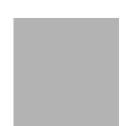
# LEVEL II SCOUR ANALYSIS FOR BRIDGE 57 (NEWFTH00690057) on TOWN HIGHWAY 69, crossing HUNTER BROOK, NEWFANE, VERMONT

Open-File Report 98-193

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

**U.S. Department of the Interior U.S. Geological Survey** 




# LEVEL II SCOUR ANALYSIS FOR BRIDGE 57 (NEWFTH00690057) on TOWN HIGHWAY 69, crossing HUNTER BROOK, NEWFANE, VERMONT

By RONDA L. BURNS

U.S. Geological Survey Open-File Report 98-193

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION



Pembroke, New Hampshire

1998

## U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

# CONTENTS

| Conversion Factors, Abbreviations, and Vertical Datum           | iv |
|-----------------------------------------------------------------|----|
| Introduction and Summary of Results                             | 1  |
| Level II summary                                                | 7  |
| Description of Bridge                                           | 7  |
| Description of the Geomorphic Setting                           | 8  |
| Description of the Channel                                      | 8  |
| Hydrology                                                       | 9  |
| Calculated Discharges                                           | 9  |
| Description of the Water-Surface Profile Model (WSPRO) Analysis | 10 |
| Cross-Sections Used in WSPRO Analysis                           | 10 |
| Data and Assumptions Used in WSPRO Model                        | 11 |
| Bridge Hydraulics Summary                                       | 12 |
| Scour Analysis Summary                                          | 13 |
| Special Conditions or Assumptions Made in Scour Analysis        | 13 |
| Scour Results                                                   | 14 |
| Riprap Sizing                                                   | 14 |
| Selected References                                             | 18 |
| Appendices:                                                     |    |
| A. WSPRO input file                                             | 19 |
| B. WSPRO output file                                            | 21 |
| C. Bed-material particle-size distribution                      | 26 |
| D. Historical data form                                         | 28 |

| E. Level I data form  | • |
|-----------------------|---|
| F. Scour computations |   |
|                       |   |

34

44

#### FIGURES

| 1. Map showing location of study area on USGS 1:24,000 scale map                     | 3  |
|--------------------------------------------------------------------------------------|----|
| 2. Map showing location of study area on Vermont Agency of Transportation town       |    |
| highway map                                                                          | 4  |
| 3. Structure NEWFTH00690057 viewed from upstream (August 13, 1996)                   | 5  |
| 4. Downstream channel viewed from structure NEWFTH00690057 (August 13, 1996)         | 5  |
| 5. Upstream channel viewed from structure NEWFTH00690057 (August 13, 1996).          | 6  |
| 6. Structure NEWFTH00690057 viewed from downstream (August 13, 1996).                | 6  |
| 7. Water-surface profiles for the 100- and 500-year discharges at structure          |    |
| NEWFTH00690057 on Town Highway 69, crossing Hunter Brook,                            |    |
| Newfane, Vermont.                                                                    | 15 |
| 8. Scour elevations for the 100- and 500-year discharges at structure                |    |
| NEWFTH00690057 on Town Highway 69, crossing Hunter Brook,                            |    |
| Newfane, Vermont.                                                                    | 16 |
|                                                                                      |    |
| TABLES                                                                               |    |
| 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure |    |
| NEWFTH00690057 on Town Highway 69, crossing Hunter Brook,                            |    |
| Newfane, Vermont                                                                     | 17 |
| 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure |    |
| NEWFTH00690057 on Town Highway 69, crossing Hunter Brook,                            |    |
| Newfane, Vermont                                                                     | 17 |

#### CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

\_

\_

| Multiply                              | Ву                | To obtain                                      |
|---------------------------------------|-------------------|------------------------------------------------|
|                                       | Length            |                                                |
| inch (in.)                            | 25.4              | millimeter (mm)                                |
| foot (ft)                             | 0.3048            | meter (m)                                      |
| mile (mi)                             | 1.609             | kilometer (km)                                 |
|                                       | Slope             |                                                |
| foot per mile (ft/mi)                 | 0.1894            | meter per kilometer (m/km)                     |
|                                       | Area              | <b>-</b> · · ·                                 |
| square mile (mi <sup>2</sup> )        | 2.590             | square kilometer (km <sup>2</sup> )            |
| • • • •                               | Volume            | •                                              |
| cubic foot $(ft^3)$                   | 0.02832           | cubic meter $(m^3)$                            |
|                                       | Velocity and Flow |                                                |
| foot per second (ft/s)                | 0.3048            | meter per second (m/s)                         |
| cubic foot per second ( $ft^3/s$ )    | 0.02832           | cubic meter per second (m <sup>3</sup> /s      |
| cubic foot per second per square mile | 0.01093           | cubic meter per<br>second per square           |
| $[(ft^{3}/s)/mi^{2}]$                 |                   | kilometer [(m <sup>3</sup> /s)/km <sup>2</sup> |

#### OTHER ABBREVIATIONS

| BF                     | bank full                           | LWW   | left wingwall                    |
|------------------------|-------------------------------------|-------|----------------------------------|
| cfs                    | cubic feet per second               | Max   | maximum                          |
| D <sub>50</sub>        | median diameter of bed material     | MC    | main channel                     |
| DS                     | downstream                          | RAB   | right abutment                   |
| elev.                  | elevation                           | RABUT | face of right abutment           |
| f/p<br>ft <sup>2</sup> | flood plain                         | RB    | right bank                       |
| $ft^2$                 | square feet                         | ROB   | right overbank                   |
| ft/ft                  | feet per foot                       | RWW   | right wingwall                   |
| FEMA                   | Federal Emergency Management Agency | TH    | town highway                     |
| FHWA                   | Federal Highway Administration      | UB    | under bridge                     |
| JCT                    | junction                            | US    | upstream                         |
| LAB                    | left abutment                       | USGS  | United States Geological Survey  |
| LABUT                  | face of left abutment               | VTAOT | Vermont Agency of Transportation |
| LB                     | left bank                           | WSPRO | water-surface profile model      |
| LOB                    | left overbank                       | yr    | year                             |
|                        |                                     |       |                                  |

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

# LEVEL II SCOUR ANALYSIS FOR BRIDGE 57 (NEWFTH00690057) ON TOWN HIGHWAY 69, CROSSING HUNTER BROOK, NEWFANE, VERMONT

By Ronda L. Burns

#### INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure NEWFTH00690057 on Town Highway 69 crossing Hunter Brook, Newfane, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 4.67-mi<sup>2</sup> drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest, except on the downstream left bank, where there is a house with a lawn.

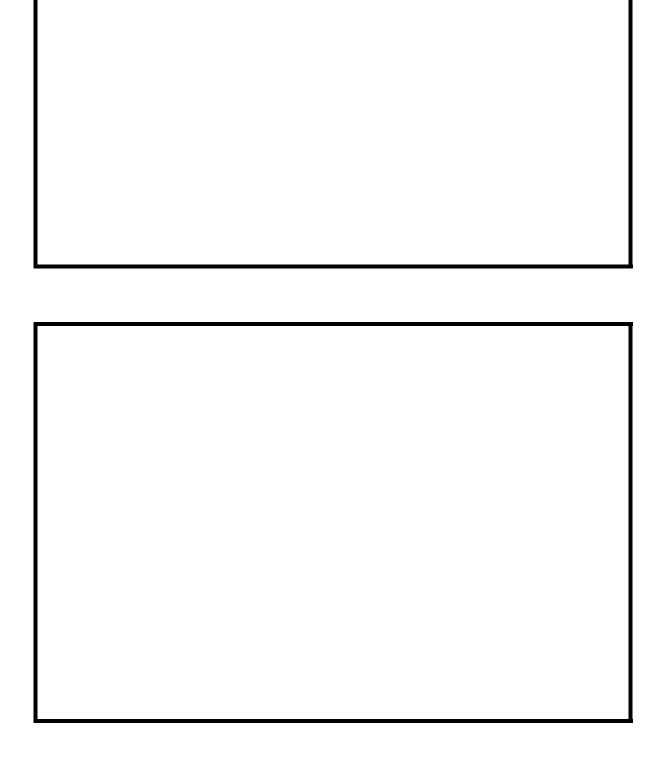
In the study area, Hunter Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 58 ft and an average bank height of 11 ft. The channel bed material ranges from sand to boulders with a median grain size  $(D_{50})$  of 79.2 mm (0.260 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 13, 1996, indicated that the reach was laterally unstable. There is a cut-bank upstream and point bars are upstream and downstream of the bridge.

The Town Highway 69 crossing of Hunter Brook is a 40-ft-long, one-lane bridge consisting of one 36-foot steel-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 35.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.

The tops of the footings on the left and right abutments and upstream right wingwall were observed during the Level I assessment. The downstream left wingwall footing was also exposed 1 ft. The scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the downstream right bank and type-2 stone fill (less than 36 inches diameter) along the upstream right bank, upstream left wingwall, downstream right wingwall, and the upstream end of the upstream right wingwall. There was also a wall along the downstream left bank constructed of concrete blocks. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour computed for all modelled flows was zero ft. Abutment scour ranged from 4.9 to 7.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

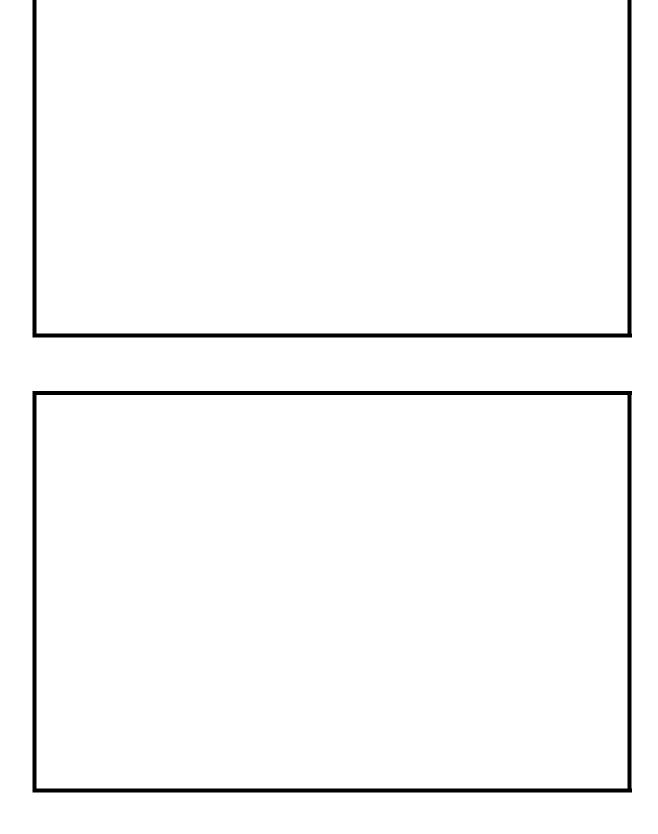





Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.





### **LEVEL II SUMMARY**

| Structure Number | NEWFTH00690057 | — Stream | Hunter E | Brook        |   |
|------------------|----------------|----------|----------|--------------|---|
| County Windha    | m              | Road —   | TH 69    | – District — | 2 |

### **Description of Bridge**

| 40                                 |                                |                         | 14.5                             |            |                   | 36              |
|------------------------------------|--------------------------------|-------------------------|----------------------------------|------------|-------------------|-----------------|
| Bridge length                      | ft                             | Bridge width            |                                  | ft         | Max span lengt    |                 |
| <b>Alignment of bridge t</b><br>Ve | <i>o road (d</i><br>rtical, co |                         | ight) —                          | Straigl    |                   | early vertical  |
| Abutment type                      | No                             |                         | Embankm                          | ent type   | <u>8/13/96</u>    | <u></u>         |
| Stone fill on abutment             | ?                              |                         | <b>Date of inst</b> upstream lef |            | all and downstrea | am right        |
| wingwall and at the up             |                                | end of the upstre       | eam right wi                     | ngwall.    |                   |                 |
|                                    |                                |                         |                                  |            |                   |                 |
|                                    |                                | Abu                     | itments and                      | wingwal    | lls are concrete. | The tops of the |
| footings on the left an            | d right al                     | butments and th         | e upstream i                     | right win  | gwall are visible | and the         |
| downstream left wing               | wall foot                      | ting is exposed 1       | l ft.                            |            |                   |                 |
|                                    |                                |                         |                                  |            | Yes               | 15              |
| Is bridge skewed to fl             | ood flow                       | according to            | Yes <u>surve</u>                 | <i>y</i> ? | Angle             |                 |
| There is a mild channe             | el bend in                     | n <u>the upstream</u> r | each. <u>The</u> .cu             | ut-bank l  | nas developed in  | the location    |
| where the flow impact              | s the ups                      | tream right banl        | k.                               |            |                   |                 |

### Debris accumulation on bridge at time of Level I or Level II site visit:

|              | Date of inspection<br>8/13/96 | Percent of channel<br>blocked norizontally | Percent of alarriel<br>block <del>ed vertically</del> |
|--------------|-------------------------------|--------------------------------------------|-------------------------------------------------------|
| Level I      | 8/13/96                       | 0                                          | 0                                                     |
| Level II     | _Moderate. Th                 | ne banks are heavily vegetated             |                                                       |
| Potential fo | r debris                      |                                            |                                                       |

None as of 8/13/96.

Describe any features near or at the bridge that may affect flow (include observation date)

### **Description of the Geomorphic Setting**

| General topo | <b><i>ography</i></b> The channel is located within a high relief valley with steep valley walls.                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 8/13/96      |                                                                                                                                             |
| Geomorphi    | ic conditions at bridge site: downstream (DS), upstream (US)                                                                                |
| Date of insp | pection Vertical                                                                                                                            |
| DS left:     | concrete block wall to a mildly sloped overbank                                                                                             |
| DS right:    | Steep valley wall                                                                                                                           |
| US left:     | Steep channel bank to a moderately sloped overbank                                                                                          |
| US right:    | Steep valley wall                                                                                                                           |
|              | Description of the Channel                                                                                                                  |
|              |                                                                                                                                             |
| Average to   | op widthf Average depthf                                                                                                                    |
| C            | Cobbles/Boulders     Gravel/Cobbles       nt had material     Bank material                                                                 |
| ~            | Sinuous and laterally                                                                                                                       |
| unstable wit | h non-alluvial channel boundaries and wide point bars.                                                                                      |
| Vacatatina   | 8/13/96                                                                                                                                     |
|              | <i>co</i> Short grass                                                                                                                       |
| DS left:     | Trees and brush                                                                                                                             |
| DS right:    | Trees and brush                                                                                                                             |
| US left:     | Trees and brush                                                                                                                             |
| US right:    | No                                                                                                                                          |
|              | ppear stable? There is a cut-bank on the unstream right bank and point bars are                                                             |
| located up   | stream and downstream. There is also a large landslide approximately 400 ft                                                                 |
| upstream.    |                                                                                                                                             |
|              |                                                                                                                                             |
|              |                                                                                                                                             |
|              | There are two small                                                                                                                         |
| dams acros   | ss the channel upstream that are constructed from the available bed material as <i>ny obstructions in channel and date of observation</i> . |
|              | on 8/13/96. These dams create pools during low flow conditions.                                                                             |

## Hydrology

|                                                                         | provinces: (approximate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Physiographic province/section</i><br>New England/New England Upland | <i>Percent of drainage area</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Is drainage area considered rural or urban? –                           | Rural <i>Describe any significant</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| urbanization:                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Is there a USGS gage on the stream of interest?                         | <u>No</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USGS gage description                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| USGS gage number                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <br>Gage drainage area                                                  | <i>mi<sup>2</sup></i> No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 470 Calculated                                                        | d Discharges 2 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _1,470                                                                  | <u>2,100</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\frac{1,470}{2}$ Q100 $ft^3/s$                                         | d Discharges $2,100$<br>$Q500 	ft^3/s$<br>00- and 500-year discharges are based on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q100 ft <sup>3</sup> /s<br>                                             | $\frac{2,100}{0}$ $\frac{2,100}{ft^3/s}$ 00- and 500-year discharges are based on a<br>th bridge number 45 in Newfane. Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q100 ft <sup>3</sup> /s<br>                                             | $\frac{2,100}{0}$ $\frac{2,100}{ft^3/s}$ 00- and 500-year discharges are based on a<br>th bridge number 45 in Newfane. Bridge<br>site and has flood frequency estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $2100 	ft{ft}^3/s$                                                      | $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{1}{100}$ $$ |
| Q100 ft <sup>3</sup> /s<br>                                             | $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{12,100}{9}$                                                                                                                               |
| Q100 ft <sup>3</sup> /s<br>                                             | $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{2,100}{9}$ $\frac{1,100}{9}$                                                                                              |

#### Description of the Water-Surface Profile Model (WSPRO) Analysis

| Datum for WSPRO analysis (USGS survey, sea level, VTAOT | plans) | USGS survey |
|---------------------------------------------------------|--------|-------------|
| Datum tie between USGS survey and VTAOT plans           | None   |             |

 Description of reference marks used to determine USGS datum.
 RM1 is a chiseled X on

 top of the upstream end of the right abutment (elev. 499.93 ft, arbitrary survey datum). RM2 is a

 chiseled X on top of the downstream end of the left abutment (elev. 499.87 ft, arbitrary survey

 datum).

| <sup>1</sup> Cross-section | Section<br>Reference<br>Distance<br>(SRD) in feet | <sup>2</sup> Cross-section<br>development | Comments                                                    |
|----------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| EXITX                      | -39                                               | 1                                         | Exit section                                                |
| BRIDG                      | 0                                                 | 1                                         | Downstream bridge face section                              |
| USBRG                      | 19                                                | 1                                         | Upstream bridge face sec-<br>tion                           |
| APPRO                      | 55                                                | 2                                         | Modelled Approach sec-<br>tion (Templated from<br>APTEM)    |
| APTEM                      | 67                                                | 1                                         | Approach section as sur-<br>veyed (Used as a tem-<br>plate) |

#### **Cross-Sections Used in WSPRO Analysis**

<sup>&</sup>lt;sup>1</sup> For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

#### Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.060 to 0.075.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0258 ft/ft, which was estimated from surveyed thalweg points downstream of the bridge.

The surveyed approach section (APTEM) was moved along the approach channel slope (0.0294 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

For all modelled flows, the bridge was not a significant constriction in the channel. The WSPRO bridge routines failed to find a solution which balanced the total discharge and energy at the APPRO section with the sum of the discharges and energy over the roadway and through the bridge opening. Therefore, the bridge sections at the upstream and downstream faces were modelled as open channel sections. This allowed the model to evaluate flow conditions through the bridge and at the approach section as unconstricted.

#### **Bridge Hydraulics Summary**

Average bridge embankment elevation499.9Average low steel elevation497.7ft

| 100-year discharge $1,470$ ft <sup>3</sup> /s |                        |
|-----------------------------------------------|------------------------|
| Water-surface elevation in bridge opening     | <u>490.9</u> <i>ft</i> |
| Road overtopping? <u>No</u> Discharge of      | over road <u> </u>     |
| Area of flow in bridge opening 146            | $ft^2$                 |
| Average velocity in bridge opening 10         | ).1 <i>ft/s</i>        |
| Maximum WSPRO tube velocity at bridge         | 12.2 ft/s              |

 Water-surface elevation at Approach section with bridge
 \_\_\_\_\_

 Water-surface elevation at Approach section without bridge
 \_\_\_\_\_

 Amount of backwater caused by bridge
 N/A t

| 500-year discharge       | 2,100      | ft <sup>3</sup> /s |           |                    |
|--------------------------|------------|--------------------|-----------|--------------------|
| Water-surface elevation  | in bridge  | e opening          | 492.3     | <u>_f</u> t        |
| Road overtopping?        | No         | Discharge          | over road | ,_ <sup>3</sup> /s |
| Area of flow in bridge o | pening     | 193                | $ft^2$    |                    |
| Average velocity in brid | ge openin  | ıg                 | 10.9 ft/s |                    |
| Maximum WSPRO tube       | e velocity | at bridge          | 13.3      | ss                 |

 Water-surface elevation at Approach section with bridge
 \_\_\_\_\_

 Water-surface elevation at Approach section without bridge
 \_\_\_\_\_

 Amount of backwater caused by bridge
 N/A t

| Incipient overtopping discharge           | - | $ft^3$ | /s   |      |
|-------------------------------------------|---|--------|------|------|
| Water-surface elevation in bridge opening | g |        | -    | ft   |
| Area of flow in bridge opening            | - | $ft^2$ |      |      |
| Average velocity in bridge opening        |   | -      | ft/s |      |
| Maximum WSPRO tube velocity at bridg      | e |        | -    | ft/s |

| Water-surface elevation at Approach section | with bridge    | - |
|---------------------------------------------|----------------|---|
| Water-surface elevation at Approach section | without bridge | - |
| Amount of backwater caused by bridge        | - <i>jt</i>    |   |

#### Scour Analysis Summary

#### Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the 100-year and 500-year discharges was computed by use of the Laursen live-bed contraction scour equation (Richardson and Davis, 1995, p. 30, equation 17). The flow conditions evaluated at the downstream bridge face were used for the scour analysis.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

#### **Scour Results**

| Contraction scour: | 100-year<br>discharge | 500-year<br>discharge | Incipient<br>overtopping<br>discharge |
|--------------------|-----------------------|-----------------------|---------------------------------------|
|                    | (S                    | cour depths in feet   | )                                     |
| Main channel       |                       |                       |                                       |
| Live-bed scour     |                       |                       |                                       |
| Clear-water scour  | 0.0                   | 0.0                   |                                       |
| Depth to armoring  | 8.2                   | 9.3                   |                                       |
|                    |                       |                       |                                       |
| Left overbank      |                       |                       |                                       |
| Right overbank     |                       |                       |                                       |
| Local scour:       |                       |                       |                                       |
| Abutment scour     | 5.9                   | 7.3                   |                                       |
| Left abutment      | 4.9-                  | 6.5-                  |                                       |
| Right abutment     |                       |                       |                                       |
| Pier scour         |                       |                       |                                       |
| Pier 1             |                       |                       |                                       |
| Pier 2             |                       |                       |                                       |
| Pier 3             |                       |                       |                                       |

### **Riprap Sizing**

|                | 100-year<br>discharge | 500-year<br>discharge<br>(D <sub>50</sub> in feet) | Incipient<br>overtopping<br>discharge |
|----------------|-----------------------|----------------------------------------------------|---------------------------------------|
|                | 1.7                   | 2.2                                                |                                       |
| Abutments:     | 1.7                   | 2.2                                                |                                       |
| Left abutment  |                       |                                                    |                                       |
| Right abutment |                       |                                                    |                                       |
| Piers:         |                       |                                                    |                                       |
| Pier 1         |                       |                                                    |                                       |
| Pier 2         |                       |                                                    |                                       |

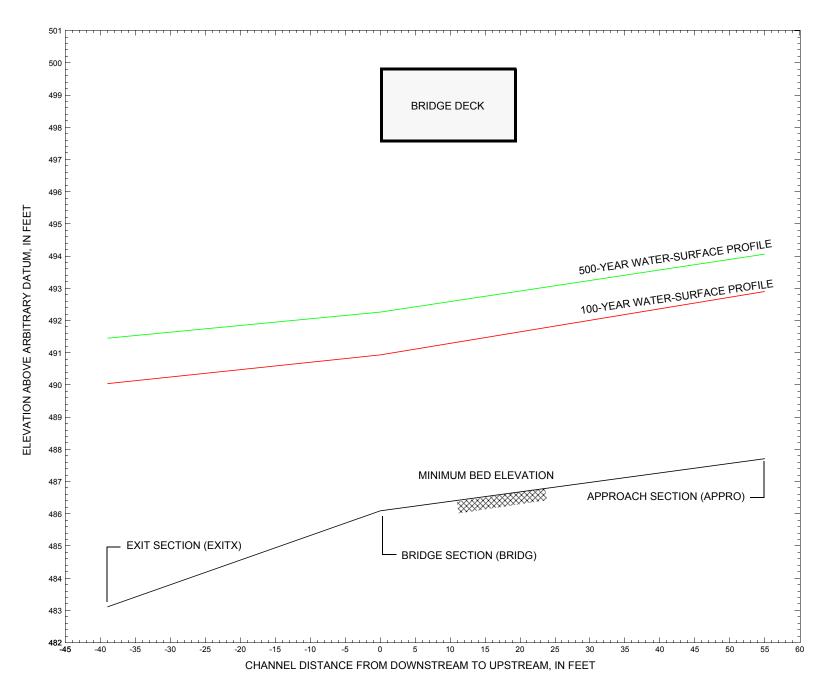



Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure NEWFTH00690057 on Town Highway 69, crossing Hunter Brook, Newfane, Vermont.

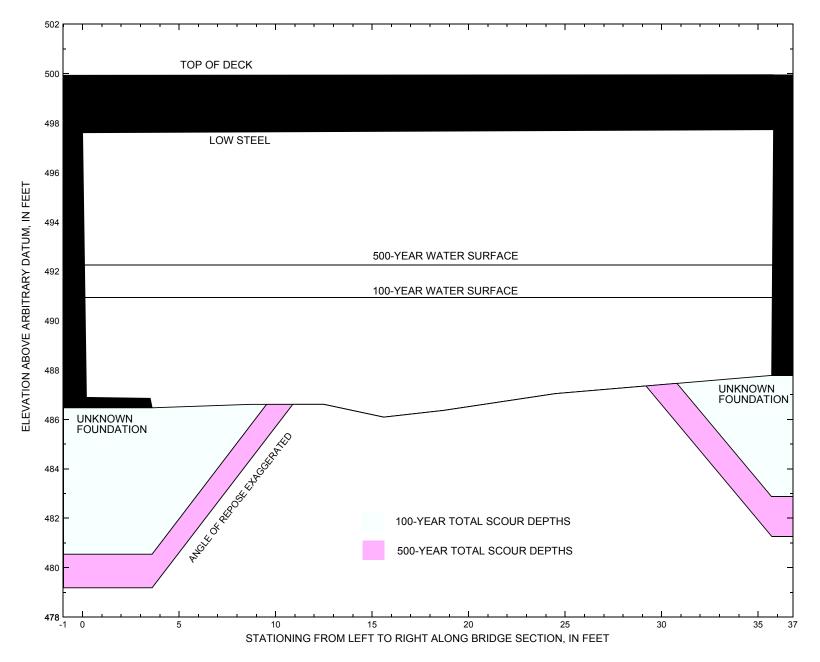



Figure 8. Scour elevations for the 100- and 500-year discharges at structure NEWFTH00690057 on Town Highway 69, crossing Hunter Brook, Newfane, Vermont.

 Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure NEWFTH00690057 on Town Highway 69, crossing Hunter Brook, Newfane, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

| Description    | Station <sup>1</sup> | VTAOT<br>minimum<br>low-chord<br>elevation<br>(feet) | Surveyed<br>minimum<br>low-chord<br>elevation <sup>2</sup><br>(feet) | Bottom of<br>footing/pile<br>elevation <sup>2</sup><br>(feet) | Channel<br>elevation at<br>abutment/<br>pier <sup>2</sup><br>(feet) | Contraction<br>scour depth<br>(feet) | Abutment<br>scour<br>depth<br>(feet) | Pier<br>scour<br>depth<br>(feet) | Depth of<br>total scour<br>(feet) | Elevation of<br>scour <sup>2</sup><br>(feet) | Remaining<br>footing/pile<br>depth<br>(feet) |
|----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|
|                |                      |                                                      |                                                                      | 100-year                                                      | r discharge is 1,47                                                 | 0 cubic-feet per se                  | econd                                |                                  |                                   |                                              |                                              |
| Left abutment  | 0.0                  |                                                      | 497.6                                                                |                                                               | 486.5                                                               | 0.0                                  | 5.9                                  |                                  | 5.9                               | 480.6                                        |                                              |
| Right abutment | 35.8                 |                                                      | 497.7                                                                |                                                               | 487.8                                                               | 0.0                                  | 4.9                                  |                                  | 4.9                               | 482.9                                        |                                              |

1.Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure NEWFTH00690057 on Town Highway 69, crossing Hunter Brook, Newfane, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

| Description    | Station <sup>1</sup> | VTAOT<br>minimum<br>low-chord<br>elevation<br>(feet) | Surveyed<br>minimum<br>low-chord<br>elevation <sup>2</sup><br>(feet) | Bottom of<br>footing/pile<br>elevation <sup>2</sup><br>(feet) | Channel<br>elevation at<br>abutment/<br>pier <sup>2</sup><br>(feet) | Contraction<br>scour depth<br>(feet) | Abutment<br>scour<br>depth<br>(feet) | Pier<br>scour<br>depth<br>(feet) | Depth of<br>total scour<br>(feet) | Elevation of<br>scour <sup>2</sup><br>(feet) | Remaining<br>footing/pile<br>depth<br>(feet) |
|----------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|
|                |                      |                                                      |                                                                      | 500-year                                                      | discharge is 2,10                                                   | 0 cubic-feet per se                  | cond                                 |                                  |                                   |                                              |                                              |
| Left abutment  | 0.0                  |                                                      | 497.6                                                                |                                                               | 486.5                                                               | 0.0                                  | 7.3                                  |                                  | 7.3                               | 479.2                                        |                                              |
| Right abutment | 35.8                 |                                                      | 497.7                                                                |                                                               | 487.8                                                               | 0.0                                  | 6.5                                  |                                  | 6.5                               | 481.3                                        |                                              |

1.Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

#### SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1986, West Dover, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

# APPENDIX A:

# **WSPRO INPUT FILE**

### **WSPRO INPUT FILE**

U.S. Geological Survey WSPRO Input File newf057.wsp Τ1 T2 Hydraulic analysis for structure NEWFTH00690057 Date: 05-JAN-98 Т3 TH 69 CROSSING HUNTER BROOK IN NEWFANE, VERMONT RLB \* 6 29 30 552 553 551 5 16 17 13 3 \* 15 14 23 21 11 12 4 7 3 J3 \* Q 1470.0 2100.0 SK 0.0258 0.0258 \* XS EXITX -39 Ο. GR -131.8, 501.46 -72.4, 498.20 -1.6, 496.05 0.0, 484.53 GR 1.4, 484.33 3.1, 484.08 6.8, 483.68 9.8, 483.11 GR 13.2, 483.57 21.0, 484.37 25.9, 485.62 46.6, 497.39 88.5, 499.66 GR 66.8, 495.73 \* Ν 0.075 \* XS BRIDG 0 0.0 GR -193.9, 516.70 -170.3, 505.57 -108.6, 503.11 -100.3, 498.12 GR -77.0, 497.32 -52.0, 499.94 -0.1, 499.93 0.0, 497.61 0.2, 486.89 3.5, 486.85 3.6, 486.47 GR GR 8.7, 486.61 12.5, 486.61 15.6, 486.09 18.7, 486.36 GR 24.5, 487.04 35.7, 487.78 35.8, 497.73 85.6, 500.26 150.1, 505.74 36.2, 499.95 GR 166.4, 516.96 \* Ν 0.060 \* XS USBRG 19 0.0 -170.3, 505.57 GR -193.9, 516.70 -108.6, 503.11 -100.3, 498.12 GR -77.0, 497.32 -52.0, 499.94 -0.1, 499.93 0.0, 497.61 0.1, 488.41 5.0, 487.68 11.0, 486.99 16.2, 487.16 GR 24.1, 487.02 30.0, 487.72 35.8, 487.65 36.0, 487.98 GR GR 36.1, 497.73 36.2, 499.95 85.6, 500.26 150.1, 505.74 GR 166.4, 516.96 \* Ν 0.060 \* XT APTEM 67 Ο. GR -117.1, 506.84 -87.1, 501.66 -31.5, 501.79 -19.2, 500.34 18.4, 488.06 GR 0.0, 490.45 8.3, 489.68 14.5, 488.64 GR 21.3, 488.30 25.5, 489.30 28.0, 489.74 35.0, 490.93 GR 77.0, 510.59 48.9, 502.83 65.2, 505.88 \* XS APPRO 55 \* \* \* 0.0294 GΤ Ν 0.070 \* HP 1 BRIDG 490.93 1 490.93 HP 2 BRIDG 490.93 \* \* 1470 HP 1 APPRO 492.90 1 492.90 HP 2 APPRO 492.90 \* \* 1470 HP 1 BRIDG 492.26 1 492.26 HP 2 BRIDG 492.26 \* \* 2100 HP 1 APPRO 494.06 1 494.06 HP 2 APPRO 494.06 \* \* 2100 \*

# APPENDIX B: WSPRO OUTPUT FILE

### WSPRO OUTPUT FILE

| Hydraulic analys<br>TH 69 CROSSING H   | Survey WSPRO Input File newf057.wsp<br>is for structure NEWFTH00690057 Date: 05-JAN-98<br>UNTER BROOK IN NEWFANE, VERMONT RLB<br>& TIME: 02-09-98 16:00                                                                       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CROSS-SECTION PROPER                   | TIES: ISEQ = 2; SECID = BRIDG; SRD = 0.                                                                                                                                                                                       |
| WSEL SA# AREA<br>1 146.<br>490.93 146. | K TOPW WETP ALPH LEW REW QCR<br>8137. 36. 43. 1670.<br>8137. 36. 43. 1.00 0. 36. 1670.                                                                                                                                        |
|                                        | N: ISEQ = 2; SECID = BRIDG; SRD = 0.                                                                                                                                                                                          |
|                                        |                                                                                                                                                                                                                               |
|                                        | REW AREA K Q VEL<br>35.7 145.6 8137. 1470. 10.10                                                                                                                                                                              |
| X STA. 0.1<br>A(I) 15.7<br>V(I) 4.68   | 4.0         5.4         6.8         8.2         9.7           6.1         6.4         6.2         6.2           12.03         11.56         11.94         11.82                                                               |
| X STA. 9.7<br>A(I) 6.3<br>V(I) 11.64   | 11.1 12.6 14.0 15.3 16.6<br>6.4 6.3 6.2 6.1<br>11.54 11.75 11.93 12.01                                                                                                                                                        |
| X STA. 16.6<br>A(I) 6.0<br>V(I) 12.15  | 17.9 19.2 20.6 22.1 23.7<br>6.1 6.3 6.3 6.4<br>12.08 11.71 11.60 11.40                                                                                                                                                        |
| X STA. 23.7<br>A(I) 6.7<br>V(I) 10.94  | 25.4         27.2         29.1         31.1         35.7           6.7         7.0         7.0         15.2           10.94         10.57         10.53         4.82                                                          |
| CROSS-SECTION PROPER                   | TIES: ISEQ = 4; SECID = APPRO; SRD = 55.                                                                                                                                                                                      |
| WSEL SA# AREA<br>1 145.<br>492.90 145. | K         TOPW         WETP         ALPH         LEW         REW         QCR           6713.         43.         45.         1507.           6713.         43.         45.         1.00         -5.         38.         1507. |
| VELOCITY DISTRIBUTIO                   | N: ISEQ = 4; SECID = APPRO; SRD = 55.                                                                                                                                                                                         |
|                                        | REW AREA K Q VEL<br>37.7 144.9 6713. 1470. 10.14                                                                                                                                                                              |
| X STA5.4<br>A(I) 16.7<br>V(I) 4.40     | 3.1         5.3         7.4         9.3         11.0           7.2         7.1         6.8         6.5           10.20         10.34         10.79         11.37                                                              |
| X STA. 11.0<br>A(I) 6.1<br>V(I) 11.98  | 12.5 13.8 15.1 16.4 17.5<br>6.1 5.9 5.9 5.7<br>12.13 12.36 12.48 12.81                                                                                                                                                        |
| X STA. 17.5<br>A(I) 5.8<br>V(I) 12.66  | 18.6         19.8         20.9         22.1         23.4           5.8         5.8         5.9         5.9           12.69         12.78         12.46         12.37                                                          |
| X STA. 23.4<br>A(I) 6.3<br>V(I) 11.72  | 24.9 26.5 28.4 30.6 37.7<br>6.3 6.7 7.3 15.0<br>11.60 10.91 10.02 4.91                                                                                                                                                        |

## WSPRO OUTPUT FILE (continued)

|                        | Hydraulic<br>TH 69 CROS | analys:<br>SSING HU  | Survey WSPF<br>is for stru<br>JNTER BROOF<br>& TIME: 02- | icture<br>( IN NE  | NEWFTH<br>WFANE,   | 100690057<br>VERMONT | Date           | : 05-J<br>RLB |                       |
|------------------------|-------------------------|----------------------|----------------------------------------------------------|--------------------|--------------------|----------------------|----------------|---------------|-----------------------|
| CRO                    | SS-SECTION              | PROPER               | ΓIES: ISEÇ                                               | 2 = 2;             | SECI               | D = BRID             | G; SRD         | =             | 0.                    |
| WS1                    | EL SA#<br>1<br>26       | AREA<br>193.<br>193. | K<br>12506.<br>12506.                                    | TOPW<br>36.<br>36. | WETP<br>46.<br>46. | ALPH                 | LEW<br>0.      | REW<br>36.    | QCR<br>2548.<br>2548. |
| VELO                   |                         |                      | N: ISEQ =                                                |                    |                    |                      |                |               |                       |
| 4                      | WSEL<br>492.26          | LEW<br>0.1           | REW AF<br>35.7 193                                       | REA<br>3.0 1       | K<br>2506.         | Q<br>2100.           | VEL<br>10.88   |               |                       |
| X STA.<br>A(I)<br>V(I) | 0.1                     | 23.1<br>4.54         | 4.4<br>7.9<br>13.28                                      | 5.8<br>1           | 8.2<br>2.74        | 7.2<br>8.<br>13.1    | 8.6<br>0<br>3  | 8.1<br>12.96  | 10.0                  |
| X STA.<br>A(I)<br>V(I) | 10.0                    | )<br>8.2<br>12.75    | 11.5<br>8.0<br>13.20                                     | 12.9<br>1          | 8.1<br>2.94        | 14.3<br>8.<br>13.0   | 15.6<br>0<br>5 | 8.1<br>12.94  | 16.9                  |
| X STA.<br>A(I)<br>V(I) | 16.9                    | 8.0<br>13.19         | 18.3<br>8.0<br>13.06                                     | 19.6<br>1          | 8.1<br>.3.02       | 21.1<br>8.3<br>12.7  | 22.5<br>2<br>6 | 8.4<br>12.50  | 24.1                  |
| X STA.<br>A(I)<br>V(I) | 24.3                    | 8.4<br>12.54         | 25.7<br>8.8<br>11.99                                     | 27.4<br>1          | 8.5                | 29.2<br>8.<br>11.9   | 31.0<br>8<br>7 | 22.0<br>4.77  | 35.7                  |
| CRO                    | SS-SECTION              | PROPER               | ΓIES: ISEÇ                                               | 2 = 4;             | SECI               | D = APPR             | O; SRD         | =             | 55.                   |
| WS1<br>494.0           | EL SA#<br>1<br>06       | AREA<br>197.<br>197. | K<br>10544.<br>10544.                                    | TOPW<br>47.<br>47. | WETP<br>49.<br>49. | ALPH<br>1.00         | LEW<br>-8.     | REW<br>39.    | QCR<br>2295.<br>2295. |
| VELO                   | OCITY DIST              | RIBUTION             | N: ISEQ =                                                | 4; 5               | SECID =            | APPRO;               | SRD =          | 5             | 5.                    |
|                        |                         |                      | REW AF<br>39.1 197                                       |                    |                    |                      |                |               |                       |
| X STA.<br>A(I)<br>V(I) | -7.7                    | 24.1<br>4.36         | 2.2<br>9.3<br>11.24                                      | 4.4                | 9.0<br>1.63        | 6.4<br>9.1<br>11.5   | 8.4<br>1<br>0  | 8.6<br>12.26  | 10.1                  |
| X STA.<br>A(I)<br>V(I) | 10.1                    | 8.5<br>12.42         | 11.7<br>8.3<br>12.65                                     | 13.3<br>1          | 8.1<br>2.96        | 14.7<br>7.<br>13.3   | 16.0<br>9<br>3 | 7.9<br>13.31  | 17.3                  |
| X STA.<br>A(I)<br>V(I) | 17.3                    | 7.9<br>13.22         | 18.6<br>7.9<br>13.21                                     | 19.8<br>1          | 7.9<br>3.28        | 21.1<br>7.<br>13.2   | 22.5<br>9<br>4 | 8.1<br>12.90  | 23.9                  |
| X STA.<br>A(I)<br>V(I) | 23.9                    | 8.5<br>12.41         | 25.5<br>8.6<br>12.16                                     | 27.2               | 9.0<br>1.64        | 29.2<br>9.<br>10.8   | 31.4<br>7<br>5 | 20.6<br>5.09  | 39.1                  |

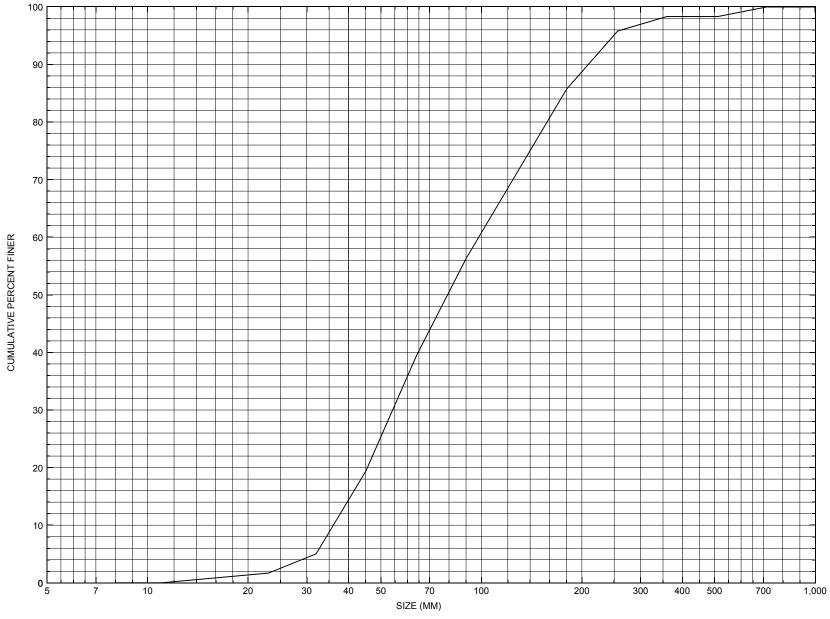
## WSPRO OUTPUT FILE (continued)

| U.S. Geological Survey WSPRO Input File newf057.wsp<br>Hydraulic analysis for structure NEWFTH00690057 Date: 05-JAN-98<br>TH 69 CROSSING HUNTER BROOK IN NEWFANE, VERMONT RLB<br>*** RUN DATE & TIME: 02-09-98 16:00 |                   |                                                      |                            |              |                              |                          |                |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------|----------------------------|--------------|------------------------------|--------------------------|----------------|----------------------------|
| XSID:CODE<br>SRD                                                                                                                                                                                                     |                   | EW AREA<br>EW K                                      |                            | HF<br>HO     | EGL<br>ERR                   | CRWS<br>FR#              | Q<br>VEL       | WSEL                       |
| EXITX:XS *<br>-39. *                                                                                                                                                                                                 |                   |                                                      |                            |              | 491.14<br>******             | 488.66<br>0.66           | 1470.<br>8.42  | 490.04                     |
|                                                                                                                                                                                                                      | FNTEST,F          | TEST AT SEC<br>R#,WSEL,CRW<br>AT SECID "             | S = 0.8                    | 30           | 0.88                         | 490.93                   | 490            | .60                        |
| ===115 WSEL                                                                                                                                                                                                          | NOT FOUND         | IM1,WSLIM2,<br>AT SECID "<br>IM1,WSLIM2,             | BRIDG":                    | USED         | WSMIN =                      | 516.96<br>CRWS.<br>16.96 | 0.50           | )                          |
| BRIDG:XS<br>0.                                                                                                                                                                                                       | 39.               | 0. 146.                                              | 1.59<br>1.00               | 1.13         | 492.52                       |                          | 1470.<br>10.10 | 490.93                     |
|                                                                                                                                                                                                                      | FNTEST, F         | TEST AT SEC<br>R#,WSEL,CRW<br>AT SECID "             | S = 0.8                    | 30           | 0.84                         | 491.61                   | 491            | .14                        |
|                                                                                                                                                                                                                      | WSL<br>NOT FOUND  | AT SECID<br>IM1,WSLIM2,<br>AT SECID W<br>IM1,WSLIM2, | DELTAY =<br>USBRG":        | = 49<br>USED | 0.43<br>WSMIN =              | 516.96                   | 0.50<br>491.14 | 1                          |
| USBRG:XS                                                                                                                                                                                                             | 19.               | 0. 152.                                              | 1.45                       | 0.58         | 493.09<br>0.00               | 491.14                   |                |                            |
| ===125 FR#                                                                                                                                                                                                           | EXCEEDS FN        | TEST AT SEC<br>R#,WSEL,CRW                           | ID "APPF                   | RO":         | TRIALS CO                    | ONTINUED.                |                | . 84                       |
|                                                                                                                                                                                                                      | WSL               | AT SECID "<br>IM1,WSLIM2,<br>AT SECID "              | DELTAY =                   | = 49         | 1.14                         | 510.24                   | 0.50           |                            |
|                                                                                                                                                                                                                      |                   | IM1,WSLIM2,                                          |                            |              |                              | 10.24                    | 492.84         | 1                          |
| APPRO:XS<br>55.                                                                                                                                                                                                      |                   |                                                      | 1.60<br>1.00               |              | 494.50<br>0.01               |                          | 1470.<br>10.14 | 492.90                     |
| FIRST USER                                                                                                                                                                                                           | DEFINED T         | ABLE.                                                |                            |              |                              |                          |                |                            |
| XSID:COD<br>EXITX:XS<br>BRIDG:XS<br>USBRG:XS                                                                                                                                                                         | -39.<br>0.<br>19. | 0. 36<br>0. 36                                       | . 1470<br>. 1470<br>. 1470 | ).<br>).     | K<br>9152.<br>8132.<br>8756. | 152.                     | 10.10<br>9.66  | 490.04<br>490.93<br>491.64 |
| APPRO:XS                                                                                                                                                                                                             | 55.               | -5. 38                                               | . 1470                     | J.           | 6717.                        | 145.                     | 10.14          | 492.90                     |

SECOND USER DEFINED TABLE.

| XSID:CODE | CRWS   | FR#  | YMIN   | YMAX    | HF    | HO   | VHD  | EGL    | WSEL   |
|-----------|--------|------|--------|---------|-------|------|------|--------|--------|
| EXITX:XS  | 488.66 | 0.66 | 483.11 | 501.46* | ***** | **** | 1.10 | 491.14 | 490.04 |
| BRIDG:XS  | 490.60 | 0.88 | 486.09 | 516.96  | 1.13  | 0.24 | 1.59 | 492.52 | 490.93 |
| USBRG:XS  | 491.14 | 0.83 | 486.99 | 516.96  | 0.58  | 0.00 | 1.45 | 493.09 | 491.64 |
| APPRO:XS  | 492.84 | 0.98 | 487.71 | 510.24  | 1.32  | 0.07 | 1.60 | 494.50 | 492.90 |

## WSPRO OUTPUT FILE (continued)


| U.S. Geological Survey WSPRO Input File newf057.wsp<br>Hydraulic analysis for structure NEWFTH00690057 Date: 05-JAN-98<br>TH 69 CROSSING HUNTER BROOK IN NEWFANE, VERMONT RLB<br>*** RUN DATE & TIME: 02-09-98 16:00 |                  |                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|--|--|--|--|
| XSID:CODE SRDL LEW AREA VHD HF<br>SRD FLEN REW K ALPH HO                                                                                                                                                             |                  | Q WSEL<br>VEL               |  |  |  |  |
| EXITX:XS ****** -1. 225. 1.35 *****<br>-39. ***** 36. 13069. 1.00 *****                                                                                                                                              |                  | 2100. 491.45<br>9.33        |  |  |  |  |
| ===125 FR# EXCEEDS FNTEST AT SECID "BRIDG":<br>FNTEST,FR#,WSEL,CRWS = 0.80<br>===110 WSEL NOT FOUND AT SECID "BRIDG": REDU                                                                                           | 0.83 492.25      | 491.61                      |  |  |  |  |
| WSLIM1,WSLIM2,DELTAY = 49<br>===115 WSEL NOT FOUND AT SECID "BRIDG": USEL                                                                                                                                            | D WSMIN = CRWS.  | 0.50                        |  |  |  |  |
| WSLIM1,WSLIM2,CRWS = 490.                                                                                                                                                                                            | .95 516.96       | 491.61                      |  |  |  |  |
| BRIDG:XS 39. 0. 193. 1.85 1.05<br>0. 39. 36. 12489. 1.00 0.25                                                                                                                                                        |                  |                             |  |  |  |  |
| ===125 FR# EXCEEDS FNTEST AT SECID "USBRG":                                                                                                                                                                          | TRIALS CONTINUED |                             |  |  |  |  |
| FNTEST, FR#, WSEL, CRWS = 0.80                                                                                                                                                                                       |                  | 492.15                      |  |  |  |  |
| ===110 WSEL NOT FOUND AT SECID "USBRG": REDU<br>WSLIM1,WSLIM2,DELTAY = 49                                                                                                                                            |                  | 0.50                        |  |  |  |  |
| ===115 WSEL NOT FOUND AT SECID "USBRG": USEI                                                                                                                                                                         |                  |                             |  |  |  |  |
| WSLIM1,WSLIM2,CRWS = 491.                                                                                                                                                                                            | .76 516.96       | 492.15                      |  |  |  |  |
| USBRG:XS 19. 0. 196. 1.79 0.52                                                                                                                                                                                       | 494.64 492.15    | 2100. 492.85                |  |  |  |  |
| 19. 19. 36. 12837. 1.00 0.00                                                                                                                                                                                         | 0.02 0.81        | 10.74                       |  |  |  |  |
| ===125 FR# EXCEEDS FNTEST AT SECID "APPRO":                                                                                                                                                                          | TRIALS CONTINUED |                             |  |  |  |  |
| FNTEST, FR#, WSEL, CRWS = 0.80                                                                                                                                                                                       |                  | 493.80                      |  |  |  |  |
| ===110 WSEL NOT FOUND AT SECID "APPRO": REDU<br>WSLIM1,WSLIM2,DELTAY = 49                                                                                                                                            |                  | 0.50                        |  |  |  |  |
| ===115 WSEL NOT FOUND AT SECID "APPRO": USEI                                                                                                                                                                         | D WSMIN = CRWS.  |                             |  |  |  |  |
| WSLIM1,WSLIM2,CRWS = 492.35 510.24 493.80                                                                                                                                                                            |                  |                             |  |  |  |  |
| APPRO:XS 368. 197. 1.77 1.17                                                                                                                                                                                         |                  | 2100. 494.06                |  |  |  |  |
| 55. 36. 39. 10535. 1.00 0.00                                                                                                                                                                                         | 0.01 0.92        | 10.66                       |  |  |  |  |
| FIRST USER DEFINED TABLE.                                                                                                                                                                                            |                  |                             |  |  |  |  |
| XSID:CODE SRD LEW REW Q                                                                                                                                                                                              | K AREA           | VEL WSEL                    |  |  |  |  |
| EXITX:XS -391. 36. 2100. 1<br>BRIDG:XS 0. 0. 36. 2100. 1                                                                                                                                                             |                  | 9.33 491.45<br>10.89 492.26 |  |  |  |  |
| USBRG:XS 19. 0. 36. 2100. 1                                                                                                                                                                                          |                  | 10.89 492.26                |  |  |  |  |
| APPRO:XS 558. 39. 2100. 1                                                                                                                                                                                            |                  | 10.66 494.06                |  |  |  |  |

SECOND USER DEFINED TABLE.

| XSID:CODE | CRWS   | FR#  | YMIN   | YMAX    | HF    | HO        | VHD  | EGL    | WSEL   |
|-----------|--------|------|--------|---------|-------|-----------|------|--------|--------|
| EXITX:XS  | 489.82 | 0.67 | 483.11 | 501.46* | ***** | * * * * * | 1.35 | 492.80 | 491.45 |
| BRIDG:XS  | 491.61 | 0.83 | 486.09 | 516.96  | 1.05  | 0.25      | 1.85 | 494.10 | 492.26 |
| USBRG:XS  | 492.15 | 0.81 | 486.99 | 516.96  | 0.52  | 0.00      | 1.79 | 494.64 | 492.85 |
| APPRO:XS  | 493.80 | 0.92 | 487.71 | 510.24  | 1.17  | 0.00      | 1.77 | 495.83 | 494.06 |

# APPENDIX C:

# **BED-MATERIAL PARTICLE-SIZE DISTRIBUTION**



Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure NEWFTH00690057, in Newfane, Vermont.

# APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form



# Structure Number NEWFTH00690057

### **General Location Descriptive**

Data collected by (First Initial, Full last name) M. IVANOFF

Date (MM/DD/YY) 04 / 06 / 95

Highway District Number (I - 2; nn) 02

Town (FIPS place code; I - 4; nnnnn) 48400

Waterway (I - 6) HUNTER BROOK

Route Number TH069

Topographic Map West Dover

Latitude (I - 16; nnnn.n) 42567

County (FIPS county code; I - 3; nnn) 025

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): \_-\_\_\_\_

Vicinity (1 - 9) 0.05 MI TO JCT W C3 TH32

Hydrologic Unit Code: 01080107

Longitude (i - 17; nnnnn.n) 72452

### Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10131200571312

| Maintenance responsibility (I - 21; nn) 03                                | Maximum span length (I - 48; nnnn) 0036            |
|---------------------------------------------------------------------------|----------------------------------------------------|
| Year built (I - 27; YYYY) <u>1977</u>                                     | Structure length (I - 49; nnnnnn) 000040           |
| Average daily traffic, ADT (I - 29; nnnnnn) 000025                        | _ Deck Width (I - 52; nn.n) _145                   |
| Year of ADT (1 - 30; YY) 90                                               | Channel & Protection (I - 61; n) 6                 |
| Opening skew to Roadway (I - 34; nn)0                                     | Waterway adequacy (I - 71; n) 7                    |
| Operational status (I - 41; X) A                                          | Underwater Inspection Frequency (I - 92B; XYY) N   |
| Structure type (I - 43; nnn) 302                                          | Year Reconstructed (1 - 106)                       |
| Approach span structure type (I - 44; nnn)000                             | Clear span (nnn.n ft)                              |
| Number of spans (I - 45; nnn)                                             | Vertical clearance from streambed (nnn.n ft) 010.5 |
| Number of approach spans ( <i>I - 46; nnnn</i> ) <u>0000</u><br>Comments: | Waterway of full opening (nnn.n ft <sup>2</sup> )  |

The structural inspection report of 07/27/94 indicates the structure is a steel beam type bridge with a bare concrete deck. Both concrete abutment walls and the wingwalls have some hairline vertical shrinkage cracks reported in a few random locations. There is a steel pipe handrail connected along the upstream left wingwall. The footing is slightly in view at the upstream end of the right abutment and the downstream end of the left abutment. The streambed consists of stone and boulders with some gravel deposits. The waterway makes a moderate turn through the structure and flows into the Rock River roughly 200 feet downstream. Off the downstream end of the left abutment, there is a laid up (Continued, page 31)

| <b>Bridge Hydrologic Data</b><br>Is there hydrologic data available? <u>N</u> <i>if No, type ctrl-n h</i> VTAOT Drainage area ( $mi^2$ ): - |                                                                                |                 |                 |                 |                                  |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------------------|----|
| Terrain character:                                                                                                                          |                                                                                |                 |                 |                 |                                  |    |
| Stream character & type: _                                                                                                                  |                                                                                |                 |                 |                 |                                  | _  |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
| Streambed material: -                                                                                                                       |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             | scharge Data ( <i>cfs</i> ): Q <sub>2.33</sub> Q <sub>10</sub> Q <sub>25</sub> |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 | Q <sub>500</sub>                 |    |
| Record flood date (MM / DD / YY):                                                                                                           |                                                                                |                 |                 |                 |                                  |    |
| Estimated Discharge (cfs):<br>Ice conditions (Heavy, Moderate, Lig                                                                          |                                                                                |                 |                 |                 |                                  |    |
| The stage increases to maximur                                                                                                              |                                                                                |                 |                 |                 |                                  |    |
| The stream response is ( <i>Flashy, I</i>                                                                                                   | -                                                                              |                 | • • •           | , ,,            |                                  |    |
| Describe any significant site con                                                                                                           | ditions up                                                                     | stream or       | downstrea       | m that ma       | y influence the stream's         |    |
| stage: _                                                                                                                                    |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
| Watershed storage area (in perce                                                                                                            | ent): <u></u> %                                                                |                 |                 |                 |                                  |    |
| The watershed storage area is:                                                                                                              | (1-ma                                                                          | inly at the h   | neadwaters; 2   | - uniformly     | distributed; 3-immediatly upstre | am |
|                                                                                                                                             | oi the                                                                         | e site)         |                 |                 |                                  |    |
| Water Surface Elevation Estima                                                                                                              | tes for Exis                                                                   | sting Strue     | cture:          |                 |                                  |    |
| Peak discharge frequency                                                                                                                    | Q <sub>2.33</sub>                                                              | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub>                 |    |
|                                                                                                                                             | -                                                                              | ⊂10<br>-        | -               | -<br>-          |                                  |    |
| Water surface elevation (ft))                                                                                                               |                                                                                |                 |                 |                 |                                  |    |
| Velocity (ft / sec)                                                                                                                         | -                                                                              | -               | -               | -               | -                                |    |
| Long term stream bed changes: -                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
| Long term stream bed changes.                                                                                                               |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
| Is the roadway overtopped below the $Q_{100}$ ? (Yes, No, Unknown): U Frequency:                                                            |                                                                                |                 |                 |                 |                                  |    |
| Relief Elevation (#): Discharge over roadway at Q <sub>100</sub> (# <sup>3</sup> / sec):                                                    |                                                                                |                 |                 |                 |                                  |    |
|                                                                                                                                             |                                                                                |                 |                 |                 |                                  |    |
| Are there other structures nearby? (Yes, No, Unknown): U If No or Unknown, type ctrl-n os                                                   |                                                                                |                 |                 |                 |                                  |    |
| Upstream distance ( <i>miles</i> ): Town: Year Built:<br>Highway No : Structure No : Structure Type: -                                      |                                                                                |                 |                 |                 |                                  |    |
| Clear span ( $\pi$ ): Clear Height ( $\pi$ ): Full Waterway ( $\pi^2$ ):                                                                    |                                                                                |                 |                 |                 |                                  |    |
| Highway No. : - Structure No. : - Structure Type: -                                                                                         |                                                                                |                 |                 |                 |                                  |    |
| Clear span ( $\pi$ ) Clear meight ( $\pi$ ): Full waterway ( $\pi^2$ ):                                                                     |                                                                                |                 |                 |                 |                                  |    |

| Downstream distance ( <i>miles</i> ):                                                                                                                               |                       |                        |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-------------------------|
| Highway No. : -                                                                                                                                                     |                       |                        |                         |
| Clear span ( <i>ft</i> ): <u>-</u> Clear Heigh<br>Comments:<br>concrete block retaining wall, behind<br>flashy floods noted. Bank erosion is b<br>boulder material. | d which there is a ho | me. Channel scour is l | ocalized from turbulent |
|                                                                                                                                                                     | USGS Waters           | hed Data               |                         |
| Watershed Hydrographic Data                                                                                                                                         | -                     |                        |                         |
| Drainage area (DA) $4.67$ mi <sup>2</sup><br>Watershed storage (ST) $0.2$                                                                                           | Lake/p<br>%           | ond/swamp area         | Imi <sup>2</sup>        |
| Bridge site elevation <u>1043</u><br>Main channel length <u>3.63</u>                                                                                                | ft Headw              | vater elevation2382    | ft                      |
| 10% channel length elevation<br>Main channel slope (S)289.20<br>Watershed Precipitation Data                                                                        |                       | 85% channel length e   | evation <u>1772</u> ft  |
| Average site precipitation<br>Maximum 2yr-24hr precipitation e<br>Average seasonal snowfall <i>(Sn)</i>                                                             | vent (124,2)          |                        | ition _ <sup>_</sup> in |
|                                                                                                                                                                     |                       |                        |                         |

| Bridge Plan Data                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Are plans available?       N       If no, type ctrl-n pl       Date issued for construction (MM / YYYY):       -       /       -         Project Number       -       Minimum channel bed elevation:       -       - |  |  |  |  |  |  |  |
| Low superstructure elevation: USLAB <u>-</u> DSLAB <u>-</u> USRAB <u>-</u> DSRAB <u>-</u> DSRAB <u>-</u> Benchmark location description:<br>NO BENCHMARK INFORMATION                                                 |  |  |  |  |  |  |  |
| Reference Point ( <i>MSL, Arbitrary, Other</i> ): Datum ( <i>NAD27, NAD83, Other</i> ):                                                                                                                              |  |  |  |  |  |  |  |
| Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)                                                                                                                                                    |  |  |  |  |  |  |  |
| If 1: Footing Thickness Footing bottom elevation:                                                                                                                                                                    |  |  |  |  |  |  |  |
| If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length:<br>If 3: Footing bottom elevation:                                                                                           |  |  |  |  |  |  |  |
| Is boring information available? <u>N</u> If no, type ctrl-n bi Number of borings taken:                                                                                                                             |  |  |  |  |  |  |  |
| Foundation Material Type: <u>3</u> (1-regolith, 2-bedrock, 3-unknown)                                                                                                                                                |  |  |  |  |  |  |  |
| Briefly describe material at foundation bottom elevation or around piles:<br>NO FOUNDATION MATERIAL INFORMATION                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Comments:<br>NO PLANS                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |  |  |  |

### **Cross-sectional Data**

Is cross-sectional data available? Yes If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT The station and elevation measurements are in feet. This cross section was attached to the Comments: 07/27/94 bridge inspection report. The low chord elevations match the survey elevations used for this report.

|                        | · · · · · · · · · · · · · · · · · · · |        |        |        |   |   |   |   |   |   |   |
|------------------------|---------------------------------------|--------|--------|--------|---|---|---|---|---|---|---|
| Station                | 0                                     | 18     | 27.5   | 36     | - | - | - | - | - | - | - |
| Feature                | LAB                                   | -      | -      | RAB    | - | - | - | - | - | - | - |
| Low chord elevation    | 497.67                                | 497.67 | 497.67 | 497.67 | - | - | - | - | - | - | - |
| Bed<br>elevation       | 490.17                                | 486.17 | 487.67 | 487.17 | - | - | - | - | - | - | - |
| Low chord to bed       | 7.5                                   | 11.5   | 10     | 10.5   | - | - | - | - | - | - | - |
|                        |                                       |        |        |        |   |   |   |   |   |   |   |
| Station                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Feature                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord<br>elevation | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Bed<br>elevation       | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord to bed       | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Comments: -<br>-       |                                       |        |        |        |   |   |   | r |   | r |   |
| Station                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Feature                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord elevation    | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Bed<br>elevation       | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord to bed       | -                                     | -      |        | -      | - | - | - | - | - | - | - |
|                        |                                       |        |        |        |   | 1 | 1 | 1 |   | 1 |   |
| Station                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Feature                | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord elevation    | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Bed<br>elevation       | -                                     | -      | -      | -      | - | - | - | - | - | - | - |
| Low chord to bed       | -                                     | -      | -      | -      | - | - | - | - | - | - | - |

# APPENDIX E: LEVEL I DATA FORM

| U. S. Geological Survey<br>Bridge Field Data Collection and Processi<br>Structure Number                                  | Computerized by: JRD Date: 5/9/97                                                                                                         |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| A. Gener                                                                                                                  | A. General Location Descriptive                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                           | Boehmler         Date (MM/DD/YY)         08         13         1996                                                                       |  |  |  |  |  |  |  |  |
| 2. Highway District Number <u>2</u><br>County <b>Windham (025)</b>                                                        | Mile marker <u>000000</u><br>Town <b>Newfane (48400)</b>                                                                                  |  |  |  |  |  |  |  |  |
| Waterway (I - 6) Hunter Brook                                                                                             | Road Name                                                                                                                                 |  |  |  |  |  |  |  |  |
| Route Number <u>TH069</u>                                                                                                 | Hydrologic Unit Code:                                                                                                                     |  |  |  |  |  |  |  |  |
| 3. Descriptive comments:<br>This site is located 0.05 miles from the junct                                                | ion of TH069 with C3 TH32.                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                           |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                           |                                                                                                                                           |  |  |  |  |  |  |  |  |
| B. Brid                                                                                                                   | no Dock Observations                                                                                                                      |  |  |  |  |  |  |  |  |
|                                                                                                                           | ge Deck Observations                                                                                                                      |  |  |  |  |  |  |  |  |
| 4. Surface cover LBUS <u>6</u> RBUS <u>6</u><br>(2b us,ds,lb,rb: <b>1</b> - Urban; <b>2</b> - Suburban; <b>3</b> - Row cr | LBDS 2 RBDS <u>6</u> Overall <u>6</u><br>ops; <b>4</b> - Pasture; <b>5</b> - Shrub- and brushland; <b>6</b> - Forest; <b>7</b> - Wetland) |  |  |  |  |  |  |  |  |
| 5. Ambient water surface US <u>1</u> UB <u>2</u>                                                                          |                                                                                                                                           |  |  |  |  |  |  |  |  |
| 6. Bridge structure type <u>1 (</u> 1- single span; 2- n<br>6- box culvert; or 7-                                         | nultiple span; <b>3-</b> single arch; <b>4-</b> multiple arch; <b>5-</b> cylindrical culvert;<br>- other)                                 |  |  |  |  |  |  |  |  |
| 7. Bridge length $40$ (feet)                                                                                              | Span length (feet)   Bridge width (feet)                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                                           | Channel approach to bridge (BF):                                                                                                          |  |  |  |  |  |  |  |  |
| 8. LB <u>0</u> RB <u>0</u> ( <i>0</i> even, <i>1</i> - lower, <i>2</i> - higher)                                          | 15. Angle of approach: <u>20</u> 16. Bridge skew: <u>15</u>                                                                               |  |  |  |  |  |  |  |  |
| 9. LB_2RB 2 ( 1- Paved, 2- Not paved)                                                                                     | Approach Angle $Q$ Bridge Skew Angle $\theta$                                                                                             |  |  |  |  |  |  |  |  |
| 10. Embankment slope ( <i>run / rise in feet / foot</i> ):                                                                |                                                                                                                                           |  |  |  |  |  |  |  |  |
| US left US right                                                                                                          | ///                                                                                                                                       |  |  |  |  |  |  |  |  |
| Protection<br>11.Type 12.Cond. 13.Erosion 14.Severity                                                                     | Opening skew                                                                                                                              |  |  |  |  |  |  |  |  |
| LBUS <u>0</u> <u>-</u> <u>0</u> <u>0</u>                                                                                  | $\alpha = 0.0$                                                                                                                            |  |  |  |  |  |  |  |  |
| RBUS <u>0</u> - <u>2</u> <u>1</u>                                                                                         | 17. Channel impact zone 1: Exist? <u>y</u> (Y or N)                                                                                       |  |  |  |  |  |  |  |  |
| RBDS <u>0</u> - <u>2</u> <u>1</u>                                                                                         | Where? <u>RB</u> ( <i>LB, RB</i> ) Severity <u>1</u>                                                                                      |  |  |  |  |  |  |  |  |
| LBDS <u>0</u> - <u>0</u> <u>0</u>                                                                                         | Range? 80 feet US (US, UB, DS) to 35feet US                                                                                               |  |  |  |  |  |  |  |  |
| Bank protection types: <b>0</b> - none; <b>1</b> - < 12 inches;                                                           | Channel impact zone 2: Exist? <u>Y</u> (Y or N)                                                                                           |  |  |  |  |  |  |  |  |
| 2- < 36 inches; 3- < 48 inches;<br>4- < 60 inches; 5- wall / artificial levee                                             | Where? <u>LB</u> ( <i>LB</i> , <i>RB</i> ) Severity $\frac{2}{15}$                                                                        |  |  |  |  |  |  |  |  |
| Bank protection conditions: <b>1</b> - good; <b>2</b> - slumped;<br><b>3</b> - eroded; <b>4</b> - failed                  | Range? 0feet US_(US, UB, DS) to 45feet DS                                                                                                 |  |  |  |  |  |  |  |  |
| Erosion: <b>0</b> - none; <b>1</b> - channel erosion; <b>2</b> -<br>road wash; <b>3</b> - both; <b>4</b> - other          | Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe                                                                |  |  |  |  |  |  |  |  |
| Erosion Severity: <b>0</b> - none; <b>1</b> - slight; <b>2</b> - moderate;<br><b>3</b> - severe                           |                                                                                                                                           |  |  |  |  |  |  |  |  |

| 18. Bridge Type: <u>1a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a- Vertical abutments with wingwalls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1b without wingwalls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1a with wingwalls                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1b- Vertical abutments without wingwalls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2- Vertical abutments and wingwalls, sloping embankment<br>Wingwalls parallel to abut. face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3- Spill through abutments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4- Sloping embankment, vertical wingwalls and abutments<br>Wingwall angle less than 90°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Bridge Deck Comments (surface cover variations, measur<br/>approach overflow width, etc.)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | red bridge and span lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , bridge type variations,                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. The surface cover is predominantly forest except fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r the house and lawn on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the downstream left bank.                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C. Upstream Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nnel Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nnel Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21. Bank height (BF) 22. Bank angle (BF) 26. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /eg. cover (BF) 27. Bank n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | naterial (BF) 28. Bank erosion (BF)                                                                                                                                                                                                                                                                                                                                                                                             |
| 21. Bank height (BF) 22. Bank angle (BF) 26. % V<br>20. SRD LB RB LB RB LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /eg. cover (BF) 27. Bank n<br>RB LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RB LB RB                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21. Bank height (BF) 22. Bank angle (BF)<br>20. SRD LB RB LB RB<br>53.0 10.0 12.0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4324</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB         LB         RB           325         1         2                                                                                                                                                                                                                                                                                                                                                                      |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0                                                                                                                                                                                                                                                                                                                                                                                                                   | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4 324</u><br>25. Thalweg depth                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB         LB         RB           325         1         2           68.0         29. Bed Material         324                                                                                                                                                                                                                                                                                                                  |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2                                                                                                                                                                                                                                                                                                                                               | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4 324</u><br>25. Thalweg depth<br>31. Bank protection cor                                                                                                                                                                                                                                                                                                                                                                                                                          | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         addition:       LB                                                                                                                                                                                                                                                                                                       |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2                                                                                                                                                                                                                                                                                                                                               | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grav<br>- 256mm; 6- bedrock; 7- maximal; 3- heavy fluvial / mass v                                                                                                                                                                                                                                                                                     | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         adition:       LB -       RB       2         50%; 3- 51 to 75%; 4- 76 to 100%       100%       100%         vel, 2 - 64mm;       nmade       vesting       100%                                                                                                                                                          |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8ed and bank Material:       0- organics; 1- silt / clay, < 1/16mm; 4- cobble, 64 - 256mm; 5- boulder, >         Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluv       Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 incl             | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grav<br>- 256mm; 6- bedrock; 7- maxial; 3- heavy fluvial / mass v<br>hes; 3- < 48 inches; 4- < 60<br>4- failed                                                                                                                                                                                                                                         | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         adition:       LB -       RB       2         50%; 3- 51 to 75%; 4- 76 to 100%       100%       100%         vel, 2 - 64mm;       nmade       vesting       100%                                                                                                                                                          |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8ed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                                | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grav<br>256mm; 6- bedrock; 7- ma<br>vial; 3- heavy fluvial / mass w<br>hes; 3- < 48 inches; 4- < 60<br>4- failed<br>ion extent, etc.):                                                                                                                                                                                                                 | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         adition:       LB -       RB 2         50%; 3- 51 to 75%; 4- 76 to 100%       50%; 3- 51 to 75%; 4- 76 to 100%         vel, 2 - 64mm;       nmade         vasting       inches; 5- wall / artificial levee                                                                                                               |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8ed and bank Material: 0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                                      | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grav<br>256mm; 6- bedrock; 7- ma<br>vial; 3- heavy fluvial / mass w<br>hes; 3- < 48 inches; 4- < 60<br>4- failed<br>ion extent, etc.):                                                                                                                                                                                                                 | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         adition:       LB -       RB 2         50%; 3- 51 to 75%; 4- 76 to 100%       50%; 3- 51 to 75%; 4- 76 to 100%         vel, 2 - 64mm;       nmade         vasting       inches; 5- wall / artificial levee                                                                                                               |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8ed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                                | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grave<br>256mm; 6- bedrock; 7- maximal; 3- heavy fluvial / mass v<br>hes; 3- < 48 inches; 4- < 60<br><u>4- failed</u><br>ion extent, etc.):<br>avel and coarse sand bet                                                                                                                                                                                | RBLBRB $325$ 12 $325$ 12 $68.0$ 29. Bed Material $324$ adition:LB -RB2 $50\%$ ; $3-51$ to $75\%$ ; $4-76$ to $100\%$ $vel, 2 - 64mm$ ; $nmade$ $vasting$ inches; $5-$ wall / artificial leveeween the larger gravel, cobbles,                                                                                                                                                                                                   |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8       8         Bed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                              | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grave<br>> 256mm; 6- bedrock; 7- main<br>rial; 3- heavy fluvial / mass v<br>hes; 3- < 48 inches; 4- < 60<br>4- failed<br>ion extent, etc.):<br>avel and coarse sand bet<br>pstream to 0 feet upstre                                                                                                                                                    | RBLBRB $325$ 12 $325$ 12 $68.0$ 29. Bed Material $324$ adition:LB -RB 2 $50\%$ ; $3-51$ to $75\%$ ; $4-76$ to $100\%$ $vel, 2 - 64mm$ ;<br>nmade<br>wasting<br>inches; $5-$ wall / artificial leveeween the larger gravel, cobbles,<br>am. It doubles as wing wall pro-                                                                                                                                                         |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)         Bed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                              | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: <b>1</b> -0 to 25%; <b>2</b> -26 to<br><b>2</b> -sand, 1/16 - 2mm; <b>3</b> -grave<br>256mm; <b>6</b> -bedrock; <b>7</b> -matrial; <b>3</b> -heavy fluvial / mass v<br>hes; <b>3</b> - < 48 inches; <b>4</b> - < 60<br><b>4</b> -failed<br>ion extent, etc.):<br>avel and coarse sand bet<br>pstream to 0 feet upstree<br>aterial. This is most seve                                                    | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         addition:       LB -       RB       2         50%; 3- 51 to 75%; 4- 76 to 100%       vel, 2 - 64mm;       nmade         wasting       inches; 5- wall / artificial levee       vel         ween the larger gravel, cobbles,       am. It doubles as wing wall pro-         re at the cut bank.       re at the cut bank. |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       18         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       8ed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                               | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: <b>1</b> -0 to 25%; <b>2</b> -26 to<br><b>2</b> -sand, 1/16 - 2mm; <b>3</b> -grave<br>256mm; <b>6</b> -bedrock; <b>7</b> -matrial; <b>3</b> -heavy fluvial / mass v<br>hes; <b>3</b> - < 48 inches; <b>4</b> - < 60<br><b>4</b> -failed<br>ion extent, etc.):<br>avel and coarse sand bet<br>pstream to 0 feet upstree<br>aterial. This is most seve                                                    | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         addition:       LB -       RB       2         50%; 3- 51 to 75%; 4- 76 to 100%       vel, 2 - 64mm;       nmade         wasting       inches; 5- wall / artificial levee       vel         ween the larger gravel, cobbles,       am. It doubles as wing wall pro-         re at the cut bank.       re at the cut bank. |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       18         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)         Bed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                             | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: 1- 0 to 25%; 2- 26 to<br>2- sand, 1/16 - 2mm; 3- grave<br>256mm; 6- bedrock; 7- mailer<br>is a heavy fluvial / mass v<br>hes; 3- < 48 inches; 4- < 60<br><u>4- failed</u><br>ion extent, etc.):<br>avel and coarse sand bet<br>pstream to 0 feet upstree<br>steeper upstream of 175                                                                                                                     | RB       LB       RB         325       1       2         68.0       29. Bed Material       324         adition:       LB       RB       2         50%; 3- 51 to 75%; 4- 76 to 100%       vel, 2 - 64mm;       nmade         vasting       inches; 5- wall / artificial levee         ween the larger gravel, cobbles,       am. It doubles as wing wall pro-         re at the cut bank.       feet. The channel also increases |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % \L         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm;<br>4- cobble, 64 - 256mm; 5- boulder, >         Bank Erosion:       0- not evident; 1- light fluvial; 2- moderate fluw         Bank protection types:       0- absent; 1- < 12 inches; 2- < 36 incl | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: <b>1</b> -0 to 25%; <b>2</b> -26 to<br><b>2</b> -sand, 1/16 - 2mm; <b>3</b> -grave<br>256mm; <b>6</b> -bedrock; <b>7</b> -manial; <b>3</b> -heavy fluvial / mass v<br>hes; <b>3</b> - < 48 inches; <b>4</b> - < 60<br><b>4</b> -failed<br>ion extent, etc.):<br><b>avel and coarse sand bet</b><br><b>pstream to 0 feet upstree</b><br><b>steeper upstream of 175</b><br><b>cted from the bed mater</b> | RBLBRB $325$ 12 $325$ 12 $68.0$ 29. Bed Material $324$ adition:LB -RB 2 $50\%$ ; $3-51$ to $75\%$ ; $4-76$ to $100\%$ $vel, 2 - 64mm$ ;<br>nmade<br>wasting<br>inches; $5-$ wall / artificial leveeween the larger gravel, cobbles,<br>am. It doubles as wing wall pro-<br>re at the cut bank.<br>feet. The channel also increasestial and located at 25 feet and 35                                                            |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % V         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)         Bed and bank Material:       0- organics; 1- silt / clay, < 1/16mm;                                                                                                                                                                                              | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: <b>1</b> -0 to 25%; <b>2</b> -26 to<br><b>2</b> -sand, 1/16 - 2mm; <b>3</b> -grave<br>256mm; <b>6</b> -bedrock; <b>7</b> -manial; <b>3</b> -heavy fluvial / mass v<br>hes; <b>3</b> - < 48 inches; <b>4</b> - < 60<br><b>4</b> -failed<br>ion extent, etc.):<br><b>avel and coarse sand bet</b><br><b>pstream to 0 feet upstree</b><br><b>steeper upstream of 175</b><br><b>cted from the bed mater</b> | RBLBRB $325$ 12 $325$ 12 $68.0$ 29. Bed Material $324$ adition:LB -RB 2 $50\%$ ; $3-51$ to $75\%$ ; $4-76$ to $100\%$ $vel, 2 - 64mm$ ;<br>nmade<br>wasting<br>inches; $5-$ wall / artificial leveeween the larger gravel, cobbles,<br>am. It doubles as wing wall pro-<br>re at the cut bank.<br>feet. The channel also increasestial and located at 25 feet and 35                                                            |
| 21. Bank height (BF)       22. Bank angle (BF)       26. % \L         20. SRD       LB       RB       LB       RB         53.0       10.0       12.0       4         23. Bank width       25.0       24. Channel width       40.0         30. Bank protection type:       LB       0       RB       2         SRD - Section ref. dist. to US face       % Vegetation (Veg)       Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm;<br>4- cobble, 64 - 256mm; 5- boulder, >         Bank Erosion:       0- not evident; 1- light fluvial; 2- moderate fluw         Bank protection types:       0- absent; 1- < 12 inches; 2- < 36 incl | /eg. cover (BF) 27. Bank n<br>RB LB<br><u>4</u> <u>324</u><br>25. Thalweg depth<br>31. Bank protection cor<br>cover: <b>1</b> -0 to 25%; <b>2</b> -26 to<br><b>2</b> -sand, 1/16 - 2mm; <b>3</b> -grave<br>256mm; <b>6</b> -bedrock; <b>7</b> -manial; <b>3</b> -heavy fluvial / mass v<br>hes; <b>3</b> - < 48 inches; <b>4</b> - < 60<br><b>4</b> -failed<br>ion extent, etc.):<br><b>avel and coarse sand bet</b><br><b>pstream to 0 feet upstree</b><br><b>steeper upstream of 175</b><br><b>cted from the bed mater</b> | RBLBRB $325$ 12 $325$ 12 $68.0$ 29. Bed Material $324$ adition:LB -RB 2 $50\%$ ; $3-51$ to $75\%$ ; $4-76$ to $100\%$ $vel, 2 - 64mm$ ;<br>nmade<br>wasting<br>inches; $5-$ wall / artificial leveeween the larger gravel, cobbles,<br>am. It doubles as wing wall pro-<br>re at the cut bank.<br>feet. The channel also increasestial and located at 25 feet and 35                                                            |

| 33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 90 35. Mid-bar width: 15                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36. Point bar extent: <u>125</u> feet <u>US</u> (US, UB) to <u>35</u> feet <u>US</u> (US, UB, DS) positioned <u>0</u> %LB to <u>40</u> %RB                                                                              |
| 37. Material: 342                                                                                                                                                                                                       |
| 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):                                                                                                          |
| This point bar consists of sand and gravel material on top of coarse gravel and cobble sized material.                                                                                                                  |
| 39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)                                                                                                                                        |
| 41. Mid-bank distance: 70 42. Cut bank extent: 100 feet US (US, UB) to 40 feet US (US, UB, DS)                                                                                                                          |
|                                                                                                                                                                                                                         |
| <ul> <li>43. Bank damage: <u>2</u> (1- eroded and/or creep; 2- slip failure; 3- block failure)</li> <li>44. Cut bank comments (eg. additional cut banks, protection condition, etc.):</li> </ul>                        |
| The bank material has slipped leaving a near vertical escarpment on the upper 1/3 of the cut bank at 70 feet                                                                                                            |
| US, despite the type-2 stone fill.                                                                                                                                                                                      |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| 45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -                                                                                                                                    |
|                                                                                                                                                                                                                         |
| <ul> <li>47. Scour dimensions: Length <u>-</u> Width <u>-</u> Depth : <u>-</u> Position <u>-</u> %LB to <u>-</u> %RB</li> <li>48. Scour comments (eg. additional scour areas, local scouring process, etc.):</li> </ul> |
| NO CHANNEL SCOUR                                                                                                                                                                                                        |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| 49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?                                                                                                                                             |
| 51. Confluence 1: Distance 52. Enters on ( <i>LB or RB</i> ) 53. Type ( <i>1- perennial; 2- ephemeral</i> )                                                                                                             |
| Confluence 2: Distance       Enters on(LB or RB)       Type(1 - perennial; 2 - ephemeral)                                                                                                                               |
| 54. Confluence comments (eg. confluence name):                                                                                                                                                                          |
| NO MAJOR CONFLUENCES                                                                                                                                                                                                    |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| D. Under Bridge Channel Assessment                                                                                                                                                                                      |
| 55. Channel restraint (BF)? LB $\frac{2}{2}$ (1- natural bank; 2- abutment; 3- artificial levee)                                                                                                                        |
|                                                                                                                                                                                                                         |
| 56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)                                                                                                                                                        |
| LB RB LB RB LB RB RB                                                                                                                                                                                                    |
| <u>35.0</u> <u>1.5</u> <u>2</u> <u>7</u> <u>7</u> <u>-</u>                                                                                                                                                              |
| 58. Bank width (BF)       59. Channel width       60. Thalweg depth       63. Bed Material                                                                                                                              |
| Bed and bank Material: <b>0</b> - organics; <b>1</b> - silt / clay, < 1/16mm; <b>2</b> - sand, 1/16 - 2mm; <b>3</b> - gravel, 2 - 64mm; <b>4</b> - cobble, 64 - 256mm;                                                  |
| <b>5</b> - boulder, > 256mm; <b>6</b> - bedrock; <b>7-</b> manmade                                                                                                                                                      |
| Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting                                                                                                                    |
|                                                                                                                                                                                                                         |
| 64. Comments (bank material variation, minor inflows, protection extent, etc.):                                                                                                                                         |
| 453                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                         |
| 453                                                                                                                                                                                                                     |
| 453                                                                                                                                                                                                                     |
| 453                                                                                                                                                                                                                     |
| 453                                                                                                                                                                                                                     |

| 67. Debris Potenti<br>69. Is there evide<br>70. Debris and Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ial <u></u> ( <b>1</b> -<br>nce of ice bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low; <b>2-</b> Mode<br>uild-up? <u>2</u> (                                                                                                                                                                                                               | erate; <b>3-</b> High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n) 68. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | apture Effic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nere? <u>N</u> (1-<br>ciency2_ ( 1-<br>tential <u>N</u> ( 1- | Low; 2- Mode                |                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------|--|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |                |  |
| The upstream p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oint bar aı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd boulders                                                                                                                                                                                                                                              | at the upst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ream face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | have pote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntial to catch                                               | ice and deb                 | ris. The lat-  |  |
| eral instability a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and slumpi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng on the R                                                                                                                                                                                                                                              | <b>B</b> will cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e trees to fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all into th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e brook. Trees                                               | s have alread               | ly fallen into |  |
| the brook at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | landslide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400 feet ups                                                                                                                                                                                                                                             | tream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71. Attack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72. Slope ∠                                                                                                                                                                                                                                              | 73. Toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74. Scour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75. Scour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.Exposure                                                  | 77. Material                | 70 Longeth     |  |
| Abutments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ∠(BF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Qmax)                                                                                                                                                                                                                                                   | loc. (BF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | depth                                                        | TT. Material                | 78. Length     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D: )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Ginax)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |                |  |
| LABUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                       | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                            | 0                           | 90.0           |  |
| RABUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                            | 2                           | 35.5           |  |
| TRADOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                            | _                           |                |  |
| Pushed: LB or RB       Toe Location (Loc.): 0- even, 1- set back, 2- protrudes         Scour cond: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed         Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood         79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):         0         1         74. The right abutment footing is exposed from the upstream face to 12 feet under the bridge, the footing top is flush with the bed material. The left abutment footing is exposed from 4 feet under the bridge to its down-stream end, continuing along the downstream left wingwall. The abutment portion of the footing is flush with the stream bed.         80. Wingwalls:       Exist? Material? Scour Scour Exposure Condition? depth? Exposure depth?         81.       Angle? Length? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sure Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | \ -                         | USLWW          |  |
| Exist?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sure Angle<br>th?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | length                      | USLWW          |  |
| Exist?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                          | epth? dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sure Angle<br>th?<br>35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | \ -                         | USLWW          |  |
| Exist?<br>USLWW:<br>USRWW: Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition? d                                                                                                                                                                                                                                             | epth? dep<br>0<br><u>Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sure Angle<br>th?<br>35.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | length                      | USLWW          |  |
| Exist?<br>USLWW:<br>USRWW: <u>Y</u><br>DSLWW: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Material? (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Condition?         d           1            0            2                                                                                                                                                                                               | epth? dep<br>0<br><u>0</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?                                                            | length                      | USLWW          |  |
| Exist?<br>USLWW:<br>USRWW: <u>Y</u><br>DSLWW: <u>0</u><br>DSRWW: <u>1</u><br><i>Wingwall material</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Material? (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Condition? d<br>                                                                                                                                                                                                                                         | epth? dep<br>0<br><u>0</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?                                                            | length                      | USLWW          |  |
| Exist?<br>USLWW:<br>USRWW: <u>Y</u><br>DSLWW: <u>0</u><br>DSRWW: <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Material? (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Condition? d<br>                                                                                                                                                                                                                                         | epth? dep<br>0<br><u>0</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?                                                            | length                      |                |  |
| Exist?<br>USLWW:<br>USRWW: <u>Y</u><br>DSLWW: <u>0</u><br>DSRWW: <u>1</u><br><i>Wingwall material</i><br>82. <u>Bank / Bric</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition?         d           1                                                                                                                                                                                                                         | epth? dep<br>0<br><u>0</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>eel or meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?                                                            |                             | DSLWW          |  |
| Exist?<br>USLWW:<br>USRWW: <u>Y</u><br>DSLWW: <u>0</u><br>DSRWW: <u>1</u><br><i>Wingwall material</i><br>82. <u>Bank / Bric</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition?         d           1                                                                                                                                                                                                                         | epth? dep<br>0<br>0<br>masonry or d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>eel or meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?<br>Wingwall<br><i>I;</i><br>DSRWW                          |                             | DSLWW          |  |
| Exist?<br>USLWW:<br>USRWW: Y<br>DSLWW: 0<br>DSRWW: 1<br>Wingwall material<br>82. Bank / Brid<br>Location US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition?         d           1                                                                                                                                                                                                                         | epth? dep<br>0<br>0<br>masonry or d<br>BUT RAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>5<br>eel or meta<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ?<br>Wingwall<br>angle<br>DSRWW                              |                             | DSLWW          |  |
| Exist?<br>USLWW:<br>USRWW: Y<br>DSLWW: 0<br>DSRWW: 1<br>Wingwall material<br>82. Bank / Brid<br>Location US<br>Type 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Material? <td>Condition?         d           1        </td> <td>epth? dep<br/>0<br/>1<br/>0<br/>masonry or a<br/>BUT RAE<br/>0</td> <td>sure Angle<br/>th?<br/><br/><br/><br/><br/><br/></td> <td>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>6<br/>6<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>6<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>6 e e l or meta<br/>3<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>11<br/>1 11<br/>1 11<br/>1 11<br/>1 11<br/>1 1 11<br/>1 1 1 1</td> <td>?<br/>Wingwall<br/>angle<br/>DSRWW</td> <td></td> <td>DSLWW</td> | Condition?         d           1                                                                                                                                                                                                                         | epth? dep<br>0<br>1<br>0<br>masonry or a<br>BUT RAE<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sure Angle<br>th?<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6 e e l or meta<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1 11<br>1 11<br>1 11<br>1 11<br>1 1 11<br>1 1 1 1 | ?<br>Wingwall<br>angle<br>DSRWW                              |                             | DSLWW          |  |
| Exist?<br>USLWW:<br>USRWW: Y<br>DSLWW: 0<br>DSRWW: 1<br>Wingwall material<br>82. Bank / Bric<br>Location US<br>Type 0<br>Condition Y<br>Extent 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition?       d         1                                                                                                                                                                                                                             | epth? dep<br>0<br>1<br>0<br>masonry or o<br>BUT RAE<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | sure Angle<br>th?<br>35.<br>1.0<br>19.<br>18.<br>drywall; 3- sta<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br> | 5<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?<br>Wingwall<br>angle<br>DSRWW                              | v DSRWW<br>-<br>-<br>-<br>- | DSLWW          |  |
| Exist?<br>USLWW:<br>USRWW: Y<br>DSLWW: 0<br>DSRWW: 1<br>Wingwall material<br>82. Bank / Bric<br>Location US<br>Type 0<br>Condition Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material?         Material?         S:         1- Concre         4- wood         dge Prote         SLWW         SLWW         0         2         0         1         ottection type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Condition?       d         1       -         0       -         2       -         ete;       2-         ete;       2-         SRWW       LAB         SRWW       LAB         1       .0         .0       0         s:       0- absent;         5- wall / a | epth?         dep           0         Y           0         Y           0         Y           0         0           BUT         RAE           0         0           3UT         RAE           0         0           1- < 12 inche intificial levee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sure Angle<br>th?<br>35.<br>1.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>                                                                                                                                                                                                                                    | 5<br>0<br>5<br>5<br>5<br>6<br>6<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>1<br>2<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ?<br>Wingwall<br>angle<br>DSRWW                              | v DSRWW<br>-<br>-<br>-<br>- | DSLWW          |  |
| Exist?<br>USLWW: <u>Y</u><br>USRWW: <u>Y</u><br>DSLWW: <u>0</u><br>DSRWW: <u>1</u><br><i>Wingwall material</i><br>82. <u>Bank / Bridge</u><br>Condition <u>Y</u><br>Extent <u>1</u><br><i>Bank / Bridge pro</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition?       d         1                                                                                                                                                                                                                             | epth?         dep           0         Y           0         Y           0         Y           0         0           BUT         RAE           0         0           BUT         RAE           0         0           1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sure Angle<br>th?<br>35.<br>1.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>19.<br>                                                                                               | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ?<br>Wingwall<br>angle<br>DSRWW                              | v DSRWW<br>-<br>-<br>-<br>- | DSLWW          |  |

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

- -

- 0
- -
- 2
- 1
- 1

### Piers:

| 85.                 |                |    | - •   | ijpe ein n p           | ,     |                                                                                                                                                                 | 1                                                         |
|---------------------|----------------|----|-------|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Pier no.            | width (w) feet |    | feet  | eet elevation (e) feet |       |                                                                                                                                                                 |                                                           |
|                     | w1             | w2 | w3    | e@w1                   | e@w2  | e@w3                                                                                                                                                            | ₩1                                                        |
| Pier 1              |                |    |       | 45.0                   | 13.5  | 40.0                                                                                                                                                            |                                                           |
| Pier 2              |                |    |       | 24.0                   | 90.0  | 14.0                                                                                                                                                            |                                                           |
| Pier 3              |                |    | -     | 60.0                   | 12.0  | -                                                                                                                                                               | → W2<br>→ W3                                              |
| Pier 4              | -              | -  | -     | -                      | -     | -                                                                                                                                                               |                                                           |
| Level 1 Pi          | er Descr       |    | 1     | 2                      | 3     | 4                                                                                                                                                               |                                                           |
| 86. Locatio         | on (BF)        |    | e     | but is                 | nds 4 | length                                                                                                                                                          | LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP                 |
| 87. Type            |                |    | upst  | lowe                   | feet  | of                                                                                                                                                              | <b>1</b> - Solid pier, <b>2</b> - column, <b>3</b> - bent |
| 88. Materia         | al             |    | ream  | r                      | upst  | the                                                                                                                                                             | 1- Wood; 2- concrete; 3- metal; 4- stone                  |
| 89. Shape           |                |    | right | than                   | ream  | dow                                                                                                                                                             | 1- Round; 2- Square; 3- Pointed                           |
| 90. Inclined        | 1?             |    | wing  | the                    | from  | nstre                                                                                                                                                           | Y- yes; N- no                                             |
| 91. Attack          | ∠ (BF)         |    | wall  | chan                   | the   | am                                                                                                                                                              |                                                           |
| 92. Pushec          | ł              |    | foot- | nel                    | right | left                                                                                                                                                            | LB or RB                                                  |
| 93. Length          | (feet)         |    | -     | -                      | -     | -                                                                                                                                                               |                                                           |
| 94. # of pile       | es             |    | ing   | bed.                   | abut  | wing                                                                                                                                                            |                                                           |
| 95. Cross-r         | members        | 6  | top   | The                    | ment  | wall                                                                                                                                                            | 0- none; 1- laterals; 2- diagonals; 3- both               |
| 96. Scour Condition |                | is | expo  | . The                  | is    | <ul> <li>0- not evident; 1- evident (comment);</li> <li>2- footing exposed; 3- piling exposed;</li> <li>4- undermined footing; 5- settled; 6- failed</li> </ul> |                                                           |
| 97. Scour o         | depth          |    | expo  | sure                   | entir | expo                                                                                                                                                            |                                                           |
| 98. Exposu          | ire depth      | 1  | sed,  | exte                   | e     | sed,                                                                                                                                                            |                                                           |

84. Are there piers? <u>Th</u> (*Y* or if N type ctrl-n pr)

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): to a depth of 1 foot. The depth increases in the downstream direction.

Ν

| 100.                                 |                                                                                | E. Downstre                                                   | eam Cha                                                                                         | nnel Asse                                                             | essment                                                       |                               |                      |                      |
|--------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|----------------------|----------------------|
| SRD                                  | Bank height (BF)<br>LB RB                                                      | Bank angle (BF)<br>LB RB                                      | % Veg.<br>LB<br>-                                                                               | cover (BF)<br>RB<br>-                                                 | Bank mat<br>LB<br>-                                           | erial (BF)<br>RB<br>-         | Bank eros<br>LB<br>- | sion (BF)<br>RB<br>- |
| Bank widt                            | h (BF)                                                                         | Channel widt                                                  | h <u>-</u>                                                                                      | <br>Thalv                                                             | weg depth _                                                   |                               | Bed Materia          | al <u>-</u>          |
| Bank prote                           | ection type (Qmax):                                                            | LB - RB                                                       | -                                                                                               | Bank protec                                                           | tion condition                                                |                               | RB -                 |                      |
| Bed and b<br>Bank Eros<br>Bank prote | <b>4-</b> cob<br>ion: <b>0-</b> not evident; f<br>ection types: <b>0-</b> abse |                                                               | ,<br>ion (Veg) cov<br>1/16mm; <b>2-</b> s<br>boulder, > 25<br>lerate fluvial;<br>· < 36 inches, | 6mm; <b>6</b> - bedr<br><b>3-</b> heavy fluvi<br><b>3-</b> < 48 inche | mm; <b>3-</b> gravel<br>ock; <b>7-</b> mann<br>ial / mass was | l, 2 - 64mm;<br>nade<br>sting |                      |                      |
|                                      |                                                                                | ariation, minor inflows                                       |                                                                                                 |                                                                       |                                                               |                               |                      |                      |
|                                      |                                                                                |                                                               |                                                                                                 |                                                                       |                                                               |                               |                      |                      |
| 103. Drop:                           | feet                                                                           | <u>present?</u> - (Υ<br>104. Structure<br>(eg. downstream sco | e material: <u>-</u>                                                                            |                                                                       |                                                               |                               |                      | other)               |

| 106. Point/Side bar present? (Y or N. if N type                                                                                                         | e <i>ctrl-n pb)</i> Mid-bar distance: _ <b>-</b> N                                      | /lid-bar width: _             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|
| Point bar extent: <u>-</u> feet <u>-</u> ( <i>US, UB, DS</i> ) to <u>-</u> feet <u>-</u>                                                                | eet (US, UB, DS) positioned                                                             | %LB to %RB                    |
| Point or side bar comments (Circle Point or Side; note addition                                                                                         | nal bars, material variation, status, etc.):                                            |                               |
| -                                                                                                                                                       |                                                                                         |                               |
|                                                                                                                                                         |                                                                                         |                               |
| -                                                                                                                                                       |                                                                                         |                               |
| Is a cut-bank present? <u>N</u> (Y or if N type ctrl-n cb,                                                                                              | Where? <b>O</b> (LB or RB) Mid-ba                                                       | ank distance: <b>PIE</b>      |
| Cut bank extent: <b>RS</b> feet (US, UB, DS) to feet                                                                                                    |                                                                                         |                               |
| Bank damage: ( 1- eroded and/or creep; 2- slip failure;                                                                                                 |                                                                                         |                               |
| Cut bank comments (eg. additional cut banks, protection cond                                                                                            | ition, etc.):                                                                           |                               |
|                                                                                                                                                         |                                                                                         |                               |
|                                                                                                                                                         |                                                                                         |                               |
| le channel acour procent?                                                                                                                               |                                                                                         |                               |
| Is channel scour present? (Y or if N type ctrl-                                                                                                         |                                                                                         |                               |
| Scour dimensions: Length $\underline{3}$ Width $\underline{7}$ Depth: $\underline{345}$ Scour comments (eg. additional scour areas, local scouring pro- |                                                                                         | %RB                           |
| 453                                                                                                                                                     | Juess, etc.).                                                                           |                               |
| 5                                                                                                                                                       |                                                                                         |                               |
| 1<br>1                                                                                                                                                  |                                                                                         |                               |
| Are there major confluences? 1 (Y or if N type                                                                                                          | e ctrl-n mc) How many? The                                                              |                               |
| Confluence 1: Distance down Enters on stre                                                                                                              |                                                                                         | ennial; <b>2</b> - ephemeral) |
| Confluence 2: Distance reach Enters on is                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                   |                               |
| Confluence comments (eg. confluence name):                                                                                                              |                                                                                         |                               |
| steep. The channel drops 3 feet abruptly at the conflu                                                                                                  |                                                                                         |                               |
| The left bank material and protection is made up of 3                                                                                                   | feet by 3 feet concrete blocks, stac                                                    | cked 4 to 5 high.             |
|                                                                                                                                                         |                                                                                         |                               |
| E Geomorphic C                                                                                                                                          | hannel Assessment                                                                       |                               |
|                                                                                                                                                         |                                                                                         |                               |
| 107. Stage of reach evolution Th                                                                                                                        | 1- Constructed<br>2- Stable                                                             |                               |
|                                                                                                                                                         | 3- Aggraded<br>4- Degraded<br>5- Letas III - unated II                                  |                               |
|                                                                                                                                                         | <ul> <li>5- Laterally unstable</li> <li>6- Vertically and laterally unstable</li> </ul> |                               |
|                                                                                                                                                         |                                                                                         |                               |
|                                                                                                                                                         |                                                                                         |                               |
|                                                                                                                                                         |                                                                                         |                               |

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

e right bank protection is stone fill, extending from the downstream end of the downstream right wingwall to 90 feet downstream, where it intersects the Rock River right bank.

|                                            | 109. <b>G. F</b>              | Plan View Sketch                                 | -          |
|--------------------------------------------|-------------------------------|--------------------------------------------------|------------|
| oint bar (pb)<br>ut-bank (cb)<br>cour hole | debris XXX<br>rip rap or SSOL | flow<br>cross-section +++++++<br>ambient channel | stone wall |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |
|                                            |                               |                                                  |            |

## APPENDIX F:

## **SCOUR COMPUTATIONS**

#### SCOUR COMPUTATIONS

| Structure Number: NEWFTH00690057<br>Road Number: TH 69<br>Stream: HUNTER BROOK                                  |             |             | NEWFANE<br>WINDHAM |
|-----------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------------|
| Initials RLB Date: 1/26/98                                                                                      | Checked:    | EMB         |                    |
| Analysis of contraction scour, live                                                                             | e-bed or c  | lear wate   | er?                |
| Critical Velocity of Bed Material<br>Vc=11.21*y1^0.1667*D50^0.33 with Sa<br>(Richardson and others, 1995, p. 28 | 5=2.65      | to Engli    | .sh units)         |
| Approach Section<br>Characteristic                                                                              | 100 yr      | 500 yr      | other Q            |
| Total discharge, cfs<br>Main Channel Area, ft2                                                                  | 1470<br>145 | 2100<br>197 | 0                  |
| Left overbank area, ft2                                                                                         | 0           | 0           | 0                  |
| Right overbank area, ft2                                                                                        | 0           | 0           | 0                  |
| Top width main channel, ft                                                                                      | 43          | 47          | 0                  |
| Top width L overbank, ft                                                                                        | 0           | 0           | 0                  |
| Top width R overbank, ft                                                                                        | 0           | 0           | 0                  |
| D50 of channel, ft                                                                                              | 0.2598      |             | 0                  |
| D50 left overbank, ft                                                                                           |             |             |                    |
| D50 right overbank, ft                                                                                          |             |             |                    |
| yl, average depth, MC, ft                                                                                       | 3.4         | 4.2         | ERR                |
| y1, average depth, LOB, ft                                                                                      | ERR         | ERR         | ERR                |
| yl, average depth, ROB, ft                                                                                      | ERR         | ERR         | ERR                |
| Total conveyance, approach                                                                                      | 6713        | 10544       | 0                  |
| Conveyance, main channel                                                                                        | 6713        | 10544       | 0                  |
| Conveyance, LOB                                                                                                 | 0           | 0           | 0                  |
| Conveyance, ROB                                                                                                 | 0           | 0           | 0                  |
| Percent discrepancy, conveyance                                                                                 | 0.0000      | 0.0000      | ERR                |
| Qm, discharge, MC, cfs                                                                                          | 1470.0      | 2100.0      | ERR                |
| Ql, discharge, LOB, cfs                                                                                         | 0.0         | 0.0         | ERR                |
| Qr, discharge, ROB, cfs                                                                                         | 0.0         | 0.0         | ERR                |
| Vm, mean velocity MC, ft/s                                                                                      | 10.1        | 10.7        | ERR                |
| Vl, mean velocity, LOB, ft/s                                                                                    | ERR         | ERR         | ERR                |
| Vr, mean velocity, ROB, ft/s                                                                                    | ERR         | ERR         | ERR                |
| Vc-m, crit. velocity, MC, ft/s                                                                                  | 8.8         | 9.1         | N/A                |
| Vc-l, crit. velocity, LOB, ft/s                                                                                 | ERR         | ERR         | ERR                |
| Vc-r, crit. velocity, ROB, ft/s                                                                                 | ERR         | ERR         | ERR                |
| Results                                                                                                         |             |             |                    |
| Live-bed(1) or Clear-Water(0) Contr                                                                             | raction Sc  | our?        |                    |
| Main Channel                                                                                                    | 1           | 1           | N/A                |
| Left Overbank                                                                                                   | N/A         | N/A         | N/A                |
| Right Overbank                                                                                                  | N/A         | N/A         | N/A                |

Live-Bed Contraction Scour

Laursen's Live Bed Contraction Scour y2/y1 = (Q2/Q1)^(6/7)\*(W1/W2)^(k1) ys=y2-y\_bridge (Richardson and others, 1995, p. 30, eq. 17 and 18)

|                                    | Approacl  | n       |                                                                                    | Bridge    |           |          |
|------------------------------------|-----------|---------|------------------------------------------------------------------------------------|-----------|-----------|----------|
| Characteristic                     | 100 yr    | 500 yr  | Other Q                                                                            | 100 yr    | 500 yr    | Other Q  |
|                                    |           |         |                                                                                    |           |           |          |
| Q1, discharge, cfs                 | 1470      | 2100    | 0                                                                                  | 1470      | 2100      | 0        |
| Total conveyance                   | 6713      | 10544   | 0                                                                                  | 8137      | 12506     | 0        |
| Main channel conveyance            | 6713      | 10544   | 0                                                                                  | 8137      | 12506     | 0        |
| Main channel discharge             | 1470      | 2100    | ERR                                                                                | 1470      | 2100      | ERR      |
| Area - main channel, ft2           | 145       | 197     | 0                                                                                  | 146       | 193       | 0        |
| (W1) channel width, ft             | 43        | 47      | 0                                                                                  | 35.6      | 35.6      | 0        |
| (Wp) cumulative pier width, ft     | 0         | 0       | 0                                                                                  | 0         | 0         | 0        |
| W1, adjusted bottom width(ft)      | 43        | 47      | 0                                                                                  | 35.6      | 35.6      | 0        |
| D50, ft                            | 0.2598    | 0.2598  | 0.2598                                                                             |           |           |          |
| w, fall velocity, ft/s (p. 32)     | 4.1705    | 4.1705  | 0                                                                                  |           |           |          |
| y, ave. depth flow, ft             | 3.37      | 4.19    | N/A                                                                                | 4.10      | 5.42      | ERR      |
| S1, slope EGL                      | 0.036     | 0.0315  | 0                                                                                  |           |           |          |
| P, wetted perimeter, MC, ft        | 45        | 49      | 0                                                                                  |           |           |          |
| R, hydraulic Radius, ft            | 3.222     | 4.020   | ERR                                                                                |           |           |          |
| V*, shear velocity, ft/s           | 1.933     | 2.019   | N/A                                                                                |           |           |          |
| V*/w                               | 0.463     | 0.484   | ERR                                                                                |           |           |          |
| Bed transport coeff., k1, (0.59 if | V*/w<0.5; | 0.64 if | .5 <v* td="" w<2<=""><td>; 0.69 if</td><td>₹ V*/w&gt;2.</td><td>0 p. 33)</td></v*> | ; 0.69 if | ₹ V*/w>2. | 0 p. 33) |
| kl                                 | 0.59      | 0.59    | 0                                                                                  |           |           |          |
| y2,depth in contraction, ft        | 3.77      | 4.94    | ERR                                                                                |           |           |          |
|                                    |           |         |                                                                                    |           |           |          |
| ys, scour depth, ft (y2-y_bridge)  | -0.33     | -0.48   | N/A                                                                                |           |           |          |
|                                    |           |         |                                                                                    |           |           |          |

#### Armoring

Dc=[(1.94\*V<sup>2</sup>)/(5.75\*log(12.27\*y/D90))<sup>2</sup>]/[0.03\*(165-62.4)]
Depth to Armoring=3\*(1/Pc-1)
(Federal Highway Administration, 1993)

| Downstream bridge face property     | 100-yr | 500-yr | Other Q |
|-------------------------------------|--------|--------|---------|
| Q, discharge thru bridge MC, cfs    | 1470   | 2100   | N/A     |
| Main channel area (DS), ft2         | 146    | 193    | 0       |
| Main channel width (normal), ft     | 35.6   | 35.6   | 0.0     |
| Cum. width of piers, ft             | 0.0    | 0.0    | 0.0     |
| Adj. main channel width, ft         | 35.6   | 35.6   | 0.0     |
| D90, ft                             | 0.6859 | 0.6859 | 0.0000  |
| D95, ft                             | 0.8168 | 0.8168 | 0.0000  |
| Dc, critical grain size, ft         | 0.5553 | 0.5718 | ERR     |
| Pc, Decimal percent coarser than Dc | 0.169  | 0.156  | 0.000   |

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27\*K1\*K2\*(a'/Y1)^0.43\*Fr1^0.61+1 (Richardson and others, 1995, p. 48, eq. 28)

| Characteristic                                                                                                                                                                            | Left Abu<br>100 yr Q                              |                                                   | Other Q :                                    | Right Ab<br>100 yr Q 5                          | outment<br>500 yr Q O                             | ther Q                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------|--|
| <pre>(Qt), total discharge, cfs<br/>a', abut.length blocking flow, ft<br/>Ae, area of blocked flow ft2<br/>Qe, discharge blocked abut.,cfs<br/>(If using Qtotal_overbank to obt</pre>     | 1470<br>5.5<br>10.81<br>47.56                     | 2100<br>7.8<br>18.99<br>82.73                     | 0<br>0<br>0<br>0                             | 1470<br>2<br>4.23<br>20.7                       | 2100<br>3.4<br>9.1<br>46.36                       |                                              |  |
| Ve, (Qe/Ae), ft/s<br>ya, depth of f/p flow, ft                                                                                                                                            | 4.40<br>1.97                                      | 4.36<br>2.43                                      | ERR<br>ERR<br>ERR                            | 4.89<br>2.12                                    | 5.09<br>2.68                                      | ERR<br>ERR                                   |  |
| Coeff., Kl, for abut. type (1.0,<br>Kl                                                                                                                                                    | verti.; (<br>0.82                                 | 0.82, vert 0.82                                   | ti. w/ wir<br>0.82                           | ngwall; 0.<br>0.82                              | .55, spill<br>0.82                                | thru)<br>0.82                                |  |
| Angle (theta) of embankment (<90<br>theta<br>K2                                                                                                                                           | if abut.<br>90<br>1.00                            | points DS<br>90<br>1.00                           | 5; >90 if<br>90<br>1.00                      | abut. poi<br>90<br>1.00                         | ints US)<br>90<br>1.00                            | 90<br>1.00                                   |  |
| Fr, froude number f/p flow                                                                                                                                                                | 0.553                                             | 0.492                                             | ERR                                          | 0.593                                           | 0.549                                             | ERR                                          |  |
| ys, scour depth, ft                                                                                                                                                                       | 5.93                                              | 7.29                                              | N/A                                          | 4.91                                            | 6.51                                              | N/A                                          |  |
| HIRE equation (a'/ya > 25)<br>ys = 4*Fr^0.33*y1*K/0.55<br>(Richardson and others, 1995, p. 49, eq. 29)                                                                                    |                                                   |                                                   |                                              |                                                 |                                                   |                                              |  |
| a'(abut length blocked, ft)<br>y1 (depth f/p flow, ft)<br>a'/y1<br>Skew correction (p. 49, fig. 16)<br>Froude no. f/p flow<br>Ys w/ corr. factor K1/0.55:<br>vertical<br>vertical w/ ww's | 5.5<br>1.97<br>2.80<br>1.00<br>0.55<br>ERR<br>ERR | 7.8<br>2.43<br>3.20<br>1.00<br>0.49<br>ERR<br>ERR | 0<br>ERR<br>ERR<br>1.00<br>N/A<br>ERR<br>ERR | 2<br>2.12<br>0.95<br>1.00<br>0.59<br>ERR<br>ERR | 3.4<br>2.68<br>1.27<br>1.00<br>0.55<br>ERR<br>ERR | 0<br>ERR<br>ERR<br>1.00<br>N/A<br>ERR<br>ERR |  |
| spill-through                                                                                                                                                                             | ERR                                               | ERR                                               | ERR                                          | ERR                                             | ERR                                               | ERR                                          |  |

Abutment riprap Sizing

Isbash Relationship
D50=y\*K\*Fr^2/(Ss-1) and D50=y\*K\*(Fr^2)^0.14/(Ss-1)
(Richardson and others, 1995, p112, eq. 81,82)

| Characteristic                                                                          | Q100                    | Q500                    | Other Q     | Q100                 | Q500                     | Other Q           |
|-----------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------|----------------------|--------------------------|-------------------|
| Fr, Froude Number<br>y, depth of flow in bridge, ft                                     | 0.88<br>4.10            | 0.83<br>5.42            | 0<br>0.00   | 0.88<br>4.10         | 0.83<br>5.42             | 0<br>0.00         |
| Median Stone Diameter for riprap<br>Fr<=0.8 (vertical abut.)<br>Fr>0.8 (vertical abut.) | at: left<br>ERR<br>1.65 | abutment<br>ERR<br>2.15 | 0.00<br>ERR | right<br>ERR<br>1.65 | abutment,<br>ERR<br>2.15 | ft<br>0.00<br>ERR |