerite also was identified in an XRD
analysis of this specimen) subsequently filled some of the voids in the analcime crystals.
Chemical analyses of the analcime crystals indicate that they are a pure analcime end
member of the analcime (NaAlSipOg-HpO) — wairakite (CaAl2SigO12-2H,0) solid
solution series (Table 2, Figure 5). Analcime is sodium-rich whereas stilbite and

Table 2 near here



Figure 5 near here

stellerite contain significant calcium (Gottardi and Galli, 1985). Possibly, a change in the
chemistry of the precipitating fluid interrupted formation of the analcime crystals
resulting in deposition of later stilbite/stellerite crystals. Alternatively, the
stilbite/stellerite? crystals may have formed following partial dissolution of the analcime.
Hydrothermal mineralogy studies of Icelandic geothermal drill holes indicate that
analcime can form at temperatures between 70° and 300°C (Kristmannsdéttir and
Témasson, 1978). Analcime in the 86-23 drill hole is associated with low-temperature
zeolites and other minerals (Figure 3j) that typically are found at temperatures less than
200°C in modern geothermal areas (Table 1).

Wairakite. Wairakite also typically forms euhedral to subhedral, colorless,
trapezohedral crystals (Figure 6). In the ML 28-32 drill hole, wairakite occurs as vein

Figure 6 near here

fillings in three narrow zones of very altered rock at depths of about 1,097 to 1,101 m,
1,328.2 m, and 1,365 to 1,369 m (Figure 3d). Inthe ML 45-36 drill hole (Figure 3f),
wairakite was identified in 5 scattered core samples. Chemical analyses of wairakite
from both drill holes (Table 2) show that the mineral is nearly a pure wairakite solid-
solution end member (Figure 5).

Wairakite also has been identified at temperatures as high as 300°C in Icelandic
geothermal areas (Kristmannsdéttir and Témasson, 1978). In these Icelandic studies,
wairakite was reported at temperatures as low as ~180°C (Table 1). Formation
temperatures for wairakite and associated hydrothermal minerals in shallower zones of
the Medicine Lake volcano drill holes was probably slightly below 200°C; alteration
mineralogy of the deeper zones is consistent with temperatures well above 200°C.

Chabazite. Chabazite (CaAl;Si4O12-6H20) coats intersecting fractures in drill
holes OWMLS5 and ML 52-4 (Table 1) in association with earlier calcite, smectite, and, in
two specimens, stilbite/stellerite. The colorless, pseudocubic rhombohedral, chabazite
crystals range in size up to 0.5 mm and mostly are twinned (Figure 7). A chemical

Figure 7 near here

analysis of one chabazite crystal from 776 m depth in the OWMLS drill hole contains (in
weight percent oxide) 55.65% SiO3, 16.33% AlyO3, 0.08% Fe03, 0.14% MgO, 8.15%
Ca0, 0.75% Na20, 0.32% K30, 0.01% MnO, 0.36% SrO, and 0.00% BaO (total =
81.79%). Accordingly, the formula for the chabazite specimen would be
Cay.40Sr0.36K0.32N2p.23Mgo.03(Al3.07Feq,01 Sig 89024) -12H30.

Chabazite is a characteristic hydrothermal mineral in low-temperature (<75°C)
alteration zones of Icelandic geothermal areas (Kristmannsdéttir and Témasson, 1978).
Chabazite deposits in geothermal drill holes of the Oregon Cascade Range also occur at
similar low temperatures (Bargar and Oscarson, 1997). Chabazite in drill core samples
from the Medicine Lake volcano area probably also formed at similar low temperatures.

Heulandite group minerals. Heulandite group minerals (clinoptilolite—
(Na,K,Ca)y.3A13(Al1,S1)2S113036: 12H20 and heulandite—(Na,Ca)y.3A13(Al1,S1)2S113036
-12H,0) were identified in S of the studied drill holes (Table 1; Figures 3a,d, f, g, and i).
These minerals occur as tiny, colorless, tabular, euhedral to subhedral crystals (sometimes
twinned) (Figure 8) that fill vesicles and fractures of lava flows, line open spaces between

Figure 8 near here



fragments of breccias, and replace glass in lithic tuffs and pumice fragments. Associated
hydrothermal minerals include stilbite/stellerite, mordenite, smectite, calcite, siderite, iron
oxide, pyrite, gypsum, and chalcedony.

Electron microprobe analyses of two specimens (Table 3) indicate that both

Table 3 near here
heulandite and clinoptilolite (Figure 9) are present in the Medicine Lake drill holes.
Figure 9 near here

In addition to potassium, the clinoptilolite specimen contains significant barium (Table 3)
which usually is absent or a very minor constituent in other analyzed heulandite group
minerals from the Cascade Mountains of Oregon (Oscarson and Bargar, 1996).
Heulandite group minerals typically are found in Icelandic geothermal areas at
low to moderate temperatures (about 60° to 170°C) (Kristmannsdéttir and Témasson,
1978). However, heulandite and clinoptilolite occur at measured temperatures as low as
30°C in one Oregon Cascade Mountains geothermal drill hole (Bargar, 1990).
Laumontite. Laumontite (CaAl;Si4O012-4H,0) forms over a wide temperature
range (43° to 230°C) in modern geothermal areas (Kristmannsdéttir and Témasson, 1978;
McCulloh and others, 1981). Laumontite is a common zeolite mineral in outcrops and
geothermal drill holes in the Oregon Cascade Mountains, but it only occurs in three of the
Medicine Lake drill holes (Table 1). The white, euhedral, prismatic, laumontite crystals
(Figure 10) occur in fractures, vesicles, and open spaces between fragments in breccias.

Figure 10 near here

Associated minerals commonly include calcite, chlorite, mixed-layer chlorite-smectite,
and epidote; less commonly, laumontite occurs in specimens that also contain pyrite, iron
oxide, wairakite, mixed-layer illite-smectite, chalcedony, quartz, prehnite, anhydrite, and
actinolite/tremolite. Closely associated hydrothermal minerals and fluid-inclusion data
suggest that laumontite in the two intracaldera drill holes probably formed near the high
end of the temperature range given in Table 1. Conversely, laumontite in the flank drill
hole could have precipitated at somewhat lower temperatures. Electron microprobe
analyses of lJaumontite from the two intracaldera drill holes (Table 4 and Figure 11) are

Table 4 near here
Figure 11 near here

Ca-rich with only minor amounts of other exchangeable cations.

Levyne. A single specimen from the ML 86-23 drill hole contains vesicle fillings
of frosted, blocky levyne [(Ca,Nay,K»)Al;Si4012:6H70] (Table 1). Other hydrothermal
minerals identified in vesicles of the sample include smectite, analcime, calcite,
phillipsite, scolecite, stilbite/stellerite, thomsonite, and gyrolite (Figure 3j). Electron
microprobe analyses of the levyne specimen show that calcium is the dominant cation
with some sodium and a trace of potassium (Table 5). Many published chemical analyses

Table 5 near here
of levyne (Gottardi and Galli, 1985; Tschernich, 1992) are similar in composition to the

ML 86-23 sample but there can be a considerable variation in cation content of the
mineral as shown in Figure 12. In Icelandic geothermal areas, levyne occurs at

10



Figure 12 near here

temperatures less than 70°C (Kristmannsdéttir and Témasson, 1978).

Mordenite. Four of the Medicine Lake geothermal drill holes contain colorless
or white, cottony mattes or radiating sprays of acicular to fibrous mordenite
[(Ca,Naz,K2)AlSi10024-7THO] (Figure 13). Qualitative chemical analyses of the

Figure 13 near here

mordenite by EDS during scanning electron microscope studies indicates that the
dominant constituents are Ca, Al, and Si; traces of K and Na were observed in a few
analyses. The mordenite occurs as a late deposit in vesicles, fractures or between breccia
fragments in association with numerous other hydrothermal minerals (Figures 3d, f, g,
and i). Mordenite in Icelandic geothermal areas occurs over a wide temperature range
(~75° to 230°C) (Kristmannsdéttir and Témasson, 1978).

Phillipsite. A single specimen of phillipsite [(K,Na,Ca);_2(Si,Al)g016-6H0]
was identified from each of two wells (ML 18-34 and ML 86-23) (Figures 3b and j). The
colorless to white, euhedral, pseudo-orthorhombic crystals (Figure 14) fill vesicles in the

Figure 14 near here

two lava flows. Vesicles containing phillipsite in drill hole ML 18-34 also contain calcite
and smectite; vesicles in the ML 86-23 lava flow are filled by one or more of the
following minerals: phillipsite, calcite, smectite, scolecite, levyne, stilbite/stellerite,
analcime, thomsonite, or gyrolite. In Icelandic geothermal areas, phillipsite occurs at low
temperatures (60° to 85°C) (Kristmannsdéttir and Témasson, 1978); however it has been
reported at temperatures as low as 37°C in a drill hole at Surtsey volcano (Jakobsson and
Moore, 1986).

The composition of phillipsite can vary considerably from formulas (such as the
one given above) provided in textbooks (Gottardi and Galli, 1985; Tschernich, 1992).
Electron microprobe data (Table 6) for one specimen analyzed for this report is compared

Table 6 near here
with analyses of phillipsite from a geothermal drill hole in Oregon (OR phillipsite)
(Oscarson and Bargar, 1996) and other phillipsites (Gottardi and Galli, 1985; Tschernich,
1992) (Figure 15). The figure shows a wide variation in compositions for phillipsite;
Figure 15 near here
however, the composition of phillipsite from the Oregon and Medicine Lake volcano
geothermal drill holes is quite close.

Scolecite. White, acicular to fibrous scolecite (Figure 16) fills vesicles along with

Figure 16 near here

dark green smectite in two drill core specimens from the ML 86-23 drill hole (Figure 3;).
Composition of this scolecite (Table 7 and Figure 17) differs somewhat from the normal

Table 7 near here

Figure 17 near here
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stoichiometric formula (CaAl;Si3010-:3H70) for scolecite in that the analyzed sample
contains between 1.23 and 1.76 atoms of sodium (Table 6). Gottardi and Galli (1985)
indicate that scolecite can contain as much as 1.4 atoms of sodium. Mesolite/scolecite
was reported at temperatures of about 65° to 100°C in geothermal areas of Iceland
(Kristmannsdéttir and Témasson, 1978).

Stilbite/stellerite. Three of the Medicine Lake volcano geothermal drill holes
contain core specimens with vesicles or fractures that are lined by colorless to white,

euhedral, stilbite/stellerite (NaCapAlsSij303¢6-14Ho0/CaAl;Siz018-7H,0) crystals
(Table 1). The two solid-solution series minerals are combined here because they are
distinguishable with confidence only by single-crystal XRD analysis (R.C. Erd, written
communication, 1992) which was not attempted for this report. Calcite, smectite,
heulandite, and chabazite are frequently found in close association with the
stilbite/stellerite; other minerals identified in the same samples are shown in figures 3a, g,
and j. Scanning electron microscope studies only show the presence of Ca, Al, and Si in
the rectangular, flat-topped crystals (Figure 18) that are characteristic of both stilbite

Figure 18 near here

and stellerite (Tschernich, 1992). Stilbite from Iceland geothermal drill holes occurs over
a temperature range of 70°C to about 170°C (Kristmannsdéttir and Témasson, 1978).
Thomsonite. Vesicles in two very altered lava flow specimens from the ML 86-
23 drill hole contain hemispherical clusters of colorless to white, bladed to fibrous
crystals that consist of thomsonite (NaCapAlsSisO2¢-6H70), gyrolite, and apophyllite in
XRD. The specimens also contain smectite, calcite, scolecite, levyne, stilbite/stellerite,
analcime, and phillipsite (Figure 3j). Electron microprobe analyses (Table 8) show that

Table 8 near here

the ML 86-23 thomsonite has a little more calcium than sodium as is common for many
thomsonites while others may contain substantial sodium or strontium (Figure 19). The

Figure 19 near here

temperature range for thomsonite in Icelandic geothermal drill holes is about 65° to
110°C (Kristmannsdéttir and Témasson, 1978).

CARBONATE MINERALS

The distribution of carbonate minerals (aragonite, calcite, dolomite, kutnohorite,
rhodochrosite, and siderite) in the Medicine Lake volcano geothermal drill holes is shown
in Table 1 and Figure 3 (a-k). Most of the identified carbonate minerals are found in
other geothermal areas at temperatures below 100°C (Table 1). Minerals, such as
dolomite or calcite, can form over a wide temperature range (<100° to 350°C for calcite)
and, by themselves, are not helpful in estimating the temperatures at which they formed.
However, some temperature data was obtained from fluid inclusions in calcite (discussed
in a later section).

Aragonite. Aragonite (CaCO3) was only identified (by XRD) from a single lava
flow specimen obtained from 469.1 m depth in the ML 28-32 drill hole; colorless acicular
crystals of aragonite line a shallow dipping fracture along with smectite and calcite. In
geothermal drill holes at Newberry volcano, aragonite was found at measured
temperatures <~80°C (Bargar and Keith, in press).

Rhodochrosite. Bladed, buff-colored, rhodochrosite (MnCO3) crystals fill a few
cavities along with smectite, quartz, calcite, and mordenite in a single drill-core sample
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collected from 428.2 m depth in the ML 45-36 hole. In the Newberry volcano drill holes,
rhodochrosite occurs at measured temperatures between ~30°C and ~130°C (Bargar and
Keith, in press).

Kutnohorite. Two of the collected specimens from the ML 27-27 drill hole
contain fracture or breccia-cavity fillings composed of powdery yellow or colorless,
massive kutnohorite [Ca(Mn,Mg,Fe)(CO3)] in addition to calcite, £smectite, and illite.
Yellow, orange or tan carbonate deposits, consisting in part of kutnohorite, also occur as
fillings in fractures or vesicles (along with calcite, +siderite, and smectite) in five samples
from the ML 28-32 drill hole. On two of the fractures with narrow openings, the
kutnohorite formed tiny (~1 mm), flattened, circular deposits with concentric growth(?)
rings similar to those shown in Figure 22 below. Measured temperatures in one
Newberry volcano drill hole at which kutnohorite occurred range from <10° to ~70°C
(Bargar and Keith, in press).

Dolomite. Traces of dolomite [CaMg(CO3),] were found as fracture fillings or
between breccia fragments in three of the Medicine Lake volcano drill holes (OWMLS5,
ML 28-32, and ML 62-21). Colorless to white dolomite coating breccia fragments at
748.6 m depth in the ML 28-32 drill hole consists of intergrown, tiny, rhombic crystals
(Figure 20). Other

Figure 20 near here

colorless to white dolomite deposits are massive and include one or more associated
minerals (smectite, iron oxide, calcite, quartz, chalcedony, or cristobalite).

Measured temperatures at the depths in a drill hole at Newberry volcano where
ankerite/dolomite was found ranges from <10° to ~150°C (Bargar and Keith, in press).
Dolomite from drill core Y-4 in Yellowstone National Park occurs at a temperature of
190°C (T.E.C. Keith, unpub data, 1991). Dolomite and ankerite from drill holes in the
Salton Sea geothermal area are reported as ranging from less than 100°C to over 200°C
(Muffler and White, 1969) or even as high as ~250°C (McDowell and Paces, 1985).

Siderite. Pale yellow to dark caramel-colored siderite (FeCO3) was identified in
vesicle and fracture fillings of a few core specimens from three flank drill holes
(OWMLS5, ML 18-32, and ML 52-4). However, numerous core samples in the upper
1,000 m of the ML 28-32 intracaldera drill hole contain siderite open-space fillings.
Morphology of the siderite varies substantially. Some siderite occurs as individual
rhombic crystals or stacked crystal clusters (Figure 21a, b). More commonly, siderite has

Figure 21 near here

a botryoidal appearance with spherical to hemispherical clusters of crystals (Figure 21c,
d). In fractures with narrow openings between the top and bottom surfaces, siderite
deposits have a flattened, disc-shaped habit (Figure 21e) often with concentric growth
rings (Figure 21f) marked by multiple colors of siderite rings (Figure 22). In the

Figure 22 near here

Newberry volcano geothermal drill holes, the measured temperatures at which siderite
was found ranged from <10°C to ~160°C (Bargar and Keith, in press).

Calcite. All of the Medicine Lake geothermal drill holes, except ML 68-16,
contain calcite (CaCO3) as a significant component (Table 1). Open spaces within
vesicles and fractures, and between breccia fragments frequently contain white massive
or colorless crystalline calcite deposits. Crystal morphology of the calcite is variable and
ranges from thin-bladed crystal clusters to individual rhombic and scalenohedral crystals
(Figure 23a, b). Electron microprobe analysis of one calcite specimen from 1,361.5 m
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Figures 23a &b near here

depth in the ML 28-32 drill hole shows the presence of minor Mn and Fe in addition to
Ca. The most intense XRD peak for calcite typically ranges from about 3.02A to 3.05A.
Some of the Medicine Lake volcang calcite deposits have their most intense X-ray
reflection between 2.99A and 3.01A, which indicates that the mineral contains some
manganese (Krieger, 1930; Bargar and Beeson, 1984).

SHEET-SILICATE MINERALS

Except for drill hole ML 68-16, one or more sheet silicate minerals were
identified in all of the studied Medicine Lake volcano geothermal drill holes (Table 1;
Figure 3). Kaolinite, halloysite, smectite, mixed-layer illite-smectite, illite, mixed-layer
chlorite-smectite, chlorite, talc, apophyllite, and prehnite are all classified as sheet
silicates (Deer, Howie, and Zussman, 1966). Most of these minerals occur in the two
intracaldera drill holes (ML 28-32 and ML 45-36) while the other drill holes contain
between one and three of the sheet-silicate minerals (Table 1).

Kaolinite. White kaolinite [A1,SioO5(OH)4] coats fractures along with one or
more other hydrothermal minerals (smectite, calcite, pyrrhotite, quartz, and hematite) in
five of the ML 28-32 specimens collected between depths of 730 m and 985.7 m (Figure
3d). Kaolinite has been reported at temperatures as high as 170°C in drill core from
Yellowstone National Park (Bargar and Beeson, 1985).

Halloysite. A single specimen of halloysite (a kaolinite-serpentine group mineral
with the same chemical formula as kaolinite) occurs as a brown fracture filling at 534.3 m
depth in the ML 52-4 drill hole. The scarcity of kaolinite and halloysite might indicate
that acidic conditions have occurred infrequently in the Medicine Lake volcano
geothermal system. Measured temperatures at the depths where these two kaolinite-
serpentine group minerals were identified in Newberry volcano drill holes were less than
50°C (Bargar and Keith, in press).

Smectite. Smectite group minerals [primarily saponite? (Ca/2,Na)y 3(Mg,Fe)3
(Si,Al)4010(OH),-4H,0] are the most abundant clay minerals in all but one (ML 68-16)
of the Medicine Lake volcano drill holes (Table 1). Black, red, orange, yellow, white,
and green (predominant color) smectite coats open spaces of vesicles and fractures, fills
voids between breccia fragments, and replaces glass in tuffaceous core samples. Smectite
morphology varies from closely spaced sheet-like or platy crystals to open-textured
(honeycomb-like), randomly-oriented, sheet-like crystals (Figure 24 a & b). Detailed

Figure 24a & b near here

XRD studies of smectite show (001) basal reflections that range from~ 12A to 15A; the
basal spacing expands to ~17A following exposure to ethylene glycol vapors at 60°C for
1 hour. The range of unglycolated (001) basal reflections suggests that there is some
variation in the exchangeable cations (Grim, 1968) which may indicate the occurrence of
more than one smectite-group mineral. Electron microprobe analyses (Table 9) show

Table 9 near here

substantial differences in iron and alumina content between smectite (saponite?)
specimens from two of the drill holes. Smectite occurs in most geothermal areas at
temperatures <200°C (Table 1).

Mixed-layer illite-smectite. Brown, light green, or dark green clay, identified as
mixed-layer illite-smectite, occurs in fractures or between breccia fragments in a few core
samples from three of the drill holes (Table 1). Low, broad, asymmetrical XRD
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reflections for most of the samples show a (001)[/(001)s spacing of ~1 1A that contracts
to ~9.6A (smectite peak not seen) after exposure to ethylene glycol for 1 hour at 60°C.
For three of the specimens, the ~11A XRD reflection splits into two peaks at ~9.6A and
~12.7A following glycolation. The mineral is tentatively identified as an alevardite
ordered mixed-layer illite-smectite (Hower, 1981). About 75 percent of the layers in
these clay specimens consists of illite which corresponds to a formation temperature of
~110°C Horton (1985).

Illite. Tlite {(K,H30)(Al,Mg,Fe),(Si,Al)4010[(OH);,H>0]}was identified only in
the two Medicine Lake volcano drill holes located within the caldera (Table 1). It occurs
as white or green clay from altered glass, altered potassium feldspar crystals, and open-
space fillings of vesicles, fractures, and spaces between breccia fragments. Frequent
associated alteration minerals include chlorite, quartz, and calcite; chalcedony, hematite,
magnetite, pyrite, pyrrhotite, wairakite, mordenite, garnet, actinolite/tremolite, and
epidote occur in the same core samples as illite. In XRD analyses of illite, the basal (001)
peak is a low, broad ~10A reflection that does not shift following glycollation. Some
illite is massive with closely packed sheet-like crystals deposited one on top of another.
More frequently, the sheet-like crystals formed are randomly oriented with open spaces
between the sheets (Figure 25). Chemical analyses of one illite specimen (Table 10)

Figure 25 near here
Table 10 near here

appears to be close to an analysis of hydromuscovite given in Deer, Howie, and Zussman
(1966). Measured temperatures at depths where illite occurs in a geothermal hole drilled
within Newberry caldera ranged between ~150° and 265°C (Bargar and Keith, in press).

Mixed-layer chlorite-smectite. Mixed-layer chlorite-smectite was identified
only in the two intracaldera drill holes (Table 1). The green clay mineral coats fractures
and vesicles between 1,052.9 and 1,108.5 m depth in the ML 28-32 drill hole, and from
1,053.1 to 1,202.4 m depth in the ML 45-36 drill hole. In both drill holes the chlorite-
smectite appears to be an early hydrothermal deposit. Associated (later?) hydrothermal
minerals include calcite, laumontite, chlorite, pyrite, hematite, quartz, wairakite,
laumontite, chalcedony, epidote, actinolite/tremolite, and prehnite. Mixed-layer chlorite-
smectite was found in drill holes at Newberry volcano at depths where the measured
temperatures ranged from 110° to 160°C (Bargar and Keith, in press). Geothermal drill
holes in Iceland and other areas contain mixed-layer chlorite-smectite at temperatures
ranging between <100° and 240°C (Table 1). The Medicine Lake volcano mixed-layer
chlorite-smectite deposits appear to be well crystallized and have sharp (001) and (002)
XRD reflections at about 14.6A and 7.3A that show slight expansion to about 15.3A and
7.4A following exposure to ethylene glycol vapors at 60°C for one hour.

Chlorite. In the deeper parts of three of the Medicine Lake volcano drill holes
(ML 28-32, ML 45-36. and ML 88-12), chlorite {(Mg,Al,Fe)12[(Si,Al)gO20](OH)1¢}is
the dominant sheet-silicate mineral (Table 1). Occasionally, chlorite replaces primary
mafic minerals in the groundmass of the volcanic deposits; however, chlorite most
commonly occurs as a filling in open spaces of breccias, fractures, and vesicles.
Associated minerals in these open-space deposits include calcite, smectite, hematite,
illite, mixed-layer illite-smectite, laumontite, quartz, pyrite, wairakite, chalcedony,
magnetite, actinolite/tremolite, talc, garnet, epidote, and pyrrhotite.

Green chlorite is easily distinguished from green smectite by XRD analysis;
chlorite has 14A and 7A reflections that do not expand after exposure to ethylene glycol
vapors for 1 hour at 60°C whereas smectite and mixed-layer chlorite-smectite show
marked displacement of the (001) and (002) XRD peaks following glycolation. The
character of the XRD reflections range from very sharp peaks to low, broad peaks. Sharp
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XRD peaks for chlorite are correlated with well-crystallized deposits consisting of
hexagonal platelets or books of platelets (Figure 26a). Chlorite that is not as well

Figure 26 near here

crystallized (Figure 26b) will have broader XRD reflections.

Two electron-microprobe analyses of chlorite from the ML 45-36 drill hole (Table
10) would plot in the pycnochlorite field of a Si vs Fe/Fe+Mg diagram (Hey, 1954, p.
280). This is also true for chlorite from geothermal drill holes at Newberry volcano
where the measured temperatures range from 120° to 265°C (Bargar and Keith, in press).
In Iceland and other geothermal areas chlorite occurs over a wide temperature range
(<100° to 350°C) (Table 1).

Apophyllite. A single drill core specimen from 1,042.4 m depth in the ML 86-23
drill hole contains vesicle and fracture fillings of dark green smectite, and later
hemispheric clusters of white to colorless, bladed, and acicular crystals of scolecite,
thomsonite, and gyrolite. In addition, some colorless, prismatic crystals were identified
by XRD as apophyllite [KFCay(SigO20)gsH20] which is an uncommon phyllosilicate or
sheet-silicate mineral; apophyllite usually is associated with zeolites and a few other
hydrothermal minerals in open spaces of mafic volcanic rocks (Deer, Howie, and
Zussman, 1966). Apophyllite also was identified in geothermal drill hole core samples
from Hawaii, at a depth where the measured temperature was 70°C (Bargar, Keith, and
Trusdell, 1995), and Newberry volcano (measured temperature at sample depth was
~50°C.) (Bargar and Keith, in press).

Most of the chemical analyses of apophyllite from the Medicine Lake volcano
drill hole specimen (Table 11, analyses 3-8) appear to be consistent with the reported

Table 11 near here

chemical composition of apophyllite. However, analyses 1 and 2 in Table 11 suggest that
Al substitutes for Si, and possibly, Na for K. These two analyses are also quite high in
Ca and very low in K compared with the remaining analyses in Table 11.

Prehnite. Prehnite [CapAl;Si301((OH);] is also classified as a sheet-silicate
mineral (Deer, Howie, and Zussman, 1966). Three drill core specimens from near the
bottom of the ML 45-36 drill hole (Figure 3f) contain vesicle and fracture fillings of
individual or radiating masses of colorless, blocky, prehnite crystals (Figure 27).

Figure 27 near here

Associated minerals include chlorite, quartz, chalcedony, epidote, actinolite/tremolite,
anhydrite, wairakite, laumontite, and calcite. Chemical analyses of prehnite from two of
the drill core specimens (Table 12) suggest some substitution of Fe for Al; analysis 1 for

Table 12 near here

sample ML 45-36 3820 contains substantial (anomalous?) Mg which is usually very low
in prehnite (Deer, Howie, and Zussman, 1966). Temperatures at depths where prehnite
has been reported from geothermal drill holes in Iceland and other areas of the world
range from about 210° to 350°C (Table 1).

Talc. A single XRD analysis of a green clay, fracture-filling-specimen, obtained
from 1,316.7 m depth in the ML 28-32 drill hole, has reflections for talc
[Mg3Si4010(OH)2], another sheet-silicate mineral. Fractures and vesicles in the analyzed
sample also contain iron oxide, chlorite, calcite, and epidote. Talc has been reported
occasionally from modern geothermal areas of the world at temperatures of about 290° to
320°C (Table 1).
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SILICA MINERALS

Core samples from seven of the Medicine Lake volcano drill holes contain silica
minerals (Table 1) that span the range of crystallinity from noncrystalline opal to poorly-
crystallized cristobalite (XRD reflection at 4. 11A) to better ordered cristobalite (XRD
peak at 4. 04A) to chalcedony—a cryptocrystalline variety of quartz—to well- -crystallized
quartz. Keith, White, and Beeson (1978) discuss the solubilities of these silica minerals
at various temperatures as well as indications that the less well-crystallized silica phases
can be converted to better-crystallized silica minerals through solid-state recrystallization
as in the conversion from opal to cristobalite or from poorly ordered cristobalite to well-
ordered cristobalite. Solution and redeposition are thought to be required in converting
chalcedony to quartz and in the formation of chalcedony from cristobalite (Murata and
Larson, 1975).

Opal. Amorphous opal (SiO»-nH,0) was only identified in fracture fillings of
three samples from the upper part of the ML 45-36 drill hole (Figure 3f). The three opal
specimens mostly consist of colorless to white, botryoidal deposits. Traces of smectite,
the only associated mineral, were found on fractures from two specimens. Opal coating
the fracture at 87.2 m depth is only partly botryoidal; it also has an unusual wormy,
columnar, or tube-like (some broken tubes have a hollow core) morphology (Figure 28).

Figure 28 near here

The tubes appear to consist of coalesced opal spheres such as can be seen in the lower
right corner and near the center of Figure 28. Opal is a fairly common hydrothermal
deposit in modern geothermal areas where temperatures are <100°C (Table 1).
Cristobalite. Cristobalite (SiO;) was identified in core samples obtained from
five of the studied drill holes (Table 1). XRD analyses of colorless to white botryoidal
silica (Figure 29) fracture fillings show the presence of both chalcedony and poorly

Figure 29 near here

crystalline cristobalite. Comparison of Figures 28 and 29 appears to show some degree
of crystallinity in cristobalite/chalcedony that is absent in the amorphous opal. Other
hydrothermal minerals lining these fractures include smectite, calcite, siderite, quartz,
iron oxide, marcasite, pyrite, mordenite, heulandite, and stilbite/stellerite. Well-
crystallized cristobalite was detected in only two XRD analyses. Cristobalite is a fairly
common hydrothermal mineral in many geothermal areas where it was found at
temperatures of <100° to 210°C (Table 1).

Chalcedony. Chalcedony (SiO2) occurs only in core specimens from the same
five drill holes that contained cristobalite (Table 1). Vesicles, fractures, and spaces
between breccia fragments are partly filled by colorless, white, gray, or bluish botryoidal,
powdery, or massive chalcedony. Other hydrothermal minerals in these open-space
deposits include smectite, calcite, siderite, quartz, dolomite, pyrrhotite, marcasite, pyrite,
hematite, chlorite, illite, epidote, magnetite, mordenite, heulandite, prehnite, and
anhydrite. Chalcedony generally forms at temperatures below 100°C but it does occur in
geothermal drill holes at measured temperatures as high as 240°C (Table 1).

Quartz. Core specimens from four of the five drill holes that contain cristobalite
and chalcedony also contain colorless quartz (SiO») crystals; two drill holes containing
quartz do not have cristobalite or chalcedony (Table 1). In these six drill holes, quartz
crystals occur in association with most of the other hydrothermal minerals listed in Table
1. The quartz formed in open spaces of the various rock units as subhedral, dipyramidal
(Figure 30) to euhedral prismatic crystals (Figures 25 and 26). Quartz has been reported
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Figure 30 near here

from most studied geothermal areas at measured temperatures ranging from about 100°C
to more than 300°C.

SULFIDE MINERALS
Marcasite. Tabular marcasite (FeS;) crystals (Figure 31) were identified on
Figure 31 near here

fractures in five core specimens from two of the studied drill holes (Table 1). Associated
minerals include siderite, heulandite, smectite, chalcedony, cristobalite, quartz, pyrite,
natrojarosite and gypsum. Marcasite is metastable with respect to pyrite at low
temperature (Craig and Scott, 1974) and is converted to pyrite at temperatures greater
than 160°C in the Salton Sea geothermal system (McKibben, 1979). Marcasite occurs at
temperatures of about 80° to 170°C in drill cores from Yellowstone National Park (Bargar
and Beeson, 1984), at temperatures slightly less than 140°C at Steamboat Springs,
Nevada (Sigvaldson and White, 1962), and at about 74° to 98°C in one Newberry volcano
core hole (Bargar and Keith, in press).

Pyrrhotite. Tabular, bronze, hexagonal, slightly to strongly magnetic, pyrrhotite
(Fe1-xS) crystals (Figure 32) line fractures, cavities, and open spaces between breccia

Figure 32 near here

fragments, and are disseminated in several core specimens from two zones in the ML 28-
32 drill hole; disseminated pyrrhotite was also identified, along with illite, chalcedony,
and pyrite, in a single core specimen from the ML 45-36 drill hole. Hydrothermal
minerals identified from the shallow pyrrhotite zone of drill hole ML 28-32 (Figure 3d)
include: quartz, siderite, smectite, pyrite, chalcedony, heulandite, mordenite, calcite,
kaolinite/serpentine, iron oxide, and mixed-layer illite-smectite. A deeper pyrrhotite-
bearing zone in this drill hole contains, chlorite, epidote, wairakite, and illite. Browne
and Ellis (1970) and Steiner (1977) reported pyrrhotite in drill cores from New Zealand
geothermal areas at temperatures ranging from 152° to 268°C. Pyrrhotite in drill cores
from Yellowstone National Park occur at temperatures measured during drilling of 130°
to 152°C (Bargar and Beeson, 1981). At Newberry volcano, the measured temperatures
at the depths where drill-hole specimens containing pyrrhotite occurred ranged between
about 97° and 265°C (Bargar and Keith, in press).

Pyrite. Tiny (~2um to 2 mm), cubic (occasionally pyritohedron), pyrite (FeS;)
crystals (Figure 33a) are present in core specimens from five of the Medicine Lake

Figure 33 near here

volcano drill holes (Table 1). One lithic tuff specimen from the ML 28-32 hole contains
small nodular clusters of pyrite crystals (Figure 33b); this framboidal pyrite has been
attributed to colloidal deposition or to the action of microorganisms (Deer, Howie, and
Zussman, 1966). More commonly, pyrite in drill core samples from the five holes is
deposited as subhedral to euhedral crystals either in open spaces of fractures, vesicles,
lithophysal cavities, and breccias or is disseminated throughout the specimens. Some
pyrite crystals or crystal clusters have a surrounding yellowish, orangish, or reddish halo
suggesting minor oxidation has occurred. In addition, colorless gypsum needles had
formed on the pyrite deposits in several of the collected core specimens. Other
hydrothermal minerals identified in the same core specimens as pyrite include: smectite,
natrojarosite, quartz, marcasite, calcite, cristobalite, heulandite, chlorite, mixed-layer
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illite-smectite, illite, chalcedony, pyrrhotite, mixed-layer chlorite-smectite,
actinolite/tremolite, epidote, anhydrite, laumontite, mordenite, iron oxide, rhodochrosite,
siderite, kutnohorite, wairakite, and magnetite. Pyrite can form over a wide range of
temperatures; studies of many geothermal areas indicate that pyrite can form at
temperatures <100°C to >350°C (Table 1).

SULFATE MINERALS

The sulfate minerals (anhydrite, gypsum, and natrojarosite) identified in a few
core specimens from three of the Medicine Lake volcano drill holes (Table 1) appear to
have formed due to oxidation of pyrite or marcasite.

Anhydrite. One core specimen from the ML 28-32 and three specimens from the
ML 45-36 drill holes contain colorless, blocky to tabular, anhydrite (CaSO4) crystals that
were deposited in vesicles and fractures (Table 1). Other hydrothermal minerals in these
open-space fillings include mixed-layer illite-smectite, pyrite, calcite, chlorite,
chalcedony, quartz, epidote, prehnite, actinolite/tremolite, and laumontite. Anhydrite can
form over a wide temperature range (60° to 300°C) (Table 1). Associated hydrothermal
minerals suggest that anhydrite very likely formed near the high end of this temperature
range.

Gypsum. Gypsum (CaSO4-2H70) was identified in only two of the drill holes
(Table 1) where it formed in open spaces of the rocks along with closely associated
oxidized pyrite or marcasite. Other hydrothermal minerals in these specimens include
natrojarosite, smectite, siderite, heulandite, chalcedony, and cristobalite. Some of the
white to colorless, fibrous to acicular, gypsum crystals or sprays of crystals formed on the
outer cored surface of the samples which indicates that the mineral precipitated after the
core was brought to the surface. Gypsum precipitates at fairly low temperatures (<70°C)
(Holland and Malinin, 1979).

Natrojarosite. Yellowish, powdery, open-space fillings in eight core specimens
from the ML 28-32 and ML 36-28 drill holes (Table 1) were identified as natrojarosite
[NaFe3(SO4)2(OH)g] in XRD analyses. Scanning electron microscope studies show that
the powdery material consists of clusters of tiny, tabular, natrojarosite crystals (Figure
34). Natrojarosite generally forms in near-surface hydrothermal acid-sulfate or fumarolic
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conditions (Hemley and others, 1969). The natrojarosite is closely associated with
oxidized pyrite or marcasite; smectite, gypsum, siderite, and calcite also are present in
some specimens. Probably the natrojarosite formed from acid-sulfate conditions due to
oxidation of pyrite. Natrojarosite in one geothermal drill hole at Newberry volcano
occurs at a depth where the measured temperature is about 50°C (Bargar and Keith, in
press).

OTHER MINERALS

Iron oxide. Both matrix and open spaces of many core specimens from eight of
the drill holes (Table 1) contain brownish, reddish, black, orangish, or yellowish iron-
oxide staining. XRD analyses of most of the specimens indicate that the iron oxide is
amorphous to X-rays (limonite?) [FeO(OH)-nH70]; hematite (Fe,O3) was identified from
a few XRD analyses. Most iron oxide occurs as an early hydrothermal (or late vapor
phase, see Figure 35) deposit that coats vapor-phase minerals (tridymite and K-feldspar);

Figure 35 near here
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granophyric quartz; and open spaces of fractures, vesicles, or areas between breccia
fragments. A few chalcedony deposits are stained red. Some sulfides have orangish to
yellowish halos (plus gypsum or natrojarosite) which suggests oxidation of the sulfide
minerals. Iron-oxide deposits usually are earthy, powdery, or clayey; however, black,
metallic, specular hematite is associated with vapor-phase minerals in two specimens.
Groundmass magnetite in several red-stained core specimens is altered to hematite. Most
other hydrothermal minerals in core samples from the eight drill holes occur in
association with the iron oxide. Hematite has been reported from drill holes in many
geothermal areas at depths where measured temperatures ranged from <100° to 250°C
(Table 1).

Magnetite. Fracture and vug fillings of magnetite (Fe3O4) or disseminated
magnetite occurs in a few core specimens from the ML 28-32 drill hole. The morphology
of these deposits varies from massive to crystalline; in one specimen, the massive
deposits are botryoidal. The magnetite has partly altered to reddish hematite. XRD
analyses also show the presence of chlorite, epidote, garnet, wairakite, quartz,
chalcedony, calcite, and illite in the same specimens. Many of the associated minerals
indicate that at least some of the magnetite probably formed at temperatures above 200°C.

Gyrolite. Two core specimens from the ML 86-23 drill hole contain white or
colorless, bladed, gyrolite [NaCa;¢(Sip3Al)O60(OH)5-15H70] crystals. XRD analyses
indicate that smectite, calcite, scolecite, levyne, stilbite/stellerite, analcime, thomsonite,
phillipsite, and apophyllite also occur in these vesicles. Gyrolite appears to be a rare
hydrothermal mineral. Gyrolite was deposited in core from one Newberry volcano drill
hole where the measured temperature was <50°C (Bargar and Keith, in press). One core
specimen from a drill hole in Yellowstone National Park contains gyrolite at a depth
where the measured temperature was abut 125°C (Bargar, Beeson, and Keith, 1981).
Gyrolite also has been identified in Icelandic geothermal drill holes at temperatures above
200°C (Kristmannsdéttir and Témasson, 1978).

Adularia. Euhedral adularia (KAISi30g) crystals (Figure 36) were identified by
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XRD and SEM analyses of one core specimen from each of two drill holes (ML 86-23
and ML 28-32) (Table 1). Other hydrothermal minerals in these samples include:
smectite, calcite, stilbite/stellerite, mordenite, heulandite, analcime, quartz, chalcedony,
pyrite, and pyrrhotite. Adularia has been reported at temperatures between 150° and
>300°C in modern geothermal areas (Table 1).

Actinolite/tremolite. Light green or white, fibrous, actinolite/tremolite
[Cay(Mg,Fe)sSig022(OH),] crystals (Figure 37a and b) were identified in vesicles and
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fractures near the bottom of the two intracaldera drill holes (Table 1). Associated
hydrothermal minerals include: calcite, chlorite, mixed-layer chlorite-smectite, illite,
chalcedony, epidote, pyrite, quartz, prehnite, anhydrite, and laumontite. The light green
to white color of the clusters of fibrous crystals suggests that both tremolite and actinolite
may be present. EDS semiquantitative analysis of two specimens shows Ca>Mg>Fe in
the white one and Ca>Fe>Mg in the light green sample; minor Al in these analyses may
result from substitution of Al for Si. Actinolite/tremolite occurs at temperatures between
260° and 400°C in drill holes of many modern geothermal areas (Table 1).

Epidote. Euhedral, yellow-green, epidote [Cay(Fe,Al)3(SiO4)3(OH)] crystals
(Figure 38) line vugs and fractures of lava flows, and spaces between fragments of

Figure 38 near here
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breccias near the bottoms of the two intracaldera (ML 28-32 and ML 45-36) drill holes
(Table 1). Hydrothermal minerals associated with epidote include prehnite and
actinolite/tremolite (Figure 37), chlorite, illite, talc?, anhydrite, laumontite, mixed-layer
chlorite-smectite, calcite, quartz, iron oxide, chalcedony, pyrite, pyrrhotite, magnetite,
garnet, and wairakite. Electron microprobe analyses (Table 13) of several epidote
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specimens from the two drill holes suggest some Fe—Al substitution with Fe enrichment
and Al depletion of epidote crystals from the ML 28-32 drill hole. Epidote forms at
temperatures between 220° and 350°C in many studied geothermal areas (Table 1).
Garnet. Fractures and vugs in seven core specimens obtained from 1,321.0 to
1,328.9 m depth in the ML 28-32 drill hole contain yellow-orange garnet
[CazFey(Si04)3] crystals (Figure 39). Hydrothermal magnetite was identified in these
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same specimens; other minerals lining these fractures and vugs include: epidote, calcite,
chlorite, hematite, quartz, illite, wairakite, and chalcedony. Electron microprobe analyses
of garnet crystals from one core specimen show that Ca and Fe are the dominant cations
(Table 14) indicating that the mineral is an andradite garnet. Such garnets in drill-hole
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samples from other geothermal areas were found at temperatures between 250° and
>300°C (Table 1).

FLUID-INCLUSION DATA

Fluid-inclusion data were only obtained for quartz, calcite, and wairakite from the
two geothermal drill holes (ML 28-32 and ML 45-36) that were completed within the
caldera of Medicine Lake volcano. Hydrothermal quartz crystals occur in open spaces of
six drill holes, calcite was found in all but 1 drill hole, and wairakite was identified only
in the two intracaldera holes (Table 1). Calcite and wairakite are colorless to white soft
minerals for which leakage of fluid from the inclusions potentially could result in
erroneous fluid-inclusion data; on the other hand, quartz is a colorless hard mineral which
generally is not believed to leak and is regarded as a very good mineral for fluid inclusion
analyses (Roedder, 1984). Most fluid inclusions appear to have formed along healed
fractures and are classified as being of secondary origin. Some inclusions may be
classified as pseudosecondary because it appears that additional mineral growth occurred
on exterior crystal faces which sealed off the fractured zones leaving rims almost free of
fluid inclusions. A few inclusions are very large compared with the size of the host
crystal and appear to be isolated from other fluid inclusions; these inclusions are
classified as primary in this report. Quartz specimens first were frozen and gradually
thawed to the temperature (Tm) at which the last piece of ice melts which provides an
estimate of the salinity of the fluid trapped within the inclusions. These specimens were
then heated to the homogenization temperature (Th)—temperature at which the liquid and
vapor phases in individual fluid inclusions merged to a single phase by expansion or
contraction of the liquid upon heating. The order of heating and freezing was reversed
for the soft calcite and wairakite minerals because of the possibility that fluid inclusions
in these minerals might decrepitate during freezing.

ML 28-32. Homogenization temperatures (Th) were obtained for 94 liquid-rich,
secondary and pseudosecondary(?), fluid inclusions in quartz specimens from three
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depths in the ML 28-32 drill hole; the Th values range between 125° and 223°C (Table
15; Figure 40). Only 24 melting-point temperature (T,) measurements were obtained

Table 15 near here
Figure 40 near here

for these fluid inclusions. Some of the analyzed specimens were too murky to determine
the temperature at which the last piece of ice melted. The vapor bubble for several fluid
inclusions disappeared during freezing and did not reappear until +2.6° to +4.1°C. These
positive Ty, values indicate metastability and the fluid inclusions cannot be used for
salinity calculations (Roedder, 1984). Other Ty, values range between -0.5° and -1.2°C
corresponding to 0.9 to 2.1 weight percent NaCl equivalent. Ty data were not obtained
for two calcite cleavage chips; Th values for 44 fluid inclusions in the calcite specimens
range between 139° and 225°C.

ML 45-36. Homogenization temperatures were obtained for 215 liquid-rich,
secondary, pseudosecondary, and primary fluid inclusions in quartz crystals that line open
spaces in drill core from five depths in the ML 45-36 drill hole (Table 15). Three vapor-
rich pseudosecondary fluid inclusions from one specimen also were analyzed; these
inclusions homogenized to the vapor state but the precise Th values were not observed.
Th measurements for quartz specimens from this drill hole range between 145° and 373°C
(Figure 41). Tpy values of 120 fluid inclusions are mostly 0.0° and -0.1°C corresponding
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to a salinity of 0.0 to 0.2 weight percent NaCl equivalent. Nine fluid inclusions in one
quartz specimen have a Ty value of -1.7°C which corresponds to a salinity of 2.9 weight
percent NaCl equivalent.

Thirty Ty values were obtained for secondary liquid-rich fluid inclusions in one
of two calcite specimens analyzed from this drill hole. Ty measurements for 22 fluid
inclusions in one crystal from this specimen were 0.0°C (salinity = 0.0 weight percent
NaCl equivalent). Eight fluid inclusions in a separate calcite crystal from the same
specimen had Ty, values of -1.1°C corresponding to a salinity of 1.9 weight percent NaCl
equivalent. Tp values for 71 analyzed fluid inclusions in the two calcite specimens
ranged from 178°C to 285°C. Forty one liquid-rich fluid inclusions in a wairakite
specimen mostly leaked during heating. No T, values were measured for the wairakite
fluid inclusions, and only four Th, values between 186° and 263°C were recorded.

Reliability of the fluid-inclusion measurements in calcite and wairakite crystals
may be suspect; however, the measured T and Ty, values of these inclusions fall within
the range of data for the quartz specimens from this drill hole (Figure 41 and Table 15).
Several Th measurements for liquid-rich fluid inclusions in quartz crystals from this drill
hole are higher than a theoretical reference boiling-point curve—reflecting the maximum
temperature attainable in a hot-water geothermal system at a given depth in a drill hole—
drawn to the present ground surface (Figure 41). These fluid inclusions must have
formed at some time in the past because present-day fluid inclusions forming at
temperatures even slightly higher than the theoretical reference boiling-point curve would
be expected to be vapor-rich. It is likely that these high Th fluid inclusions formed at a
time when the origin of the theoretical reference-boiling-point curve was at a much
higher elevation owing to the presence of glacial ice (discussed in Bargar and Fournier,
1988a). Some effects of a late-Pleistocene glaciation at Medicine Lake volcano are
discussed by Anderson (1941) and Donnelly-Nolan and Nolan (1986). These workers
indicate that the estimated thickness of the glacial ice within the caldera of this volcano
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must have been on the order of 150 m. If the boiling-point curve in Figure 41 were raised
by 150 m, the majority of the high Tt, fluid inclusions would plot below the adjusted
theoretical reference boiling-point curve and would be liquid-rich inclusions (same as the
observed fluid inclusions).

BACTERIA-LIKE PARTICLES

Scanning electron microscope studies of the Medicine Lake drill cores show tiny
spherical, rod-shaped, or filamentous bacteria-like particles that appear to have lived on
heulandite and mordenite in a few of the examined core specimens from the ML 28-32
drill hole (Figure 42 a and b) and on euhedral quartz crystals ML 45-36 (Figure 43 a and
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b) drill hole. No controls to detect contamination by surface microorganisms were
employed during drilling of the Medicine Lake holes or during subsequent handling of
the core samples. Therefore, it cannot be determined if the bacteria-like particles actually
were present in these rocks before the geothermal holes were drilled. Without the
existence of appropriate controls during the drilling and handling of the core specimens,
it would be imprudent to suggest that the particles are not the result of contamination.

A 2-mm-long, colorless, euhedral, quartz crystal from a fracture in a rhyolitic lava
flow from 856-m depth in drill hole ML 45-36 contains dozens of similar bacteria-like
moving particles that were trapped within a 200pum x 130pm, liquid-rich, primary fluid
inclusion (Figure 44) (Bargar, 1992). The moving particles, ranging in size from <0.5um

Figure 44 near here
(undefined shapes) to ~3uum to 5 pm (rodlike) (Figure 45), were first noticed during
Figure 45 near here

initial heating of the fluid inclusion. The submicron-sized particles move very rapidly at
ambient temperature while the larger, rod-shaped particles move very sluggishly and are
difficult to distinguish among the shadows near the vapor bubble and the outer margins of
the fluid inclusion. At about 62°C, a large number of moving particles became apparent
near the lower surface of the vapor bubble. Each particle moved in a constant circular
mode perpendicular to the length of the vapor bubble; the combined movement of all of
the particles defines a cylindrical current (see Attachment 1 video tape). Individual
particles appear to bounce off the boundary between water and the vapor bubble, become
caught in the continuous current, and then return to the water-vapor interface. The
thermal-induced current has a greater velocity at the lower end (right side of Figure 44
photograph). Towards the upper end (near center of fluid inclusion) of the short tubular-
shaped convective cell, the current velocity appears to gradually decrease, and the
particles eventually drift off into the large interior area of the fluid inclusion. Some
particles disappear behind the vapor bubble, but they most likely reenter the convective
cell because the number of particles within the cell appears to remain nearly constant. As
the temperature is reduced, movement of the larger rod-shaped particles decreases until at
room temperature only a very slow Brownian-like motion is observed.

Salinity of the water in the fluid inclusion is very low with a Ty, value of 0.0°C.
No Th measurement was obtained because heating was discontinued at ~130°C in order
to insure preservation of the very large fluid inclusion. Fifty-five other liquid-rich,
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secondary or pseudosecondary(?) fluid inclusions in quartz crystals from the same
fracture have T, values between 197° and 373°C (average of 244°C); Ty, values for 33 of
these fluid inclusions is 0.0° or -0.1°C (salinity =0.0 to 0.2 weight percent NaCl
equivalent) (Table 15).

Similar moving particles were found in liquid-rich, secondary fluid inclusions in
quartz crystals from depths of 753.8 (Th of 253° to 278°C; Ty, of 0.0°C), 841.6 (Th of
233° t0 265°C; T of 0.0° and -1.7°C), and 855.0 m (Th of 260° and 289°C; T, of 0.0°C)
in the ML 45-36 drill hole. Bacteria-like moving particles were trapped within fluid
inclusions in hydrothermal quartz crystals that formed on fractures of a 150-ka rhyolite
lava flow penetrated by a U.S. Geological Survey research drill hole in Lower Geyser
Basin, Yellowstone National Park, Wyoming (Bargar, Fournier, and Theodore, 1985) (Th
of 190° to 280°C; T of 0.0°C). In addition to this report of moving particles in fluid
inclusions, bacteria-like particles in fluid inclusions also have been observed by the first
author during fluid-inclusion studies of drill hole specimens from other geothermal areas.
Rod-shaped moving particles are present within several liquid-rich fluid inclusions (Th of
249° to 286°C; T of 0.0°C) in hydrothermal quartz crystals from 1,133-m depth in drill
core from the Geysers geothermal area of northern California (Bargar, Fournier, and
Theodore, 1985). A few liquid-rich fluid inclusions (T of -0.9°C; Th of 215° and
241°C) in hydrothermal quartz crystals from the Miravalles geothermal area, Costa Rica,
contain as many as 3 irregular or rodlike, micrometer-size moving particles (Bargar and
Fournier, 1988b). A hydrothermal quartz crystal in one drill-hole sample from the Long
Valley, California, geothermal area has 2 liquid-rich fluid inclusions (Th of 191° and
209°C; Tm of -0.3°C) that contain one and two rodlike moving particles, respectively
(Bargar, 1995). Also, tiny threadlike and rodlike moving particles were observed in
liquid-rich fluid inclusions (Th of 250° and 258°C; Ty of 0.0°C) from a fossil geothermal
area near Mount Hood, Oregon (Bargar, Keith, and Beeson, 1993).

SUMMARY AND CONCLUSIONS

This study of core samples from 12 geothermal prospect drill holes in the
Medicine Lake volcano area identified forty-five minerals that we believe must have
formed by hydrothermal alteration at low to moderate temperatures of zeolite-facies to
greenschist-facies metamorphism. The facies terms are used for characterizing the degree
to which rocks in different areas of the volcano have been metamorphosed. The
identified mineral assemblages (zeolites, carbonates, sheet-silicates, silica minerals,
sulfides, sulfates, and other minerals) from the drill holes sited outside the caldera of
Medicine Lake volcano (Table 1, Figures 3a-c, e, and g-k) are generally characteristic of
conditions attributed to zeolite-facies metamorphism. The minerals identified from the
upper parts of the two intracaldera drill holes (Table 1, Figures 3d and f) also appear to
reflect the same low-temperature (<200°C) conditions. It is only near the bottoms of the
ML 28-32 and ML 45-36 intracaldera drill holes that several of the identified minerals
(garnet, epidote, actinolite/tremolite, prehnite, and talc) undoubtedly formed under
higher-temperature (200° to 400°C) subgreenschist- to greenschist-facies conditions.

No fluid inclusions were found in minerals (calcite) from the drill holes located
outside the Medicine Lake caldera. Studies of fluid inclusions within quartz and calcite
deposits from the ML 28-32 drill hole produced homogenization temperatures (Th) that
are mostly characteristic of zeolite-facies metamorphism (Table 15, Figure 40). It is only
the presence of the metamorphic minerals garnet, epidote, actinolite/tremolite, and talc
(Table 1, Figure 3d) that indicates the existence of past higher temperatures in this drill
hole. However, in the ML 45-36 drill hole the Th values for calcite and quartz fluid
inclusions predominantly fall in the 200° to 300°C range (Table 15, Figure 41)
characteristic of subgreenschist- to greenschist-facies conditions. The presence of
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epidote, actinolite/tremolite, and prehnite (Table 1, Figure 3f) provides additional support
for higher-temperature metamorphism. Minimum T} measurements for fluid inclusions
in the lower half of the ML 45-36 drill hole suggest that present-day temperatures at some
depths may be near 200°C.

One aspect of the fluid-inclusion studies of the ML 45-36 drill core samples
provides support for late Pleistocene glaciation in the Medicine Lake volcano area. Th
measurements of numerous liquid-rich fluid inclusions from several depths in the ML 45-
36 drill hole plot above a theoretical reference boiling point curve drawn to the present
ground surface (Figure 41). If the temperatures at which the fluid inclusions formed
exceed this boiling point curve they should be mostly vapor-rich or at least include
coexisting vapor-rich fluid inclusions. For liquid-rich fluid inclusions to form at the
measured T, values, they must have formed under very different conditions than occur at
the present time. Anderson (1941) and Donnelly-Nolan and Nolan (1986) discussed
evidence for a glacial cover about 150 thick in the Medicine Lake volcano area. An
additional ground cover of 150 m of glacial ice would require that pore-fluid pressures in
the underlying rock be increased in proportion to the weight of the overlying column of
ice. Accordingly, a theoretical reference boiling-point curve, reflecting the maximum
temperature attainable in a hot-water geothermal system at a given depth, would be
elevated and temperatures within that thermal upflow system would be increased. The
thickness of ice required to elevate the boiling-point curve sufficient to account for the
observed fluid inclusion T, values is nearly coincident with the estimated glacial
thickness from the surface geology studies.

During fluid-inclusion studies, dozens of tiny (~ 3 to 4 wm) rod-shaped moving
particles (see Attachment 1 video tape) were observed within fluid inclusions in quartz
from 4 depths (753.8, 841.6, 854.4, and 856.2 m) in the ML 45-36 drill hole. Many
other particles were too small to discern their shape. The particles apparently were
trapped over a period of time because they are contained within primary,
pseudosecondary, and secondary liquid-rich fluid inclusions.

At the present time, the possibility that the moving particles within these fluid
inclusions might be bacteria is highly speculative. The size and shapes of the particles
are consistent with that of bacteria, however, attempts to determine by Raman (R. C.
Burruss, written commun., 1990) and infrared spectroscopy methods if organic material
might be present within one of the Yellowstone particle-bearing fluid inclusions were
inconclusive. Nonetheless, an inorganic origin for the particles is difficult to envision
from a chemical viewpoint. First, a high degree of supersaturation would be required for
the simultaneous nucleation of large numbers of particles, and thereafter some special
circumstance would have to prevail that prevented growth of large crystals at the expense
of the smaller particles. The fluid inclusions mostly have very low salinities which would
tend to negate any supersaturation hypothesis. Also, moving particles were trapped in
relatively few fluid inclusions; the vast majority of nearby contemporary inclusions do
not contain the moving particles. Thus, it seems highly probable that the moving
particles (whatever their origin—organic or inorganic) were carried by the fluids from
which the quartz crystals precipitated. These particle-bearing fluids flowed through
fractures, and subsequently, were trapped within fluid inclusions of the precipitating
quartz crystals.

If the moving particles within fluid inclusions in quartz crystals from Medicine
Lake volcano, Yellowstone National Park, and elsewhere eventually are proven to be
bacteria, they somehow must have become adapted to survival at temperatures above
200°C. The upper temperature limit for life to exist is not presently known but is
believed to be between 110°C (hottest temperature at which bacteria have been
conclusively identified) and about 200° or 250°C (Brock, 1985). On the other hand,
thermophilic bacteria are reported to have been collected from a 350°C "black smoker"
hot spring on the East Pacific Rise and grown in the laboratory at 250°C and elevated
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pressures (Baross and Deming, 1983). The results from this study were disputed (Trent,
Chastain, and Yayanos, 1984); however, Baross, Deming, and Becker (1984) provided
additional amino acid analyses and other data in support of their contention that extreme
thermophilic microorganisms do exist.
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Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole OWMLS5 (Figure 2). Tick marks at the extreme right side
of the figures 3a to 3k show the depth at which the studied samples were collected

from each drill hole.
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3b.  Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 18-34.
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3c.  Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 27-27.
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pth

Diagram showing the distribution of hydrothermal alteration minerals with de

in geothermal drill hole ML 28-32.
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3e.  Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 36-28.
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Diagram showing the distribution of hydrothermal alteration minerals with depth

in geothermal drill hole ML 45-36.
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Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 52-4.
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3h.  Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 57-13.
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3i. Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 62-21.
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3j. Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 86-23.
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3k.  Diagram showing the distribution of hydrothermal alteration minerals with depth
in geothermal drill hole ML 88-12.
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Ca+Mg—Na—K+Ba+Sr ternary diagram for electron microprobe analyses of
analcime and wairakite (data from Table 2).
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Ca+Mg—Na—K+Ba+Sr ternary diagram showing chemical differences between
heulandite group minerals clinoptilolite and heulandite (data from Table 3).

Ca+Mg

@® ML clinoptilolite

A ML heulandite

Na K+Ba+Sr

48






11.  Ca+Mg—Na—K+Ba+Sr ternary diagram for electron microprobe analyses of
laumontite from the two intracaldera drill holes (data from Table 4). Calcium is
always the dominant exchangeable cation in laumontite.
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12. Ca+Mg—Na—K+Ba+Sr ternary diagram for electron microprobe analyses of
levyne from the ML 86-23 drill hole (data from Table 5) compared with other
analyses of levyne (Gottardi and Galli, 1985; Tschernich, 1992).
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ATTACHMENT 1

The video tape attached to this report shows moving particles that were trapped
inside the fluid inclusion of Figure 44 (Bargar, 1992). These particles first were observed
during initial heating of the inclusion to determine it's homogenization temperature. The
~3 to 4 um-size, rodlike particles displayed only a very sluggish "Brownian" type of
movement at ambient temperature, but submicron-size particles move rapidly throughout
much of the fluid inclusion. As the temperature was increased (eventually to about
130°C), movement of the particles increased substantially defining a cylindrical-shaped
thermally induced current near the lower part of the dark vapor bubble.

The first video tape segment was made using a television camera attached to a
petrographic microscope modified for fluid-inclusion studies. This part of the video tape
shows the ever increasing rate of motion of the particles caught up in the thermal current.

The second part of the videotape was made using a laser scanning microscope to
obtain enlarged views of the mostly rodlike particles at room temperature. Submicron-
size particles move rapidly in and out of the field of view while the larger, slower moving
particles are clustered at one corner of the inclusion. Scale of the particles is shown by
bringing two vertical lines together; the distance between the lines is printed in the lower
right-hand part of the screen.
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