LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (SHRETH00300015) on TOWN HIGHWAY 30, crossing FREEMAN BROOK, SHREWSBURY, VERMONT

Open-File Report 98-192

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior U.S. Geological Survey

LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (SHRETH00300015) on TOWN HIGHWAY 30, crossing FREEMAN BROOK, SHREWSBURY, VERMONT

By RONDA L. BURNS and TIMOTHY SEVERANCE

U.S. Geological Survey Open-File Report 98-192

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	iv
Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
Selected References	
Appendices:	
A. WSPRO input file	19
B. WSPRO output file	
C. Bed-material particle-size distribution	
1	
D. Historical data form	
E. Level I data form	
F. Scour computations	4
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	,
2. Map showing location of study area on Vermont Agency of Transportation town	
highway maphighway map	
3. Structure SHRETH00300015 viewed from upstream (October 11, 1995)	
4. Downstream channel viewed from structure SHRETH00300015 (October 11, 1995)	
5. Upstream channel viewed from structure SHRETH00300015 (October 11, 1995)	
6. Structure SHRETH00300015 viewed from downstream (October 11, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	,
SHRETH00300015 on Town Highway 30, crossing Freeman Brook,	
Shrewsbury, Vermont	1:
8. Scour elevations for the 100- and 500-year discharges at structure	1.
SHRETH00300015 on Town Highway 30, crossing Freeman Brook,	
Shrewsbury, Vermont	10
~,,	-
TADI EQ	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
SHRETH00300015 on Town Highway 30, crossing Freeman Brook,	
Shrewsbury, Vermont	
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
SHRETH00300015 on Town Highway 30, crossing Freeman Brook,	
Shrewsbury, Vermont	

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	v
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p	flood plain	RB	right bank
f/p ft ²	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (SHRETH00300015) ON TOWN HIGHWAY 30, CROSSING FREEMAN BROOK, SHREWSBURY, VERMONT

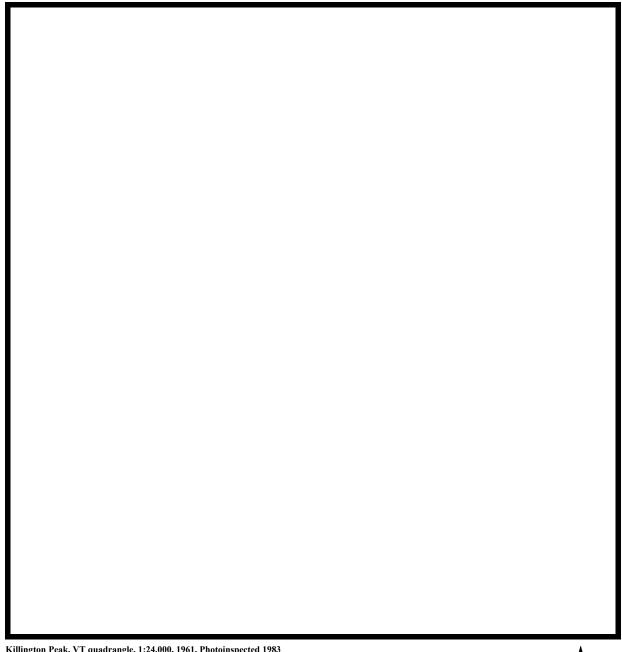
By Ronda L. Burns and Timothy Severance

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure SHRETH00300015 on Town Highway 30 crossing Freeman Brook, Shrewsbury, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 1.09-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.

In the study area, Freeman Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 36 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulders with a median grain size (D_{50}) of 88.2 mm (0.290 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 11, 1995, indicated that the reach was stable.

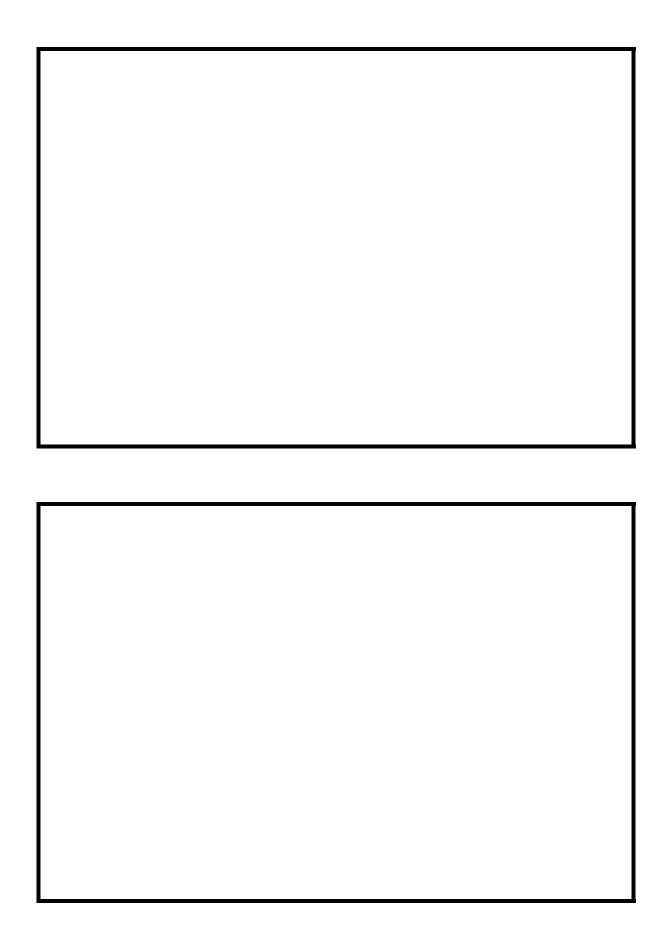

The Town Highway 30 crossing of Freeman Brook is a 30-ft-long, one-lane bridge consisting of one 27-foot steel-beam span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 25.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 18 degrees to the opening while the opening-skew-to-roadway is 15 degrees.

No scour holes were observed at the site during the Level I assessment. Scour countermeasures observed were type-2 stone fill (less than 36 inches diameter) along the upstream left wingwall, type-3 stone fill (less than 48 inches diameter) along the upstream right wingwall, the left and right abutments, the downstream left and right wingwalls, and the downstream right bank, and type-4 stone fill (less than 60 inches diameter) along the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows was zero ft. Abutment scour ranged from 2.7 to 3.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.



Killington Peak, VT quadrangle, 1:24,000, 1961, Photoinspected 1983

NORTH

Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

acture Number —	SHRETH00300015	Stream Freeman	Brook
nnty Rutland		Road TH 30	District 3
	Descrip	otion of Bridge	
Bridge length	ft Bridge wi	Straight	span length
Alignment of brid Abutment type	ye to road (on curve or so Vertical, concrete Yes	straight) Embankment type	Sloping /11/95
Stone fill on abutm	Type-3, along t	he left and right abutments, to twingwalls. Type-2, along t	he upstream right
	ringwalls are concrete.	it wingwans. Type 2, along t	ne upstream left wingwar
Is bridge skewed t	to flood flow according t	to survey?	Angle
10/11/95			
Debris accumulat	tion on bridge at time of Date of inspection	Level I or Level II site visit: Percent of channel blocked nortzontally	Percent of 10/11/ blocked vertically
Level I	95	0	0
Level II	Low.		
Potential for	debris		

Description of the Geomorphic Setting

General topo	graphy	The cha	nnel is locate	d within a	a moderate relief	valley with narrow flood
plains.						
Geomorphi	c condition	ıs at bridg	ge site: downs	stream (D	S), upstream (U	(S)
Date of insp	pection	10/11/95				
DS left:		annel ban	k to a modera	ately slop	ed overbank	
DS right:	Steep ch	annel bank	k to a modera	itely slope	ed overbank	
US left:	Steep va	lley wall				
US right:	Steep ch	annel banl	k to a modera	ately slope	ed overbank	
			Description	of the C	hannel	
		36				5
Average to	op width		Gravel/Cobb	oles	Average dep	pth Cobbles/Boulders
Predomina	nt bed mat	erial			Bank materia	Sinuous but stable
with non-all	uvial chan	nel bounda	aries and grea	ater width	at channel bends	
						10/11/95
Vegetative c	rees					
DS left:	Trees					
DS right:	Trees					
US left:	Trees					
US right:		Ye	es			
Do banks a	ppear stab	le?		u ucscr w	. wanna ana i	pevi msmomymm
date of obs						
						None as of 10/11/95.
Describe an	ıy obstruct	ions in ch	annel and da	ite of obs	ervation.	

Hydrology

Physiographic province/section New England/Green Mountain Is drainage area considered rural or urban? None None We are a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area Mo Is there a lake/p Calculated Discharges Atom Color and 500-year discharges are based on floo frequency estimates available from the VTAOT database (written communication, May 1995) fithis site. These values were within a range defined by flood frequency curves derived from severempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	Percentage of drainage area in physiographic	nrovinces (an	proximate)
Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area mi² No Is there a lake/p No Calculated Discharges 620 Q100 fr³/s Q500 fr³/s The 100- and 500-year discharges are based on floo frequency estimates available from the VTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from severempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	Physiographic province/section	_	cent of drainage area
USGS gage description USGS gage number Gage drainage area mi² No Is there a lake/p Q100 ft³/s The 100- and 500-year discharges are based on floo frequency estimates available from the VTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from severempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	None	Rural	Describe any significant
USGS gage number Gage drainage area mi² No Is there a lake/p Calculated Discharges 620 Q100 ft³/s The 100- and 500-year discharges are based on floo frequency estimates available from the VTAOT database (written communication, May 1995) ft this site. These values were within a range defined by flood frequency curves derived from sever tempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	Is there a USGS gage on the stream of interest		
Gage drainage area mi² No Is there a lake/p Calculated Discharges 620 Q100 ft³/s Q500 ft³/s The 100- and 500-year discharges are based on floo frequency estimates available from the YTAOT database (written communication, May 1995) ft this site. These values were within a range defined by flood frequency curves derived from seven tempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	USGS gage description		
Is there a lake/p _ Calculated Discharges 620 _ Q100 ft ³ /s Q500 ft ³ /s _ The 100- and 500-year discharges are based on floof this site. These values were within a range defined by flood frequency curves derived from sever tempirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	USGS gage number		
Calculated Discharges Q100 ft³/s The 100- and 500-year discharges are based on floo frequency estimates available from the VTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from sever empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b	Gage drainage area	mi ²	No
Q100 ft ³ /s Q500 ft ³ /s The 100- and 500-year discharges are based on floo frequency estimates available from the YTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from seven empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b			
The 100- and 500-year discharges are based on floo frequency estimates available from the YTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from sever empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b			
frequency estimates available from the YTAOT database (written communication, May 1995) for this site. These values were within a range defined by flood frequency curves derived from sever empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each curve was extended graphically to the 500-year event.	_450 Calculate	ed Discharges	<u>620</u>
	$Q100 ft^3/s$	Q50	ft^3/s

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans)	USGS survey		
Datum tie between USGS survey and VTAOT plans	None			
Description of reference marks used to determine USGS data top of the downstream end of the right abutment (elev. 499.74)		RM1 is a chiseled X on		
is a chiseled X on top of the upstream end of the upstream le	•			
arbitrary survey datum).				

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-22	1	Exit section
BRIDG	0	2	Downstream Bridge section (Templated from BRTEM)
BRTEM	16	1	Upstream Bridge section as surveyed (Used as a template)
USBRG	16	1	Modelled Upstream Bridge section (Tem- plated from BRTEM)
APTEM	42	1	Approach section as surveyed (Used as a template)
APPRO	45	2	Modelled Approach section (Templated from APTEM)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.050 to 0.065, and the overbank "n" value was 0.080.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0349 ft/ft, which was estimated from surveyed thalweg points downstream of the bridge.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.1129 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

For the 100-year and 500-year discharges, WSPRO assumes critical depth at the bridge section. Supercritical models were developed for these discharges. After analyzing both the supercritical and subcritical profiles for each discharge, it can be determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumptions of critical depth at the bridge are satisfactory solutions.

For all modelled flows, the bridge was not a significant constriction in the channel. Therefore, the bridge sections at the upstream and downstream faces were modelled as open channel sections. This allowed the model to evaluate flow conditions through the bridge and at the approach section as unconstricted.

Bridge Hydraulics Summary

Average bridge e	mbankment elevation	n	499.9	ft		
Average low stee		497.4	ft	,		
	00-year discharge Vater-surface elevati	450 on in bridg	ft ³ /s re opening	494.4	ft	
	Road overtopping?	3.7		ge over road	_	ft ³ /s
F	Area of flow in bridgo Average velocity in br Maximum WSPRO to	e opening ridge openi	53 mg	ft ² 8.6	?. ft/s	ye /s
J	Vater-surface elevati Vater-surface elevati Amount of backwater	on at Appr	oach sectio	_	dge	
J	500-year discharge Vater-surface elevati Road overtopping?	620 on in bridg No		495.0 ge over road)_ft -	³ /s
£	Area of flow in bridgo Average velocity in bi Maximum WSPRO ti	idge openi	_	ft² 9.4 ft/ .		
J	Vater-surface elevati Vater-surface elevati Amount of backwater	on at Appr	oach sectio	_	=	
	ncipient overtopping Vater-surface elevati	O	-	ft ³ /s	<u>.</u> ft	
F	Area of flow in bridgo Average velocity in bi Maximum WSPRO ti	idge openi	_	ft ² ft/.	s ft/s	
J	Vater-surface elevati Vater-surface elevati Amount of backwater	on at Appr	oach sectio	_		<u> </u>

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the 100- and 500-year discharges was computed by use of the Laursen live-bed contraction scour equation (Richardson and Davis, 1995, p. 30, equation 17). At this site, the average channel velocity and the incipient-motion velocity of the bed material are nearly the same. For comparison, contraction scour was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20) and is presented in appendix F. The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Because the influence of scour processes on the stone-fill in front of the abutments is uncertain, the scour depth at the vertical abutment walls is unknown. Therefore, the total scour depth computed at the toe of the stone-fill was applied for the entire stone-fill embankment, as shown in figure 8.

Scour Results

Contraction scour:	100-year discharge	500-year discharge cour depths in feet)	Incipient overtopping discharge
Main channel	(5	cour acpins in jeeij	
Live-bed scour	0.0	0.0	
Clear-water scour			
Depth to armoring	3.8	4.6	
Left overbank			
Right overbank			
Local scour:			
Abutment scour	2.7	3.2	
Left abutment	2.7–	3.3-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	1	
	100-year discharge	500-year discharge	Incipient overtopping discharge
		(D_{50} in feet)	uischurge
Abutments:	1.2	1.4	
Left abutment	1.2	1.4	
Right abutment			
Piers:		- -	
Pier 1			
Pier 2			

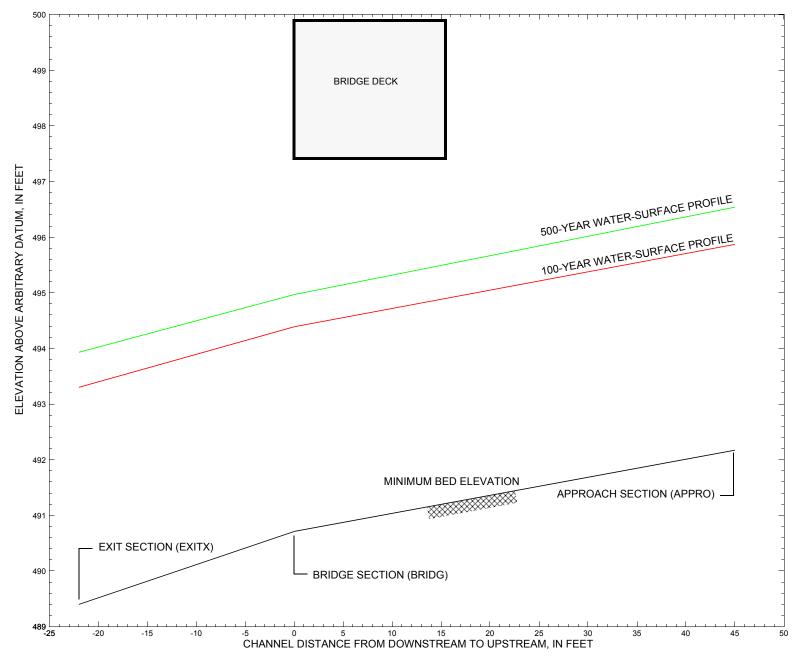


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure SHRETH00300015 on Town Highway 30, crossing Freeman Brook, Shrewsbury, Vermont.

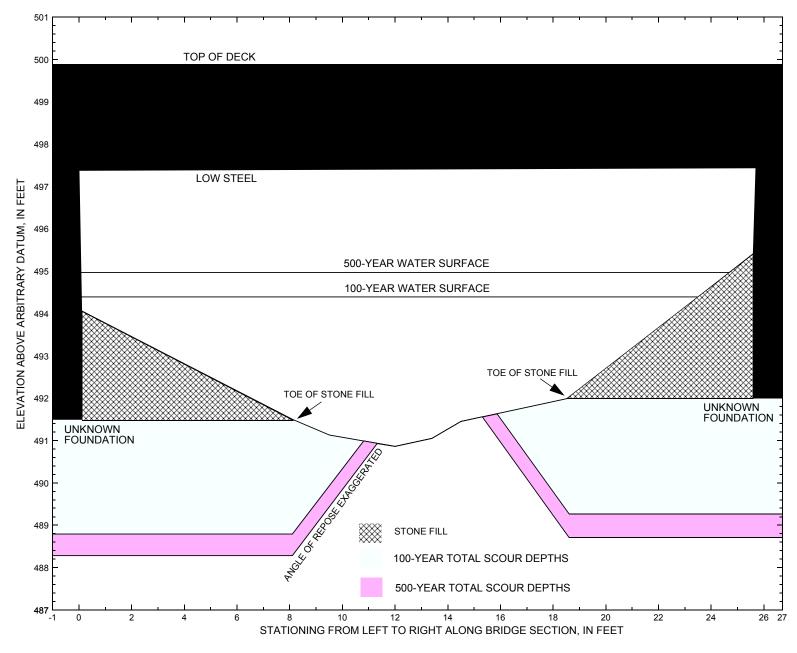


Figure 8. Scour elevations for the 100- and 500-year discharges at structure SHRETH00300015 on Town Highway 30, crossing Freeman Brook, Shrewsbury, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure SHRETH00300015 on Town Highway 30, crossing Freeman Brook, Shrewsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yea	ar discharge is 450) cubic-feet per sec	cond				
Left abutment	0.0		497.4		491.5	0.0	2.7		2.7	488.8	
Right abutment	25.7		497.4		492.0	0.0	2.7		2.7	489.3	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure SHRETH00300015 on Town Highway 30, crossing Freeman Brook, Shrewsbury, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-year discharge is 620 cubic-feet per second										
Left abutment	0.0		497.4		491.5	0.0	3.2		3.2	488.3	
Right abutment	25.7		497.4		492.0	0.0	3.3		3.3	488.7	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1961, Killington Peak, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File shre015.wsp
T1
        Hydraulic analysis for structure SHRETH00300015 Date: 10-MAR-98
T2
         TH 30 CROSSING FREEMAN BROOK IN SHREWSBURY, VT
Т3
         6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
Q
           450.0
                  620.0
SK
          0.0349 0.0349
*
           -22
XS
    EXITX
                         0.
                        -28.3, 498.43
                                       -7.0, 496.31 0.0, 493.59
GR
          -74.7, 502.17
GR
                          5.8, 489.45
                                          7.8, 489.40
           4.4, 489.75
                                                         9.9, 489.40
                                         24.4, 493.06
GR
           10.4, 489.80
                          12.3, 489.99
                                                        40.3, 495.98
          124.0, 497.64 166.8, 499.26 191.8, 502.49 246.5, 513.18
GR
          0.080 0.060 0.080
Ν
                 -7.0 40.3
SA
*
XT
            16
    BRTEM
            0.0, 497.38 0.0, 494.06
                                          8.1, 491.50
           9.5, 491.13 12.0, 490.86
18.6, 492.00 25.6, 495.41
                                         13.4, 491.05
GR
                                                      14.5, 491.45
GR
                                          25.7, 497.44
*
   BRIDG 0 15.0 * * 0.0092
XS
GT
Ν
         0.050
*
XS
   USBRG 16 15.0 * * 0.0092
GT
Ν
         0.050
*
           42
XT
    APTEM
                        0.
                       -40.4, 503.95
           -89.5, 514.35
GR
                                         -12.1, 502.09
                                                         -4.8, 498.67
GR
           0.0, 496.76
                          3.9, 493.57
                                          7.0, 492.52
                                                         9.6, 491.92
GR
           12.0, 491.83
                          15.7, 492.35
                                         16.6, 492.71
                                                         17.6, 492.92
                                         44.1, 497.27
           21.4, 496.27
                          24.4, 496.96
                                                         94.4, 501.50
GR
          118.2, 506.97 166.9, 510.86
GR
*
XS APPRO 45 * * * 0.1129
GT
          0.065 0.080
N
                 24.4
SA
HP 1 BRIDG 494.39 1 494.39
HP 2 BRIDG 494.39 * * 450
HP 1 APPRO 495.87 1 495.87
HP 2 APPRO 495.87 * * 450
HP 1 BRIDG 494.97 1 494.97
HP 2 BRIDG 494.97 * * 620
HP 1 APPRO 496.54 1 496.54
HP 2 APPRO 496.54 * * 620
EΧ
ER
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File shre015.wsp Hydraulic analysis for structure SHRETH00300015 Date: 10-MAR-98 TH 30 CROSSING FREEMAN BROOK IN SHREWSBURY, VT RLB

	alysis for stru NG FREEMAN BROO			10-MAR-98 RLB
*** RUN D.	ATE & TIME: 03-	24-98 14:20		
CROSS-SECTION PRO	OPERTIES: ISEQ	= 2; SECID =	BRIDG; SRD	= 0.
WSEL SA# A	REA K 5		PH LEW	REW QCR 450.
	53. 2589.		00 0.	
VELOCITY DISTRIB	UTION: ISEQ =	2; SECID = BR	IDG; SRD =	0.
	W REW AR			
494.39 0.	0 23.8 52	.5 2589.	450. 8.57	
X STA. 0.0				
	6.9 2.6 .24 8.81			
X STA. 8.9	9.5	10.1 10.	7 11.3	11.9
A(I)	2.1 2.0	2.0	2.0	2.1
V(I) 10	.73 11.01	11.17	11.10 1	0.91
X STA. 11.9				
	2.1 2.1 .96 10.86			
X STA. 15.1	15 9	16 7 17	5 18 5	23.8
A(I)	2.2 2.2	2.3	2.3	6.7
V(I) 10	.38 10.21	9.93	9.66	3.35
CROSS-SECTION PRO	OPERTIES: ISEQ	= 4; SECID =	APPRO; SRD	= 45.
WSEL SA# A	REA K	TOPW WETP AL	PH LEW	REW QCR
1 495.87	49. 2000. 49. 2000.	19. 21. 1.	00 2.	452. 21. 452.
VELOCITY DISTRIE	UTION: ISEQ =	4; SECID = AP	PRO; SRD =	45.
	W REW ARI 5 20.6 49			
X STA. 1.5	5.7	6.5 7.	3 7.9	8.5
A(I)	6.4 2.3	2.2	2.1	2.0
V(I) 3	.53 9.68	10.14	10.80 1	1.27
X STA. 8.5 A(I)	9.1	9.7 10. 1.9		
	.03 11.28			
X STA. 11.3	11.9	12.4 12.	9 13.5	14.1
A(I)	2.0 2.0	2.0	2.0	2.0
V(I) 11	.33 11.34	11.44	11.31 1	1.10
	14.7 2.0 2.0	15.3 15. 2.1		
	.31 11.01			3.62

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File shre015.wsp Hydraulic analysis for structure SHRETH00300015 Date: 10-MAR-98

	analysis for s		H00300015 Dat	e: 10-MAR-98 RLB
	SING FREEMAN B. I DATE & TIME:			КГВ
CROSS-SECTION	PROPERTIES: I	SEQ = 2; SEC	ID = BRIDG; SR	D = 0.
WSEL SA#	AREA K	TOPW WETP	ALPH LEW	REW QCR
1 494.97	66. 3627.	24. 27. 24 27	1.00 0.	622. 25 622
131.37	3027.	21. 27.	1.00	23. 022.
VELOCITY DISTR	RIBUTION: ISEQ	= 2; SECID	= BRIDG; SRD =	0.
			Q VE	
494.97	0.0 25.0	66.2 3627.	620. 9.3	7
X STA. 0.0	4.6	5.9	6.9 7.	7 8.5
			2.9	
V(I)	3.87 9.	50 10.64	10.84	11.46
			10.6 11.	2 11.9
	2.7 2			2.6
V(I)	11.66 11.	86 12.03	11.96	11.76
X STA. 11.9	12.5	13.1	13.8 14.	5 15.3
A(I)		.6 2.6		= * *
V(I)	12.09 11.	95 11.92	11.59	11.35
X STA. 15.3	16.1	17.0	17.8 18.	8 25.0
, ,	2.7 2			9.1
V(I)	11.48 11.	32 11.03	10.77	3.42
CROSS-SECTION	PROPERTIES: I	SEQ = 4; SEC	ID = APPRO; SR	D = 45.
WSEL SA#	AREA K	TOPW WETP	ALPH LEW	REW QCR
1	63. 2794.	21. 23.		621.
496.54	63. 2794.	21. 23.	1.00 1.	21. 621.
VELOCITY DISTR	RIBUTION: ISEQ	= 4; SECID	= APPRO; SRD =	45.
WSEL	LEW REW	AREA K	Q VE	L
496.54	0.7 21.3	62.8 2794.	620. 9.8	8
X STA. 0.7	5.4	6.2	7.0 7.	7 8.3
A(I)	8.4 2	.8 2.7	2.6	2.5
V(I)	3.68 11.	10 11.36	11.73	12.31
X STA. 8.3	8.9	9.5	10.1 10.	7 11.3
A(I)	2.5 2	.5 2.5	2.5	2.5
V(I)	12.32 12.	35 12.50	12.58	12.52
			13.0 13.	
A(I)	2.5 2	.5 2.5	2.5	2.5
V(I)	12.38 12.	39 12.47	12.55	12.17
X STA. 14.2	14.8	15.5	16.2 16.	9 21.3
A(I)	2.5 2	.6 2.6	2.7	8.3
V(I)	12.63 11.	99 11.86	11.33	3.73

WSPRO OUTPUT FILE (continued)

XSID: CODE SRDL LEW AREA VHD HFEGL CRWS Q WSEL SRD FLEN REW K ALPH НО ERR FR# VEL

EXITX:XS ***** 0. 58. 0.92 **** 494.23 493.10 450. 493.30 -22. ***** 26. 2407. 1.00 **** ***** 0.90 7.70

===125 FR# EXCEEDS FNTEST AT SECID "BRIDG": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 3.26 492.87 494.39

===110 WSEL NOT FOUND AT SECID "BRIDG": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 492.80 497.29 0.50

===115 WSEL NOT FOUND AT SECID "BRIDG": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 492.80 497.29 494.39

===130 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !!!!!

ENERGY EQUATION N_O_T B_A_L_A_N_C_E_D AT SECID "BRIDG"

WSBEG, WSEND, CRWS = 494.39 497.29 494.39

BRIDG:XS 22. 0. 53. 1.14 ***** 495.53 494.39 450. 494.39 0. 22. 24. 2596. 1.00 ***** ******* 1.00 8.55

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.
"USBRG" KRATIO = 1.44

USBRG:XS 16. 0. 67. 0.69 0.33 495.86 ****** 450. 495.17 16. 16. 25. 3731. 1.00 0.00 0.00 0.70 6.67

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 1.13 495.63 495.87

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 494.67 514.69 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 494.67 514.69 495.87

===130 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !!!!!

ENERGY EQUATION N_O_T B_A_L_A_N_C_E_D AT SECID "APPRO"

WSBEG, WSEND, CRWS = 495.87 514.69 495.87

APPRO:XS 29. 2. 49. 1.29 ***** 497.16 495.87 450. 495.87 45. 29. 21. 2000. 1.00 ***** ******* 1.00 9.10

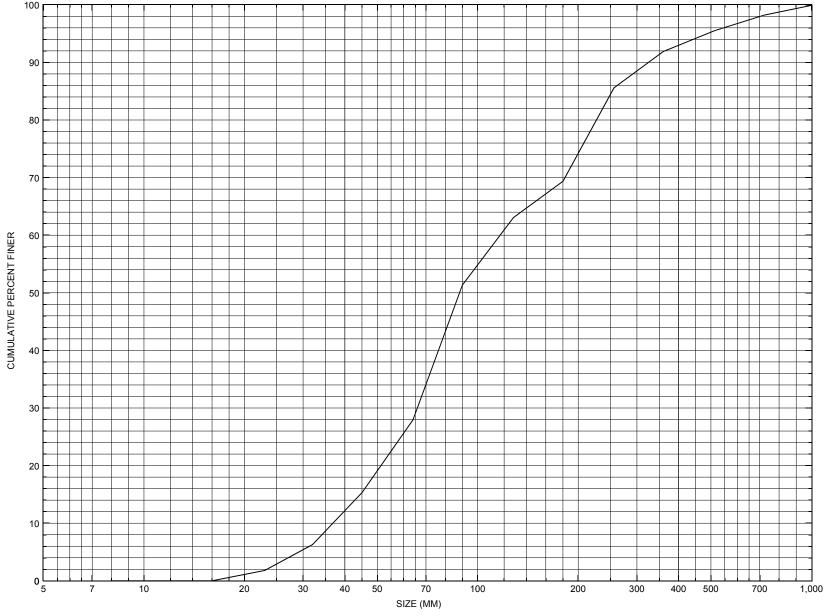
FIRST USER DEFINED TABLE.

XSID:CODE SRD LEW REW K AREA VEL WSEL 0. 26. EXITX:XS -22. 450. 2407. 58. 7.70 493.30 24. BRIDG:XS 0. 0. 450. 2596. 53. 8.55 494.39 USBRG:XS 16. 0. 25. 450. 3731. 67. 6.67 495.17 APPRO:XS 45. 2.. 21. 450. 2000. 49. 9.10 495.87

SECOND USER DEFINED TABLE.

XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EGL WSEL EXITX:XS 493.10 0.90 489.40 513.18********** 0.92 494.23 493.30 BRIDG:XS 494.39 1.00 490.71 497.29********** 1.14 495.53 494.39 USBRG:XS ******* 0.70 490.86 497.44 0.33 0.00 0.69 495.86 495.17 APPRO:XS 495.87 1.00 492.17 514.69************************** 1.29 497.16 495.87

WSPRO OUTPUT FILE (continued)


*	** RUN I	DATE & T	IME: 03	-24-98	3 14:2	20			
XSID:CODE SRD		LEW REW					CRWS FR#		WSEL
EXITX:XS * -22. *							493.72 0.91		493.93
===125 FR# :							CONTINUED. 494.30		97
===110 WSEL							AY. 497.29	0.50	
===115 WSEL							CRWS.	494.97	
===130 CRIT	ENERG	Y EQUATI	ON N_O	_T B_	_A_L_A_	_N_C_E_D	U _ M _ E AT SECII	"BRIDG	
BRIDG:XS 0.							494.97 1.00		494.97
USBRG:XS							***** 0.72		495.80
===125 FR# :							CONTINUED. 496.20		54
===110 WSEL							CAY. 514.69	0.50	
===115 WSEL							CRWS.	496.54	
===130 CRIT	ENERG	Y EQUATI	ON N_O	_T B_	_A_L_A_	N_C_E_D	U _ M _ E AT SECII	"APPRO	
APPRO:XS	29. 29.						496.54 1.00		496.54
FIRST USER	DEFINE	TABLE.							
XSID: COD	E SRI) LEW	REW		Q	K	AREA	VEL	WSEL

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-22.	-1.	29.	620.	3318.	76.	8.21	493.93
BRIDG:XS	0.	0.	25.	620.	3624.	66.	9.37	494.97
USBRG:XS	16.	0.	26.	620.	5061.	83.	7.48	495.80
APPRO:XS	45.	1.	21.	620.	2794.	63.	9.88	496.54

SECOND USER DEFINED TABLE.

XSID: CODE	E CRWS	FR#	YMIN	YMAX	HF	НО	VHD	EGL	WSEL
EXITX:XS	493.72	0.91	489.40	513.18**	*****	****	1.05	494.97	493.93
BRIDG:XS	494.97	1.00	490.71	497.29**	*****	****	1.37	496.33	494.97
USBRG:XS	*****	0.72	490.86	497.44	0.34	0.00	0.87	496.67	495.80
APPRO:XS	496.54	1.00	492.17	514.69**	*****	***	1.52	498.06	496.54

APPENDIX C: **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure SHRETH00300015, in Shrewsbury, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number SHRETH00300015

General Location Descriptive

Data collected by (First Initial, Full last name) E BOEHMLER

Date (MM/DD/YY) __03 / _22 / _95

Highway District Number (1 - 2; nn) 03 County (FIPS county code; I - 3; nnn) 021

Mile marker (*I* - 11; nnn.nnn) **000000** Town (FIPS place code; I - 4; nnnnn) 65275

Waterway (1 - 6) FREEMAN BROOK Road Name (1 - 7): -

Vicinity (1 - 9) 0.4 MI JCT CL 2 TH 3 Route Number TH030

Topographic Map Killington Peak Hydrologic Unit Code: 02010002

Longitude (*i* - 17; *nnnnn.n*) **72486** Latitude (I - 16; nnnn.n) 43303

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10112200151122

Maximum span length (I - 48; nnnn) 0027 Maintenance responsibility (1 - 21; nn) 03

Year built (1 - 27; YYYY) 1976 Structure length (I - 49; nnnnnn) 000030

Average daily traffic, ADT (I - 29; nnnnnn) 000050 Deck Width (I - 52; nn.n) 160

Channel & Protection (I - 61; n) 7 Year of ADT (1 - 30; YY) 92

Opening skew to Roadway (I - 34; nn) 15 Waterway adequacy (I - 71; n) 7

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Year Reconstructed (1 - 106) 0000 Structure type (I - 43; nnn) 302

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) 027.8

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 005.5

Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) 153.0

Comments:

The structural inspection report of 6/8/94 indicates the structure is a steel stringer type bridge with a concrete deck. The abutment walls and wingwalls are concrete. The right abutment wall is reported in good condition. There are two diagonal cracks at each corner of the abutment and wingwalls. The left abutment wall and its wingwalls are reported in relatively good condition. There is large stone fill protection in front of each abutment and all wingwalls. The streambed is noted as consisting of boulders and gravel mainly. The channel proceeds straight through the crossing. The footings are noted in the report as not visible and settling is not apparent. There is some minor debris build-up noted downstream. The report also noted there are no gravel bars under the bridge.

	Bridg	ge Hydro	ologic Da	ata					
Is there hydrologic data available	Is there hydrologic data available? Y if No, type ctrl-n h VTAOT Drainage area (mi²): 1.3								
Terrain character:									
Stream character & type: _									
Ctroomhod motorial:									
Streambed material: -			250		0. 320				
Discharge Data (cfs): Q _{2.33} _ Q ₅₀	380	Q ₁	0 <u>250</u> 450		$Q_{25} = \frac{520}{100}$	<u>, </u>			
Record flood date (MM / DD / YY):									
Estimated Discharge (cfs):									
Ice conditions (Heavy, Moderate, Li		-							
The stage increases to maximur	m highwate	er elevatio	n (<i>Rapidly, I</i>	Not rapidly):					
The stream response is (Flashy, I	Not flashy):	-							
Describe any significant site con									
stage: Channel is noted as much expected to create backwa		upstream	than the bi	ridge open	ing and the	e bridge is not			
expected to create backwa									
Watershed storage area (in perce	net): = 0/								
The watershed storage area is:	<i>'</i> ——	ainly at the h	eadwaters: 2	2- uniformly	distributed: 3	R-immediatly unstream			
The wateroned storage area is:		e site)	caawaters, z	- armorring	aistributeu, o	rinnedially applicant			
Water Surface Elevation Estima	tes for Exi	sting Struc	<u>sture:</u>	1	1	-			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀				
Water surface elevation (ft))	-	4.1	4.7	5.1	5.6				
	_	_	8.0	_	<u>-</u>				
Velocity (ft / sec)									
Long term stream bed changes:	-					-			
le the ready of evertenced below	u tha O	2 (V N-	11-1	II	Fragues				
Is the roadway overtopped below Relief Elevation (#):									
Relief Lievation (ii).	DISCITE	ilge over i	oauway at	Q ₁₀₀ (11 /	sec)				
Assillation of the state of the state of	0 () (II						
Are there other structures nearb									
Upstream distance (<i>miles</i>): Highway No. :									
Clear span (ft): Clear He									
Olean 116	- igi it (/t/)		an vvalerw	αy (π)					

Downstream distance (<i>miles</i>):			
Clear span (#): - Clear Heigh			
Comments:		, , _	
-			
	USGS Waters	hed Data	
Watershed Hydrographic Data			
Drainage area (DA) 1.09 mi ² Watershed storage (ST) 0	Lake/	pond/swamp area _.	mi ²
Bridge site elevation		water elevation3	3286 ft
Main channel length			22.40
10% channel length elevation		85% channel leng	th elevation <u>2340</u> ft
Main channel slope (S)519.96	ft / mi		
Watershed Precipitation Data			
Average site precipitation	in Avera	ge headwater pred	cipitation in
Maximum 2yr-24hr precipitation e	vent (124,2)	in	
Average seasonal snowfall (Sn)	ft		

Bridge Plan Data								
Are plans available? N								
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation: If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation: Is boring information available? _N If no, type ctrl-n bi								
Comments: NO PLANS								

Cross-sectional Data

Is cross-sectional data available? Yes___ If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

Comments: The low chord elevation coordinate in this cross section was taken from the 10/11/95 survey done for this report. The station and low chord to bed lengths come from a sketch attached to a 5/21/92 bridge inspection report. This section is of the US bridge face.

Station	0	6.5	11.33	15.83	25.83	-	-	-	-	-	-
Feature	LAB	-	-	-	RAB	-	-	-	-	-	-
Low chord elevation	497.44	497.44	497.44	497.44	497.44	-	-	-	-	-	-
Bed elevation	494.94	491.77	491.11	491.69	494.77	ı	-	-	-	-	-
Low chord to bed	2.50	5.67	6.33	5.75	2.67	ı	-	-	-	-	-
Station	-	-	-	-	1	ı	-	-	-	-	-
Feature		-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	1	1	-	-	-	1	-	-	-
Low chord to bed	-	-	1	1	-	-	-	1	-	-	-
Station	-	-	1	1	-	-	-	1	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	ı	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	_

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number SHRETH00300015

Qa/Qc Check by: CG Date: 02/20/96

Computerized by: CG Date: 02/20/96

RB Date: 03/27/98 Reviewd by:

A.	General	Location	Descri	ptive
----	---------	----------	--------	-------

. Data collected by (First Initial, Full last name)	T	Severance	Date (MM/DD/YY)	10	/	11	/ 19 95
. Data concotca by (1 hot milian, 1 am last marrie)			Date (WINNIDD) 11)		,		1 1 1 7 0

2. Highway District Number ³ County Rutland (021)

Waterway (/ - 6) Freeman Brook

Route Number TH 30

3. Descriptive comments:

Located 0.4 miles from Town Highway 3.

Town Shrewsbury (65275)

Road Name -Hydrologic Unit Code: 02010002

Mile marker 0

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_6___ RBUS 6 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 30.0 (feet)

Span length 27.0 (feet)

Bridge width 16.0 (feet)

Road approach to bridge:

8. LB 2 RB 2 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

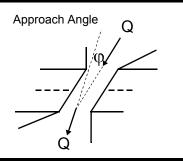
10. Embankment slope (run / rise in feet / foot): US left --US right --

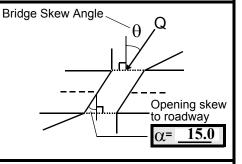
	Pr	otection	12 Erasian	14 Coverity
	11.Type	12.Cond.	13.Erosion	14.Severity
LBUS		-	2	1
RBUS		-	0	
RBDS		-	0	
LBDS	_0	-	0	-

Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 2 16. Bridge skew: 18

17. Channel impact zone 1:

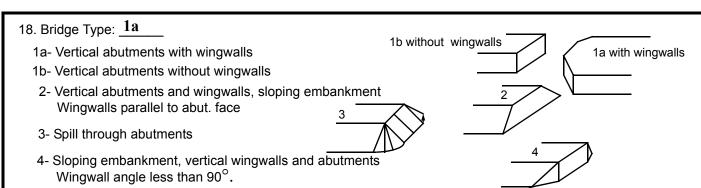
Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1

Range? 49 feet US (US, UB, DS) to 63 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 70 feet **DS** (US, UB, DS) to **154** feet **DS**

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

Measured bridge length = 30 feet, measured span length = 28 feet, and measured bridge width = 16.2 feet.

This bridge has a concrete deck with concrete curbing and a steel railing.

The left bank is slightly higher/steeper than the right bank upstream.

The channel is straight through the bridge section.

C. Upstream Channel Assessment

2	1. Bank he	ight (BF)	22. Bank	angle (BF)	26. % Veg	. cover (BF)	27. Bankı	material (BF)	28. Bank e	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
26.5	3.0			4.0	4	4	54		1	1
23. Bank w	ridth <u>40</u>	.0	24. Cha	nnel width	30.0	25. Thal	weg depth	24.5	9. Bed Mate	erial <u>543</u>
			0	- 0						

30 .Bank protection type: LB <u>0</u> RB <u>0</u> 31. Bank protection condition: LB <u>-</u> RB <u>-</u>

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

There is protection around the bridge itself, but none on the upstream banks. Boulders and cobbles line the channel banks. The fines have washed away.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 40 35. Mid-bar width: 6
36. Point bar extent: 32 feet US (US, UB) to 44 feet US (US, UB, DS) positioned 55 %LB to 100 %RB
37. Material: <u>43</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.): There is an additional point bar extending from 63 feet upstream to 86 feet upstream. It has a mid-bar dis-
tance of 79 feet, a mid-bar width of 7 feet, and is positioned 45% LB to 100% RB. The material is boulders,
cobbles, gravel, and sand.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 52 42. Cut bank extent: 49 feet US (US, UB) to 63 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length Width Depth : Position %LB to %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NO CHANNEL SCOUR There is some localized scour, but none is due to the bridge.
There is some iscanized seout, but none is due to the bridge.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB
13.5 1.0 2 7 7 -
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0 - not evident; 1 - light fluvial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
There is a how along the base of the right abutment protection. It extends from 2 feet unstream to ten feet
There is a bar along the base of the right abutment protection. It extends from 2 feet upstream to ten feet under the bridge. The mid-bar distance is 5 feet. The mid-bar width is 3 feet. It is positioned 60% LB to 70%
RB.
At the streamward edge of the bar, there is a very small scour hole from 4 feet under the bridge to 7 feet
under the bridge. It is 2 feet wide and 0.25 feet deep.

65. Debris and Ice	Is there debris accumulation?	_ (Y or N) 66. Where? N	_ (1 - Upstream; 2 - At bridge; 3 - Both
67 Debris Potential -	(1- Low: 2- Moderate: 3- High)	68 Canture Efficiency 1	(1- Low: 2- Moderate: 3- High)

69. Is there evidence of ice build-up? 1 (*Y or N*)

Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

Although the vertical clearance is about 6 feet, the channel beneath the bridge and between the abutments is wide.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	90	2	0	-	-	90.0
RABUT	1	0	90	1		2	0	25.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

Both abutments have stone/boulder protection. The flow is not near the abutments. (25% LABUT to 75% RABUT).

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	81. Angle?	Length?
USLWW:						25.0	
USRWW:	Y		1		0	0.5	
DSLWW:	_		-		<u>Y</u>	20.0	
DSRWW:	1		0			20.0	

USRWW **USLWW** Wingwall length Wingwall angle **DSRWW** DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

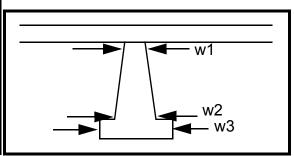
Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	0	Y	-	1	1	1	1
Condition	Y	-	1	-	1	1	1	1
Extent	1	-	0	2	3	3	3	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):


3

3

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

85. Pier no.	widt	h (w) fe	eet	elevation (e) feet			
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1		6.5	7.0	60.0	30.0	25.0	
Pier 2	8.0	6.5	-	60.0	-	-	
Pier 3	-	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	ere is	ream	other	left
87. Type	pro-	left	three	wing
88. Material	tec-	wing	wing	wall
89. Shape	tion	wall,	walls	pro-
90. Inclined?	alon	but	. The	tec-
91. Attack ∠ (BF)	g the	it is	spac	tion
92. Pushed	entir	not	es	have
93. Length (feet)	-	-	-	-
94. # of piles	e	piled	betw	been
95. Cross-members	base	as	een	filled
96. Scour Condition	of	high	the	in
97. Scour depth	the	as at	upst	and
98. Exposure depth	upst	the	ream	some

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undern vegetation exists in the spa	•	tection and protecti	ion extent, unusu	al scour proce	esses, etc.):	
N						
100.	E. Downstre	am Channel	Assessmeı	nt		
Bank height (BF) SRD LB RB	Bank angle (BF) LB RB	% Veg. cover (LB RE	, ,	naterial (BF) RB	Bank ero LB	sion (BF) RB
Bank width (BF)	Channel width	1 <u>-</u>	Thalweg depth	-	Bed Materia	al <u>-</u>
Bank protection type (Qmax): SRD - Section ref. dist. to US is	LB - RB	Bank on (Veg) cover: 1 - 0	protection condi			
Bed and bank Material: 0 - orga	anics; 1 - silt / clay, < 1 bble, 64 - 256mm; 5 - b 1 - light fluvial; 2 - mode ent; 1 - < 12 inches; 2 - good; 2 - slumped; 3 -	/16mm; 2 - sand, 1/ oulder, > 256mm; 6 erate fluvial; 3 - hea < 36 inches; 3 - < 4 eroded; 4 - failed	/16 - 2mm; 3 - gra 6- bedrock; 7 - ma vy fluvial / mass 8 inches; 4 - < 60	vel, 2 - 64mm Inmade wasting	;	
-						
-						
-						
-						
-						
101. Is a drop structure 103. Drop: feet 105. Drop structure comments of the comments	104. Structure	material: <u>-</u> (1 - s			feet B- concrete; 4 -	· other)
-						

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar distance: - Mid-bar width: -
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB
Material: Point or side har comments (Circle Point or Side: note additional hars, material variation, status, etc.):
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
· - · -
 -
Is a cut-bank present? N (Y or if N type ctrl-n cb) Where? O (LB or RB) Mid-bank distance: PIE
Cut bank extent: RS feet (US, UB, DS) to feet (US, UB, DS) Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure)
Cut bank comments (eg. additional cut banks, protection condition, etc.):
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 4
Scour dimensions: Length 4 Width 4 Depth: 4 Positioned 0 %LB to 1 %RB
Scour comments (eg. additional scour areas, local scouring process, etc.): 435
4
3 1
Are there major confluences? 1 (Y or if N type ctrl-n mc) How many? Pro-
Confluence 1: Distance tec- Enters on tion (LB or RB) Type exte (1- perennial; 2- ephemeral) Confluence 2: Distance nds Enters on tro (LB or RB) Type m (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
the downstream left wingwall to 57 feet downstream on the left bank.
There is protection piled from 44 feet to 58 feet downstream on the right bank.
E Coomorphio Channal Accoomant
F. Geomorphic Channel Assessment
107. Stage of reach evolution 1- Constructed 2- Stable
3 - Aggraded 4 - Degraded
5 - Laterally unstable 6 - Vertically and laterally unstable

lescriptors):	nents (Channel evolution r	iot considering bridge	enecis; see HEC-20,	, rigure i loi geomori	ЛПС
N					

109. G. Plan View Sketch
t bar pb debris stone wall stone wall
rip rap or stone fill cross-section ++++++ other wall ambient channel —
Storie IIII

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: SHRETH00300015 Town: SHREWSBURY Road Number: TH 30 County: RUTLAND

Stream: FREEMAN BROOK

Initials RLB Date: 3/24/98 Checked: MAI

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and Davis, 1995, p. 28, eq. 16)

Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft	450 49.5 0 0 19.1 0	620 62.8 0 0 20.6	0 0 0 0 0
D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	0.2895	0.2895	0
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft	2.6 ERR ERR	3.0 ERR ERR	ERR ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	2000 2000 0 0 0.0000 450.0 0.0	2794 2794 0 0 0.0000 620.0 0.0	0 0 0 0 ERR ERR ERR ERR
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	9.1 ERR ERR 8.7 ERR ERR	9.9 ERR ERR 8.9 ERR ERR	ERR ERR ERR N/A ERR ERR
Results			
Live-bed(1) or Clear-Water(0) Control Main Channel Left Overbank Right Overbank	action Sco 1 N/A N/A	our? 1 N/A N/A	N/A N/A N/A

Live-Bed Contraction Scour

Laursen's Live Bed Contraction Scour $y2/y1 = (Q2/Q1)^{(6/7)*(W1/W2)^{(k1)}}$ $ys=y2-y_$ bridge (Richardson and Davis, 1995, p. 30, eq. 17 and 18)

	Approach	ı		Bridge		
Characteristic	100 yr	500 yr	Other Q	100 yr	500 yr	Other Q
Q1, discharge, cfs	450	620	0	450	620	0
			0	2589		_
Total conveyance	2000	2794	-			
Main channel conveyance	2000	2794		2589		
Main channel discharge	450	620	ERR	450	620	ERR
Area - main channel, ft2	49.5	62.8	0	52.5	66.2	0
(W1) channel width, ft	19.1	20.6	0	16.6	17.2	0
(Wp) cumulative pier width, ft	0	0	0	0	0	0
W1, adjusted bottom width(ft)	19.1	20.6	0	16.6	17.2	0
D50, ft	0.2895	0.2895	0.2895			
w, fall velocity, ft/s (p. 32)	4.4024	4.4024	0			
y, ave. depth flow, ft	2.59	3.05	N/A	3.16	3.85	ERR
S1, slope EGL	0.0362	0.0384	0			
P, wetted perimeter, MC, ft	21	23	0			
R, hydraulic Radius, ft	2.357	2.730	ERR			
V*, shear velocity, ft/s	1.658	1.837	N/A			
V*/w	0.377	0.417	ERR			
Bed transport coeff., k1, (0.59 if	V*/w<0.5;	0.64 if	.5 <v* td="" w<2;<=""><td>0.69 if</td><td>V*/w>2.</td><td>0 p. 33)</td></v*>	0.69 if	V*/w>2.	0 p. 33)
k1	0.59	0.59	0			
y2,depth in contraction, ft	2.82	3.39	ERR			
ys, scour depth, ft (y2-y_bridge)	-0.35	-0.46	N/A			

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \text{Converted to English Units } ys=y2-y_bridge \\ \text{(Richardson and Davis, 1995, p. 32, eq. 20, 20a)}$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	450	620	0
(Q) discharge thru bridge, cfs	450	620	0
Main channel conveyance	2589	3627	0
Total conveyance	2589	3627	0
Q2, bridge MC discharge,cfs	450	620	ERR
Main channel area, ft2	53	66	0
Main channel width (normal), ft	16.6	17.2	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	16.6	17.2	0

Armoring

 $Dc = [(1.94*V^2)/(5.75*log(12.27*y/D90))^2]/[0.03*(165-62.4)]$ Depth to Armoring=3*(1/Pc-1) (Federal Highway Administration, 1993)

Downstream bridge face property Q, discharge thru bridge MC, cfs	100-yr 450	500-yr 620	Other Q N/A
Main channel area (DS), ft2	52.5	66.2	0
Main channel width (normal), ft	16.6	17.2	0.0
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	16.6	17.2	0.0
D90, ft	1.0663	1.0663	0.0000
D95, ft	1.6004	1.6004	0.0000
Dc, critical grain size, ft	0.5748	0.6169	ERR
Pc, Decimal percent coarser than Dc	0.311	0.286	0.000
Depth to armoring, ft	3.82	4.62	ERR

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and Davis, 1995, p. 48, eq. 28)

	Left Abutment			Right Abutment		
Characteristic	100 yr (Q 500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q
(Qt), total discharge, cfs	450	620	0	450	620	0
a', abut.length blocking flow, ft	1.3	1.7	0	1.2	1.7	0
Ae, area of blocked flow ft2	1.98	3.04	0	1.91	3.21	0
Qe, discharge blocked abut.,cfs	6.96	11.21	0	6.92	11.98	0
(If using Qtotal_overbank to obt	ain Ve,	leave Qe b	olank and	enter Ve	and Fr ma	nually)
Ve, (Qe/Ae), ft/s	3.52	3.69	ERR	3.62	3.73	ERR
ya, depth of f/p flow, ft	1.52	1.79	ERR	1.59	1.89	ERR
Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru)						
K1	0.55	0.55		0.55	0.55	0

⁻⁻Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US)

theta K2	105 1.02	105 1.02	0	75 0.98	75 0.98	0.00
Fr, froude number f/p flow	0.502	0.486	ERR	0.506	0.479	ERR
ys, scour depth, ft	2.71	3.22	N/A	2.73	3.29	N/A
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and Davis, 1995, p. 49,	eq. 29)					
a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1 Skew correction (p. 49, fig. 16) Froude no. f/p flow	1.3 1.52 0.85 1.00 0.50	1.7 1.79 0.95 1.00	0 ERR ERR 1.00 N/A	1.2 1.59 0.75 1.00	1.7 1.89 0.90 1.00	0 ERR ERR 1.00 N/A
Ys w/ corr. factor K1/0.55: vertical	ERR	ERR	ERR	ERR	ERR	ERR
vertical w/ ww's spill-through	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR

Abutment riprap Sizing

Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and Davis, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	1	1	0	1	1	0
y, depth of flow in bridge, ft	3.16	3.85		3.16	3.85	0.00
Median Stone Diameter for riprap Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	at: left ERR 1.32	abutment ERR 1.61	0.00 ERR	right ERR 1.32	abutment, ERR 1.61	ft 0.00 ERR
Fr<=0.8 (spillthrough abut.) Fr>0.8 (spillthrough abut.)	ERR	ERR	0.00	ERR	ERR	0.00
	1.17	1.42	ERR	1.17	1.42	ERR