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Introduction

When precipitation falls within a drainage basin, water comes into contact with rock-
forming minerals and chemical weathering is initiated. Chemical weathering within a basin
involves the congruent dissolution of minerals such as calcite or the incongruent dissolution and
transformation of minerals such as plagioclase to clay minerals. These processes release
elements to the natural waters of a basin. Therefore, the chemical composition of natural waters
evolved within a basin that has not been affected by human influence is determined primarily by
the chemical composition of rocks within the basin. Climate (mainly precipitation and
temperature) plays a role, particularly in determining the rates of water-rock reactions, but
composition of the rocks is the fundamental control.

There are multiple methods for quantifying the composition of rocks within a drainage
basin. The approximate major element composition of most rock types can generally be inferred
from geologic maps, thereby giving a degree of insight into the expected major element
composition of natural waters of the basin in question. However, this is not true for trace
elements, which can vary by two or more orders of magnitude within the same rock type.
Quantification of rock composition involves sampling and chemically analyzing the rocks
themselves or the stream sediments within a drainage basin. Sediments provide a robust sample
that is easy to collect and representative of the composition of the rocks, soils, and mechanical
weathering products upstream from sampling sites (Plant and Hale, 1994).

The background geochemistry of natural waters is, by definition, the composition of the
waters without any input from human activities. Unfortunately, there is probably no place in the
world in which the background composition of waters has not been modified to some extent by
anthropogenic activities such as agriculture, urbanization, or mining. This input is always
superimposed on the natural background geochemistry. Relatively pristine areas, such as
National Parks or National Forests, may contain areas which are only minimally affected by
human influence. At these sites, geochemical baselines (defined as the chemical composition at
a given point in time regardless of human input) can be determined for stream waters and may
approximate the true background geochemistry. This information is useful for an understanding
of the processes responsible for the chemical composition of waters within a drainage basin. In
addition, because water geochemistry is sensitive to changes in the environment, the monitoring
of water geochemistry allows us to recognize and quantify changes in the environment of the
basin under study.

The purpose of this study is to determine the geochemical baseline for the time of
sampling for a wide range of major, minor, and trace elements in selected stream and spring
waters in the Rough and Ready Creek drainage basin within the Siskiyou National Forest,



Oregon (fig. 1). The determination of these baselines will allow the recognition of any changes
in water quality that may be caused by the proposed mining of nickel laterite deposits within the
basin. In addition, the study determined baselines (for the time of sampling) of streams, springs,
and underground flow in the Oregon Caves National Monument and vicinity and for Grayback
Creek (fig. 1). Recent advances in analytical technology, particularly inductively coupled
plasma-mass spectrometry, allow for the determination of a wide range of elements at very low
detection limits. The determination of geochemical baselines for this study establishes a range of
element concentrations in waters at the time of sampling. Stream sediments were also collected
at selected sites to provide information on rock composition within the study areas and to provide
a baseline for the geochemistry of the stream sediments.

Regional Setting

The study areas lie within the Klamath Mountains geomorphic province of southwestern
Oregon and northern California. The Klamath Mountains consist of four north-trending arcuate
belts of rocks (Irwin, 1966 and Hotz, 1971). The two study areas fall within the two western
most belts called the Western Paleozoic and Triassic Belt, which includes the Applegate Group
and associated ultramafic and younger intrusive rocks, and the Western Jurassic Belt which
includes the Rogue and Galice Formation and associated intrusives rocks (Ramp and Peterson,
1979). All the layered rocks conform to the regional trend of the Klamath Mountains. These
rocks were once sea floor rocks and island-arc volcanic deposits that collided with the
continental margin (Allen and Beaulieu, 1976).

Field and Laboratory Methods

Water

Water samples were collected from 17 streams and 3 springs during September 9 - 11,
1997. During this time the weather was stable and no precipitation occurred. Samples were
collected by width and depth integration (Edwards and Glysson, 1988) except for sites such as
springs where flow was minimal. Temperature, pH, and conductivity were measured at the site.
An Orion model SA 250 pH meter with an Orion Ross Shur-Flow glass electrode with a
Ag/AgCl junction was used to measure pH. The conductivity was measured using an Orion
model 120 conductivity meter. Samples were collected into clean high-density polyethylene
bottles. For the dissolved cation analyses, a 30-ml sample was filtered through a 0.45 pm-
membrane filter and acidified with ultrapure reagent-grade Ultrex nitric acid to pH <2. A 15-ml
sample was filtered but not acidified for anion analyses, and a 125-ml untreated sample was
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Figure 1. Location map showing the study areas, Southwestern Oregon




collected for alkalinity measurement. The samples were stored in an ice chest after collection
and later in a refrigerator and kept cool until analyzed.

Upon return to the USGS laboratories, alkalinity as HCO;', was determined by titration
with H,SO, using an Orion Model 960 autochemistry system, Richard Sanzolone, analyst. The
anions sulfate, chloride, nitrate, and fluoride were determined by ion chromatography (IC)
(Fishman and Pyen, 1979), Peter Theodorakos, analyst. The cations Mg, Na, Fe, and P were
analyzed by inductively coupled plasma - atomic emission spectrometry (ICP-AES) (Briggs and
Fey, 1996). The remaining cations were analyzed by inductively coupled plasma - mass
spectrometry (ICP-MS) (Meier and others, 1994). Duplicate water samples, blank samples, and
USGS Water Resource Division standard reference waters were analyzed with each data set.
Elements which were analyzed for, but were below analytical detection for all the samples are
shown in Table 1. The chemical analyses of the water samples are shown in Table 2.

Stream Sediments

Stream sediment samples were collected and chemically analyzed from eleven sites
within the study areas. The purpose of determining geochemical baselines for sediments was to
provide an estimate of the rock composition within the sampled basin. This information, in turn,
was used to gain insight into the processes which affected water chemistry within the basin.

Each sediment sample was collected from approximately 100 meters of stream in the
vicinity of the location shown on Figs. 2, 4, and 5. The sediment was passed through a 2-mm
screen at the sample site, air dried, and transported to the U.S. Geological Survey in Denver, CO
for preparation and analysis. In the lab, the samples were sieved to minus-0.18 mm (minus-80
mesh), ground to minus-0.15 mm (minus-100 mesh) and submitted for chemical analysis. The
sediment analyses were performed by XRAL, Inc. under contract with the USGS.

The samples were analyzed for forty elements by inductively coupled plasma-atomic
emission spectrometry (ICP-AES) using for sample digestion a mixture of hydrochloric, nitric,
perchloric, and hydrofluroic acids at low temperature to achieve a total decomposition of all
mineral phases in the sample (Briggs, 1996). The samples were also analyzed by ICP-AES for
ten elements using a hydrochloric acid-hydrogen peroxide digestion (Motooka, 1996). This
digestion solubilizes metals not tightly bound within silicate minerals and, thus, constitutes only
a partial dissolution of the sample. The data for each of these methods is shown in Table 3.

Rough and Ready Creek Study Area

Most of the rocks (>90%) within the Rough and Ready Creek watershed consist of
serpentinite and partly serpentinized peridotite which make up the Josephine ultramafic sheet.



Table 1. Elements in water samples that were all below level of
detection, Rough and Ready Creek and Oregon Cave
National Monument and vicinity, Oregon

Element Lower level of analytical detection in ppb
P 50
Be 0.05

Cu 0.5
Ga 0.02
Ge 0.2
As 0.4
Zr 0.05
Nb 0.02
Cd 0.02
In 0.01
Sn 0.07
Te 0.1
Pr 0.01
Eu 0.005
Tb 0.005
Gd 0.005
Dy 0.005
Ho 0.005
Er 0.005
Tm 0.005
Yb 0.01
Hf 0.05
Ta 0.02
w 0.1
Re 0.02
Au 0.01
Pb 0.05
Bi 0.01
Th 0.01
Tl 0.05
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The ultramafic rocks were originally mostly peridotite which varied in composition from
pyroxenite to dunite (Ramp and Peterson, 1979). The remaining rocks are quartz diorite and
related rocks, which occur in the southwestern part of the South Fork of Rough and Ready Creek
drainage basin (Ramp and Peterson, 1979). Most of the ultramafic rocks are serpentinized and
highly sheared near fault boundaries. Iron and nickel-rich red lateritic soils are developed on the
ultramafic rocks. These deposits formed by chemical weathering of peridotite and possibly
serpentinite (Hotz, 1964). Olivine and orthopyroxene minerals are readily weathered to hydrated
ferric oxides and clays. The lateritic soils occur on nearly flat lying to gently slopping surfaces
on broad ridgecrests, in saddles and on lower shoulders, terraces, and benches (Hotz, 1964).
Accumulations of lateritic soils range from a few feet to a few 10's of feet thick and have an
average Ni content of <1%. The age of the lateritic soils is probably Miocene or younger (Hotz,
1964). The rugged terrain, which makes it difficult to transport the ore, the low grade of the
nickel content, and the low volume of the reserves imply that the iron- and nickel-rich lateritic
soils within the Rough and Ready Creek drainage are probably marginal in value for ore deposits
compared to world-wide averages for nickel ore deposits (see figs. 189 and 190, p. 254, Singer,
1986).

Samples of 9 stream waters, 2 spring waters, and 8 stream sediments were collected
within the Rough and Ready Creek watershed (fig. 2). The West Fork of the Illinois River above
the junction with Rough and Ready Creek was also sampled for both stream water and sediments
(fig. 2). The samples were collected September 9 and 10, 1997. During this time, the weather
was stable and no precipitation occurred. The streams were in low flow, near the lowest flow of
the season, and all waters were clear.

The waters can be classified as to dominant cation and anion. All the sites are Mg-HCO;
dominant waters, mainly because of the peridotite and sepentinite rocks that underlie the
watershed. The rock composition determines the geochemistry of the waters that evolve in the
watershed. The minerals that compose the rocks are mainly serpentine, olivine, and pyroxene.
Serpentine is a stable mineral but olivine and pyroxene will readily weather to serpentine, clay
and hydrated iron or aluminum oxides, releasing elements, particularly Mg, Fe, Si, and trace
metals Ni and Cr to the waters of the basin.

The pH values of waters ranged form 7.63 to 8.58 with a mean of 8.16 and conductivity
ranged from 120 to 277 uS/cm with a geometric mean of 196 uS/cm (Table 2). Alkalinity,
which indicates the capacity of the waters to buffer acid from sources such as acid-mine drainage
or acid rain, ranged from 75 to 182 ppm as HCO;™ with a geometric mean of 124 ppm, indicating
that the waters within the watershed have good buffering capacity.

Rock composition is the fundamental control determining the geochemistry of the waters
in the watershed. The concentrations of elements that may be a concern for aquatic and public

15
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health are generally low, particularly for Cu, Zn, As, Co, Se, Sb, Mo, U and nitrate. The only
exception is Ni which ranged in concentration from 11 to 36 ppb, with a geometric mean of 19
ppb. The elevated concentrations of Ni compared to average fresh water (Table 4) is due to
chemical weathering of Ni-bearing minerals within the watershed. In addition, Cr which ranged
in concentration from <1 to 5 ppb is slightly elevated in concentration compared to average fresh
water (Table 4). The concentrations of Ca, Na, K, sulfate, F* and CI, are low and Mg and SiO,
are high in waters in the watershed, compared to average fresh water (Table 4). The distribution
of pH, conductivity, alkalinity, Ni and Mg are shown in fig. 3. Sulfate concentrations are low
with a range of <2 to 5.8 ppm. These low values indicate that sulfide minerals are absent or in
minimal quantities in the drainage basin. Mn, and Al concentrations are generally low compared
to average fresh water (Table 4). The only Fe concentration above the detection limit of <20
ppb occurs at site SK04 (West Fork of the Illinois River) with 65 ppb.

In summary, the water chemistry of the Rough and Ready watershed is influenced by the
rock composition that underlies the basin. Sampled waters within the watershed are high in
concentrations of Mg and Ni and low in Ca as well as many other elements, compared to average
fresh water. High alkalinities of the waters within the watershed indicate good capacity for
buffering acid generation from possible sources such as acid rain and acid-mine drainage.
Overall the quality of waters in the Rough and Ready Creek watershed is good compared to most
water quality standards.

Chemical Modeling of the Waters

To gain understanding of processes such as speciation of elements and identification of
minerals that may control the concentration, mobility, and attenuation of elements in the stream
waters, chemical modeling of the stream waters was carried out using PHREEQC (Parkhurst,
1995). The modeling program assumes mineral-solution equilibrium. For some chemical
reactions, particularly with slow kinetics, this may not be the case. The dominant cations and
anions in the stream and spring waters are Mg?*, Ca*, Na*, K*, Al(OH)*, H,SiO,, HCO3-, SO,*,
and CI. At five sites MnCO,’ is dominant and at the remaining sites, Mn?* is dominant.

Saturation indexes were calculated for a suite of minerals to determine if concentrations
of trace metals in water were controlled by mineral phases. The saturation index is a
convenient means of expressing saturation states of minerals (Barnes and Clark, 1969) where:

SI=log,, IAP/K.

In the expression, SI is the saturation index, IAP is the ion activity product, and K is the
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Table 4. Background of elements (in ppb) in freshwater compared to the geometric mean
concentration of the Rough and Ready watershed.

Element Background (Freshwater) Rough and Ready Creek Watershed
Data from Forstner and Wittmann (1979)
Al <30 0.7
Cr 0.5 27
Fe . <30 <20
Mn <5 0.05
Ni 0.3 19.1
Zn 10 <0.5
Data from Livingstone (1963)
Ca 15 1.0
Mg 4.1 21
Na 6.3 1.3
K 2.3 0.89
Sio2 13.1 25
S04 11.2 <2
HCO3 58.4 124
Cl 7.8 3.1
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equilibrium constant of the dissolution reaction at the temperature in question. Mineral phases
are supersaturated at SI>0, saturated at SI=0, and undersaturated at SI<0.

All the waters are undersaturated with respect to calcite (CaCO;) and dolomite
(CaMg(CO0s),), except for sites SK13 and 14 which are saturated or slightly supersaturated with
respect to dolomite (Table 5). At sites SK13 and 14, waters are slightly supersaturated with
respect to sepiolite (Mg,Si;0,s(OH),  6H,0). At these two sites, either dolomite or sepiolite may
control the Mg concentration of the waters. Sepiolite is commonly found as a secondary mineral
in the vicinity of serpentinite masses. All the waters are slightly undersaturated with respect to
chalcedoney (SiO,), suggesting that chalcedoney is controlling the concentration of silica
concentrations in the waters. Gibbsite (Al(OH),) is undersaturated at most of the sites, except
sites SKO7 and 5. This suggests that the alteration of silicate minerals to gibbsite is continuing in
much of the watershed.

Possible Impact on Water Quality on Rough and Ready Creek Due to Mining

A proposal has been made to mine Ni-bearing laterite from the Rough and Ready Creek
watershed. Laterite is usually a reddish material composed of secondary oxides of iron and
aluminum, which is a residual or the end product of weathering. Therefore, the material is
chemically stable. The mining of the laterite should present no problem to the chemical quality
of waters within the watershed.

If mining occurs within the watershed, access roads will be constructed and serpentinite
may be used as a road material. Serpentinite is a rock consisting of chemically-stable serpentine-
group minerals with minor chlorite and talc. The use of serpentinite as road material will not
have significant effect on the chemical quality of the waters within the watershed. It is possible
that the minerals will break down to smaller sizes, and the potential exists to transport this fine
material to streams within the basin during rainstorms.

If possible, the use of peridotite as road material should be avoided. Peridotite contains
minerals such as olivine that are not chemically stable and will alter and release elements such as
Ni to the waters of the watershed. Crushing of the perdiodite for road material will expose fresh
surfaces to oxidation and dissolution and increase the release of Mg, Si, Fe, Ni, and other
elements to the waters of the basin. The type of elements that will be released to the waters of
the basin will be similar to what is currently being released by normal chemical weathering, but
the amount will be significantly increased, particularly in the first several years after the road
material is first exposed to the surface environment. Even if peridotite is used as road material,
the concentrations of these elements in the watershed should not exceed water quality standards.
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Table 5. Saturation indexes for selected mineral phases

Site  Calcite Dolomite Chalcedoney Gibbsite Sepiolite

Rough and Ready Creek Watershed

SK04  -1.09 -1.34 -0.29 -0.36  -2.72
SK05  -1.55 -1.69 -0.11 0.03 -2.89
SK06 -1.44 -1.46 -0.26 -068  -1.53
SK07  -0.83 -0.38 -0.30 0.41 -0.53
SK08 -1.45 -0.95 -0.04 -095 -0.84
SK09 -1.68 -1.78 -0.19 -1.07  -293
SK10  -2.33 -2.89 -0.12 -0.39 -3.60
SK11  -0.92 -0.48 -0.33 -095 -0.68
SK12  -1.00 -0.07 -0.10 -1.94 0.90
SK13  -0.64 0.32 -0.12 -1.60 0.75
SK14  -0.68 0.06 -0.20 -1.39 0.62
SK15  -0.98 -0.47 -0.03 -0.76  -0.86
Oregon Caves National Monument and vicinity
SK16  -0.86 -1.99 -0.11 0.76 -3.76
OCO01 0.38 -2.05 -0.68 0.26 -8.66
0C02 0.21 -1.44 -0.67 -0.01 -6.78
OC03 -0.01 -1.05 -0.07 -086 -4.10
OC04 -0.10 -1.21 -0.08 0.30 -4.58
OC05 0.49 -0.06 -0.13 0.04 -2.41
OC06 0.64 0.42 -0.18 -0.18  -1.33
OC07 -0.83 -2.30 -0.16 1.29 -4.44
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Oregon Caves National Monument and Vicinity

Water samples were collected from 7 streams and 1 spring in the Oregon Caves National
Monument and vicinity and Grayback Creek (fig. 4 and 5). Stream sediments were collected
from Lake Creek (OC07) and Grayback Creek (SK16). Samples at site SK16 were collected on
September 10, 1997. The remaining samples were collected on September 11, 1997. During this
period, the weather was stable and no precipitation occurred. All the streams were in low flow
stage.

Most of the rocks in the Oregon Caves National Monument and vicinity are Triassic
Applegate Group metavolcanics and metasediments (Ramp and Peterson, 1979). The
metavolcanics consist of pillow lavas, flow breccias, and tuffs which were intruded by diabase
and gabbro dikes (Ramp and Peterson, 1979). The metasedments include argillite, slaty siltstone,
chert, tuffaceous sediment, quartzite conglomerate, and marble (Ramp and Peterson, 1979). The
caves occur in marble lenses. Sites OC01 and OCO02 are from within and near the back of the
cave where flowing water enters the cave. Site OCO03 is from Cave Creek at the exit of the cave.
Site OC04 is a spring along Cave Creek near the contact of the marble with other metasediments
and metavolcanics. Site OCO0S5 is Cave Creek below the Oregon Caves Chateau, a historic hotel
located within the drainage of Cave Creek, below the exit from the cave. Site OC06 is along No
Name Creek, a tributary to Cave Creek. The No Name Creek watershed is underlain by
Applegate Group metavolcanics and metasediments. Site OC07 is Lake Creek above the
junction with Panther Creek. The Lake Creek watershed is underlain mainly by a granodiorite
pluton and provides the water supply for Oregon Caves National Monument. Site SK16 is
Grayback Creek below the junction with Mossback Creek. Grayback Creek watershed is
underlain by metasediments and metavolcanics of the Applegate Group and by younger
intrusive rocks which range in composition of quartz diorite to more mafic rocks.

The chemical analyses of the waters from the Oregon Caves National Monument and
vicinity are shown in Table 2. The geochemistry of the waters demonstrate the effect of rock
composition on the type of water that will evolve within a watershed. This can be shown by
comparing the chemical composition of waters at various sites. Comparing sites OC01 and
0C02, waters collected within Oregon Caves, to site OC03, Cave Creek at the cave exit,
elements that increase in concentrations at the exit are Mg, Na, K, Si0O,, Li, Sc, V, Sr,and Y.
Elements that decrease in concentrations at the exit are Mn, Al, Rb, and Ca. Conductivity and
pH also decrease. Waters at sites OC01 and OC02, are mainly in contact with carbonate rocks.
Cave Creek at the exit contains a mixture of waters in contact with both carbonate and other
types of rocks. These other rock types are probably Applegate Group metavolcanics and
metasediments. Chemical modeling shows that sites OC01 and OCOQ2 are supersaturated with
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respect to calcite (Table 5). Calcite should precipitate at these sites. The mixed water at site
OCO03, at the exit of the cave, is near saturation with respect to calcite, which should not dissolve
or precipitate at this site. Chalcedony (amorphous silica) is undersaturated at sites OC01 and
0OCO02, but near saturation at site OC03, further suggesting that site OC03 contains water that was
in contact with silicate rocks.

Water from site OC04, a spring, is similar to Cave Creek at site OC03, suggesting that the
water at the spring is a mixture of waters in contact with marble and metavolcanics and
metasediments. The water at the spring is slightly undersaturated with respect to calcite and
chalcedony (Table 5).

The water from Cave Creek site OC05, below the Oregon Caves Chateau, compared to
OC03 or OC04, contains slightly greater concentrations of Ca, alkalinity, nitrate, Mn, Al, Ni, Rb
and slightly less concentrations of SiO,, Sc, V, and Y. Values of pH are also slightly higher at
site OCO05 (Table 2). The water at site OCOS5 has been in contact with marble along the
streambed after leaving the cave, and probably has dissolved minor calcite, which increases the
pH and accounts for the differences in many of the other species. The water of site OCOS5 is
supersaturated with respect to calcite (Table 5). The increase in concentrations of nitrate, Mn,
and Al below the Oregon Cave Chateau may be due to the presence of the chateau’s leach field
above site OCO05.

The water from No Name Creek, OC06, compared to Cave Creek, contains greater
concentrations of K, SO,, Mn, Al, and Rb and less concentrations of alkalinity, Ca, Sr, and
nitrate. No Name Creek contains a mixture of waters in contact with both marble and more
silicious metasediments and metavolcanics. The water at this site is supersaturated with respect
to calcite and dolomite and near saturation with respect to chalcedony (Table 5).

The water from Lake Creek, site OC07, is higher in concentrations of Al, La, Nd, and Sm
and lower in concentration of alkalinity, Ca, Mg, Ni, Sr, Ba, nitrate, and conductivity, compared
to Cave Creek or No Name Creek. The chemistry of the water, in particular La, Nd, and Sm,
suggests that the water is in contact with more felsic intrusive rocks compared to other sites in
the study area. The Lake Creek watershed is underlain by granodiorite, and the sediment data
show elevated concentrations of Ca, K, Na, La, Nd, and Sn, typically high in areas underlain by
felsic rocks. The water is undersaturated with respect to calcite, suggesting the absence of
marble in the watershed, and slightly undersaturated with respect to chalcedony (Table 4). The
watershed provides the water supply for the Oregon Caves National Monument. The water
quality of the inorganic chemistry of the watershed is excellent. The alkalinity is lower
compared to Cave Creek. The lower alkalinity, which is a measure of buffering capacity of the
water, indicates that if the watershed is impacted by processes which generate acid, such as acid-
rain, the waters of the watershed could deteriorate and quickly become acidic.
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The water from Grayback Creek, site SK16, has low pH and conductivity values and is
low in concentrations of alkalinity and Ca and highest in Mg, Na, SiO,, SO,, V, Ni, and Rb
compared to the other waters in the study area. The water chemistry indicates that the waters are
in contact with mixed rocks ranging from intermediate composition to mafic rocks. The stream
sediment data is similar to that of Lake Creek. The waters at this site are undersaturated with
respect to calcite, suggesting an absence of marble in the watershed, and slightly undersaturated
with respect to chalcedony (Table 5).

Conclusions and Summary

Temperature, pH, conductivity, alkalinity, and 65 elements or species were determined
for waters collected from 17 streams and 3 springs in southwestern Oregon. Because of the low
sensitivity of the ICP-MS analyses, these results provide a geochemical baseline, for the time of
sampling, for a wide range of elements at low sensitivities, many documented for the first time
for this area. Stream sediments were collected and chemically analyzed from 11 of the water
sampling sites to provide an estimate of the composition of rocks upstream from the sites. The
water chemistry of these sites demonstrate the importance of rock composition in the type of
waters that will evolve in a watershed. In the Rough and Ready Creek watershed, the waters in
contact with the underlying ultramafic rocks are high in Mg and Ni and low in most other
cations. In Oregon Caves National Monument, waters in contact with marble are high in Ca and
alkalinity and low in most other cations. Other waters in the vicinity are mixtures of waters in
contact with marble, metasediments, metavolcanics, and younger intrusive rocks. The water
chemistry at these sites reflects these mixtures of rocks within the watershed..

In most cases, the water chemistry in both study areas indicates that there is minimal
input from anthropogenic sources. One exception is Cave Creek, site OC05, which is below
Oregon Caves Chateau. Nitrate at this site is elevated in concentration above that at site OC03,
Cave Creek above the Chateau, probably because of the leach field for the chateau. The
concentration of nitrate at site OCOS5 is still low and does not pose a health concern.

Mining of Ni-bearing laterite and the building of access roads in the Rough and Ready
Creek watershed should not pose a water quality problem to the watershed, particularly if
peridotite rocks are not greatly disturbed. Disturbing peridotite rocks will increase chemical
weathering and increase the amounts of Mg and Ni released to the watershed.

Because of the minimal input from anthropogenic sources in the two study areas, the
geochemical baselines establish an approximation of background geochemistry of stream and
spring waters for the time of year in which the sampling was done, mainly low flow period.
Because water chemistry is sensitive to changes in the environment, these results can be used to
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compare with future water chemistry in order to determine if change has taken place in the
watersheds.
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