LEVEL II SCOUR ANALYSIS FOR BRIDGE 17 (BURKTH00070017) on TOWN HIGHWAY 7, crossing DISH MILL BROOK, BURKE, VERMONT

Open-File Report 97-757

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 17 (BURKTH00070017) on TOWN HIGHWAY 7, crossing DISH MILL BROOK, BURKE, VERMONT

By RONDA L. BURNS and ERICK M. BOEHMLER

U.S. Geological Survey Open-File Report 97-757

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting.	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	1
Cross-Sections Used in WSPRO Analysis	1
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	3
E. Level I data form	3
F. Scour computations	
1	
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	•••••
highway maphighway map	
3. Structure BURKTH00070017 viewed from upstream (August 7, 1995)	
4. Downstream channel viewed from structure BURKTH00070017 (August 7, 1995)	
5. Upstream channel viewed from structure BURKTH00070017 (August 7, 1995)	
6. Structure BURKTH00070017 viewed from downstream (August 7, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	•••••
BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook,	
Burke, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	•••••
BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook,	
Burke, Vermont.	
Burke, Vermont.	•••••
TABLES	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook,	
Burke, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook,	
Burke. Vermont	

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 17 (BURKTH00070017) ON TOWN HIGHWAY 7, CROSSING DISH MILL BROOK, BURKE, VERMONT

By Ronda L. Burns and Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00070017 on Town Highway 7 crossing Dish Mill Brook, Burke, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 5.9-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream banks and the downstream right bank. On the downstream left bank, the surface cover is shrub and brushland while the immediate bank is forested.

In the study area, Dish Mill Brook has an incised, sinuous channel with a slope of approximately 0.04 ft/ft, an average channel top width of 39 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to boulder with a median grain size (D_{50}) of 79.2 mm (0.241 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 7, 1995, indicated that the reach was unstable. Moderate fluvial erosion has resulted in cut-banks on the upstream and downstream channel banks.

The Town Highway 7 crossing of Dish Mill Brook is a 26-ft-long, two-lane bridge consisting of one 23-foot steel-beam span (Vermont Agency of Transportation, written communication, March 3, 1995). The opening length of the structure parallel to the bridge face is 22.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees.

A scour hole 1.5 ft deeper than the mean thalweg depth was observed along the downstream end of the left abutment and the downstream left wingwall during the Level I assessment. The scour countermeasures at the site included type-1 stone fill (less than 12 inches diameter) at the downstream end of the downstream right wingwall, type-2 stone fill (less than 36 inches diameter) along the upstream right wingwall and upstream right bank, and type-3 stone fill (less than 48 inches diameter) at the downstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.5 to 1.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.0 to 11.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich and HIRE equations (abutment scour) give "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

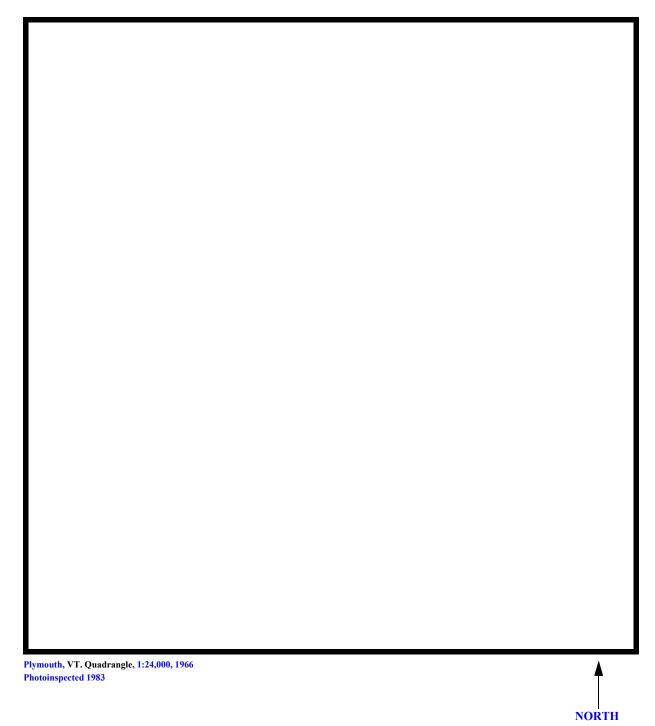
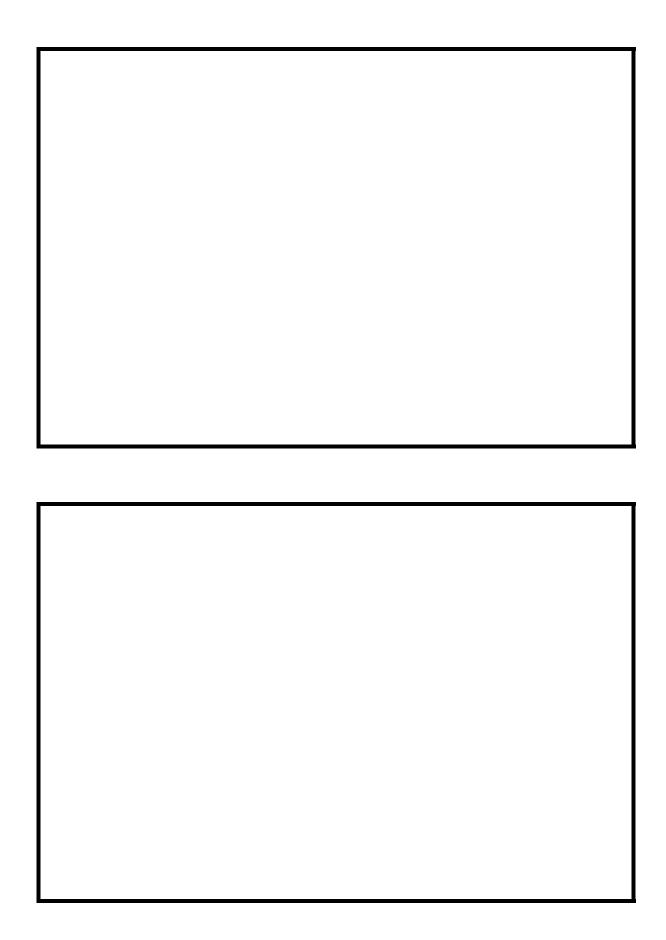



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ructure Number	BURKTH00070017	Stream	Dish Mil	l Brook	
ounty Caledo	nia	– Road —	TH 7	District –	7
	Descrip	tion of Bridç	je		
Bridge length	ft Bridge wid	23.2	ft Max	x span length	<i>f</i>
Alignment of br	idge to road (on curve or sa Vertical, concrete	traight)	Curve	None	
Abutment type	Yes	Embankm	$\frac{1}{8}$	7/95	
Stone fill on abu		Data of inco	n <i>act</i> ion		ingwall.
Type-2, along th	e upstream right wingwall	and upstream	right bank. Ty	ype-3, at the do	ownstream
end of the down	stream left wingwall.				
		Abutments and	wingwalls ar	e concrete. The	ere is a one
and a half foot d	eep scour hole in front of th	ne downstream	end of the le	ft abutment an	d
downstream left	wingwall.				
				Yes_	10
Is bridge skewe	d to flood flow according to	Yes surve	ey?	Angle	
There is a mode	rate channel bend in the ups	tream reach., A	A cut-bank has	s,developed,in	the location
	mpacts the upstream left ba	•		•	,
Debris accumul	ation on bridge at time of I				
	Date of inspection 8/7/95	Percent of a blocked no		Percent o block ed v	en alamiel vertically
Level I	8/7/95	0			0
	High. There are pank, some of which have a	-			many trees
Potential fo	or debris				
None as of 8/7/	95.				
Doscriho anv fo	atures near or at the hrida	that may affa	oct flow (incl.	ide ahservation	n date)

Description of the Geomorphic Setting

General topo	graphy	The cl	hannel is located	l within a	a moderate relief va	ılley.
Geomorphi	ic conditio	ns at bri	dge site: downst	tream (D	S), upstream (US)	
Date of insp	pection	8/7/95				
DS left:	Modera	itely slop	ed channel bank	ζ		
DS right:	Steep v	alley wa	11			
US left:	Steep va	alley wal	1			
US right:	Modera	tely slop	ed channel bank	<u> </u>		
			Description of	of the C	hannel	
		39				3
Average to	op width		Gravel/Cobbl	le	Average depth	Sand/Gravel
Predomina	nt bed mat	terial			Bank material	Sinuous with semi-
alluvial char	nnel bound	laries.				
						8/7/95
Vegetative o	co Trees w	vith shrul	bs and brush on	the over	bank	
DS left:	Trees					
DS right:	Trees					
US left:	Trees					
US right:		_	No			
Do banks a			assessment of 8, and the downstrea			e ypstream left bank,
					<u>1</u>	None as of 8/7/95.
Describe an	ny obstruct	tions in c	channel and dat	te of obs	ervation.	

Hydrology

Drainage area $\frac{5.9}{}$ mi ²	
Percentage of drainage area in physiographic p	provinces: (approximate)
Physiographic province/section New England/White Mountain	Percent of drainage area
Is drainage area considered rural or urban? None. urbanization:	Rural Describe any significant
Is there a USGS gage on the stream of interest:	No
USGS gage description	
USGS gage number	<u>-</u>
Gage drainage area	mi² No
Is there a lake/p_	
	d Discharges 1,890
$Q100$ ft^3/s The 1	$Q500$ ft^3/s 00- and 500-year discharges are based on a
drainage area relationship [(5.9/6.4)exp 0.67] with	
Brook at the confluence with the East Branch Pas	
Management Agency, 1979). Dish Mill Brook et	
downstream of this site and has a drainage area of	6.4 square miles at the confluence. The values
used were within a range defined by flood frequen	ncy curves developed from several empirical
methods (Benson, 1962; Johnson and Tasker, 197	4; FHWA, 1983; Potter, 1957a&b Talbot,
1887).	

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTA)	USGS survey	
Datum tie between USGS survey and VTAOT plans	None	
Description of reference marks used to determine USGS		RM1 is a chiseled X on
top of the curb at the downstream right corner of the bridged datum). RM2 is a chiseled X on top of the curb at the ups		•
501.53 ft, arbitrary survey datum).		

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments			
EXIT1	-23	1	Exit section			
FULLV	0	2	Downstream Full-valley section (Templated from EXIT1)			
BRIDG	0	1	Bridge section			
RDWAY	12	1	Road Grade section			
APPRO	47	1	Approach section			

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.065, and the overbank "n" value was 0.070.

Critical depth at the exit section (EXIT1) was assumed as the starting water surface. Normal depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990) and resulted in a supercritical solution. Because normal depth was within 0.3 ft of critical depth, the critical water surface was assumed to be a satisfactory starting water surface. The slope used was 0.0381 ft/ft, which was estimated from surveyed thalweg points downstream of the bridge.

The surveyed approach section (APPRO) was one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 498.5 Average low steel elevation 1,400 100-year discharge 498.5 Water-surface elevation in bridge opening Discharge over road ft^3/s Road overtopping? Area of flow in bridge opening 9.6 Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge 11.6 ft/s 501.2 Water-surface elevation at Approach section with bridge 497.9 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 3.3 1,890 ft³/s 500-year discharge 498.5 Water-surface elevation in bridge opening Road overtopping? Discharge over road 142 ft^2 Area of flow in bridge opening 10.2 Average velocity in bridge opening 12.3 **/s** Maximum WSPRO tube velocity at bridge 501.7 Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge 3.1 **7** Amount of backwater caused by bridge 1,350 ft^3/s Incipient overtopping discharge Water-surface elevation in bridge opening 498.5 Area of flow in bridge opening Average velocity in bridge opening ft/s 11.5 Maximum WSPRO tube velocity at bridge

Water-surface elevation at Approach section with bridge

Amount of backwater caused by bridge

Water-surface elevation at Approach section without bridge

3.2

501.0

497.8

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

At this site, the 100-year, 500-year and incipient roadway-overtopping discharges resulted in unsubmerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Thus, contraction scour for these discharges was computed by use of the Chang equation (Richardson and others, 1995, p. 145-146). The computed streambed armoring depths suggest that armoring will not limit the depth of contraction scour.

For comparison, contraction scour for the discharges resulting in orifice flow was also computed by use of the Laursen clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20) and the Umbrell pressure-flow equation (Richardson and others, 1995, p. 144) and presented in Appendix F. Furthermore, for those discharges resulting in unsubmerged orifice flow, contraction scour was computed by substituting estimates for the depth of flow at the downstream bridge face in the contraction scour equations. Results with respect to these substitutions are provided in Appendix F.

Abutment scour for the right abutment was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the left abutment was computed by use of the HIRE equation (Richardson and others, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
	(Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	0.6	1.0	0.5
Depth to armoring	16.3	10.3	17.6
Left overbank			_
Right overbank			
Local scour:			
Abutment scour	8.1	8.7	8.0
Left abutment	10.6-	11.8-	10.4-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizin	g	
	100-yr dischar;		Incipient overtopping discharge
	100-yr uischur	,	uischurge
41.	2.1	(D ₅₀ in feet) 2.3	2.0
Abutments:	2.1	2.3	2.0
Left abutment			
Right abutment			
Piers:			
Pier 1			
Pier 2			

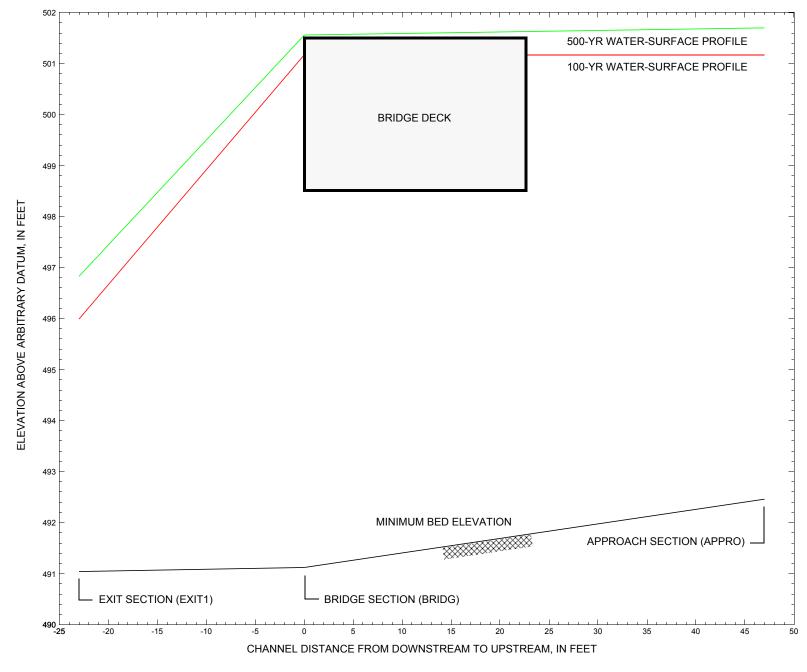


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont.

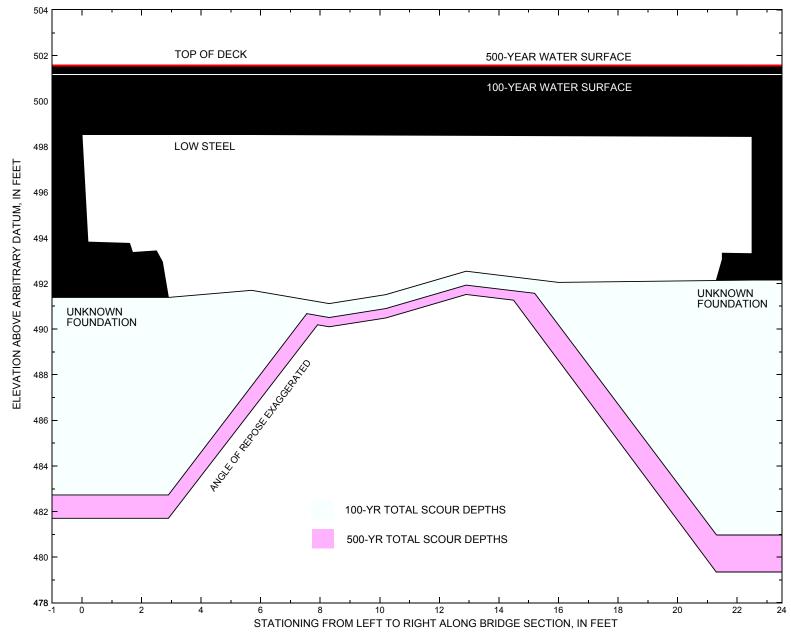


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 1,400) cubic-feet per sec	cond				
Left abutment	0.0		498.5		491.4	0.6	8.1		8.7	482.7	
Right abutment	22.5		498.4		492.2	0.6	10.6		11.2	481.0	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BURKTH00070017 on Town Highway 7, crossing Dish Mill Brook, Burke, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,890	cubic-feet per sec	cond				
Left abutment	0.0		498.5		491.4	1.0	8.7		9.7	481.7	
Right abutment	22.5		498.4		492.2	1.0	11.8		12.8	479.4	

^{1.} Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Federal Emergency Management Agency, 1979, Flood Insurance Study, Town of Burke, Caledonia County, Vermont: Washington, D.C., December 1979.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1988, Burke Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
T1
         U.S. Geological Survey WSPRO Input File burk017.wsp
         Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97
T2
Т3
         TH 7 CROSSING DISH MILL BROOK IN BURKE, VT
                                                              RLB
J1
         * * 0.01
J3
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
0
           1400.0 1890.0 1350.0
           0.0381 0.0381 0.0381
SK
XS
    EXIT1
           -23
                         0.
GR
           -45.5, 501.01
                         -28.3, 499.53
                                          -3.3, 493.45
                                                          0.0, 492.34
GR
           -17.8, 496.07
                           -4.8, 494.60
            2.5, 491.42
                           6.0, 491.33
                                           9.2, 491.04
                                                         13.3, 491.34
GR
           17.3, 491.92
                          21.9, 491.56
                                          23.6, 492.21
                                                          29.0, 494.66
GR
           36.7, 496.03
                          53.5, 499.11
                                          63.0, 500.07
                                                          78.9, 506.51
GR
GR
           85.7, 508.99
                          97.0, 510.24 114.0, 510.08
*
           0.070 0.065 0.070
Ν
SA
              -4.8 29.0
             0 * * * 0.0155
XS
    FULLV
            SRD LSEL
                          XSSKEW
    BRIDG
            0 498.48
GR
            0.0, 498.54
                           0.2, 493.82
                                          1.6, 493.76
                                                          1.7, 493.36
GR
            2.5, 493.43
                           2.7, 492.95
                                           2.9, 491.39
                                                          5.7, 491.70
            8.3, 491.12
                          10.2, 491.51
GR
                                          12.9, 492.54
                                                         16.0, 492.05
GR
            21.3, 492.15
                          21.5, 493.06
                                          21.5, 493.33
                                                          22.5, 493.31
            22.5, 498.43
                           0.0, 498.54
GR
         BRTYPE BRWDTH
                            WWANGL
                                    WWWID
                 31.2 * *
CD
                                     7.2
           1
                            43.2
           0.045
N
           SRD
                 EMBWID IPAVE
                 23.2
    RDWAY
            12
XR
                           1
GR
         -106.3, 511.55
                        -87.3, 499.63
                                         -45.5, 501.01
GR
           -39.1, 501.04
                           -0.2, 500.97
                                           -0.2, 501.54
                                                          25.7, 501.50
                                                        110.9, 502.98
GR
           25.7, 501.03
                           72.1, 502.30
                                          91.6, 502.98
                        134.1, 510.64
                                        149.1, 515.06
GR
           125.8, 509.16
    For the 100-year and incipient road-overtopping discharges the last two
    points on the left, -106.3, 511.55 and -87.3, 499.63, were removed and a
    vertical wall was placed at station -45.5.
    APPRO
            47
AS
                         0.
                          -53.6, 499.77
GR
           -84.4, 519.36
                                          -19.9, 499.43
                                                          -13.2, 499.26
GR
            -9.8, 497.73
                           -4.4, 496.49
                                           -3.1, 494.19
                                                          0.0, 492.78
GR
            5.0, 493.27
                           7.3, 492.59
                                           12.2, 492.46
                                                          17.1, 492.85
                          25.8, 494.22
                                                          42.9, 497.71
                                          30.9, 496.78
GR
           20.3, 493.65
           52.5, 500.03
                          72.2, 501.95
                                          105.4, 503.68
                                                          116.1, 503.84
GR
GR
           122.1, 503.84 142.6, 510.86
                                          156.2, 514.75
           0.070 0.055
N
                              0.070
               -13.2 30.9
SA
HP 1 BRIDG 498.54 1 498.54
HP 2 BRIDG 498.54 * * 1365
HP 1 BRIDG 497.17 1 497.17
HP 2 RDWAY 501.17 * * 28
HP 1 APPRO 501.17 1 501.17
HP 2 APPRO 501.17 * * 1400
HP 1 BRIDG 498.54 1 498.54
HP 2 BRIDG 498.54 * * 1443
HP 1 BRIDG 497.91 1 497.91
HP 2 RDWAY 501.56 * * 458
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File burk017.wsp
Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97
TH 7 CROSSING DISH MILL BROOK IN BURKE, VT RLB
*** RUN DATE & TIME: 11-10-97 11:51

		*** RU	N DATE	& TIME	: 11-	10-97	11:5	1				
	CROSS-	SECTION	PROPER'	TIES:	ISEQ	= 3	; SEC	ID = I	BRIDG	; SRD	=	0.
	WSEL	SA# 1	AREA 142 142	gı	K 559	TOPW	WET!	P ALI	PH	LEW	REW	QCR 0
	498.54	-	142	8!	559	0	58	8 1.0	00	0	23	0
	VELOCI	TY DIST	RIBUTIO	N: IS	EQ =	3;	SECID :	= BRII	OG;	SRD =		0.
		ISEL	LEW 0.0	REW	AR	EA	K		Q	VEL		
	STA. A(I)	0.	0	2.6	0 6	3.8	6.0	4.8	6 7	5.8	<i>c</i> 1	6.7
	V(I)		12.0 5.67		7.90		9.82	:	L0.20		10.71	
Х	STA.	6.	7 6.1 11.23	7.6		8.4		9.2		10.1		10.9
	A(I) V(I)		6.1	1.	6.0		5.9		6.0		6.0	
Х	STA. A(I)	10.	9 6.3	11.9	6 5	12.9	6 3	14.0	6 3	15.0	6 4	16.0
	V(I)		10.92									
Х	STA.	16.	0	17.0		18.1		19.2		20.4		22.5
	A(I) V(I)		6.4 10.64	1.	6.6		6.9		7.7		12.1	
			I PROPER									
	WSEL	SA#	AREA 113 113	0.	K 176	TOPW	WETI		PH	LEW	REW	QCR 1432
	497.17	1	113	84	176 176	22	3.		00	0	23	
								ID = A	APPRO	; SRD	=	47.
	WSEL	SA#	AREA		K	TOPW	WET	P ALI	PH	LEW	REW	QCR
		1	67 300	19	901	43	WET1 4: 4' 34	3				473
		2	300 76	279	967	44	4'	7				4445 650
	501.17		443	32	542	120	124	± 4 1.4	10	-55	64	4083
	VELOCI	TY DIST	RIBUTIO	N: IS	EQ =	5;	SECID :	= APPI	RO; :	SRD =	4	17.
	ъ	ISEL	T.EW	REW	AR	EΔ	к		0	VEL		
			LEW 55.8									
Х	STA. A(I) V(I)	-55.	8	-17.6		-5.8		-1.6		0.6		2.7
	A(I)		58.5	:	32.9		24.7		18.2		16.9	
	V (1)											
Χ	STA.	2.	7 16.5 4.25	4.7		6.7		8.6		10.3		12.0
	A(I) V(I)		16.5 4 25	1	16.3 1 30		15.7 4 47		15.1		15.2	
	STA.	12.	0	13.8	1 4 7	15.5	15.1	17.3				
	A(I) V(I)		14.9 4.69	1	1.76		4.62					
**	CITI A	0.7	4									
Х	STA. A(I)	21.	16.6		17.0	∠6.1	19.8	29.4		36.9		
	V(I)		4.23	4	1.12		3.53					

U.S. Geological Survey WSPRO Input File burk017.wsp
Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97
TH 7 CROSSING DISH MILL BROOK IN BURKE, VT RLB
*** RIN DATE & TIME: 11-10-97 11:53

		TH		SSING D								RI	LB
				JN DATE									
	CR(OSS- SEL	SECTION SA#	N PROPE	RTIES:	ISEQ K	= 3 TOPW	; SEC	ID = 1	BRIDG PH	; SRD	= REW	0. QCR
			1		;								
	498	.54		142	,	8559	0	5	8 1.	00	0	23	0
	VE	LOCI	TY DIST	TRIBUTIO	ON: I	SEQ =	3;	SECID	= BRI	DG;	SRD =		0.
		W	SEL	LEW	REW	AR	EA	K		Q	VEL		
		498		0.0									
	STA. A(I)		0 .	.0 12.0 6.00	2.6	8 6	3.8	6 9	4.8	6 7	5.8	6.4	6.7
	V(I)			6.00		8.35		10.39	;	10.79		11.32	
Х	STA.		6.	. 7	7.6		8.4		9.2		10.1		10.9
	A(I)			.7 6.1 11.87		6.0		5.9		6.0		6.0	
	V(I)												
	STA. A(I)		10	.9 6.3	11.9	6 5	12.9	6 3	14.0	6 3	15.0	6 4	16.0
	V(I)			11.54	;	11.18		11.36	;	11.42		11.19	
Х	STA.		16.	. 0	17.0		18.1		19.2		20.4		22.5
	A(I) V(I)			6.4 11.25		6.6		6.9		7.7		12.1 5.96	
	CR(OSS- SEL	SECTION SA#	AREA		K	TOPW	WET	P AT	PH	LEW	REW	0. QCR
			1	129	1	0353	22	3	4	0.0			1759 1759
	497	.91		129	1	0353	22	3	4 1.	00	0	23	1/59
	VE	LOCI	TY DIST	TRIBUTIO	ON: I	SEQ =	4;	SECID	= RDW	AY;	SRD =	1	12.
		W	SEL	LEW -90.4	REW	AR	EA	K		Q	VEL		
	3 (T)			.4	-86.8	2 0	-85.4	2 7	-83.9	2 7	-82.4	2 0	-80.8
	V(I)			5.95		8.18		8.35		8.57		8.24	
Х	STA.		-80	. 8	-79.0		-77.2		-75.3		-73.1		-70.7
	A(I)			2.9		3.0		3.0		3.3		3.4	
	V(I)												
	STA. A(I)		-70	.7	-68.0	3 8	-64.9	4 1	-61.3	4 4	-56.9	5 2	-50.6
	V(I)			6.30		5.99		5.63		5.18		4.43	
Х	STA.		-50	. 6	-39.3		-27.0		-16.4		-6.9		45.1
	A(I) V(I)			6.5		6.5		5.8		5.4		10.1	
				N PROPE AREA		K	TOPW	WET	P AL	PH	LEW	REW	OCR
			1 2	89	:	3057	43	4	4				729 4974 843 4842
			3	95	3.	3649	39	3	9				843
	501	.70		508	3	8395	126	13	0 1.	43	-56	70	4842
	VE	LOCI	TY DIST	TRIBUTIO	ON: I	SEQ =	5;	SECID	= APP	RO;	SRD =	4	17.
		W	SEL	LEW	REW	AR	EA	K		Q	VEL		
		501	.70	LEW -56.6	69.6	508	.0	38395.	1	890.	3.72		
			-56	. 6	-26.7		-9.0		-3.0		-0.4		1.8
	A(I) V(I)			58.5 1.62		45.2 2.09		30.5		21.6		19.2 4.92	
Х	A(I)		1.	.8 18.1 5.23	3.9	18.3	6.1	18.0	8.1	16.9	9.9	17.0	11./
	V(I)			5.23		5.17		5.25		5.60		5.57	
	STA.		11.	. 7	13.6		15.4		17.3		19.4		21.6
	A(I) V(I)			16.9 5.60		16.6 5.68		17.1 5.52		17.6 5.36		18.1 5.23	
			0.1										
Х	STA. A(I)		21.	18.3	∠4.0	20.0	26.7	22.2 4.25	30.3	37.9	38.4	60.1	69.6
	V(I)			5.18		4.71		4.25		2.49		1.57	

U.S. Geological Survey WSPRO Input File burk017.wsp
Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97
TH 7 CROSSING DISH MILL BROOK IN BURKE, VT RLB
*** RUN DATE & TIME: 11-10-97 11:51

	*** RUN DATE & TIME: 11-10-97 11:51												
	CRO	SS-S	SECTI	ON PROPE	RTIES:	ISEQ	= 3	; SECI	D = 1	BRIDG	; SRD	=	0.
	WS	EL	SA# 1	AREA	\$	K 8559	TOPW	WETP	AL	PH	LEW	REW	QCR 0 0
	498.	54	-	142	8	3559	0	58	1.0	00	0	23	0
	VEL	OCI	ry DI	STRIBUTIO	ON: IS	SEQ =	3;	SECID =	BRII	OG;	SRD =		0.
		WS	SEL	LEW 0.0	REW	AR	EA	K	4.	Q	VEL		
Χ	STA. A(I)			0.0 12.0 5.61	2.6	8.6	3.8	6.9	4.8	6.7	5.8	6.4	6.7
	V(I)												
Χ	STA.			6.7 6.1 11.11	7.6	6.0	8.4	5 9	9.2	6.0	10.1	6.0	10.9
	V(I)			11.11	1	11.22		11.49		11.27		11.30	
Х	STA.		1	0.9 6.3 10.80	11.9	6 E	12.9	6.3	14.0	<i>c</i> 2	15.0	6.4	16.0
	V(I)			10.80	-	10.46		10.63		10.68		10.47	
Х	STA.		1	6.0	17.0		18.1		19.2		20.4		22.5
	A(I) V(I)			6.4 10.52		6.6 L0.26		6.9 9.72		8.76		5.57	
	CRO	SS-S	SECTI	ON PROPE	RTIES:	ISEQ	= 3	; SECI	D = 1	BRIDG	; SRD	=	0.
	WS	EL	SA#	AREA		K	TOPW	WETP	AL	PH	LEW	REW	QCR
	497.	0.0	1	111	8	3254	22	33		20	0	2.2	QCR 1394 1394
				ON PROPE									
	WS	EL	SA#	AREA 60 293	1	K L597	TOPW 42	WETP 43		PH	LEW	REW	QCR 404
			2	293	26	880	44	47					4290
	501.		3	71	2	2549	32	32		39	-55	63	599 3870
			ry DI	STRIBUTIO									
		WS	SEL	LEW	REW	ARI	EA	K		0	VEL		
				LEW -55.5									
Χ	STA.		-5	5.5 58.0 1.16	-14.3	20.7	-4.8	22.7	-1.2	17 6	1.0	16 1	3.0
	V(I)			1.16		2.27		2.97		3.82		4.18	
	STA.			3.0	5.0		6.9		8.7		10.4		12.1
	A(I) V(I)			3.0 16.0 4.22		15.6 4.32		15.0 4.50		14.4 4.69		14.5 4.66	
			1	2.1									
	A(I) V(I)			14.5 4.66		14.3 4.74		14.7 4.60		15.1 4.47		15.4 4.37	
Х	STA.		2	1.3	23.6		25.9		29.2		36.2		62.6
•	A(I) V(I)		_	15.9 4.23		16.4 4.12		19.3 3.50		29.0		49.5 1.36	
	v (± /			4.23		7.12		5.50		2.33		1.30	

U.S. Geological Survey WSPRO Input File burk017.wsp
Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97
TH 7 CROSSING DISH MILL BROOK IN BURKE, VT RLB
*** RUN DATE & TIME: 11-10-97 11:51

===015 WSI IN WRONG FLOW REGIME AT SECID "EXIT1": USED WSI = CRWS. WSI,CRWS = 495.88 496.01

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

EXIT1:XS ***** -16 147 1.58 ***** 497.58 496.01 1400 496.01 -22 ***** 37 7618 1.12 ***** ******* 1.07 9.53

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.
"FULLV" KRATIO = 1.43

FULLV:FV 23 -19 193 0.96 0.54 498.13 ****** 1400 497.17 0 23 41 10872 1.17 0.00 0.00 0.78 7.24

<-<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.
FNTEST,FR#,WSEL,CRWS = 0.80 0.87 497.91 497.33

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 496.67 519.36 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 496.67 519.36 497.33

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW. WS3,WSIU,WS1,LSEL = 497.10 500.11 500.27 498.48 ===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 23 0 142 1.43 ***** 499.97 497.02 1365 498.54 0 ***** 23 8559 1.00 ***** ******* 0.67 9.60

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 5. 0.490 0.000 498.48 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 12. 24. 0.04 0.22 501.34 0.00 28. 501.17

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 27.
 45.
 -46.
 0.
 0.2
 0.2
 2.6
 3.6
 0.3
 3.0

 RT:
 2.
 5.
 26.
 31.
 0.1
 0.1
 2.2
 5.1
 0.2
 3.0

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 16 -55 443 0.22 0.11 501.39 497.33 1400 501.17 47 16 64 32658 1.40 0.88 0.00 0.34 3.16

M(G) M(K) KQ XLKQ XRKQ OTEL

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE SRD T.EW REW K AREA VEL WSEL 1400. EXIT1:XS -23. -17. 37. 7618. 147. 9.53 496.01 41. FIII.I.V · FV 0. -20. 1400. 10872. 193. 7.24 497.17 BRIDG:BR 0. 0. 23. 1365. 8559. 142. 9.60 498.54 12.***** 28.****** RDWAY:RG 27. 0. 1.00 501.17 1400. 32658. APPRO:AS 47. -56. 64. 443. 3.16 501.17

SECOND USER DEFINED TABLE.

U.S. Geological Survey WSPRO Input File burk017.wsp Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97 TH 7 CROSSING DISH MILL BROOK IN BURKE, VT *** RUN DATE & TIME: 11-10-97 11:53

===015 WSI IN WRON	IG FLOW REC			EXIT1":		= CRWS.	
XSID:CODE SRDL SRD FLEN		AREA K A	VHD LPH		GL CRWS RR FR#	Q VEL	WSEL
EXIT1:XS ****** -22 *****					56 496.84 ** 1.04		496.84
	T,FR#,WSEI	CRWS =	0.80	0.80	497.92		20
===110 WSEL NOT FO	UND AT SEC WSLIM1,WSI				ELTAY. 510.60	0.50	
===115 WSEL NOT FO	OUND AT SEC	CID "FUL	LV": U	SED WSMI			1
FULLV:FV 23 0 23 <<< <the a<="" td=""><td>45 1</td><td>14461 1</td><td>.20 0.</td><td>00 -0.</td><td>06 497.20 01 0.80 NCONSTRICTE</td><td>7.86</td><td></td></the>	45 1	14461 1	.20 0.	00 -0.	06 497.20 01 0.80 NCONSTRICTE	7.86	
	T,FR#,WSEI	CRWS =	0.80	0.89	498.64		24
===110 WSEL NOT FO					ELTAY. 519.36	0.50	
===115 WSEL NOT FO	OUND AT SEC	CID "APP	RO": I	SED WSMI			
APPRO:AS 47	-11	207 1	43 0	86 500	05 498.24	1890	498 62
47 47	47 1	13577 1	.10 0.	14 0.	00 0.90	9.15	
<<< <the a<="" td=""><td>BOVE RESUI</td><td>LTS REFL</td><td>ECT "NC</td><td>RMAL" (U</td><td>NCONSTRICT</td><td>ED) FLOW></td><td>>>>></td></the>	BOVE RESUI	LTS REFL	ECT "NC	RMAL" (U	NCONSTRICT	ED) FLOW>	>>>>
	,WS3,RGMIN	N = 50	1.97		AD OVERFLOW 498.21		.63
===260 ATTEMPTING ===220 FLOW CLASS				POSSIBL	E PRESSURE	FLOW.	
WS3,WSIU	J,WS1,LSEL FLOW CLASS	= 497 3 2 (5)	.74 SOLUTIO	501.01 N.	501.18	498.	48
<<< <re< td=""><td>SULTS REFI</td><td>LECTING</td><td>THE CON</td><td>STRICTED</td><td>FLOW FOLLO</td><td>)W>>>></td><td></td></re<>	SULTS REFI	LECTING	THE CON	STRICTED	FLOW FOLLO)W>>>>	
XSID:CODE SRDL SRD FLEN	LEW REW	AREA K A			GL CRWS RR FR#	-	WSEL
BRIDG:BR 23 0 *****					14 497.20 ** 0.71		498.54
TYPE PPCD FLOW	ı c	P/A	LSEL	BI.EN	XLAB XRAI	2	
1. **** 5.							
XSID:CODE SE RDWAY:RG 12	RD FLEN		VHD .31 50			Q WSE 3. 501.5	
_	EN LEW				AX VAVG I		
LT: 414. 10 RT: 44. 3		11. 45.			.2 5.1 .4 7.4	1.2 3. 0.6 3.	
XSID:CODE SRDL	LEW	AREA	VHD	HF E	GL CRWS	0	WSEL
SRD FLEN	REW	K A	LPH	HO E	RR FR#	Q VEL	WSEL
APPRO:AS 16 47 17	-56 70 3	508 0 38414 1	.31 0.	14 502. 89 0.	01 498.24 01 0.39	1890 3.72	501.70
M(G) M(K)	KO	XI'KO	XRKO	OTEL			
***** ****	******	*****	****	*****	_		
	<<< <eni< td=""><td>OF BRI</td><td>DGE CON</td><td>IPUTATION</td><td>S>>>></td><td></td><td></td></eni<>	OF BRI	DGE CON	IPUTATION	S>>>>		
FIRST USER DEFINE		DEM	^	**	7 17 17 7	77777	MCDI
XSID:CODE SF EXIT1:XS -23	D LEW -20.	REW 41.	Q 1890.	11010.	195.	VEL 9.68	WSEL 496.84
FULLV: FV C	-22.	45.	1890.	14461.	241.	7.86	497.91
DDWAV.DC 12	0. !.*****	111	150 1	8559.	0	10.15	
APPRO:AS 47	-57.	70.	1890.	38414.	508.	3.72	501.56
SECOND USER DEFINE		ŧ VMT	N VI	IDY HE	HO VHI) EG	t. WSF

XSID:CODE CRWS FR# YMIN

YMAX HF HO VHD

U.S. Geological Survey WSPRO Input File burk017.wsp Hydraulic analysis for structure BURKTH00070017 Date: 25-JUL-97 TH 7 CROSSING DISH MILL BROOK IN BURKE, VT *** RUN DATE & TIME: 11-10-97 11:51

===015 WSI IN WRONG FLOW REGIME AT SECID "EXIT1": USED WSI = CRWS. 495.91 WSI,CRWS = 495.81

XSID:CODE VHD AREA EGL K ALPH HO ERR VEL FR#

142 1.56 ***** 497.47 495.91 EXIT1:XS ***** -22 ***** 7287 1.11 ***** ****** 36

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "FULLV"

23 -19 188 0.94 0.55 0 23 40 10474 1.17 0.00 188 0.94 0.55 498.02 ****** 1350 497.08 0.78 0.00 7.19 <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS = 0.80 0.87 497.82

497.22

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 496.58 519.36
===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. 0.50

WSLIM1, WSLIM2, CRWS = 496.58 519.36 497.22

47 -9 161 1.16 0.83 498.96 497.22 1350 497.81 7 47 43 9802 1.06 0.11 0.00 0.88 8.39 <>>>THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> S 47 -9 47 47 43 APPRO: AS

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW. WS3,WSIU,WS1,LSEL = 496.98 499.93 500.10 ===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION. 498.48

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL SRD FLEN LEW AREA VHD HF EGL CRWS ERR K ALPH REW HO FR# VEL

0 142 1.38 ***** 499.92 496.96 23 8559 1.00 **** ******* 0.66 BRIDG:BR

YPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 2. 0.487 0.000 498.48 ***** ***** ****** TYPE PPCD FLOW LSEL BLEN XLAB XRAB

XSID:CODE SRD FLEN HF VHD EGL ERR Q
RDWAY:RG 12. <<<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL SRD FLEN LEW REW AREA VHD HF EGL O WSEL K ALPH HO ERR FR# VEL

424 0.22 0.11 501.23 497.22 1350 501.01 3.19 APPRO:AS 16 -55 16 -55 424 0.22 0.11 501.23 497.22 16 63 31010 1.38 0.89 -0.01 0.35

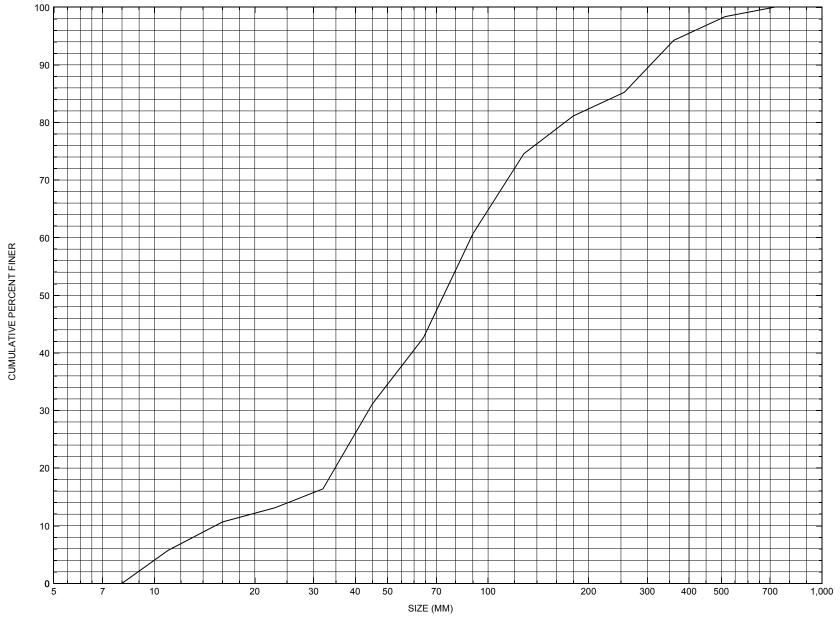
M(G) M(K) KQ XLKQ XRKQ ***** ***** OTEL 500.96

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

Q K 1350. 7287. K VEL XSID · CODE SRD LEW REW AREA WSEL -23. EXIT1:XS -16. 36. 142. 9.51 495.91 10474. 40. 188. FULLV: FV 0. -20. 1350. 7.19 497.08
 0.
 0.
 23.
 1338.
 8559.

 12.**********************
 0.
 0.


 47.
 -56.
 63.
 1350.
 31010.
 142. 9.41 498.54 0. 1.00******* 424. 3.19 501.01 BRIDG:BR RDWAY:RG APPRO:AS

XSID: CODE XLKQ XRKQ APPRO:AS ****************

SECOND USER DEFINED TABLE.

XSID: CODE CRWS FR# YMIN YMAX HF HO VHD EGL WSEL EXIT1:XS 495.91 FULLV:FV ****** 1.07 491.04 510.24******** 1.56 497.47 495.91 0.78 491.40 510.60 0.55 0.00 0.94 498.02 497.08 498.54********* 1.38 499.92 496.96 0.66 491.12 RDWAY:RG ************ 500.97 515.06********** 0.22 501.18******* APPRO:AS 497.22 0.35 492.46 519.36 0.11 0.89 0.22 501.23 501.01

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure BURKTH00070017, in Burke, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BURKTH00070017

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) __03 / _24 / _95

Highway District Number (I - 2; nn) 07

Town (FIPS place code; I - 4; nnnnn) 10450

Waterway (1 - 6) DISH MILL BROOK

Route Number TH007

Topographic Map Burke. Mountain

Latitude (I - 16; nnnn.n) 44354

County (FIPS county code; I - 3; nnn) ____005

Mile marker (*I - 11; nnn.nnn*) **000000**

Road Name (1 - 7): _-

Vicinity (/ - 9) 0.6 MI JCT TH 7 + VT 114

Hydrologic Unit Code: 01080102

Longitude (*i* - 17; *nnnnn.n*) 71558

Select Federal Inventory Codes

FHWA Structure Number (*I* - 8) <u>10030200170302</u>

Maintenance responsibility (*I - 21; nn*) ____03 ___ Maximum span length (*I - 48; nnnn*) ___0023

Year built (1 - 27; YYYY) 1929 Structure length (1 - 49; nnnnnn) 000026

Average daily traffic, ADT (I - 29; nnnnnn) 000800 Deck Width (I - 52; nn.n) 232

Year of ADT (I - 30; YY) <u>92</u> Channel & Protection (I - 61; n) <u>5</u>

Opening skew to Roadway (*I* - 34; nn) ____ 00 Waterway adequacy (*I* - 71; n) ___ 6

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 302 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) 023.2

Number of spans (*I* - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 007.0

Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) 162.4

Comments:

The structural inspection report of 10/31/94 indicates the structure is a steel stringer type bridge with a concrete deck. The abutment walls and wingwalls are concrete. Both wingwalls on the right abutment are cracked off vertically at the corners where the abutment wall meets both wingwalls. The embankment area between the wingwalls and the roadway surface have been paved to prevent further erosion. Riprap is reported as added in front of the right upstream wingwall to help stabilize it. Some of the pavement has broken away and eroded from the embankment at this wingwall. The right abutment footing is exposed and has cracked vertically in a couple of places. The left abutment reportedly (Continued, page 33)

Bridge Hydrologic Data									
Is there hydrologic data available? N if No, type ctrl-n h VTAOT Drainage area (mi²):									
Terrain character:									
Stream character & type: _									
Streambed material:									
Discharge Data (cfs): Q _{2.33} _	-	Q ₁₀	o		Q ₂₅				
Record flood date (MM / DD / YY):									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, Lig									
The stage increases to maximur	_		•	Not rapidly):					
The stream response is (Flashy, I	• , •								
Describe any significant site conditions upstream or downstream that may influence the stream's stage: This bridge may be eliminated under a proposal to straighten the channel and build a slightly larger bridge where the current bridge no. 16 is located just downstream. The proposal is currently being considered by the Corp. of engineers, who will permit the project and channel straightening if approved.									
Watershed storage area (in percent The watershed storage area is:	(1-ma oi the	e site)		2- uniformly o	distributed; 3	-immediatly upstream			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀]			
	4 2.33	-	- 425	-	-				
Water surface elevation (ft))									
Velocity (ft / sec)	-	-	-	-	-				
Long term stream bed changes: -									
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	U	Frequenc	cy: <u>-</u>			
Relief Elevation (#): Discharge over roadway at Q ₁₀₀ (# ³ /sec):									
Are there other structures nearby? (Yes, No, Unknown): Y If No or Unknown, type ctrl-n os Upstream distance (miles): 0.2 Town: Burke Year Built: 1929 Highway No. : TH07 Structure No. : 18 Structure Type: concrete slab									
Clear span (f): 20.2 Clear He									
Cicai spair (ii) Cical Te	igiit (<i>it)</i> . <u> </u>	<u>~•</u> Г	uli vval c iW	ay (11)					

Downstream distance (miles): 0.3 Town: Burke Year Built: 1929 Highway No.: TH07 Structure No.: 16 Structure Type: Concrete, steel beam Clear span (#): 24.8 Clear Height (#): 7.5 Full Waterway (#2): 186.0 Comments: has a full-height vertical crack through the wall and its footing. A 6 foot section at the downstream end is reported undermined between 4 and 12 inches vertically with horizontal penetration reaching between 6 and 30 inches. Both abutment walls have a few minor cracks and spalls overall. The report mentions a few boulders present on bank areas where previous erosion has occurred both up- and downstream from the bridge. The foundation type recorded for this bridge site is an unknown foundation. A full hydraulics
report does not exist in the files.
USGS Watershed Data
Watershed Hydrographic Data
Drainage area (DA) $\underline{5.95}$ mi ² Lake/pond/swamp area $\underline{0}$ mi ² Watershed storage (ST) $\underline{0}$ % Bridge site elevation $\underline{985}$ ft Headwater elevation $\underline{2930}$ ft
Main channel length $_$ mi 10% channel length elevation $_$ ft 85% channel length elevation $_$ ft Main channel slope (S) $_$ 269.31 ft / mi
Watershed Precipitation Data
Average site precipitation in Average headwater precipitation in
Maximum 2yr-24hr precipitation event (124,2) in
Average seasonal snowfall (Sn) ft

Bridge Plan Data
Are plans available? N
Reference Point (MSL, Arbitrary, Other):
Comments: NO PLANS.

Cross-sectional Data

Is cross-sectional data available? \underline{Y} If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

Comments: This cross section is the downstream face. The low chord elevations are from the survey log done for this report on 8/7/95. The low chord to bed length data is from the sketch attached to a bridge inspection report dated 10/31/94. The sketch was done on 10/27/92.

	T	T			T	•					
Station	0	3.2	17.3	21	-	-	-	-	-	-	-
Feature	RAB			LAB	-	-	-	-	-	-	-
Low chord elevation	498.4	498.4	498.5	498.5	-	-	-	-	-	-	-
Bed elevation	493.3	492.1	490.5	493.7	-	-	-	-	-	-	-
Low chord- bed	5.1	6.3	8.0	4.8	-	-	-	-	-	-	-
	a	a			a.			a	a		a
Station	-	-	ı	ı	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	ı	ı	-	-	-	-	-	-	-
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	1	-	-	-	-	1	1	-
Low chord- bed	1	-	-	1	-	-	-	-	1	1	-
Station	-	-	-	1	-	-	-	-	1	1	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	1	-	-
Low chord- bed	-	-	-	-	-	-	-	_	-	-	_

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number BURKTH00070017

Qa/Qc Check by: **RB** Date: 2/29/96

Computerized by: **RB** Date: 2/29/96

RB Date: 8/22/97 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) E. BOEHMLER Date (MM/DD/YY) 8 / 7 / 1995

2. Highway District Number 07

County CALEDONIA 005

Waterway (1 - 6) DISH MILL BROOK

Route Number TH07 3. Descriptive comments:

Mile marker 0000

Town BURKE 10450

Road Name -

Hydrologic Unit Code: 01080102

Located about 0.6 miles east of the intersection of TH07 with VT114.

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBUS 6 LBDS 5 RBDS 6 Overall 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length <u>26</u> (feet)

Span length 23 (feet) Bridge width 23.2 (feet)

Road approach to bridge:

8. LB 1 RB 2 (0 even, 1- lower, 2- higher)

9. LB_1__ RB 1___ (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	40 [14 Coverity	
	11.Type	12.Cond.	13.Erosion	14.Severity	
LBUS		-	0	0	
RBUS	2	1	2	1	
RBDS	_0		2	1	
LBDS	_0	-	_0	_0	

Bank protection types: **0**- none; **1**- < 12 inches;

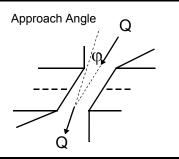
2- < 36 inches; **3-** < 48 inches;

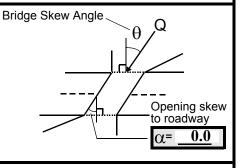
4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed

Erosion: 0 - none: 1- channel erosion: 2-


road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 0 16. Bridge skew: 10

17. Channel impact zone 1:

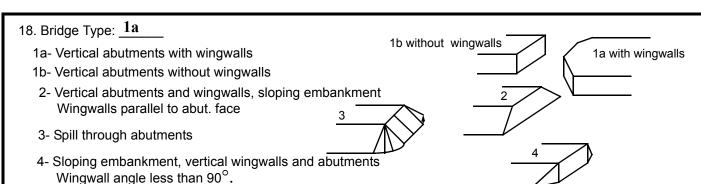
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 115 feet US (US, UB, DS) to 90 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? <u>LB</u> (LB, RB)

Severity 1

Range? 10 feet US (US, UB, DS) to 0 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 7. Values from the VT AOT files. Measured values of the bridge length = 26.5 feet, span length = 23.5 feet, and bridge width = 23.3 feet.
- 4. The surface cover is as indicated except on the DS left bank where shrubs and brush make up 80% of the area with the remaining being tree coverage along the immediate bank.
- 13. Roadwash on the DS right and left banks is very slight. While there is a road drainage ditch that enters just DS on the right bank, the ditch is well away from the DS right wingwall. There is also a small drainage pipe that takes off roadway water that enters here. The US right wingwall has a history of roadwash erosion according to the historical form. There is fill material in place on the bank just US of the US right wingwall and paving on the road embankment behind the wingwall. There are also many storm drainage gullies in the road embankment material which drain into a larger ditch running parallel with the road embankment to the right bank of the stream. Currently there is only slight erosion here.

C. Upstream Channel Assessment

2	1. Bank he	ight (BF)	22. Bank	angle (BF)	26. % Ve	g. cover (BF)	27. Bank r	material (BF)	28. Bank (erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
25.5	<u>5.0</u>			2.5	4	4	534	324	2	1
23. Bank v	vidth <u>25</u>	.0	24. Cha	nnel width	25.0	25. Thal	weg depth	43.0	9. Bed Mate	erial <u>354</u>
				1		04.5				1

30 .Bank protection type: LB $\underline{0}$ RB $\underline{2}$ 31. Bank protection condition: LB $\underline{-}$ RB $\underline{1}$

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

The protection on the right bank is in the range of 20 feet US to 10 feet US where the same stone fill begins protecting the US right wingwall.

33. Point/Side bar present? N (Y or N. if N type ctrl-n pb)34. Mid-bar distance:	35 Mid-har width: -
36. Point bar extent: feet (US, UB) to feet (US, UB, DS) positioned	
37. Material:	_ /0 /0.13
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, statu	s, etc.):
NO POINT BARS	
as less out bank propent? Vivia vivia vivia vivia sur a LR	
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB	
41. Mid-bank distance: 100 42. Cut bank extent: 135 feet US (US, UB) to 0	feet US (US, UB, DS)
43. Bank damage: <u>3</u> (1 - eroded and/or creep; 2 - slip failure; 3 - block failure) 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):	
Whole trees have fallen over with the trunk still in the failed bank material. The bank	appears undermined as
erosion is concentrated where the soil is in contact with the semi-alluvial bouldery, co	
underneath. There is extensive exposure of tree roots in the eroding soil layer along t	the entire extent of the
left bank US indicated above.	
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -	<u>. </u>
47. Scour dimensions: Length - Width - Depth : - Position - %LB to -	%RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):	
NO CHANNEL SCOUR	
49. Are there major confluences? Y (Y or if N type ctrl-n mc) 50. How many?	1
51. Confluence 1: Distance <u>35</u>	
Confluence 2: Distance	
54. Confluence comments (eg. confluence name):	1- perenniai, 2- epitemerai)
The confluence is nameless, but at the mouth has a 15 ft width and forms a cut off cha	annel taking flow during
over bank floods, which occurred on about August 4, 1995.	
D. Under Bridge Channel Assessment	
55. Channel restraint (BF)? LB $\frac{2}{2}$ (1- natural bank; 2- abutment; 3- artificial levee)	
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)	
LB RB LB RB LB RB	
29.0 1.5 2 7 7 -	
58. Bank width (BF) 59. Channel width 60. Thalweg depth90.0	63. Bed Material -
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64	1mm: 1- cobble 61 - 256mm:
5- boulder, > 256mm; 6- bedrock; 7- manmade	#IIIII, 4 - CODDIE, 04 - 230IIIII,
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting	
64. Comments (bank material variation, minor inflows, protection extent, etc.):	
345 The thalweg mainly runs along the left abutment and the bed elevation is about 1 foo	ot lower along the left
abutment side than along the right abutment side. Bed erosion also seems concentra	_
ment footing.	9

65. <u>Debris and Ice</u> Is there debris accumulation? ____ (*Y or N*) 66. Where? <u>N</u> (1- Upstream; 2- At bridge; 3- Both)
67. Debris Potential <u>-</u>__ (1- Low; 2- Moderate; 3- High)
69. Is there evidence of ice build-up? <u>1</u> (*Y or N*)

68. Capture Efficiency <u>3</u> (1- Low; 2- Moderate; 3- High)
69. Is there evidence of ice build-up? <u>1</u> (*Y or N*)

70. Debris and Ice Comments:

The stream has a lot of cut banks with lots of trees on the banks lending to a high potential for debris generation but the reach through the bridge is straight and at a high gradient, with few obstructions. For these reasons, debris and ice probably do not accumulate at this site.

Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		10	90	2	3	1.5	4.0	90.0
RABUT	1	-	90	 		2	2	22.5

Pushed: LB or RB Toe Location (Loc.): **0**- even, **1-** set back, **2-** protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; **6**- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0 1.5

The right abutment footing is exposed but not undermined. The exposure varies randomly from 1.0-1.5 feet. The undermined portion of the left abutment is only along the DS end for 8 feet. The footing and subfooting have settled a bit here as there is a vertical crack up through both footings and the height of the left abutment wall about 8 feet under the bridge from the DS face. The remaining portion of the footing/subfooting is only exposed between 1.5 and 2.5 feet. There is a scour hole along the DS end of the left abutment and the DS left wingwall which is 24 feet long, from 7 ft under the bridge to 17 ft DS. It is 8 feet wide and 1.5 feet deep at the deepest point located about 1 foot DS of the DS face and positioned 0% LB - 0% RB.

80. Wingwalls:

ou. <u>vvii i</u>	81.										
	Exist?	Material?	Scour	Scour	Exposure		Length?				
			Condition?	depth?	depth?		ŭ				
USLWW:					·	22.5					
											
USRWW:	\mathbf{Y}		1		2	2.0					
DSLWW:	0		2.0		Y	24.0					
DSRWW:	1		1		0	25.0					

Wingwall angle

Wingwall length

USLWW

DSLWW

USRWW

DSRWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	1.0	3	Y	0	-	1	-	-
Condition	Y	1.0	1	0.5	-	1	-	-
Extent	1	3.0	2	0	2	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

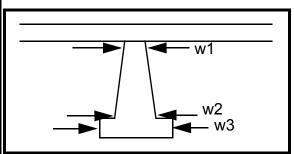
Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

3

1

3


1 2

3

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

85.							
Pier no.	width (w) feet			elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1		9.0		55.0	30.0	11.0	
Pier 2		9.0	6.5	45.0	20.0	-	
Pier 3	-	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e foot-	with	right	right
87. Type	ing	type-	wing	abut
88. Material	on	2	wall	ment
89. Shape	the	stone	foot-	foot-
90. Inclined?	US	fill	ingis	ing
91. Attack ∠ (BF)	right	its	expo	abou
92. Pushed	wing	entir	sed	t 0.5
93. Length (feet)	-	-	-	-
94. # of piles	wall	e	near	feet,
95. Cross-members	has	lengt	wher	then
96. Scour Condition	been	h.	e it	the
97. Scour depth	cov-	The	meet	foot-
98. Exposure depth	ered	DS	s the	ingis

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): covered by road embankment fill material, which is slumping as material is eroded along the toe of the fill. The DS left wingwall footing and subfooting are undermined with up to 2 feet of penetration. Protection here is type-3 and includes a very large boulder around and over which the DS left wingwall footing is molded. E. Downstream Channel Assessment 100. Bank height (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF) Bank angle (BF) RB LB RB LB RB RB SRD LB LB LB RB Channel width -Bank width (BF) Thalweg depth -Bed Material -Bank protection type (Qmax): Bank protection condition: RB <u>-</u> LB -RB -% Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100% SRD - Section ref. dist. to US face Bed and bank Material: 0- organics: 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Comments (eg. bank material variation, minor inflows, protection extent, etc.): 101. <u>Is a drop structure present?</u> - (Y or N, if N type ctrl-n ds) 102. Distance: -104. Structure material: ____ (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other) 103. Drop: <u>-</u> feet 105. Drop structure comments (eg. downstream scour depth):

106. Point/Side bar present? (Y or N. if N type ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB
Material: Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
Formeton side par comments (office Formeton Side, note additional pars, material variation, status, etc.).
- -
-
-
<u>Is a cut-bank present? - (Y or if N type ctrl-n cb)</u> Where? <u>NO</u> (LB or RB) Mid-bank distance: <u>PIE</u>
Cut bank extent: RS feet (US, UB, DS) to feet (US, UB, DS)
Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.):
out built commonte (eg. additional out baline, protestion sometion, story.
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 4
Scour dimensions: Length 4 Width 235 Depth: 523 Positioned 2 %LB to 2 %RB
Scour comments (eg. additional scour areas, local scouring process, etc.):
345 0
$oldsymbol{0}$
-
Are there major confluences? - (Y or if N type ctrl-n mc) How many? -
Confluence 1: Distance (LB or RB) Type (1- perennial; 2- ephemeral)
Confluence 2: Distance (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
F. Geomorphic Channel Assessment
107. Stage of reach evolution 1- Constructed
2- Stable 3- Aggraded
4 - Degraded 5 - Laterally unstable
6- Vertically and laterally unstable

N - NO DROP STRUCTURE			
NO DROP STRUCTURE			

	109. G. P	Plan View Sketch	-	Y
point bar pb cut-bank cb scour hole	debris XXX rip rap or stone fill	flow Q cross-section ++++++ ambient channel ——	stone wall	
scoul fible	Storie IIII	and the charmer		

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BURKTH00070017 Town: BURKE
Road Number: TH 7 County: CALEDONIA

Stream: DISH MILL BROOK

Initials RLB Date: 8/5/97 Checked: ECW

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft	1400 300 67 76 44 43 33 0.2414	1890 324 89 95 44 43 39	1350 293 60 71 44 42 32
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft	6.8 1.6 2.3	7.4 2.1 2.4	6.7 1.4 2.2
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	32642 27967 1901 2775 -0.0031 1199.5 81.5 119.0	38395 31689 3057 3649 0.0000 1559.9 150.5 179.6	31026 26880 1597 2549 0.0000 1169.6 69.5 110.9
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	4.0 1.2 1.6 9.6 ERR ERR	4.8 1.7 1.9 9.7 ERR ERR	4.0 1.2 1.6 9.6 ERR ERR
Results			
Live-bed(1) or Clear-Water(0) Contr Main Channel Left Overbank Right Overbank	action Sco 0 N/A N/A	our? 0 N/A N/A	0 N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \mbox{Converted to English Units } ys=y2-y_bridge \\ (Richardson and others, 1995, p. 32, eq. 20, 20a)$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	1400	1890	1350
(Q) discharge thru bridge, cfs	1365	1443	1350
Main channel conveyance	8559	8559	8559
Total conveyance	8559	8559	8559
Q2, bridge MC discharge,cfs	1365	1443	1350
Main channel area, ft2	142	142	142
Main channel width (normal), ft	22.5	22.5	22.5
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	22.5	22.5	22.5
<pre>y_bridge (avg. depth at br.), ft</pre>	6.32	6.32	6.32
Dm, median (1.25*D50), ft	0.30175	0.30175	0.30175
y2, depth in contraction,ft	5.88	6.17	5.83
ys, scour depth (y2-ybridge), ft	-0.44	-0.15	-0.49

Armoring

 $Dc = [(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]$ Depth to Armoring=3*(1/Pc-1) (Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	1365	1443	1350
Main channel area (DS), ft2	113	129	111
Main channel width (normal), ft	22.5	22.5	22.5
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	22.5	22.5	22.5
D90, ft	1.0053	1.0053	1.0053
D95, ft	1.2584	1.2584	1.2584
Dc, critical grain size, ft	0.8706	0.7008	0.8903
Pc, Decimal percent coarser than Dc	0.138	0.169	0.132
Depth to armoring, ft	16.32	10.34	17.56

Pressure Flow Scour (contraction scour for orifice flow conditions)

```
Chang pressure flow equation  \begin{array}{ll} Hb+Ys=Cq*qbr/Vc\\ Cq=1/Cf*Cc & Cf=1.5*Fr^0.43 \ (<=1) & Cc=SQRT[0.10\,(Hb/(ya-w)-0.56)]+0.79 \ (<=1)\\ Umbrell pressure flow equation \\ (Hb+Ys)/ya=1.1021*[(1-w/ya)*(Va/Vc)]^0.6031 \\ (Richardson and other, 1995, p. 144-146) \\ \end{array}
```

	Q100	0500	OtherQ
Q, total, cfs	1400	1890	1350
Q, thru bridge MC, cfs	1365	1443	1350
Vc, critical velocity, ft/s	9.61	9.74	9.57
Va, velocity MC approach, ft/s	4.00	4.81	3.99
Main channel width (normal), ft	22.5	22.5	22.5
` '			
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	22.5	22.5	22.5
qbr, unit discharge, ft2/s	60.7	64.1	60.0
Area of full opening, ft2	142.2	142.2	142.2
Hb, depth of full opening, ft	6.32	6.32	6.32
Fr, Froude number, bridge MC	0.67	0.71	0.66
Cf, Fr correction factor (<=1.0)	1.00	1.00	1.00
**Area at downstream face, ft2	113	129	111
**Hb, depth at downstream face, ft	5.02	5.73	4.93
**Fr, Froude number at DS face	0.95	0.82	0.96
**Cf, for downstream face (<=1.0)	1.00	1.00	1.00
Elevation of Low Steel, ft	498.48	498.48	498.48
Elevation of Bed, ft	492.16	492.16	492.16
Elevation of Approach, ft	501.17	501.7	501.01
Friction loss, approach, ft	0.04	0.14	0.11
Elevation of WS immediately US, ft	501.13	501.56	500.90
ya, depth immediately US, ft	8.97	9.40	8.74
Mean elevation of deck, ft	501.52	501.52	501.52
w, depth of overflow, ft (>=0)	0.00	0.04	0.00
Cc, vert contrac correction (<=1.0)	0.91	0.90	0.92
**Cc, for downstream face (<=1.0)	0.79	0.862481	0.79
,	-		-
Ys, scour w/Chang equation, ft	0.61	1.02	0.51
Ys, scour w/Umbrell equation, ft	-0.50	0.44	-0.64

^{**=}for UNsubmerged orifice flow using estimated downstream bridge face properties.

^{**}Ys, scour w/Chang equation, ft 2.97 1.90 3.00

**Ys, scour w/Umbrell equation, ft 0.80 1.02 0.75

In UNsubmerged orifice flow, an adjusted scour depth using the Laursen equation results and the estimated downstream bridge face properties can also be computed (ys=y2-ybridgeDS)

y2, from Laursen's equation, ft	5.88	6.17	5.83
WSEL at downstream face, ft	497.17	497.91	497.08
Depth at downstream face, ft	5.02	5.73	4.93
Ys, depth of scour (Laursen), ft	0.86	0.44	0.89

Abutment Scour

HIRE equation (a'/ya > 25)ys = $4*Fr^0.33*y1*K/0.55$

(Richardson and others, 1995, p. 49, eq. 29)

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Abı	utment		Right A	butment	
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q
(Qt), total discharge, cfs	1400	1890	1350	1400	1890	1350
a', abut.length blocking flow, ft	55.8	56.6	55.5	41.7	47.1	40.1
Ae, area of blocked flow ft2	121.99	128.18	120	128	147.49	121.8
Qe, discharge blocked abut.,cfs			239.32			302.28
(If using Qtotal_overbank to obt	ain Ve, le	eave Qe bl	Lank and	enter Ve a	and Fr max	nually)
Ve, (Qe/Ae), ft/s	2.02	2.48	1.99	2.47	2.88	2.48
ya, depth of f/p flow, ft	2.19	2.26	2.16	3.07	3.13	3.04
Coeff., K1, for abut. type (1.0,	verti.; (0.82, vert	ci. w/ w:	ingwall; 0	.55, spil	lthru)
K1	0.82	0.82	0.82	0.82	0.82	0.82
Angle (theta) of embankment (<90	if abut.	points DS	S; >90 i:	f abut. po	ints US)	
theta	90	90	90	90	90	90
K2	1.00	1.00	1.00	1.00	1.00	1.00
Fr, froude number f/p flow	0.234	0.261	0.239	0.248	0.283	0.251
ys, scour depth, ft	8.94	9.68	8.95	10.56	11.79	10.42

a'(abut length blocked, ft)	55.8	56.6	55.5	41.7	47.1	40.1
y1 (depth f/p flow, ft)	2.19	2.26	2.16	3.07	3.13	3.04
a'/yl	25.52	25.00	25.67	13.59	15.04	13.20
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00
Froude no. f/p flow	0.23	0.26	0.24	0.25	0.28	0.25
Ys w/ corr. factor K1/0.55:						
vertical	9.85	10.57	9.81	ERR	ERR	ERR
vertical w/ ww's	8.07	8.67	8.04	ERR	ERR	ERR
spill-through	5.41	5.82	5.39	ERR	ERR	ERR

Abutment riprap Sizing

Isbash Relationship

D50= $y*K*Fr^2/(Ss-1)$ and D50= $y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	0.95	0.82	0.96	0.95	0.82	0.96
y, depth of flow in bridge, ft	5.02	5.73	4.93	5.02	5.73	4.93
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	ERR	ERR	ERR	ERR	ERR	ERR
Fr>0.8 (vertical abut.)	2.07	2.27	2.04	2.07	2.27	2.04