LEVEL II SCOUR ANALYSIS FOR BRIDGE 39 (STOWTH00160039) on TOWN HIGHWAY 16, crossing MOSS GLEN BROOK, STOWE, VERMONT

Open-File Report 97-794

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 39 (STOWTH00160039) on TOWN HIGHWAY 16, crossing MOSS GLEN BROOK, STOWE, VERMONT

By MICHAEL A. IVANOFF AND ROBERT E. HAMMOND

U.S. Geological Survey Open-File Report 97-794

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	1
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	1
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
References	1
Appendixes:	
A. WSPRO input file	1
B. WSPRO output file	
•	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	3
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	•••••
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure STOWTH00160039 viewed from upstream (July 10, 1996)	
4. Downstream channel viewed from structure STOWTH00160039 (July 10, 1996)	
5. Upstream channel viewed from structure STOWTH00160039 (July 10, 1996)	
6. Structure STOWTH00160039 viewed from downstream (July 10, 1996).	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook,	
Stowe, Vermont.	•••••
8. Scour elevations for the 100- and 500-year discharges at structure	
STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook,	
Stowe, Vermont.	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook,	
Stowe, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook,	
Stowe. Vermont	1

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	- · · · · · · · · · · · · · · · · · · ·
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	y
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	MC	main channel
D_{50}	median diameter of bed material	RAB	right abutment
DS	downstream	RABUT	face of right abutment
elev.	elevation	RB	right bank
f/p ft ²	flood plain	ROB	right overbank
ft^2	square feet	RWW	right wingwall
ft/ft	feet per foot	TH	town highway
JCT	junction	UB	under bridge
LAB	left abutment	US	upstream
LABUT	face of left abutment	USGS	United States Geological Survey
LB	left bank	VTAOT	Vermont Agency of Transportation
LOB	left overbank	WSPRO	water-surface profile model

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 39 (STOWTH00160039) ON TOWN HIGHWAY 16, CROSSING MOSS GLEN BROOK, STOWE, VERMONT

By Michael A. Ivanoff and Robert E. Hammond

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure STOWTH00160039 on Town Highway 16 crossing Moss Glen Brook, Stowe, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 4.75-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream and on the right bank downstream. The downstream left bank is pasture while the immediate bank has dense woody vegetation.

In the study area, Moss Glen Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 52 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D_{50}) of 56.5 mm (0.185 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 10, 1996, indicated that the reach was stable.

The Town Highway 16 crossing of Moss Glen Brook is a 22-ft-long galvanized plate arch culvert with an opening span width of 21 ft (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the culvert face is 20.6 ft. The culvert is supported by vertical, concrete abutments with no wingwalls. The channel is skewed approximately zero degrees to the opening. The opening skew-to-roadway value from the VTAOT database is 5 degrees while zero degrees was computed from surveyed points.

The only scour counter measure at the site was type-3 stone fill (less than 48 inches diameter) at the upstream and downstream ends of the left and right abutments and extending along the banks upstream and downstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 1.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 12.6 to 16.2 ft. Right abutment scour ranged from 12.1 to 14.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

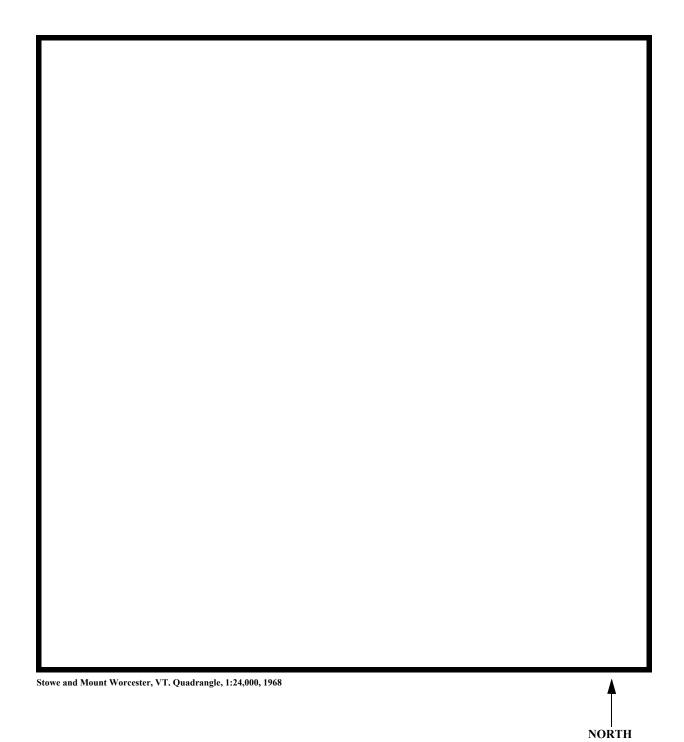
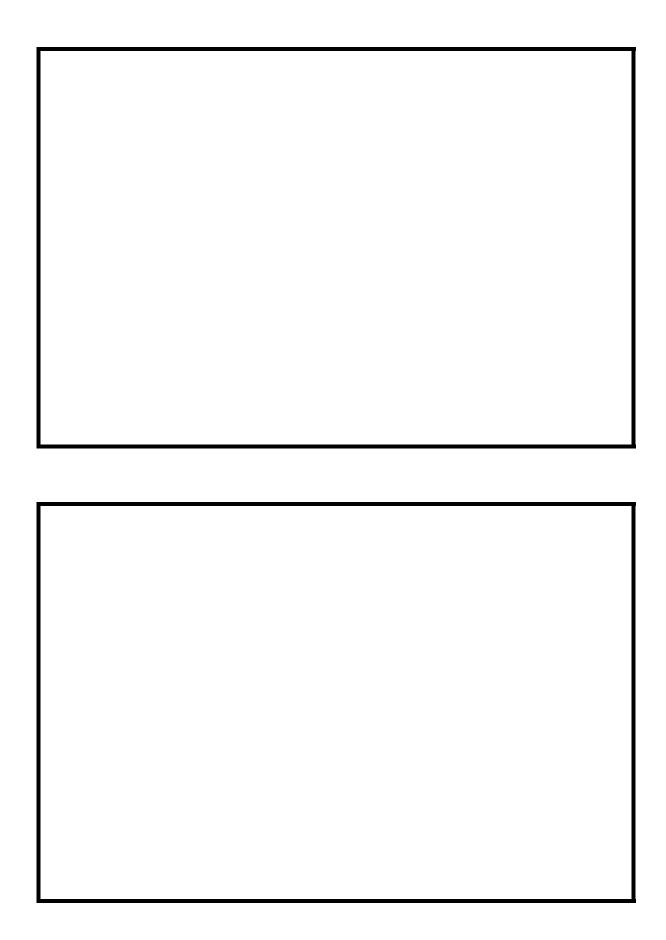



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

icture Number -	STOWTH00160039	Stream	Moss Gle	en Brook	
unty Lamoill	e	– Road —	TH 16	District –	6
	Descrip	tion of Bridg	je		
Bridge length [–]	ft Bridge wid	50.5	ft Max Curve	span length	
Alignment of bri Abutment type Stone fill on abut	dge to road (on curve or so Vertical, concrete No	traight) Embankm	nent type 7/2	Sloping	
abutments.	Type-3, around	the upstream a	nd downstrea	m ends of the lo	eft and righ
_	to flood flow according to		ry?	No	0
There is a moder	ate channel bend in the ups	stream reach., .		, ,	·,
Debris accumula	ation on bridge at time of I Date of inspection 7/10/96	Level I or Leve Percent of 0 bloc ked no	haunal		of alamiel
Level I	7/10/96	0			0
-	High. There is not trees leaning over the ch			locks along the	e upstream
Potential fo	r debris				
None as of 7/10/	96.				
Doscriho anv foa	turos noar or at tho hrida	o that may affa	et flow (inclu	ido absorvatia	n dato)

Description of the Geomorphic Setting

General topog	graphy	The cha	annel is located v	within a r	moderate relief va	alley with narrow floo	od
plains and ste	ep valle	y walls on	both sides.				
Geomorphic	conditio	ons at brid	ge site: downstre	eam (DS)	, upstream (US)		
Date of inspe	ection	7/10/96					
DS left:		hannel ba	nk to a narrow flo	ood plair	l.		
DS right:	Steep c	hannel ba	nk to a narrow flo	ood plair	1.		
US left:	Modera	ately slope	d channel bank to	o a narro	w flood plain.		
US right:	Steep c	hannel bar	nk to a narrow flo	ood plain			
			Description of	the Ch	annel		
		52				7	
Average top	p width		Gravel / Cobble	es	Average depth	Boulders	
Predominan	t bed ma	terial			Bank material	Sinuous but stable	
with non-allu	vial char	nnel bound	laries and a narro	w flood	plain.		
						7/10/96	
Vegetative co	Trees a	and brush v	with cut grass on	the over	bank.		
DS left:		and brush.					
DS right:	Trees a	and brush.					
US left:	Trees a	and brush.					
US right:		<u>Y</u>	<u>'es</u>				
Do banks ap	pear stal	ble? <u>-</u>	<u>., ., ., ., ., ., ., ., ., ., ., ., ., .</u>	icsci ivc i	veunon una 13pe	oj msmonny ma	
date of obse	rvation.						
					1	None, 7/10/96.	
Describe any	obstruc	ctions in cl	hannel and date	of obser	vation.		

Hydrology

Drainage area $\frac{4.75}{mi^2}$ mi ²				
Percentage of drainage area in physiographic	provinces: (d	approximate)		
Physiographic province/section New England/Green Mountain	Percent of drainage area			
Is drainage area considered rural or urban? - urbanization:	Rural	— Describe any significant		
Is there a USGS gage on the stream of interest.	<u>No</u> ?			
USGS gage description				
USGS gage number	_			
Gage drainage area	 mi ²	2 No		
Is there a lake/p				
Calculate	d Discharge	es _{1,700}		
Q100 ft ³ /s The 10	~	500 ft ³ /s -year discharges are based on the		
flood frequency estimates for this site available fr	rom the VTA	AOT database. The drainage area		
above bridge number 39 in the VTAOT database	is 4.57 squa	re miles. The discharge values are		
within a range defined by several empirical flood	frequency c	urves (Benson, 1962; Johnson and		
Tasker, 1974; FHWA, 1983; Potter, 1957a&b Tal	bot, 1887).			

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey
Datum tie between USGS survey and VTAOT plans	None	
Description of reference marks used to determine USGS da	tum.	RM1 is a nail 6 ft high
in a telephone pole by the edge of TH 16 on the right bank in	line with t	he road over the culvert
(elev. 502.62 ft, arbitrary survey datum). RM2 is a bolt on the	e top left ce	enter of the downstream
end of the culvert (elev. 496.61 ft, arbitrary survey datum). F	RM3 is a bo	olt on the top right center
on the upstream end of the culvert (elev. 496.21 ft, arbitrary		
survey datum).		

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-22	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
APPRO	75	1	Approach section

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

² Cross-section development: (1) survey at SRD, (2) shift of survey data to SRD, (3) modification of survey data, (4) composite bridge section, (5) other.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, Appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.070, and overbank "n" values ranged from 0.040 to 0.055.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0153 ft/ft, which was estimated from surveyed thalweg points downstream of the culvert.

The approach section (APPRO) was surveyed one culvert width upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

The unconstricted channel was modeled for each discharge by use of WSPRO. Then the water surface elevation computed at the full valley section (FULLV) for each discharge under the unconstricted channel condition was applied as the starting water surface elevation for modeling the culvert hydraulics for each discharge.

Bridge Hydraulics Summary

Average bridge embankment elevation	499.8	8 ft		
Average low steel elevation 496	.7 ft	y		
100-year discharge Water-surface elevation in	1,190 1 bridge op	•	492.1 <i>ft</i>	
Road overtopping?	0 1	scharge over		- ft ³ /s
Area of flow in bridge ope Average velocity in bridge Maximum WSPRO tube v	ening opening	$\frac{110}{10.8} ft^2$	ft/s ft/s	_ ,
Water-surface elevation a Water-surface elevation a Amount of backwater cau	t Approach	section with	_	495.4
500-year discharge Water-surface elevation in Road overtopping? Area of flow in bridge ope Average velocity in bridge	No Dis	ening scharge over ¹²⁶ ft ²		³/s
Maximum WSPRO tube v	_	-		
Water-surface elevation a Water-surface elevation a Amount of backwater cau	t Approach	section with	_	498.0
Incipient overtopping disc Water-surface elevation in Area of flow in bridge ope Average velocity in bridge	n bridge ope ening opening	ening fi ² 	ft ³ /sftft/s	
Maximum WSPRO tube v Water-surface elevation a Water-surface elevation a	t Approach	section with	-	
Amount of backwater cau	sed by brid	ge	<u> </u>	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

Contraction scour for the 100-year and 500-year discharges were computed by use of the Laursen clear-water contraction scour equation (Richardson and others, 1995, p. 32, equation 20). The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and others, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:		500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	0.0	1.2	 -
Depth to armoring	10.8	23.6	
Left overbank			
Right overbank			
Local scour:			
Abutment scour	12.6	16.2	
Left abutment	12.1–	14.3-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing		
	100-yr discharge		Incipient overtopping discharge
	. 3	(D ₅₀ in feet)	3
Abutments:	2.2	2.9	
Left abutment	2.2	2.9	
Right abutment			
Piers:		 -	
Pier 1			
Pier 2	<u></u>		
1 001 #			

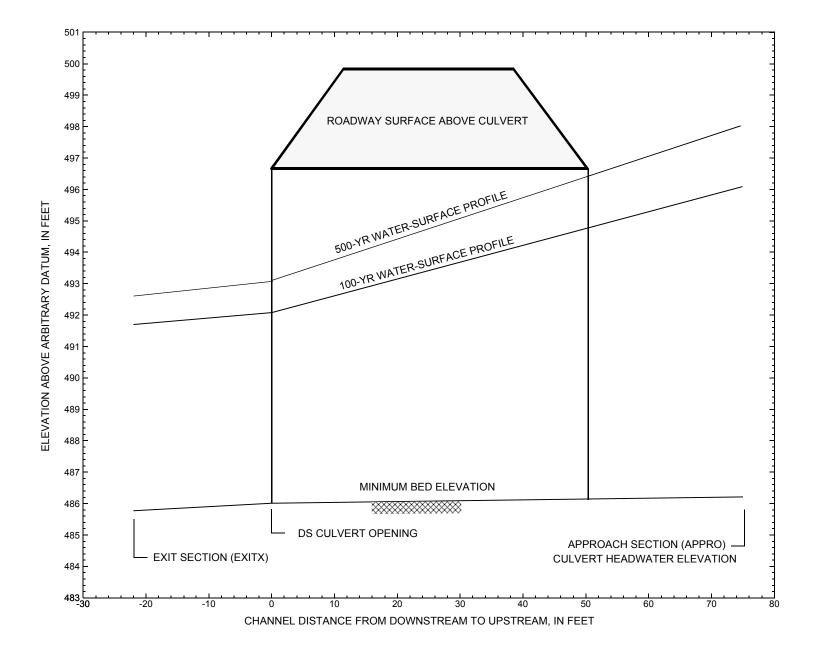


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook, Stowe, Vermont.

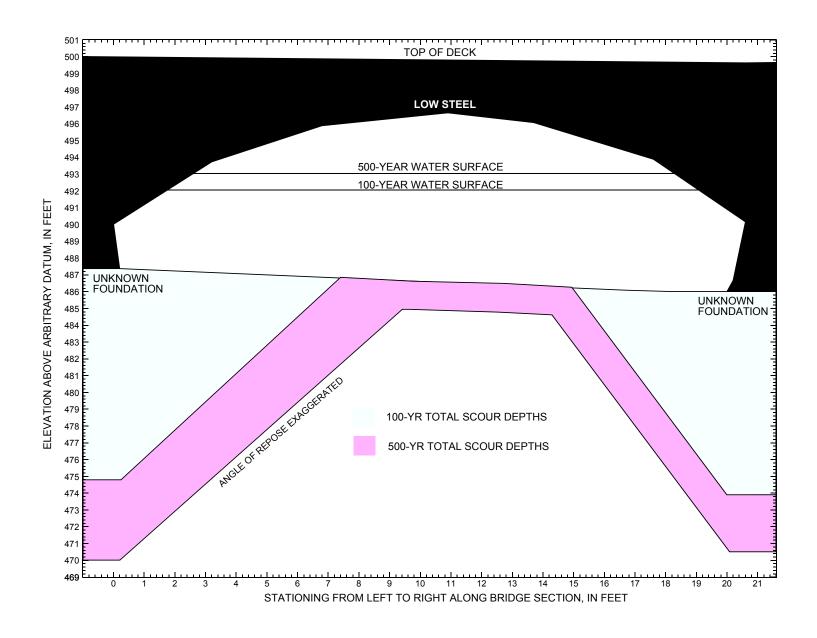


Figure 8. Scour elevations for the 100-yr and 500-yr discharges at structure STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook, Stowe, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook, Stowe, Vermont.

[VTAOT, Vermont Agency of Transportation; --,no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr.	discharge is 1,190) cubic-feet per sec	cond				_
Left abutment	0.0		496.7		487.4	0.0	12.6		12.6	474.8	
Right abutment	20.6		496.7		486.0	0.0	12.1		12.1	473.9	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure STOWTH00160039 on Town Highway 16, crossing Moss Glen Brook, Stowe, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-yr.	discharge is 1,700	cubic-feet per sec	cond				
Left abutment	0.0		496.7		487.4	1.2	16.2		17.4	470.0	
Right abutment	20.6		496.7		486.0	1.2	14.3		15.5	470.5	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Department of Transportation, 1993, Stream stability and scour at highway bridges, Participant Workbook: Federal Highway Administration Publication FHWA HI-91-011.
- U.S. Geological Survey, 1968, Mount Worcester, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.
- U.S. Geological Survey, 1968, Stowe, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File stow039.wsp
T1
T2
         Hydraulic analysis for structure STOWTH00160039 Date: 15-AUG-97
Т3
         Arch Culvert 39 on Town Highway 16 over Moss Glen Brook Stowe, VT MAI
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
Q
           1190.0
                   1700.0
SK
           0.0153 0.0153
*
XS
    EXITX
            -22
                                                          -77.1, 494.18
GR
          -211.6, 508.15
                         -182.1, 501.52
                                         -145.5, 494.82
GR
           -55.9, 492.59
                           -8.7, 491.73
                                            0.0, 489.63
                                                             5.2, 486.64
GR
            5.6, 485.96
                            8.1, 486.06
                                            11.5, 486.07
                                                            15.1, 485.77
            18.6, 485.84
                           21.9, 486.48
                                             28.5, 489.45
                                                            38.2, 495.96
GR
GR
            49.8, 497.11
                          62.3, 498.01
                                           80.2, 497.93 114.5, 499.41
GR
           142.7, 502.29
           0.040
N
                   0.054
                                  0.045
SA
                   -8.7
                               38.2
*
XS
    FULLV
              0 * * * 0.0109
*
XS
    APPRO
              75
GR
          -201.3, 505.20
                         -135.7, 501.56
                                          -73.4, 499.98
                                                            -46.0, 497.70
           -29.5, 492.95
GR
                          -11.3, 491.23
                                            -4.5, 490.39
                                                             0.0, 487.44
                            7.0, 486.21
                                             10.1, 486.27
                                                             14.6, 486.62
            2.1, 487.27
GR
GR
            19.0, 486.77
                            22.2, 487.33
                                            26.5, 488.30
                                                            32.0, 491.62
GR
           41.7, 498.05
                           51.5, 499.16
                                            96.3, 498.61
                                                            114.3, 499.94
GR
           121.6, 502.43
*
           0.055 0.070
                                0.045
Ν
                               51.5
SA
                  -4.5
HP 1 APPRO 495.37 1 495.37
HP 2 APPRO 495.37 * * 1190
HP 1 APPRO 498.01 1 498.01
HP 2 APPRO 498.01 * * 1700
EΧ
ER
```

Culvert Analysis

```
T1
         Culvert bridge # 39 on Moss Glen Brook in Stowe, VT
T2
         STOWTH00160039
*
Q
            1190.0
                    1700.0
WS
            492.11
                    493.08
CV
     CULVT 0 11 50 486.01 486.02
CG
            327 128 251
*
EΧ
ER
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File stow039.wsp

Hydraulic analysis for structure STOWTH00160039 Date: 15-AUG-97

Arch Culvert 39 on Town Highway 16 over Moss Glen Brook Stowe, VT MAI

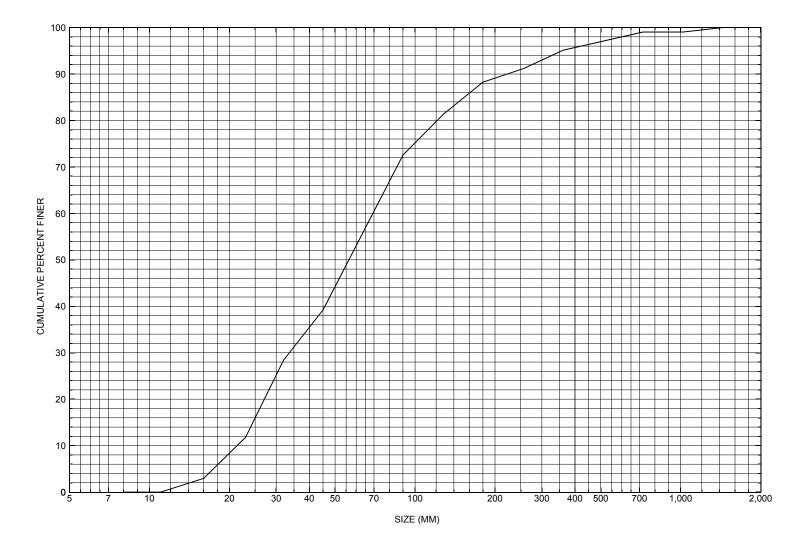
*** RUN DATE & TIME: 11-06-97 15:22

	CROS	S-SECTI	ON PROPEI	RTIES: IS	EQ = 3;	SECII	O = APPRO	; SRD	=	75.
	WSE	L SA#					ALPH	LEW	REW	QCR 995
	495.3	7	294 395		42			-37	38	4412 5037
				ON: ISEQ =					7	5.
				REW 2						
	STA. A(I)	-3		-21.3				-5.0	21.6	-1.3
	V(I) STA.			1.1			2.98		2.76	
	A(I) V(I)		18.2	16.4	1	16.4	15.8			
	STA. A(I)			10.2						17.5
	V(I)			3.82					3.58	
	STA. A(I) V(I)	1		19.6 18.3 3.28	1		22.3			37.7
	V (1)		3.39	3.20	•	2.99	2.07		1.73	
	CROS	S-SECTI	ON PROPEI	RTIES: ISI	EQ = 3;	SECII	O = APPRO	; SRD	=	75.
		L SA#	AREA 202	K 14616	TOPW	WETP	ALPH			QCR 2415
		L SA# 1 2	AREA 202 411	K 14616	TOPW 45 46	WETP 46 50	ALPH	LEW	REW	QCR 2415 6956
	WSE	L SA# 1 2	AREA 202 411	K 14616 35530	TOPW 45 46	WETP 46 50	ALPH	LEW	REW	QCR 2415 6956
	WSE 498.0	L SA# 1 2	AREA 202 411 612	K 14616 35530	TOPW 45 46 91	WETP 46 50 96	ALPH	LEW -49	REW	QCR 2415 6956 8913
	WSE 498.0 VELO	L SA# 1 2 1 CITY DI	AREA 202 411 612 STRIBUTIO	K 14616 35530 50145 DN: ISEQ :	TOPW 45 46 91 = 3; S	WETP 46 50 96 ECID =	ALPH 1.02 APPRO;	LEW -49 SRD =	REW 42	QCR 2415 6956 8913
	WSE 498.0	L SA# 1 2 1 CITY DI WSEL 98.01	AREA 202 411 612 STRIBUTIO LEW -49.7 9.7	K 14616 35530 50145	TOPW 45 46 91 = 3; S AREA 12.4 5 -21.3	WETP 46 50 96 ECID = K 0145.	ALPH 1.02 APPRO; Q 1700. 16.1 29.9	LEW -49 SRD = VEL 2.78 -11.5	REW 42 7	QCR 2415 6956 8913
х	WSE 498.0 VELO 4 STA. A(I) V(I)	L SA# 1 2 1 CITY DI WSEL 98.01	AREA 202 411 612 STRIBUTIO LEW -49.7 9.7 53.6 1.59 7.5 27.6	K 14616 35530 50145 ON: ISEQ : REW 2 41.6 6: -27.8 36.3	TOPW 45 46 91 = 3; S AREA 12.4 5 -21.3 2 5	WETP 46 50 96 ECID = K 0145. -1 31.5 2.70	ALPH 1.02 APPRO; Q 1700. 16.1 29.9 2.85 1.9 25.0	LEW -49 SRD = VEL 2.78 -11.5	REW 42 7 28.4 2.99	QCR 2415 6956 8913
x	WSE 498.0 VELO 4 STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	L SA# 1 2 1 CITY DI WSEL 98.01 -4	AREA 202 411 612 STRIBUTIO LEW -49.7 9.7 53.6 1.59 7.5 27.6 3.08 6.4 24.2	REW 14.6 6: -27.8 36.: 2.38 -3.8 30.6 2.78	TOPW 45 46 91 = 3; S AREA 12.4 5 -21.3 25 -0.5 63 10.5	WETP 46 50 96 ECID = K 01451 31.5 2.70 25.5 3.34	ALPH 1.02 APPRO; Q 1700. 16.1 29.9 2.85 1.9 25.0 3.40 12.6 25.7	LEW -49 SRD = VEL 2.78 -11.5 4.2	REW 42 7 28.4 2.99 24.5 3.47	QCR 2415 6956 8913
x	WSE 498.0 VELO 4 STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	L SA# 1 2 1 CITY DI WSEL 98.01 -4	AREA 202 411 612 STRIBUTIO LEW -49.7 9.7 53.6 1.59 7.5 27.6 3.08 6.4 24.2 3.51 7.1	K 14616 35530 50145 ON: ISEQ = REW 141.6 6: 2.3! -27.8 36.2 2.3! -3.8 30.6 2.78 8.4	TOPW 45 46 91 = 3; S AREA 12.4 5 -21.3 2 5 10.5 2 1	WETP 46 50 96 ECID = K 01451 31.5 2.70 25.5 3.34 124.2 3.51	ALPH 1.02 APPRO; Q 1700. 16.1 29.9 2.85 1.9 25.0 3.40 12.6 25.7 3.30	LEW -49 SRD = VEL 2.78 -11.5 4.2 14.8	REW 42 7 28.4 2.99 24.5 3.47 25.6 3.32	QCR 2415 6956 8913 57.5

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File stow039.wsp
Hydraulic analysis for structure STOWTH00160039 Date: 15-AUG-97
Arch Culvert 39 on Town Highway 16 over Moss Glen Brook Stowe, VT MAI
 *** RUN DATE & TIME: 11-06-97 15:22

XSID:CODE SRD	SRDL FLEN	LEW REW		VHD ALPH		EGL ERR		Q VEL	WSEL
EXITX:XS -21	*****	-8 32	151 9613			492.67 *****	490.76 0.72	1190 7.87	491.70
FULLV:XS 0	22 22	-15 32	159 10282			492.99 0.01	****** 0.73	1190 7.50	492.11
===135 CON	IVEYANCE	RATIO O	UTSIDE O "APPR			ED LIMITS			
APPRO:XS		-30 35				493.69	******	1190 4.75	493.32
XSID:CODE SRD	SRDL FLEN	LEW REW		VHD ALPH	HF HO	EGL ERR		Q VEL	WSEL
EXITX:XS -21	*****	-54 33				493.75 *****	491.78 1.00	1700 8.25	492.57
===125 FR‡			AT SECI			TRIALS (CONTINUED. 493.07		02
===110 WSF	EL NOT F							0.50	
===115 WSF	EL NOT F		SECID "F WSLIM2,C				= CRWS. 508.39	492.02	
FULLV:XS 0	22 22	-58 34				494.04 -0.01	492.02 0.88	1700 7.38	493.08
APPRO:XS 75	75 75	-33 36	314 19936			494.74 -0.01	******	1700 5.41	494.26


Culvert bridge # 39 on Moss Glen Brook in Stowe, VT STOWTH00160039

*** RUN DATE & TIME: 11-21-97 07:55

CULVERT SUMMARY:

ISHAPE	RISE	SPAN	BOTRAD	TOPRAD	CORNER
3	128.00	251.00	434.38	125.59	18.00
IEQNO	CKE	CN	CVALPH	CVLENG	CVSLPE
12	0.50	0.035	1.16	50.00	0.0002
TWDEP	QBBL	HWIC	HWOC	OTFULL	
6.10	1190.00	8.33	9.36	-2.36	
DSUBC 5.38	ASUBC 97.53	DSUBN 10.67	ASUBN 165.76		
VELOT	AOUT	VELIN	AIN	HWE	
10.79	110.33	9.43	126.15	495.37	

APPENDIX C: **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure STOWTH00160039, in Stowe, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number STOWTH00160039

General Location Descriptive

Data collected by (First Initial, Full last name) L. Medalie

Date (MM/DD/YY) __10 / _13 / _95

Highway District Number (*I* - 2; nn) <u>06</u> County (FIPS county code; *I* - 3; nnn) <u>015</u>

Waterway (1 - 6) MOSS GLEN BROOK Road Name (1 - 7): MOSS GLEN FALLS RD

Route Number C3016 Vicinity (/ - 9) 0.55 MI TO JCT W CL2 TH2

Topographic Map Stowe Hydrologic Unit Code: 02010005

Latitude (I - 16; nnnn.n) 44291 Longitude (i - 17; nnnnn.n) 72375

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) ___10080800390808

Maintenance responsibility (1 - 21; nn) ___03 ___ Maximum span length (1 - 48; nnnn) __0021

Year built (1 - 27; YYYY) 1982 Structure length (1 - 49; nnnnnn) 000022

Average daily traffic, ADT (I - 29; nnnnnn) 000100 Deck Width (I - 52; nn.n) 000

Year of ADT (*I* - 30; YY) __93 __ Channel & Protection (*I* - 61; n) __5

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43; nnn*) __**319**___ Year Reconstructed (*I - 106*) __**0000**

Approach span structure type (I - 44: nnn) 000 Clear span (nnn.n ft) -

Number of spans (*I - 45; nnn*) 001 Vertical clearance from streambed (*nnn.n ft*) -

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) <u>135</u>

Comments:

According to the structural inspection report dated 6/7/95, the structure is a corrugated galvanized plate pipe arch. The roadway over it is gravel surfaced with a sharp corner onto the RABUT side. The channel is scoured down to the bottom of the footing at the inlet on the LABUT side. The embankments are eroded US, with boulders showing. Small and minor gravel bars are noted. Debris is mostly minor at present. Stone fill is good at the arch ends, but partially slid into channel at the inlet on the right side, blocking 1/3 of flow. The free poured concrete footing exposed near the outlet end on the right side is spalled with section loss plus a voided area at the very end. (Continued, page 32)

Bridge Hydrologic Data	
Is there hydrologic data available? Y if No, type ctrl-n h VTAOT Drainage area (mi²): 4.57	
Terrain character:	
Stream character & type: _	
Streambed material: -	
Discharge Data (cfs): Q _{2.33} - Q ₁₀ 560 Q ₂₅ 820 Q ₅₀ 990 Q ₁₀₀ 1190 Q ₅₀₀ -	_
	-
Record flood date (MM / DD / YY): - / / Water surface elevation (ft): Estimated Discharge (cfs): - Velocity at Q (ft/s):	
Ice conditions (Heavy, Moderate, Light): Debris (Heavy, Moderate, Light):	
The stage increases to maximum highwater elevation (<i>Rapidly, Not rapidly</i>):	_
The stream response is (<i>Flashy</i> , <i>Not flashy</i>):	
Describe any significant site conditions upstream or downstream that may influence the stream	n's
stage: A report dated 12/29/82 mentions a rather large beaver dam just US of the site that has	
apparently caused a complete shift in the course of the stream, adding to the unstableness	}
of the channel bed.	
Watershed storage area (in percent): - %	
The watershed storage area is: - (1-mainly at the headwaters; 2- uniformly distributed; 3-immediatly u	ıpstream
oi the site)	•
Water Surface Elevation Estimates for Existing Structure:	
Peak discharge frequency Q _{2.33} Q ₁₀ Q ₂₅ Q ₅₀ Q ₁₀₀	
Water surface elevation (ft)) - 5.5 6.7 7.8 9	
Velocity (ft / sec)	
Long term stream bed changes: -	
Long term stream bed changes.	
Is the roadway overtopped below the Q ₁₀₀ ? (Yes, No, Unknown):U Frequency:	_
Relief Elevation (ft): Discharge over roadway at Q ₁₀₀ (ft ³ / sec):	
Are there other structures nearby? (Yes, No, Unknown): If No or Unknown, type ctrl-n os	
THE UTIES OUTED SUBSTICIOUS HEALTHY: (163, NO, OHKHOWIT). IT NO OF CHIKHOWIT TYPE CITI-IT OS	
•••	
Upstream distance (<i>miles</i>): Structure No. : Structure Type:	

Downstroom distance (miles): -	Town:	-	Voor Duilte
Downstream distance (<i>miles</i>): <u>-</u> Highway No. : <u>-</u>			
Clear span (ft): - Clear Heigh			
Comments:	· /	- · · · <u>-</u>	
There are small areas of erosion at the	ie inlet end of the	arch. There is 4-5 ft of co	ver over the pipe. The pipe
has a slight reverse camber.			
	USGS Wate	rshed Data	
Watershed Hydrographic Data			
Drainage area (DA) 4.75 mi ²	Lak	e/pond/swamp area 0	mi ²
Drainage area (DA) 4.75 mi ² Watershed storage (ST) 0	%	· -	
Bridge site elevation 820		adwater elevation2500	ft
Main channel length 4.23	mi		
10% channel length elevation _	950 ft	85% channel length el	evation <u>2400</u> ft
Main channel slope (S) 457.05	ft / mi		
Watershed Precipitation Data			
Average site precipitation	in Ave	rage headwater precipita	tion in
Maximum 2yr-24hr precipitation e	vent (124,2)	in	
Average seasonal snowfall (Sn)	ft		

Bridge Plan Data							
Are plans available? NIf no, type ctrl-n pl Date issued for construction	nnel bed elevation:						
Reference Point (<i>MSL, Arbitrary, Other</i>): Datum Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown If 1: Footing Thickness Footing bottom elevation: If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximately	vn)						
If 3: Footing bottom elevation: Is boring information available? _N If no, type ctrl-n bi Number Foundation Material Type: _3 (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around p NO DRILL BORING INFORMATION							
Comments:							

le cross socti	onal data	a availah	le2 N		-sectio		а					
Is cross-sectional data available? N Source (FEMA, VTAOT, Other)? -												
Comments: I	— INFODM	IATION										
Comments. 1	NO CRO	55 SEC 1	IONAL	INFORM	IATION							
Station		-	-	-	-	-	-	-	-	-	_	
Feature	-	-	-	-	-	-	-	-	-	-	-	
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-	
Bed elevation	-	-	-	-	-	-	-	-	-	-	-	
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-	
Station	-	-	-	-	-	-	-	-	-	-	-	
Feature	-	-	-	-	-	-	-	-	-	-	-	
Low chord elevation	-	-	-	-	-	-	-	1	1	-	-	
Bed elevation	-	-	-	-	-	-	-	ı	ı	-	-	
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-	
Source (FEMA Comments: -		Other)? _	-	_								
Station		-	-	-	-	-	-	-	-	-	-	
Feature	-	-	-	-	-	-	-	1	1	-	-	
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-	
Bed elevation	-	-	-	-	-	-	-	-	-	-	-	
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-	
Station	-	Ī -	-	-	-	-	_	_	_	-	-	
Feature	-	-	-	-	-	-	-	-	-	-	-	
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-	
Bed elevation	-	-	-	-	-	-	-	-	-	-	-	
Low chord- bed	-	-	-	-	-	-	-	-	-	-	-	
	31											

APPENDIX E:

LEVEL I DATA FORM

Structure Number STOWTH00160039

Qa/Qc Check by: RB Date: 10/21/96

Computerized by: RB Date: 10/22/96

MAI Date: 9/9/97 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) R. HAMMOND Date (MM/DD/YY) 07 / 10 / 19 96

2. Highway District Number 06

County LAMOILLE (015)

Waterway (1 - 6) MOSS GLEN BROOK

Route Number TH 16

3. Descriptive comments:

Located 0.55 miles from the junction with CL2 TH2.

Mile marker 00000

Town **STOWE** (70525)

Road Name MOSS GLEN FALLS RD

Hydrologic Unit Code: 02010003

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBDS 6 RBUS 6 LBDS 4 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 1 UB 1 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type <u>3</u> (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 22 (feet)

Span length 21 (feet) Bridge width 50.5 (feet)

Road approach to bridge:

8. LB 2 RB 1 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	12 Erasian	14 Soverity	
	11.Type	12.Cond.	13.Erosion	14.Seventy	
LBUS	2	1	0	-	
RBUS	1	2	1	2	
RBDS		2	1	2	
LBDS		1	0	-	

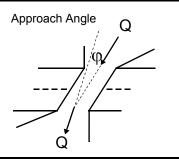
Bank protection types: **0**- none; **1**- < 12 inches;

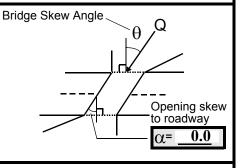
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 0 16. Bridge skew: 0

17. Channel impact zone 1:

Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 5 feet US (US, UB, DS) to 10 feet US

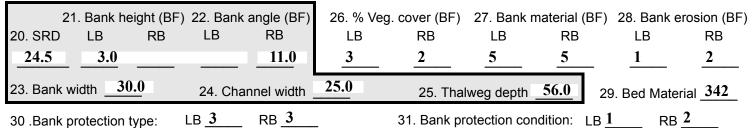
Channel impact zone 2:

Exist? \mathbf{Y} (Y or N)

Where? <u>LB</u> (LB, RB)

Severity 2

Range? 8 feet **DS** (US, UB, DS) to 50 feet **DS**


Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. The DS left bank is a lawn and the DS right bank is intersected by Moss Glenn Falls Road.
- 5. The upstream water surface is a series of small pools and riffles.
- 6. This is a multi-plate pipe arch set in concrete footings.

Wingwall angle less than 90°.

- 8. The road slopes gradually from the culvert in both directions.
- 15. The flow is straight from the approach cross section through the culvert to the exit section, but it bends just US and just DS of this straight section.
- 17. At high flows, water will impact both sides of the culvert opening. Also, a moderately severe third impact zone exists on the right bank from 120 ft US to 90 ft US.

C. Upstream Channel Assessment

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 27. Both banks consist of large placed boulders and concrete blocks.
- 28. On the right bank, there is some mass wasting but it is not threatening to the road or culvert.
- 29. The sand in the bed fills the voids between the larger materials.
- 30. The left and right bank protection extends from the US bridge face to 100 ft US.
- 31. On the right bank some of the protection is eroded and slumping.

on Doint/Sido har propert? V average variety and 12
33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 12 35. Mid-bar width: 10
36. Point bar extent: 35 feet US (US, UB) to UB feet 50 (US, UB, DS) positioned 10 %LB to 0 %RB
37. Material: 324
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): This point bar extends into the culvert.
This point bar extends into the curvert.
as to a cut bent macont V v v v v v v v v v v v v v v v v v v
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 50 42. Cut bank extent: 0 feet US (US, UB) to 100 feet US (US, UB, DS)
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
This cut bank is a high water cut that is eroded with some slumping. Another very minor low water cut is on the left bank from 20 ft to 30 ft US.
the left bank from 20 ft to 50 ft U.S.
us la champal accum procent? No accumus 40 Mid accumiliate accumiliate accuming
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length _ Width _ Depth : _ Position _ %LB to _ %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NO CHANNEL SCOUR Some minor scour holes are behind boulders in the channel. The maximum scour depth is 1.5 ft.
Some minor scour notes are bening bounders in the channel. The maximum scour depth is 1.5 it.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?
1
51. Confluence 1: Distance (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name): NO MAJOR CONFLUENCES
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
58. Bank width (BF) 59. Channel width 60. Thalweg depth 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
324 63. The stream had grades from gravel and sand at the US face to gravel and cabble at the DS face. Sand fills
63. The stream bed grades from gravel and sand at the US face to gravel and cobble at the DS face. Sand fills the voids between the larger particles and is more extensive at the US right corner of the bridge where the US
point bar ends.
Position and the second

65. Debris and Ice Is there debris accumulation?	_ (Y or N) 66. Where? $\underline{\mathbf{Y}}$ (1- Upstream; 2- At bridge; 3- Both
67. Debris Potential <u>3</u> (<i>1- Low; 2- Moderate; 3- High</i>)	68. Capture Efficiency 3 (1- Low; 2- Moderate; 3- High)
69. Is there evidence of ice build-up? $\frac{3}{2}$ (Y or N)	Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)
70. Debris and Ice Comments:	
1	
There is a let of debuis on the laws compacts blocks of	lawa tha laft hamb IIC. Thanais also same small dahuis

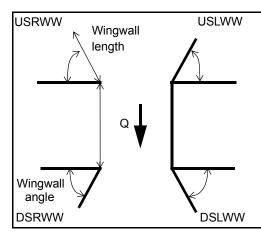
There is a lot of debris on the large concrete blocks along the left bank US. There is also some small debris buried in the point bar inside the culvert.

Abutments	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	90	2	2	0.4	0.9	90.0
RABUT	1	0	90	l	ı	2	2	20.5

Pushed: LB or RB

Toe Location (Loc.): **0**- even, **1**- set back, **2**- protrudes
Scour cond.: **0**- not evident; **1**- evident (comment); **2**- footing exposed; **3**-undermined footing; **4**- piling exposed; **5**- settled; **6**- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood


79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0 1.6

74. The US end of the left abutment footing is exposed. The DS end of the right abutment footing is exposed. The spread base of the footing is undermined 0.4 ft horizontally. Also, the DS end of the right abutment footing has broken off and is missing.

80. Wingwalls: 81. Exist? Material? Scour Angle? Scour Exposure Length? Condition? depth? depth? 20.5 USLWW: 0.5 USRWW: N DSLWW: 50.0 50.0 DSRWW: _

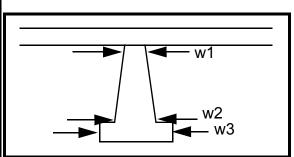
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	-	N	ı	-	ı	1	1
Condition	N	-	-	-	1	-	4	4
Extent	-	-	-	-	-	3	3	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>82.</u> (Y or if N type ctrl-n pr)

85. Pier no.	width (w) feet			elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1		-	-		-	-	
Pier 2	1	-	-	-	-	-	
Pier 3	ı	-	1	-	-	-	
Pier 4	ı	1	1	1	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	The	and DS		-
87. Type	left	ends		-
88. Material	and	of		-
89. Shape	right	the		-
90. Inclined?	abut	abut		-
91. Attack ∠ (BF)	ment	ment	N	-
92. Pushed	pro-	s.	-	-
93. Length (feet)	-	-	-	-
94. # of piles	tec-		-	-
95. Cross-members	tion		-	-
96. Scour Condition	is at		-	-
97. Scour depth	the		-	-
98. Exposure depth	US		-	-

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermir	ned penetration, pro	tection and p	protection ext	ent, unusual	scour proce	esses, etc.):	
-							
-							
-							
-							
-							
-							
-							
-							
-							
	E. Downstre	am Chai	nnel Assi	essment			
100.	E. Bownstie	ani Ona					
Bank height (BF)	Bank angle (BF)	% Veg.	cover (BF)	Bank ma	terial (BF)	Bank er	osion (BF)
SRD LB RB	LB RB	LB	RB	LB	RB	LB	RB
<u> </u>							-
Bank width (BF)	Channel width		Thal	weg depth		Bed Mater	ial <u>-</u>
Bank protection type (Qmax):	LB <u>-</u> RB		Bank protec	tion condition	n: LB <u>-</u>	RB	
SRD - Section ref. dist. to US fac	ce % Vegetatio	n (Veg) cov	er: 1 - 0 to 259	%; 2 - 26 to 5	0%; 3 - 51 to	75%; 4 - 76	to 100%
Bed and bank Material: 0 - organ	ics; 1- silt / clay, < 1, le, 64 - 256mm; 5 - be	/16mm; 2 - sa oulder > 25	and, 1/16 - 2r. 6mm: 6 - bedr	nm; 3- grave ock: 7- manr	l, 2 - 64mm; made		
Bank Erosion: 0- not evident; 1-	light fluvial; 2- mode	erate fluvial;	3 - heavy fluvi	ial / mass wa	sting		
Bank protection types: 0- absent				es; 4 - < 60 in	ches; 5 - wal	l / artificial le	evee
Bank protection conditions: 1 - go Comments (eg. bank material vari	•						
-	iation, minor imows,	, protection t	exterit, etc.).				
-							
-							
-							
-							
- -							
-							
-							
NO PIERS							
404 lo a drop atructura p	rocent?	AL 'S AL 6	(.)	400 Distan	23.5	f t	
101. <u>Is a drop structure p</u>							4 - 4/ w)
103. Drop: 5.0 feet 105. Drop structure comments (e	104. Structure		(1- steel si	neet plie; z - t	wood pile; 3 -	- concrete; 4	- otner)
105. Drop structure comments (e	g. downstream scou	ii depiii).					
1							
1							
5 5							
J							

106. Point/Side bar present? 1 (Y or N. if N type	ctrl-n pb)Mid-bar distance: 1 Mid-bar width: 432
Point bar extent: 3 feet 3 (US, UB, DS) to 1 feet Material: rig Point or side bar comments (Circle Point or Side; note additional)	
ht and left bank protection extends from the DS bridge eroded and is slumping near the end of the culvert.	face to 100 ft DS. On the right bank the protection is
Is a cut-bank present? (Y or if N type ctrl-n cb) Cut bank extent: feet (US, UB, DS) to feet Bank damage: (1- eroded and/or creep; 2- slip failure; 3 Cut bank comments (eg. additional cut banks, protection conditional cut banks)	(US, UB, DS) - block failure)
Is channel scour present? - (Y or if N type ctrl-n Scour dimensions: Length DRO Width P Depth: STR Scour comments (eg. additional scour areas, local scouring proc RE	Positioned \underline{UC} %LB to \underline{TU} %RB
Are there major confluences? (Y or if N type of	ctrl-n mc) How many?
Confluence 1: Distance \underline{Y} Enters on $\underline{0}$ (L. Confluence 2: Distance $\underline{19}$ Enters on \underline{UB} (L. Confluence comments (eg. confluence name): \underline{DS}	
F. Geomorphic Ch	annel Assessment
107. Stage of reach evolution 50	 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):
342
\mathbf{Y}
LB 20
10 DS
40 DS
1

		109. G. P	Plan View Sketch	
point bar pb	debris	***	flow Q	stone wall
cut-bank cb	rin ran or	2000	cross-section ++++++	other wall
scour hole	rip rap or stone fill	0000	ambient channel ——	

T

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: STOWTH00160039 Town: Stowe Road Number: TH 16 County: Lamoille

Stream: Moss Glen Brook

Initials MAI Date: 08/21/97 Checked: RLB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	1190 294 101 0 42 33 0 0.1854	1700 411 202 0 46 45 0 0.1854	0 0 0 0 0 0
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft	9.8 6.1 ERR	8.9 4.5 ERR	ERR ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	27436 21780 5656 0 0.0000 944.7 245.3 0.0	50145 35530 14616 0 0.0000 1349.5 350.5 0.0	0 0 0 0 ERR ERR ERR ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	3.2 2.4 ERR 9.3 ERR ERR	3.3 1.7 ERR 9.3 ERR ERR	ERR ERR ERR N/A ERR ERR
Results			
Live-bed(1) or Clear-Water(0) Contro Main Channel Left Overbank Right Overbank	action Sco 0 N/A N/A	our? 0 N/A N/A	N/A N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units $ys=y2-y_bridge$ (Richardson and others, 1995, p. 32, eq. 20, 20a)

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	1190	1700	0
(Q) discharge thru bridge, cfs	1190	1700	0
Main channel conveyance	7050	8540	0
Total conveyance	7050	8540	0
Q2, bridge MC discharge,cfs	1190	1700	ERR
Main channel area, ft2	110	126	0
Main channel width (normal), ft	20.6	20.6	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	20.6	20.6	0
<pre>y_bridge (avg. depth at br.), ft</pre>	6.10	7.07	ERR
Dm, median (1.25*D50), ft	0.23175	0.23175	0
y2, depth in contraction,ft	6.08	8.26	ERR
ys, scour depth (y2-ybridge), ft	-0.02	1.19	N/A

Armoring
Dc=[(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]
Depth to Armoring=3*(1/Pc-1)

(Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	1190	1700	0
Main channel area (DS), ft2	110.33	126.41	0
Depth in Culvert, ft	6.1	7.1	0.0
D90, ft	0.7295	0.7295	0.0000
D95, ft	1.1711	1.1711	0.0000
Dc, critical grain size, ft	0.5483	0.8006	ERR
Pc, Decimal percent coarser than Dc	0.133	0.092	0.000
Depth to armoring, ft	10.76	23.65	N/A

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

Left Abutment Right Abutment
Characteristic 100 yr Q 500 yr Q Other Q 100 yr Q 500 yr Q Other Q

(Qt), total discharge, cfs	1190	1700	0	1190	1700	0
a', abut.length blocking flow, ft	37.9	49.7	0	17.1	21	0
Ae, area of blocked flow ft2	130.06	243.11	0	85.98	136.51	0
Qe, discharge blocked abut.,cfs	329.73	612.71	0	209.67	304.04	0
(If using Qtotal_overbank to obta	in Ve, lea	ave Qe bla	ank and e	nter Ve an	nd Fr man	ually)
Ve, (Qe/Ae), ft/s	2.54	2.52	ERR	2.44	2.23	ERR
ya, depth of f/p flow, ft	3.43	4.89	ERR	5.03	6.50	ERR
Coeff., K1, for abut. type (1.0,	verti · O	82 vert	i w/win	owall. O	55 spill	thru)
K1	1	1	1	1	1	1
Angle (theta) of embankment (<90				_		
theta	90	90	90	90	90	90
K2	1.00	1.00	1.00	1.00	1.00	1.00
Fr, froude number f/p flow	0.241	0.201	ERR	0.192	0.154	ERR
ys, scour depth, ft	12.62	16.19	N/A	12.08	14.30	N/A
HIRE equation (a'/ya > 25)						
$ys = 4*Fr^0.33*y1*K/0.55$						
(Richardson and others, 1995, p. 49, eq. 29)						
of (about lampth blocked ft)	27 0	40.7	0	17.1	21	0
a' (abut length blocked, ft)	37.9	49.7 4.89	0		6.50	
y1 (depth f/p flow, ft)	3.43		ERR	5.03		ERR
a'/y1	11.04	10.16	ERR	3.40	3.23	ERR
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00
Froude no. f/p flow	0.24	0.20	N/A	0.19	0.15	N/A
Ys w/ corr. factor K1/0.55:						
vertical	ERR	ERR	ERR	ERR	ERR	ERR
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR
spill-through	ERR	ERR	ERR	ERR	ERR	ERR

Abutment riprap Sizing

Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
V, max Velocity in culvert, ft/s	10.79	13.45	0	10.79	13.45	0
Fr, Froude Number (V/(32.2y)^1/2)	0.77	0.89	ERR	0.77	0.89	ERR
y, depth of flow in bridge, ft	6.10	7.07	0.00	6.10	7.07	0.00
Median Stone Diameter for riprap at: left abutment					abutment,	ft
Fr<=0.8 (vertical abut.)	2.24	ERR	N/A	2.24	ERR	N/A
Fr>0.8 (vertical abut.)	ERR	2.86	ERR	ERR	2.86	ERR