LEVEL II SCOUR ANALYSIS FOR BRIDGE 12 (NEWBTH00020012) on TOWN HIGHWAY 2, crossing SCOTT BROOK, NEWBURY, VERMONT

Open-File Report 98-011

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior U.S. Geological Survey

LEVEL II SCOUR ANALYSIS FOR BRIDGE 12 (NEWBTH00020012) on TOWN HIGHWAY 2, crossing SCOTT BROOK, NEWBURY, VERMONT

By RONDA L. BURNS

U.S. Geological Survey Open-File Report 98-011

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	
Introduction and Summary of Results	1
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	9
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
Selected References	18
Appendices:	
A. WSPRO input file	
B. WSPRO output file	
C. Bed-material particle-size distribution	
D. Historical data form	
E. Level I data form	
F. Scour computations	46
FIGURES	
	,
 Map showing location of study area on USGS 1:24,000 scale map Map showing location of study area on Vermont Agency of Transportation town 	
highway map	
3. Structure NEWBTH00020012 viewed from upstream (August 31, 1995)	
4. Downstream channel viewed from structure NEWBTH00020012 (August 31, 1995)	
5. Upstream channel viewed from structure NEWBTH00020012 (August 31, 1995)	
6. Structure NEWBTH00020012 viewed from downstream (August 31, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
NEWBTH00020012 on Town Highway 2, crossing Scott Brook,	
Newbury, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
NEWBTH00020012 on Town Highway 2, crossing Scott Brook,	
Newbury, Vermont.	16
110110011, 10111011	
TADI EC	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
NEWBTH00020012 on Town Highway 2, crossing Scott Brook,	
Newbury, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
NEWBTH00020012 on Town Highway 2, crossing Scott Brook,	
Newbury, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
- '	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	. ,
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p ft ²	flood plain	RB	right bank
ft^2	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 12 (NEWBTH00020012) ON TOWN HIGHWAY 2, CROSSING SCOTT BROOK, NEWBURY, VERMONT

By Ronda L. Burns

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure NEWBTH00020012 on Town Highway 2 crossing Scott Brook, Newbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 3.6-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.

In the study area, Scott Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 37 ft and an average bank height of 7 ft. The channel bed material ranges from gravel to boulder with a median grain size (D_{50}) of 57.9 mm (0.190 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 31, 1995, indicated that the reach was stable.

The Town Highway 2 crossing of Scott Brook is a 25-ft-long, two-lane bridge consisting of one 21-foot concrete slab span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 20.6 ft. The bridge is supported by vertical, stone masonry abutments with wingwalls. The channel is skewed approximately 55 degrees to the opening while the computed opening-skew-to-roadway is 40 degrees.

During the Level I assessment it was noted that the footings on the left abutment and the right abutment were exposed. The footings on the upstream left wingwall and the upstream right wingwall were also exposed and the footing on the downstream right wingwall was undermined. The scour countermeasure at the site included type-2 stone fill (less than 36 inches diameter) along the left bank upstream, type-3 stone fill (less than 48 inches diameter) along the right bank upstream, and type-4 stone fill (less than 60 inches diameter) along the right bank downstream. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 3.1 ft. The worst-case contraction scour occurred at the 500-year discharge. The left abutment scour ranged from 4.4 to 5.6 ft. The worst-case left abutment scour occurred at the 100-year discharge. The right abutment scour ranged from 6.7 to 8.3 ft. The worst-case right abutment scour occurred at the 100- year and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

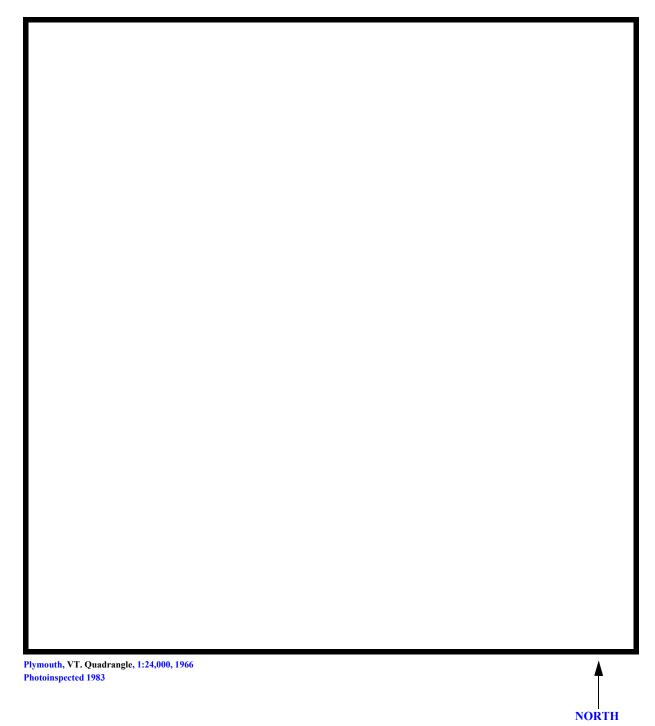
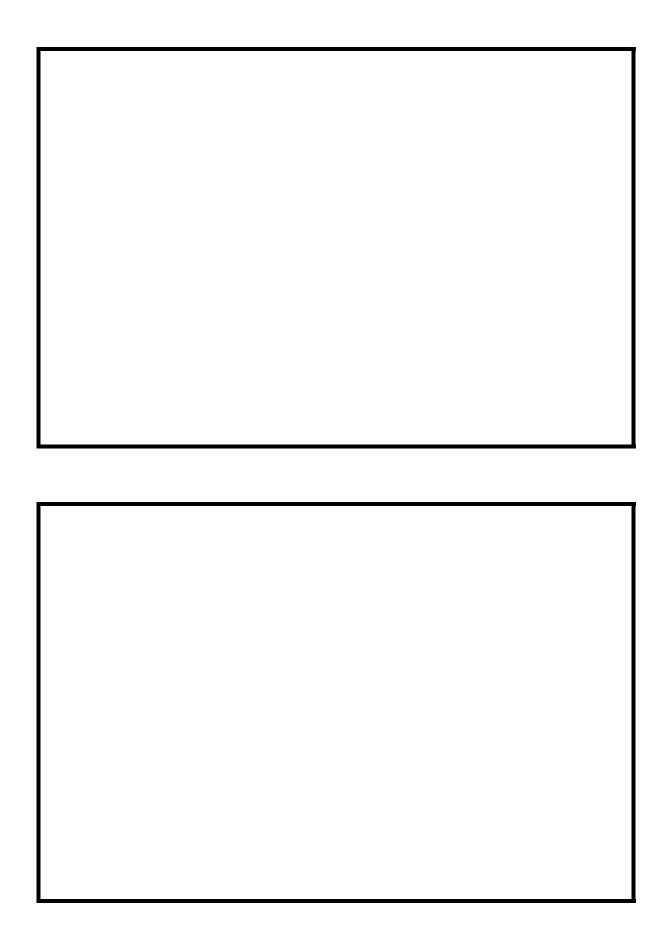



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

ucture Number	NEWBTH00020012	Stream	Scott	Brook	
unty Orango	e	_ Road	TH 2	District _	7
	Descrip	tion of Bridge)		
Bridge length Alignment of bi	ft Bridge wideridge to road (on curve or sometical, stone masonry		Curve, 1	Max span length eft. Straight, right	
Stone fill on abu	No stone fill at	Dato of inch		8/31/95	
	sed on both abutments and a	ll the wingwalls	except th	s are stone masonr ne downstream left	•
In addition, the	downstream right wingwall	footing is unde	rmined.	Yes	55
Is bridge skewe	ed to flood flow according to	o Yes [survey	?	Angle	
	ends mildly upstream and do			,,	,
Debris accumu	lation on bridge at time of I Date of inspection 8/31/95	Level I or Level Percent of Alberta	annal		o alamael erticativ
Level I	8/31/95	0			0
Level II	Moderate. The	e banks are all fo	orested.		
Potential j	for debris				
	t bar along the left abutmen		rt flow (it	ncludo absorvatias	n dato)

Description of the Geomorphic Setting

General topo	graphy	The cha	annel is located w	ithin a low relief val	ley with a steep valley wall
on the right a	and a narro	w flood p	olain on the left.		
Geomorphic	condition	ıs at bridş	ge site: downstred	um (DS), upstream (US)
Date of insp	ection -	8/31/95			
DS left:		annel bar	nk to a narrow flo	od plain	
DS right:	Steep va	lley wall			
US left:	Steep cha	annel ban	nk to a moderately	sloped overbank	
-	Steep val	lley wall			
US right:					
		Ι	Description of	the Channel	
		37			7
Average to	p width		Boulder/Cobble	Average a	lepth Boulder/Cobbles
Predominan	ıt bed mate	erial		Bank mater	Sinuous but stable
with non-allu	uvial chann	nel bound	aries and a narroy	v flood plain on the	downstream left.
					8/31/95
Vegetative c	o Trees				
DS left:	Trees				
DS right:	Trees				
US left:	Trees				
US right:		<u>Y</u>	<u>es</u>		
Do banks ap	pear stabl	le?	<u>ıj nvı, uc</u>	serve wennen una	type of momonny uni
date of obse					
					None as of 8/31/95.
- ·					
Describe an	y obstructi	ons in ch	nannel and date o	f observation.	

Hydrology

Drainage area $\frac{3.6}{mi^2}$	
Percentage of drainage area in physiographic p	rovinces: (approximate)
Physiographic province/section New England/New England Upland	Percent of drainage area100
Is drainage area considered rural or urban? None.	Rural Describe any significant
Is there a USGS gage on the stream of interest? USGS gage description	No
USGS gage number	_
Gage drainage area	 mi² No
Is there a lake/p	
970 Calculated	d Discharges $\underline{1,430}$
<i>Q100 ft</i> ³ /s The 1	$Q500$ ft^3/s 00-year discharge is based on a drainage area
relationship [(3.62/8.4)exp.0.67] with bridge num	<u> </u>
graphically to the 500-year discharge. Bridge num	• •
site and has flood frequency estimates available fr	om the VTAOT database. The drainage area
above bridge number 20 is 8.4 square miles. The v	values used were within a range defined by
flood frequency curves developed from several en	npirical methods (Benson, 1962; Johnson and
Tasker, 1974; FHWA, 1983; Potter, 1957a&b Tall	bot, 1887).

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	olans) USGS survey
Datum tie between USGS survey and VTAOT plans	Add 8 ft to the USGS arbitrary
survey datum to obtain the VTAOT plans' datum.	
Description of reference marks used to determine USGS data top of the upstream end of the right abutment (elev. 171.67 ft, a chiseled X on top of the downstream end of the left abutment	arbitrary survey datum). RM2 is a
datum).	(Co. 171107 15, arothury survey

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT1	-22	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXIT1)
BRIDG	0	1	Bridge section
RDWAY	14	1	Road Grade section
APPRO	44	2	Modelled Approach section (Templated from APTEM)
APTEM	59	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.050, and overbank "n" values ranged from 0.060 to 0.080.

Normal depth at the exit section (EXIT1) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0097 ft/ft, which was estimated from surveyed thalweg points downstream.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0043 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location also provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation	1	75.4	ft			
Average low steel elevation 169	0.7 fi	.	. J.			
100-year discharge	970	ft ³ /s				
Water-surface elevation i	n bridge	opening		169.7	ft	
Road overtopping?	Yes	Dischar	ge over i	road	144	ft ³ /s
Area of flow in bridge op			ft^2			J
Average velocity in bridge	O		10.8	ft/s		
Maximum WSPRO tube	-	_		13.2	ft/s	
Water-surface elevation a Water-surface elevation a				_	_ ge	172.2
Amount of backwater car				2.2 t	•	
,	•	0		<u>-</u> _		
500-year discharge	1,430	ft ³ /s				
Water-surface elevation i	n bridge	opening	·	169.7	ft	
Road overtopping?	Yes	Dischar	ge over i	road	535	ft ³ /s
Area of flow in bridge op	 ening	76				•
Average velocity in bridge	_	g ——	11.′	7 ft/s		
Maximum WSPRO tube	-	_	-	14.4	1 <u></u> /s	
Water-surface elevation a Water-surface elevation a			on witho	ut brid	ge	173.4 171.6
Amount of backwater car	ised by b	oridge	1.	8 7		
Incipient overtopping disc	charge	4	540	ft ³ /s		
Water-surface elevation i	n bridge	opening	•	169.7	f	
Area of flow in bridge op	ening	76	$ft^{\overline{2}}$			
Average velocity in bridge	_	<i>g</i>	7.1	ft/s		
Maximum WSPRO tube	-	-		8.7	_ft/s	
Water-surface elevation a	ıt Approd	ach sectio	on with l	bridge		171.0
Water-surface elevation a				_	ge	168.6
Amount of backwater car			2.4		-	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis for the 100-year and 500-year discharges are presented in tables 1 and 2 and the scour depths are presented graphically in figure 8.

At this site, the incipient roadway-overtopping discharge resulted in unsubmerged orifice flow. The 100-year and 500-year discharges resulted in submerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Thus, contraction scour for these discharges was computed by use of the Chang equation (Richardson and Davis, 1995, p. 145-146). The computed streambed armoring depths suggest that armoring will not limit the depth of contraction scour.

For comparison, contraction scour for the discharges resulting in orifice flow was also computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20) and the Umbrell pressure-flow equation (Richardson and Davis, 1995, p. 144) and is presented appendix F. Furthermore, for the incipient roadway-overtopping discharge, contraction scour was computed by substituting an estimate for the depth of flow at the downstream bridge face in the contraction scour equations. Results with respect to this substitution are provided in appendix F.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-yr discharge	500-yr discharge	Incipient overtopping discharge
		(Scour depths in feet)	
Main channel			
Live-bed scour			
Clear-water scour	2.0	3.1	0.0
Depth to armoring	15.7	30.3	22.3
Left overbank			
Right overbank			
Local scour:			
Abutment scour	5.6	5.2	4.4
Left abutment	8.3-	8.3-	6.7-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizir	ng	
	100-yr dischar		Incipient overtopping discharge
		(D ₅₀ in feet)	
Abutments:	2.0	2.1	1.4
Left abutment	2.0	2.1	1.4
Right abutment			
Piers:			<u></u> -
Pier 1			
Pier 2			

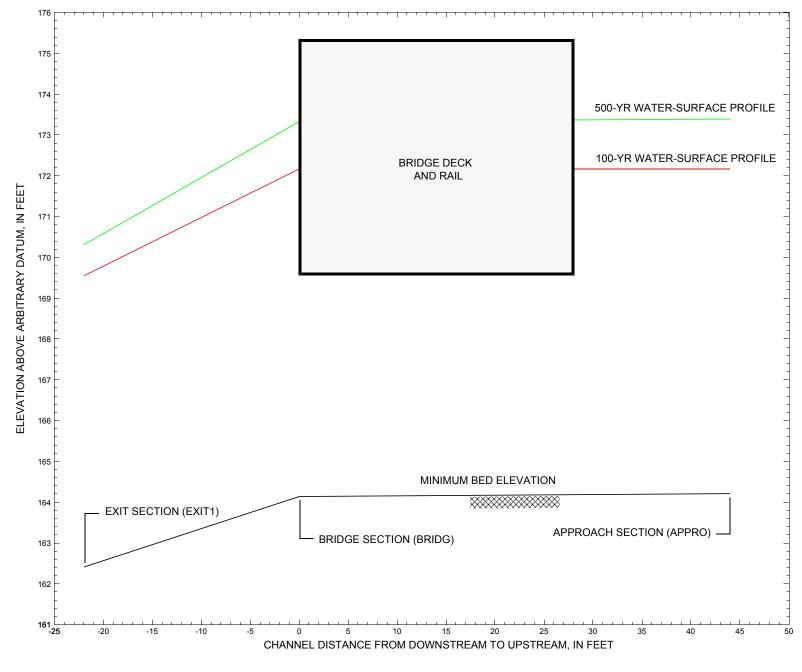


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure NEWBTH00020012 on Town Highway 2, crossing Scott Brook, Newbury, Vermont.

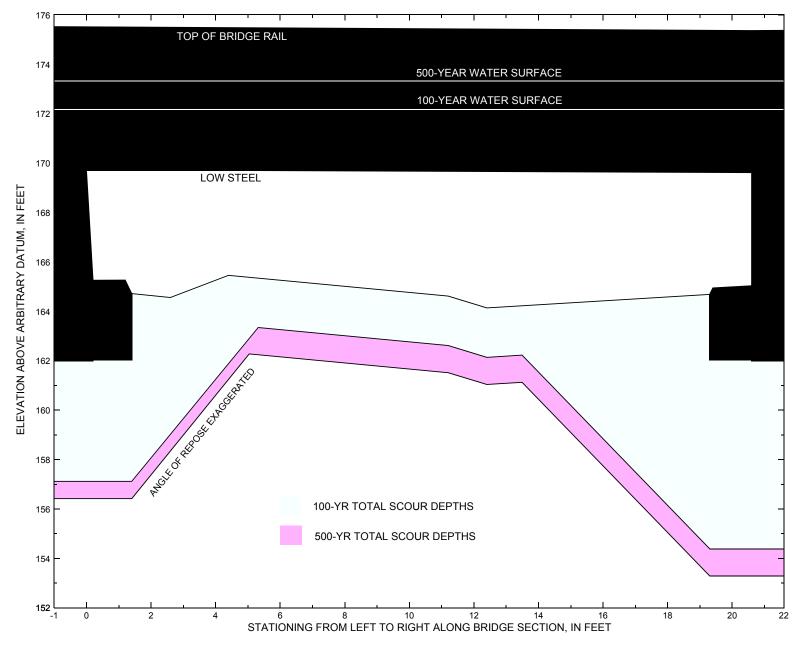


Figure 8. Scour elevations for the 100- and 500-year discharges at structure NEWBTH00020012 on Town Highway 2, crossing Scott Brook, Newbury, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure NEWBTH00020012 on Town Highway 2, crossing Scott Brook, Newbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yea	ar discharge is 970) cubic-feet per sec	cond				
Left abutment	0.0	178.0	169.7	162.0	164.7	2.0	5.6		7.6	157.1	-4.9
Right abutment	20.6	178.0	169.6	162.0	164.7	2.0	8.3		10.3	154.4	-7.6

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure NEWBTH00020012 on Town Highway 2, crossing Scott Brook, Newbury, Vermont. [VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-year	r discharge is 1,43	0 cubic-feet per se	cond				
Left abutment	0.0	178.0	169.7	162.0	164.7	3.1	5.2		8.3	156.4	-5.6
Right abutment	20.6	178.0	169.6	162.0	164.7	3.1	8.3		11.4	153.3	-8.7

^{1.} Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1973, Groton, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
Т1
         U.S. Geological Survey WSPRO Input File newb012.wsp
T2
         Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
Т3
         TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT
J1
          * * 0.01
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
Q
           970.0 1430.0 540.0
           0.0097 0.0097 0.0097
SK
    EXIT1
XS
            -22
                          0.
GR
          -210.8, 190.43
                          -169.1, 174.67
                                          -120.8, 169.43
                                                            -19.5, 169.43
GR
           -12.2, 169.43
                            0.0, 166.51
                                          3.3, 162.70
17.0, 163.12
68.8, 175.87
                                            3.3, 162.76
                                                             8.4, 162.85
                          0.0, 166.51
13.7, 162.78
                                                           18.6, 166.74
            10.7, 162.41
GR
                                                          108.5, 187.86
            27.4, 170.87
                           55.3, 170.55
GR
Ν
           0.080
                        0.050
                                      0.060
SA
                   -12.2
                              27.4
*
           A depression on the left overbank, between stations -120.8 and -19.5, was
           raised to be level with the top of the left bank as found further downstream.
XS
   FULLV
             0 * * * 0.0230
*
            SRD
                   LSEL
                           XSSKEW
                 169.65
BR
    BRIDG
             0
                             40.0
            0.0, 169.71
                             0.2, 165.26
                                             1.2, 165.27
                                                             1.4, 164.72
GR
                                          11.2, 164.62
19.4, 164.95
                                                           12.4, 164.14
             2.6, 164.56
GR
                             4.4, 165.46
                          16.6, 164.69
                                                          20.6, 165.04
GR
            15.5, 164.41
            20.6, 169.60
                             0.0, 169.71
GR
*
         BRTYPE BRWDTH
                            WWANGL
                                     WWWID
CD
           1 34.5 * * 87.0
                                       1.7
N
           0.045
*
            SRD EMBWID IPAVE
             14
                   20.2
XR RDWAY
                             2
                                          -201.4, 178.88 -136.2, 176.96
          -310.5, 192.19 -290.0, 184.56
GR

    0.0, 172.73
    0.0, 175.52
    19.2, 175.37

    49.3, 171.35
    62.6, 170.79
    97.3, 185.07

GR
                                                            19.2, 172.18
GR
             -10.2, 172.08 -10.2, 175.42
* GR
                                              14.4, 171.57
ΥТ
   APTEM
             59
                           0.
          -302.9, 191.70
                          -289.1, 183.77 -262.1, 183.45
                                                          -210.5, 181.34
GR
GR
           -81.7, 175.67
                          -11.7, 173.09
                                            -7.4, 172.74
                                                            -1.0, 170.06
                            4.6, 165.95 11.6, 165.24
GR
            0.0, 167.76
                                                            14.9, 164.27
                           21.1, 167.86 22.2, 170.43
GR
           17.0, 165.25
                                                          50.0, 171.23
GR
           96.9, 193.19
            44 * * * 0.0043
AS APPRO
GT
           0.060 0.050
N
                                   0.080
SA
                  -11.7
                              22.2
HP 1 BRIDG 169.70 1 169.70
HP 2 BRIDG 169.70 * * 820
HP 2 RDWAY 172.17 * * 144
HP 1 APPRO 172.17 1 172.17
HP 2 APPRO 172.17 * * 970
HP 1 BRIDG 169.71 1 169.71
HP 2 BRIDG 169.71 * * 888
HP 2 RDWAY 173.33 * * 535
HP 1 APPRO 173.39 1 173.39
HP 2 APPRO 173.39 * * 1430
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File newb012.wsp
Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT RLB
*** PIN DATE 5. TIME: 01-16-98 12:31

				N DATE				12:31				KLIB
	CRC	SS-S	ECTION	PROPER	TIES:	ISEÇ) = 3	; SEC	ID = B	RIDG;	SRD =	0.
	WS	EL	SA# 1					WETP		LEW	REW	QCR 3140.
	169.	70	-	76.	386	57.	1.	40.	1.00	0.	21.	3140.
	VEL	OCIT	Y DIST	RIBUTIO	N: IS	SEQ =	3;	SECID =	= BRID	G; SRD	=	0.
		WS 169.	EL 70	LEW 0.0	REW 20.6	AR 76	EA .0	K 3867.	8.	Q '	VEL .78	
X	STA. A(I) V(I)		0.0	7.4 5.51	2.2	3.3 L2.53	3.0	3.6 11.41	4.0	3.6 1.49	5.1 3.5 11.71	6.2
Х	STA.											
	A(I) V(I)			3.4 11.92	1	3.4 11.97		3.3 12.30	1	3.3 2.40	9.9 3.3 12.53	
Х	STA. A(I) V(I)		10.8	3.3	11.7	3.2	12.4	3.1	13.2	14 3.2 2.99	4.0 3.2 12.82	14.7
Х	STA. A(I)		14.	7 3.1	15.5	3.2	16.3	3.3	17.2	3.3	8.1 9.0	20.6
											4.58	
	V E.L.									Q '		14.
		172.	17	19.6	66.0	29	.1	574.	1	44. 4	.94	
X	STA. A(I) V(I)		19.6	5.1 1.41	38.8	2.0	42.3	1.6 4.38	44.8	1.5 4.71	6.9 1.4 5.18	48.7
	STA. A(I) V(I)		48.	7 1.3 5.35	50.3	1.3 5.62	51.8	1.2	53.0	54 1.1 6.30	4.2 0.7 10.83	54.8
	STA. A(I) V(I)		54.8	0.8		1.2		1.2		1.2	8.7 1.2 6.20	
X	STA. A(I)		59.6	5	60.5		61.4		62.2	6:		66.0
	V(I)											
											SRD =	QCR
	n.c		2	147. 40.	1176 90	58.	28.	34. 30.	111111	DEW	KEN	1903. 264.
	172.			187.	1267	72.	58.	64.	1.30	-6.		1668.
											=	44.
		ws 172.								Q '		
	STA. A(I) V(I)		-6.2	28.1 1.73	3.7	6.7 7.27	4.8	6.2 7.82	5.7	6.3 7.74	6.7 6.2 7.80	7.7
	STA. A(I) V(I)		7.	7 6.2 7.77	8.6	6.1 7.94	9.5	6.1 7.92	10.4	1: 6.1 7.94	1.3 5.8 8.31	12.1
	STA. A(I) V(I)		12.1	1	13.0		13.8		14.6	1!	5.4 6.3 7.68	16.3
	STA. A(I) V(I)		16.3	3	17.2		18.2		19.5	28	8.1 30.0 1.62	52.1

U.S. Geological Survey WSPRO Input File newb012.wsp
Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT
RLB
**** PINN DATE & TIME: 01:16-98 12:31

				SING SC									RLB
	CROS	SS-S	ECTION	PROPER	TIES:	ISEÇ) = 3	; SECI	ID = B	RIDG;	SRD	=	0.
	WSI	EL	SA#	AREA	275	K	TOPW	WETP	ALPH	L	EW	REW	QCR
	169.	71	Τ	AREA 76. 76.	377	77.	0.	41.	1.00		0.	21.38	53350.
	VELO			RIBUTIO									0.
	Ē	WS 169.	EL 71	LEW 0.0	REW 20.6	AF 76	REA 5.0	К 3777.	8	Q 88.	VEL 11.68		
	STA. A(I) V(I)		0.0	8.9 5.01	2.5	3.4 L3.13	3.4	3.5 12.56	4.5	3.4	5.5	3.3 13.30	6.5
	STA. A(I)		6.5	3.4 13.21	7.5	3.3	8.4	3.3	9.3	3.2	10.2	3.2	11.0
				13.21									
	A(I) V(I)		11.	3.2 13.75	11.0	3.2 L3.84	12.0	3.1 14.14	1	3.1 4.35	11.1	3.1 14.16	14.5
	STA. A(I) V(I)		14.9	3.1 14.17	15.7	3.1	16.5	3.2 13.67	17.3	3.2	18.2	8.6 5.18	20.6
				RIBUTIO									
		WS	EL	LEW 19.3	REW	AF	REA	K		Q	VEL		
37													26.1
	A(I) V(I)		-19.3	10.3 2.59		4.3		4.9 5.41		4.8		4.7	36.1
	STA. A(I) V(I)			4.4 6.04		4.3		4.3		4.1		3.9	
			47.9)	49.9		51.8		53.6		55.4		57.0
	A(I) V(I)			3.9 6.79		4.0 6.74		3.8 7.03		3.8 7.09		3.7 7.23	
	STA. A(I) V(I)		57.0	3.6 7.47		3.6		3.5 7.60		3.5		7.2	
	CROS	SS-S	ECTION	PROPER'									
	WSI	EL	SA#	AREA	-	K	TOPW	WETP	ALPH	L	EW	REW	QCR
			2	AREA 2. 185.	1557	14. 77.	10. 34.	39.					4. 2460.
	173.3	39	3	265.	1818	30.	76.	82.	1.32	-2	2.	55.	688.
				RIBUTIO									4.
				LEW 21.6									
Х	STA. A(I) V(I)		-21.6	47.3 1.51	3.9	8.3 8.58	5.1	7.9 9.03	6.1	8.0 8.96	7.1	7.9 9.03	8.2
Х	STA.		8.2	2	9.2		10.1		11.1		12.1		12.9
	A(I) V(I)			7.9 9.02		9.23		9.01		9.06		9.98	
Х	STA. A(I) V(I)		12.9	7.8 9.14	13.8	8.6 8.33	14.7	8.4 8.46	15.7	8.6 8.27	16.7	8.9 8.01	17.8
	STA. A(I) V(I)		17.8	9.1 7.84	19.1	10.0	20.6	28.1 2.55	29.2	24.7 2.90	38.4	33.0 2.17	54.8

U.S. Geological Survey WSPRO Input File newb012.wsp
Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT RLB
*** RUN DATE & TIME: 01-16-98 12:31

		*** RU	N DATE	& TIME	: 01-	16-98	12:31	L				
	CROSS	S-SECTION	PROPER	TIES:	ISEQ	= 3	; SECI	ID = H	BRIDG;	SRD	=	0.
	WSEI	SA#	AREA		K	TOPW	WETP	ALPI	H L	EW	REW	QCR
	169.71	SA# 1	76. 76.	377	7.	0.	41. 41.	1.00)	0.	38 21.38	53350. 53350.
	VELO	CITY DIST	RIBUTIO	N: IS	SEQ =	3;	SECID =	BRII	OG; S	RD =		0.
		WSEL 59.71	LEW	REW	AR	EA	K		Q	VEL		
Х	STA.	0.	0	2.5	2 4	3.4	2 5	4.5	2 4	5.5	2 2	6.5
	A(I) V(I)	0.	3.05		7.99		7.64		7.83		8.09	
	STA.	6.	5	7.5		8.4		9.3		10.2		11.0
	A(I) V(I)		3.4 8.04		3.3		3.3 8.30		3.2 8.38		3.2 8.47	
Х	STA.	11.	0	11.8		12.6		13.4		14.1		14.9
	A(I) V(I)		3.2 8.36		3.2		3.1		3.1		3.1	
	STA. A(I)	14.	9 3.1	15.7	3.1	16.5	3.2	17.3	3.2	18.2	8.6	
	V(I)		3.1 8.62		8.57		8.31		8.40		3.15	
	CROSS	S-SECTION									=	0.
	WSEI	L SA#	AREA		K	TOPW	WETP	ALPI	H L	EW	REW	QCR
	168.14	1	52. 52.	302 302	1.	16. 16.	23. 23.	1.00)	0.	21.	539. 539.
	CROSS	S-SECTION	PROPER	TIES:	ISEQ	= 5	; SECI	ID = A	APPRO;	SRD	=	44.
	WSEI	SA# 2 3	AREA		K	TOPW	WETP	ALPI	H L	EW	REW	QCR
		2	115. 7.	833	0. 6.	26. 21.	30. 21.					1387. 21.
	170.98	3	122.	838	16.	47.	52.	1.10) -	3.	44.	1063.
	VELO	CITY DIST	RIBUTIO	N: IS	SEQ =	5;	SECID =	= APPF	RO; S	RD =	4	4.
		WSEL 70.98	LEW	REW	AR	EA	K		Q	VEL		
	STA.	-3.	4	3.7	F 2	4.7	4 7	5.6	4 0	6.6	4 6	7.4
	A(I) V(I)	-3.	1.49		5.23		5.78		5.57		5.90	
Х	STA.	7.	4	8.3		9.1		10.0		10.8		11.6
	A(I) V(I)		4.7 5.71		4.6 5.83		4.7 5.80		4.6 5.89		4.5 5.99	
												4.5.0
	STA. A(I)	11.	4.7	12.4	4.6	13.1	4.7	13.9	4.5	14.5	4.5	15.2
	V(I)		5.69		5.83		4.7 5.79		5.99		6.01	
	STA.	15.	2	15.9		16.7		17.5		18.6		43.6
	A(I) V(I)	15.	4.6 5.84		4.7 5.81		4.9 5.47		5.3		18.6 1.45	
	. (- /		3.01		01		- • - •					

U.S. Geological Survey WSPRO Input File newb012.wsp Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97 TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT *** RUN DATE & TIME: 01-16-98 12:31 EGL XSID:CODE SRDL SRD FLEN AREA VHD HF K ALPH HO LEW CRWS WSEL LE. REW K ALPH ERR FR# VEL 157. 0.69 ***** 170.24 167.96 9848. 1.16 **** ****** 1.14 EXIT1:XS ***** -122. 970. 169.55 -22. ***** 25. V 22. -11. 131. 0.85 0.24 170.55 ****** 970. 169 0. 22. 24. 8651. 1.00 0.08 -0.01 0.67 7.38 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> ===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 0.93 170.03 ===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY = 169.20 193.13 ===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS. WSLIM1, WSLIM2, CRWS = 169.20 193.13 169.84 44. -1. 92. 1.72 0.78 171.76 169.84 970. 170 4. 44. 22. 6139. 1.00 0.44 0.00 0.93 10.51 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> APPRO:AS 970. 170.04 ===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION. 169 65 WS3N, LSEL = 169.70 <><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> Q XSID:CODE SRDL AREA VHD HF TEW EGL CRWS K ALPH HO SRD FLEN REW ERR FR# BRIDG:BR 22. 0. ***** 76. 1.81 **** 171.51 169.21 3858. 1.00 **** ***** 0.99 0. 820. 169.70 10.78 21. 0.99 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 6. 0.800 0.000 169.65 ***** ***** XSID:CODE SRD FLEN HF VHD EGL ERR 14. 24. 0.14 0.54 172.58 -0.01 WLEN LEW REW DMAX DAVG VMAX VAVG HAVG CAVG 0 67. -67. 46. 20. 0. 2.1 1.0 66. 1.4 0.6 6.1 7.1 1.9 3.0 66. 4.5 CODE SRDL LEW AREA VHD Q XSID:CODE HF EGL CRWS WSEL HO ERR 10. -6. 187. 0.54 0.19 172.71 169.84 12. 52. 12679. 1.30 0.00 -0.01 0.58 970. 172.17 APPRO:AS 44. 5.17 M(G) M(K) M(G) M(K) KQ XLKQ XRKQ OTEL <><<END OF BRIDGE COMPUTATIONS>>>> FIRST USER DEFINED TABLE. LEW XSID · CODE SRD REW K AREA VET. WSEL 970. 25. 9848. 157. -22. -122. 6.18 169.55 EXIT1:XS 970. FULLV: FV 0. -11. 0. 0. 24. 8651. 131. 7.38 169.70 3858. 0. BRIDG.BR 21. 820. 76. 10.78 169.70 14.*****
 144.
 0.
 0.
 2.00
 172.17

 970.
 12679.
 187.
 5.17
 172.17
 RDWAY: RG 0. APPRO:AS 44. -6. 52. XSID: CODE XLKO XRKO APPRO:AS ************** SECOND USER DEFINED TABLE. XSID: CODE CRWS FR# YMIN YMAX HF HO VHD 1.14 162.41 190.43******** 0.69 170.24 169.55 EXIT1:XS 167.96 FULLV:FV ***** 0.67 162.92 190.94 0.24 0.08 0.85 170.55 169.70 BRIDG:BR 169.21 0.99 164.14 169.71************ 1.81 171.51 169.70 RDWAY:RG ************* 170.79 192.19 0.14***** 0.54 172.58 172.17 APPRO:AS 169.84 0.58 164.21 193.13 0.19 0.00 0.54 172.71 172.17

```
U.S. Geological Survey WSPRO Input File newb012.wsp
        Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
        TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT
           *** RUN DATE & TIME: 01-16-98 12:31
XSID:CODE SRDL SRD FLEN
                             AREA VHD HF
K ALPH HO
                     LEW
                                                  EGL
                                                          CRWS
                                                                           WSEL
                            K ALPH
                    REW
                                                  ERR
                                                          FR#
                                                                   VEL
     :XS ***** -129. 271. 0.75 **** 171.05 169.96 
-22. ***** 26. 14505. 1.73 **** ****** 0.93
EXIT1:XS ***** -129.
 ===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.
FNTEST,FR#,WSEL,CRWS = 0.80 1.31 170.35
 ===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.
                   WSLIM1, WSLIM2, DELTAY = 169.81 190.94
 ===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.
WSLIM1, WSLIM2, CRWS = 169.81 190.94 170.46 ===130 CRITICAL WATER-SURFACE ELEVATION A S S U M E D !!

ENERGY EQUATION NOT BALANCED AT SECID "FULLV"
                   WSBEG, WSEND, CRWS = 170.46
                                                  190.94 170.46
       V 22. -126. 218. 1.05 ***** 171.51 170.46 1430. 170.46
0. 22. 25. 12116. 1.57 ***** ******* 1.20 6.55
FULLV:FV
         <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>
 ===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.
             FNTEST, FR#, WSEL, CRWS = 0.80 1.31
                                                       170.55
                                                                  171.56
 ===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.
                   WSLIM1, WSLIM2, DELTAY = 169.96 193.13
                                                                0.50
 ===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.
===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 169.96 193.13 171.56

===130 CRITICAL WATER-SURFACE ELEVATION A S S U M E D !!!!!

ENERGY EQUATION NOT BALANCED AT SECID "APPRO"

WSBEG, WSEND, CRWS = 171.56 193.13 171.56
           44. -5. 153. 1.69 **** 173.25 171.56 1430. 171.56
44. 51. 10282. 1.24 **** ****** 1.11 9.36
APPRO:AS
         <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>
 ===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.
                        WS3N, LSEL = 170.46
                                                169.65
            <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>
                                                                  Q
 XSID:CODE SRDL
                             AREA VHD
                                           HF
                                                  EGL
                                                          CRWS
     SRD FLEN REW
                             K ALPH
                                          HO
                                                  ERR
                                                          FR#
                                                                   VEL
                             76. 2.12 ***** 171.83 169.46
                     0.
BRIDG:BR
                           3777. 1.00 ***** *****
       0. *****
                    21.
                                                        1.07
                                                                 11.68
     TYPE PPCD FLOW
                       C P/A
                                    LSEL BLEN XLAB
      1. **** 6. 0.800 0.000 169.65 ***** *****
   XSID: CODE
                 SRD FLEN HF VHD
                                          EGL
                                                    ERR
                                                             Q WSEL
   RDWAY:RG
                 14. 24. 0.15 0.60 173.84
                                                  0.00
                                                            535. 173.33
            Q WLEN
                       LEW
                                REW DMAX DAVG VMAX VAVG HAVG CAVG
                 19.
                        -19.
           39.
                              0. 0.6 0.3 3.7
69. 2.5 1.7 6.8
                                                        6.7 0.8 2.8
   LT:
                50. 19.
   RT:
         497.
                                                  6.8
                                                         5.8 2.2
                                                                     3.0
                                                                   0
XSID:CODE SRDL
SRD FLEN
                     LEW
                             AREA VHD
                                           HF
                                                   EGL
                                                         CRWS
                                                                           WSEL
                   REW
                                          НО
                            K ALPH
                                                                   VET.
                                                  ERR
                                                          FR#
APPRO: AS
             10.
                    -21.
                             265. 0.60 0.21 173.98 171.56
                                                                1430. 173.39
      44. 11. 55. 18153. 1.32 0.00
                                                        0.59
                                                0.00
     M(G) M(K) KQ XLKQ XRKQ OTEL
                    <><<END OF BRIDGE COMPUTATIONS>>>>
  FIRST USER DEFINED TABLE.
                                                                 VEL
    XSID: CODE
                 SRD
                               REW
                                                         AREA
   EXIT1:XS
                -22. -129.
                               26.
                                     1430.
                                             14505.
                                                         271.
                                                                 5.27 170.31
   FULLV:FV
                 0. -126.
                               25.
                                     1430. 12116.
                                                         218.
                                                                 6.55 170.46
                                              3777.
   BRIDG:BR
                  0.
                       0.
                               21.
                                     888. 3777. 76. 535.********
                                                                11.68 169.71
                14.*****
   RDWAY: RG
                              39.
                                                                2.00 173.33
                44. -21.
                                    1430. 18153.
                                                        265.
   APPRO:AS
                              55.
                                                                 5.39 173.39
 SECOND USER DEFINED TABLE.
    XSID: CODE
                 CRWS
                          FR#
                               YMIN
                                         YMAX HF
                                                      HO VHD
                                                                     EGL
                         0.93 162.41 190.43*******
                                                            0.75 171.05 170.31
   EXIT1:XS 169.96
   FULLV: FV
               170.46
                         1.20 162.92 190.94******** 1.05 171.51 170.46
                         1.07 164.14 169.71******** 2.12 171.83 169.71
   BRIDG:BR
               169.46
                               170.79 192.19 0.15***** 0.60 173.84 173.33
   RDWAY:RG
             171.56  0.59  164.21  193.13  0.21  0.00  0.60  173.98  173.39
   APPRO:AS
```

U.S. Geological Survey WSPRO Input File newb012.wsp
Hydraulic analysis for structure NEWBTH00020012 Date: 11-SEP-97
TH 2 CROSSING SCOTT BROOK IN NEWBURY, VT RLB
*** RUN DATE & TIME: 01-16-98 12:31

XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
EXIT1:XS	*****	-6.	90.	0.55	****	168.42	166.20	540.	167.87
-22.	*****	21.	5481.	1.00	****	*****	0.57	5.97	
FULLV:FV	22.	-4.	82.	0.68	0.24	168.71	*****	540.	168.03
0.	22.	20.	4868.	1.00	0.06	-0.01	0.64	6.60	
< -	<< <the< td=""><td>ABOVE R</td><td>ESULTS R</td><td>EFLECT</td><td>"NORM</td><td>AL" (UNC</td><td>ONSTRICTED)</td><td>FLOW></td><td>>>>></td></the<>	ABOVE R	ESULTS R	EFLECT	"NORM	AL" (UNC	ONSTRICTED)	FLOW>	>>>>

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 1.00 168.53 168.52

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1,WSLIM2,DELTAY = 167.53 193.13 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1,WSLIM2,CRWS = 167.53 193.13 168.52

WSLIM1, WSLIM2, CRWS = 167.53 193.13 168.52 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.

"APPRO" KRATIO = 0.65

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW. WS3,WSIU,WS1,LSEL = 168.14 170.52 170.67 169.65 ===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRIDG:BR	22.	0.	76.	0.78	****	170.49	168.14	539.	169.71
0.	*****	21.	3777.	1.00	****	*****	0.65	7.09	

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 2. 0.480 0.000 169.65 ***** ****** ******

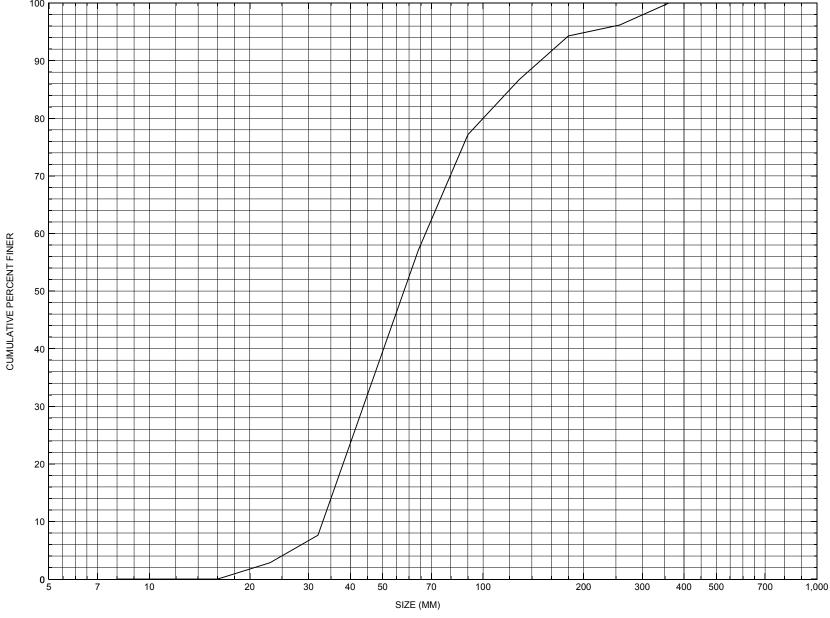
XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 14. <-<<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 10. -3. 122. 0.34 0.11 171.31 168.52 540. 170.98 44. 12. 44. 8385. 1.10 1.10 0.00 0.51 4.44

M(G) M(K) KQ XLKQ XRKQ OTEL

<><<END OF BRIDGE COMPUTATIONS>>>>


FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXIT1:XS	-22.	-6.	21.	540.	5481.	90.	5.97	167.87
FULLV:FV	0.	-4.	20.	540.	4868.	82.	6.60	168.03
BRIDG:BR	0.	0.	21.	539.	3777.	76.	7.09	169.71
RDWAY:RG	14.**	*****	****	0.	0.	0.	2.00*	*****
APPRO:AS	44.	-3.	44.	540.	8385.	122.	4.44	170.98

SECOND USER DEFINED TABLE.

XSID: COD	E CRWS	FR#	YMIN	YMAX	HF	НО	VHD	EGL	WSEL
EXIT1:XS	166.20	0.57	162.41	190.43**	*****	****	0.55	168.42	167.87
FULLV:FV	******	0.64	162.92	190.94	0.24	0.06	0.68	168.71	168.03
BRIDG:BR	168.14	0.65	164.14	169.71**	*****	****	0.78	170.49	169.71
RDWAY:RG	******	*****	170.79	192.19**	*****	****	0.34	171.22*	*****
APPRO:AS	168.52	0.51	164.21	193.13	0.11	1.10	0.34	171.31	170.98

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure NEWBTH00020012, in Newbury, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Latitude (I - 16; nnnn.n) 44095

Structure Number NEWBTH00020012

Deficial Education Descriptive	General	Location	Descriptive
--------------------------------	---------	----------	-------------

Data collected by (First Initial, Full last name) E. BOI	EHMLER
Date (MM/DD/YY)03_ / _27_ / _95_	
Highway District Number (I - 2; nn)	County (FIPS county code; I - 3; nnn)017
Town (FIPS place code; I - 4; nnnnn) 48175	Mile marker (I - 11; nnn.nnn) <u>000000</u>
Waterway (I - 6) SCOTT BROOK	Road Name (I - 7):
Route Number C2002	Vicinity (1 - 9) 1.5 MI JCT TH 2 + TH 21
Topographic Map Groton	Hydrologic Unit Code: 01080104

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10090700120907	<u> </u>
Maintenance responsibility (I - 21; nn)03	Maximum span length (I - 48; nnnn) 0021
Year built (I - 27; YYYY) 1928	Structure length (I - 49; nnnnnn) <u>000025</u>
Average daily traffic, ADT (I - 29; nnnnnn) 000150	Deck Width (I - 52; nn.n) 202
Year of ADT (1 - 30; YY)93	Channel & Protection (I - 61; n) 6
Opening skew to Roadway (I - 34; nn) 42	Waterway adequacy (I - 71; n) 6
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn)101	Year Reconstructed (I - 106)
Approach span structure type (I - 44; nnn)000	Clear span (nnn.n ft)
Number of spans (I - 45; nnn) 001	Vertical clearance from streambed (nnn.n ft) 5.0
Number of approach spans (I - 46; nnnn) 0000 Comments:	Waterway of full opening (nnn.n ft²)

The structural inspection report of 10/11/93 indicates that the structure is a concrete slab type bridge. The abutments and wingwalls are grouted "laid up" stone blocks, with stone block footings and concrete caps. Large boulders are present on the banks both upstream and downstream with a few areas of erosion reported. Boulder point and side bars are noted in the channel. Debris accumulation is minor at this site. The channel makes a sharp bend into the crossing.

	Brid	ge Hydro	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctrl	-nh VTA	OT Draina	age area (m	าi²): <u>-</u>
Terrain character:						
Stream character & type: _						
Streambed material:						
Discharge Data (cfs): Q _{2.33}						
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs): lce conditions (Heavy, Moderate, Li						
The stage increases to maximum						
The stream response is (<i>Flashy, I</i>	_		•	voi rapiary j.		
Describe any significant site cor	- , ,			m that ma	y influence	the stream's
stage: -	•				,	
Watershed storage area (in perce	<i>'</i> ——					
The watershed storage area is:		ainly at the h e site)	eadwaters; 2	?- uniformly (distributed; 3	-immediatly upstream
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
	-2.33	-	25	-50	- 100	
Water surface elevation (ft))						
Velocity (ft / sec)	-	-	-	-	-	
		1	1			I
Long term stream bed changes:	-					
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	<u>U</u>	Frequenc	cy: <u>-</u>
Relief Elevation (#):	Discha	arge over r	oadway at	$Q_{100} (ft^3/s)$	sec):	_
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n, type ctrl-n	os
Upstream distance (miles):		Town:			_ Year Bui	lt:
Highway No. :	Structu	ıre No. : <u>-</u>	Stru	ucture Typ	e: <u>-</u>	
Clear span (ft): Clear He	eight (#):	· F	ull Waterw	ay (ft²): <u>-</u>	,	

Downstream distance (<i>miles</i>): Highway No. : -			
Clear span (#): - Clear Heig			
Comments:	· · ———	- , ,	
-			
	USGS Watersh	ed Data	
Watershed Hydrographic Data			
Drainage area (DA) 3.62 mi ² Watershed storage (ST) 0	2 Lake/po	ond/swamp area _	0 mi 2
Bridge site elevation 980		ater elevation18	810 ft
Main channel length 3.07	_		4460
10% channel length elevation _		5% channel length	h elevation <u>1460</u> ft
Main channel slope (S)160.69) ft / mi		
Watershed Precipitation Data			
Average site precipitation	in Averag	e headwater preci	pitation in
Maximum 2yr-24hr precipitation e	event (124,2)	_ in	
Average seasonal snowfall (Sn)_	<u>-</u> ft		

Bridge Plan Data
Are plans available? Y If no, type ctrl-n pl Date issued for construction (MM / YYYY): 08 / 19- Project Number APP 65-1927 Minimum channel bed elevation: 172.32
Low superstructure elevation: USLAB N/A DSLAB N/A USRAB DSRAB Benchmark location description: There is no specific benchmark shown on the plans. A point shown with an elevation is at the top streamward side of the concrete where the upstream right wingwall meets the right abutment wall, elevation 179.67.
Reference Point (MSL, Arbitrary, Other): Arbitrary Datum (NAD27, NAD83, Other): Arbitrary Foundation Type: 1 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness 1.5 Footing bottom elevation: 170.0
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation:
Is boring information available? N If no, type ctrl-n bi Number of borings taken:
Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown)
Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION.
Comments: *An estimate of the low superstructure for the right abutment is 178.0. The plans are only 1 page and provide very little detail.

Cross-sectional Data Is cross-sectional data available? $\underline{\mathbf{N}}$ If no, type ctrl-n xs Source (FEMA, VTAOT, Other)? _____ Comments: NO CROSS SECTION INFORMATION Station Feature Low chord elevation Bed elevation Low chordbed Station Feature Low chord elevation Bed elevation Low chordbed Source (FEMA, VTAOT, Other)? ____ Comments: NO CROSS SECTION INFORMATION Station Feature Low chord elevation Bed elevation Low chordbed Station Feature

Low chord elevation

Bed elevation

Low chord-

bed

APPENDIX E:

LEVEL I DATA FORM

Structure Number NEWBTH00020012

Qa/Qc Check by: EW Date: 03/11/96

Computerized by: EW Date: 03/1196

RB Date: 10/20/97 Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name)	T	SEVERANCE	Date	(MM/DD/YY)	08	1	31	/ 19 9 /

2. Highway District Number 07

County_ORANGE 017

Waterway (/ - 6) SCOTT BROOK

Route Number TH2

3. Descriptive comments:

1.5 miles to the junction with Town Highway 21.

Mile marker -Town NEWBURY 48175

Road Name -

Hydrologic Unit Code: 01080104

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_6___ RBUS 6 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 25 (feet)

Span length 21 (feet) Bridge width 20.2 (feet)

Road approach to bridge:

8. LB 2 RB 0 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	12 Erasian	14 Coverity
	11.Type	12.Cond.	13.Erosion	14.Seventy
LBUS		-	0	-
RBUS		-	0	-
RBDS		-	0	
LBDS	_0	-	0	-

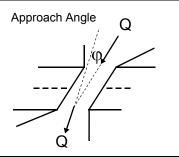
Bank protection types: **0**- none; **1**- < 12 inches;

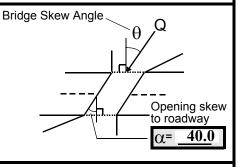
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 55 15. Angle of approach: 15

17. Channel impact zone 1:

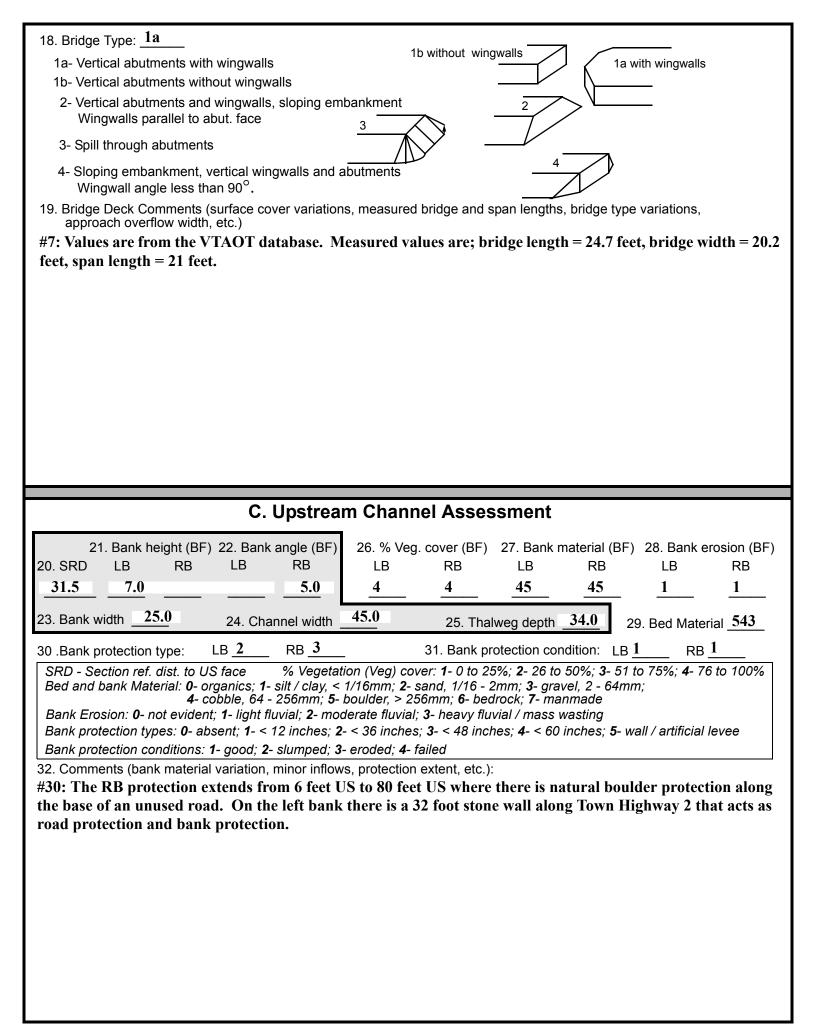
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 35 feet US (US, UB, DS) to 0 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 14 feet DS (US, UB, DS) to 26 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 0 US 35. Mid-bar width: 8
36. Point bar extent: $\underline{58}$ feet \underline{US} (US, UB) to $\underline{10}$ feet \underline{DS} (US, UB, DS) positioned $\underline{5}$ %LB to $\underline{55}$ %RB
37. Material: <u>435</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
Breaks exist in the bar from 42 feet US to 34 feet US, and from 16 feet US to 2 feet US. An additional bar is found on the LB starting at 58 feet US and ending at 42 feet US. The mid-bar is at 49 feet
US, the mid-bar width is 4 feet, and the material is 324.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
41. Mid-bank distance: 26 42. Cut bank extent: 44 feet US (US, UB) to 20 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
-
45 lo channel accur procent? N (Variante et la ca) 46 Mid accur distance: 5
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Width Depth : Position %LB to %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NO CHANNEL SCOUR
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance (1- perennial; 2- ephemeral)
Confluence 2: Distance <u>-</u> Enters on <u>-</u> (<i>LB or RB</i>) Type <u>-</u> (<i>1- perennial; 2- ephemeral</i>)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
_
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
12.5 1.0 2 7 7
58. Bank width (BF) 59. Channel width 60. Thalweg depth 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
543
343
-
-
-
-

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both)

67. Debris Potential ____ (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

#68: Bridge opening is constrictive and only five feet high.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	90	2	2	0	0.5	90.0
RABUT	2	20	90	 	l 1	0	2	16.0

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes Pushed: LB or RB

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed;

5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0.75

2

#76: The DS end of the RABUT is undermined with two feet of penetration.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						16.0	
USRWW:	<u>Y</u>		2		2	0.5	
DSLWW:	0		0.75		<u>Y</u>		
DSRWW:	2		2		<u>0</u>		

USRWW USLWW Wingwall length Wingwall angle **DSRWW** DSLWW

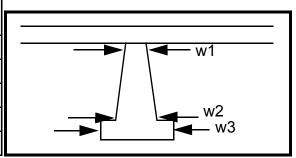
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	0.75	0	Y	0	ı	ı	-	-
Condition	Y	0	2	1.75	-	-	-	-
Extent	2	0	3	0	0	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):	:
-	

Piers:

84. Are there piers? ___ (Y or if N type ctrl-n pr)

85. Pier no.	widt	h (w) fe	eet	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1		4.5		40.0	130.0	13.0	
Pier 2		9.5	6.0	130.0	50.0	-	
Pier 3	-	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)		-	-	-
87. Type		-	1	1
88. Material		-	-	-
89. Shape		-	-	-
90. Inclined?		-	-	-
91. Attack ∠ (BF)		-	-	-
92. Pushed		-	-	-
93. Length (feet)	-	_	-	-
93. Length (feet) 94. # of piles	-	-	-	-
	-	-	-	-
94. # of piles	-	-	-	-
94. # of piles 95. Cross-members	N	- - -	-	-

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):										
_		(3		, 1	'		,	•	, ,	
-										
-										
-										
-										
-										
-										
-										
_										
100.			E.	Downstre	eam Cha	nnel Ass	essmen	t		
		Bank height (BF)	Rank	angle (BF)	% Vea	cover (BF)	Bank ma	aterial (BF	S) Bank erd	sion (BF)
SR	RD.	LB RB	LB	RB	LB	RB	LB	RB	LB	RB
-		-		-	_	NO	PIE	RS		
Ban	— k widtl	h (BF) <u>-</u>		Channel widt	h -	Thal	weg depth	- 1	Bed Materi	 al
		ection type (Qmax):	LE	B RB		Bank protec				
		tion ref. dist. to US f		% Vegetati	on (Veg) cov	er: 1 - 0 to 25	%; 2 - 26 to 5	50%; 3 - 51	1 to 75%; 4 - 76	to 100%
Bed	and ba	ank Material: 0 - orga	anics; 1	- silt / clay, < 1 - 256mm; 5 - k	1/16mm; 2 - s	and, 1/16 - 2i 6mm: 6 - bedi	mm; 3- grave	el, 2 - 64n made	nm;	
Bank	k Eros	ion: 0 - not evident; 1								
Bank	k prote	ection types: 0 - abse	nt; 1- <	: 12 inches; 2 -	< 36 inches,	3- < 48 inche	es; 4- < 60 ii	nches; 5 - 1	wall / artificial le	evee
		ection conditions: 1-	~	•						
Comm	nents (eg. bank material va	ariation	, minor inflows	s, protection	extent, etc.):				
4										
4										
542										
540										
1										
1										
543										
0										
4										
- 1										
The l	RB ba	ank protection ex	tends	from 18 feet	DS, at the	end of the w	vingwall, to	o 50 feet	DS.	
		.			,					
101. <u>l</u>	sac	<u>drop structure</u>	prese	<u>ent?</u> (Y	or N, if N ty	oe ctrl-n ds)	102. Dista	nce: <u>-</u>	feet	
103. [Orop: _	feet		104. Structure	material:	(1 - steel s	heet pile; 2 -	wood pile	; 3- concrete; 4	- other)
105. I	Orop s	tructure comments ((eg. do	wnstream sco	ur depth):					

106. Point/Side bar present? (Y or N. if N type	ctrl-n pb)Mid-bar distance: Mid-bar width:
Point bar extent: feet (US, UB, DS) to N feet	et <u>-</u> (<i>US, UB, DS</i>) positioned <u>NO</u> %LB to <u>DR</u> %RB
Material: OP	
Point or side bar comments (Circle Point or Side; note addition	al bars, material variation, status, etc.):
STRUCTURE	
Is a cut-bank present? (Y or if N type ctrl-n cb)	Mhara? (I B ar BB) Mid hard distance. V
Cut bank extent: 44 feet 3.5 (US, UB, DS) to 18 feet	
Bank damage: 50 (1- eroded and/or creep; 2- slip failure; 3	
Cut bank comments (eg. additional cut banks, protection conditional cut banks)	
DS	
80 100	
523	
Is channel scour present? - (Y or if N type ctrl-ri	cs) Mid-scour distance:
Scour dimensions: Length Width Depth: Y	
Scour comments (eg. additional scour areas, local scouring pro	
14	, ,
DS 30	
39 DS	
Are there major confluences? 1 (Y or if N type	ctrl-n mc) How many? -
Confluence 1: Distance Enters on (
Confluence 2: Distance N Enters on - (A	
Confluence comments (eg. confluence name):	(= p = =)
-	
l -	
F. Geomorphic Ch	nannel Assessment
107. Stage of reach evolution	1- Constructed
	2- Stable 3- Aggraded
	4 - Degraded 5 - Laterally unstable
	6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):				
NO CHANNEL SCOUR				
\mathbf{N}				
- -				
- -				
- -				

109. G. Plan View Sketch								
point bar pb cut-bank cb scour hole	debris rip rap or stone fill	flow Q cross-section ++++++ ambient channel —	stone wall					

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: NEWBTH00020012 Town: NEWBURY Road Number: TH 2 County: ORANGE

Stream: SCOTT BROOK

Initials RLB Date: 10/2/97 Checked: ECW

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft	970 147 0 40 28 0 30 0.1897	1430 185 2 78 34 10 33 0.1897	540 115 0 7 26 0 21 0.1897
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft	5.3 ERR 1.3	5.4 0.2 2.4	4.4 ERR 0.3
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	12672 11768 0 903 0.0079 900.8 0.0 69.1	18180 15577 14 2588 0.0055 1225.3 1.1 203.6	8386 8330 0 56 0.0000 536.4 0.0 3.6
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	6.1 ERR 1.7 8.5 ERR ERR	6.6 0.6 2.6 8.5 ERR	4.7 ERR 0.5 8.3 ERR ERR
Results			
Live-bed(1) or Clear-Water(0) Contr Main Channel Left Overbank Right Overbank	action Sc 0 N/A N/A	our? 0 N/A N/A	0 N/A N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \mbox{Converted to English Units } ys=y2-y_bridge \\ (Richardson and others, 1995, p. 32, eq. 20, 20a)$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	970	1430	540
(Q) discharge thru bridge, cfs	820	888	540
Main channel conveyance	3867	3777	3777
Total conveyance	3867	3777	3777
Q2, bridge MC discharge,cfs	820	888	540
Main channel area, ft2	76	76	76
Main channel width (normal), ft	15.8	15.8	15.8
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	15.8	15.8	15.8
y_bridge (avg. depth at br.), ft	4.81	4.81	4.81
Dm, median (1.25*D50), ft	0.237125	0.237125	0.237125
y2, depth in contraction,ft	5.51	5.90	3.85
ys, scour depth (y2-ybridge), ft	0.70	1.09	-0.96

Armoring

 $Dc = [(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]$ Depth to Armoring=3*(1/Pc-1) (Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	820	888	540
Main channel area (DS), ft2	76	76	52
Main channel width (normal), ft	15.8	15.8	15.8
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	15.8	15.8	15.8
D90, ft	0.4875	0.4875	0.4875
D95, ft	0.6739	0.6739	0.6739
Dc, critical grain size, ft	0.5115	0.5998	0.5587
Pc, Decimal percent coarser than Dc	0.089	0.056	0.070
Depth to armoring, ft	15.71	30.33	22.27

Pressure Flow Scour (contraction scour for orifice flow conditions)

```
Chang pressure flow equation  \begin{array}{ll} Hb+Ys=Cq*qbr/Vc\\ Cq=1/Cf*Cc & Cf=1.5*Fr^0.43 \ (<=1) & Cc=SQRT[0.10\,(Hb/(ya-w)-0.56)]+0.79 \ (<=1)\\ Umbrell pressure flow equation \\ (Hb+Ys)/ya=1.1021*[(1-w/ya)*(Va/Vc)]^0.6031 \\ (Richardson and other, 1995, p. 144-146) \\ \end{array}
```

	Q100	Q500	OtherQ
Q, total, cfs	970	1430	540
Q, thru bridge MC, cfs	820	888	540
Vc, critical velocity, ft/s	8.49	8.54	8.25
Va, velocity MC approach, ft/s	6.13	6.62	4.66
Main channel width (normal), ft	15.8	15.8	15.8
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	15.8	15.8	15.8
qbr, unit discharge, ft2/s	51.9	56.2	34.2
Area of full opening, ft2	76.0	76.0	76.0
Hb, depth of full opening, ft	4.81	4.81	4.81
Fr, Froude number, bridge MC	0.99	1.07	0.65
Cf, Fr correction factor (<=1.0)	1.00	1.00	1.00
**Area at downstream face, ft2	N/A	N/A	52
**Hb, depth at downstream face, ft	N/A	N/A	3.29
**Fr, Froude number at DS face	ERR	ERR	1.01
**Cf, for downstream face (<=1.0)	N/A	N/A	1.00
Elevation of Low Steel, ft	169.65	169.65	169.65
Elevation of Bed, ft	164.84	164.84	164.84
Elevation of Approach, ft	172.17	173.39	170.98
Friction loss, approach, ft	0.19	0.21	0.11
Elevation of WS immediately US, ft	171.98	173.18	170.87
ya, depth immediately US, ft	7.14	8.34	6.03
Mean elevation of deck, ft	175.45	175.45	175.45
w, depth of overflow, ft (>=0)	0.00	0.00	0.00
<pre>Cc, vert contrac correction (<=1.0)</pre>	0.90	0.83	0.94
**Cc, for downstream face (<=1.0)	ERR	ERR	0.79
Ys, scour w/Chang equation, ft	2.01	3.11	-0.42
Ys, scour w/Umbrell equation, ft	1.65	3.07	-0.10

^{**=}for UNsubmerged orifice flow using estimated downstream bridge face properties.

^{**}Ys, scour w/Chang equation, ft $\,$ N/A $\,$ N/A $\,$ 1.95

**Ys, scour w/Umbrell equation, ft N/A N/A 1.42

In UNsubmerged orifice flow, an adjusted scour depth using the Laursen equation results and the estimated downstream bridge face properties can also be computed (ys=y2-ybridgeDS) $\frac{1}{2}$

y2, from Laursen's equation, ft	5.51	5.90	3.85
WSEL at downstream face, ft			168.14
Depth at downstream face, ft	N/A	N/A	3.29
Ys, depth of scour (Laursen), ft	N/A	N/A	0.56

Abutment Scour

 $ys = 4*Fr^0.33*y1*K/0.55$

(Richardson and others, 1995, p. 49, eq. 29)

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Ab	utment		Right Al	outment	
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q !	500 yr Q	Other Q
(Qt), total discharge, cfs	970	1430	540	970	1430	540
a', abut.length blocking flow, ft						
Ae, area of blocked flow ft2						34.16
Qe, discharge blocked abut.,cfs	30.37		12.93			111.86
(If using Qtotal_overbank to obt	ain Ve, l	eave Qe bl	Lank and	enter Ve a	and Fr mai	nually)
Ve, (Qe/Ae), ft/s	1.73	1.51	1.49	3.56	4.06	3.27
ya, depth of f/p flow, ft	2.84	1.64	2.55	1.69	1.72	1.23
Coeff., K1, for abut. type (1.0,	verti.;	0.82, vert	ti. w/ wi	ingwall; 0	.55, spil	lthru)
K1	0.82	0.82	0.82	0.82	0.82	0.82
Angle (theta) of embankment (<90) if abut.	points DS	5: >90 if	f abut. po:	ints US)	
theta		130	•	_		50
K2				0.93		0.93
Fr, froude number f/p flow	0.180	0.196	0.165	0.434	0.405	0.521
_						
ys, scour depth, ft	5.57	5.22	4.42	8.25	8.26	6.67
HIRE equation (a'/ya > 25)						

a'(abut length blocked, ft)	6.2	21.6	3.4	36.3	39	27.8
y1 (depth f/p flow, ft)	2.84	1.64	2.55	1.69	1.72	1.23
a'/yl	2.18	13.19	1.33	21.44	22.69	22.62
Skew correction (p. 49, fig. 16)	1.09	1.09	1.09	0.83	0.83	0.83
Froude no. f/p flow	0.18	0.20	0.16	0.43	0.41	0.52
Ys w/ corr. factor K1/0.55:						
vertical	ERR	ERR	ERR	ERR	ERR	ERR
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR
spill-through	ERR	ERR	ERR	ERR	ERR	ERR

Abutment riprap Sizing

Isbash Relationship

D50= $y*K*Fr^2/(Ss-1)$ and D50= $y*K*(Fr^2)^0.14/(Ss-1)$ (Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number y, depth of flow in bridge, ft	0.99 4.81	1.07 4.81	1.01 3.29	0.99 4.81	1.07 4.81	1.01 3.29
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	ERR	ERR	ERR	ERR	ERR	ERR
Fr>0.8 (vertical abut.)	2.01	2.05	1.38	2.01	2.05	1.38